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ABSTRACT. In the present paper we prove that for any open connected set Ω ⊂ Rn+1,
n ≥ 1, and any E ⊂ ∂Ω with Hn(E) < ∞, absolute continuity of the harmonic measure
ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable. This solves
an open problem on harmonic measure which turns out to be an old conjecture even in the
planar case n = 1.
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1. INTRODUCTION

Our main result is the following.

Theorem 1.1. Let n ≥ 1 and Ω ( Rn+1 be an open connected set and let ω := ωp be
the harmonic measure in Ω where p is a fixed point in Ω. Let E ⊂ ∂Ω be a subset with
Hausdorff measureHn(E) <∞. Then:

(a) If ω is absolutely continuous with respect to Hn on E, then ω|E is n-rectifiable,
in the sense that ω-almost all of E can be covered by a countable union of n-
dimensional (possibly rotated) Lipschitz graphs.
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(b) If Hn is absolutely continuous with respect to ω on E, then E is an n-rectifiable
set, in the sense that Hn-almost all of E can be covered by a countable union of
n-dimensional (possibly rotated) Lipschitz graphs.

Notice that, in particular, the statement (a) ensures that any set E ⊂ ∂Ω with Hn(E) <
∞ and ω(E) > 0 where ω is absolutely continuous with respect to Hn contains an n-
rectifiable subset F withHn(F ) > 0.

We remark that the preceding theorem solves an open problem on harmonic measure
which turns out to be an old conjecture even in the planar case n = 1. See for example
Conjecture 10 in Bishop’s paper [Bi].

The metric properties of harmonic measure have attracted the attention of many math-
ematicians. Fundamental results of Makarov [Mak1], [Mak2] establish that if n + 1 = 2
then the Hausdorff dimension dimH ω = 1 if the set ∂Ω is connected (and ∂Ω is not a point
of course). The topology is somehow felt by harmonic measure, and for a general domain
Ω on the Riemann sphere whose complement has positive logarithmic capacity there exists
a subset of E ⊂ ∂Ω which supports harmonic measure in Ω and has Hausdorff dimension
at most 1, by a very subtle result of Jones and Wolff [JW]. In particular, the supercritical
regime becomes clear on the plane: if s ∈ (1, 2), 0 < Hs(E) < ∞, then ω is always sin-
gular with respect to Hs|E). However, in the space (n + 1 > 2) the picture is murkier: on
the one hand, Bourgain [Bo] proved that the dimension of harmonic measure always drops:
dimH ω < n+ 1. On the other hand, even for connected E = ∂Ω, it turns out that dimH ω
can be strictly bigger than n, by a celebrated result of Wolff [W].

Despite the wide variance in dimension, there are still unique phenomena that link har-
monic measure and the geometry of the boundary which only occur in codimension one.
In particular, there are deep connections between the absolute continuity of harmonic mea-
sure in Rn+1 with respect to n-dimensional Hausdorff measure and the rectifiability of the
underlying set, which has been a subject of thorough investigation for even longer than the
aforementioned results: In 1916 F. and M. Riesz proved that for a simply connected domain
in the complex plane, with a rectifiable boundary, harmonic measure is absolutely contin-
uous with respect to arclength measure on the boundary [RR]. More generally, if only a
portion of the boundary is rectifiable, Bishop and Jones [BJ] have shown that harmonic
measure is absolutely continuous with respect to arclength on that portion. They have also
proved that the result of [RR] may fail in the absence of some topological hypothesis (e.g.,
simple connectedness).

The higher dimensional analogues of [BJ] include absolute continuity of harmonic mea-
sure with respect to the Hausdorff measure for Lipschitz graph domains [Da] and non-
tangentially accessible (NTA) domains [DJ], [Se]. To be precise, [Da], [DJ], [Se] establish
a quantitative scale-invariant result, the A∞ property of harmonic measure, which in the
planar case was proved by Lavrent’ev [Lv]. See also [HM1], [BL], [Ba], [Az], [AMT1],
[Mo], [ABHM] along with [AHMNT] in this context. We shall not give a precise definition
of NTA domains here (see [JK]), but let us mention that they necessarily satisfy interior
and exterior cork-screw conditions as well as a Harnack chain condition, that is, certain
quantitative analogues of connectivity and openness, respectively. On the other hand, some
counterexamples show that some topological restrictions, even stronger than in the planar
case, are needed for the absolute continuity of ω with respect toHn [Wu], [Z].
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In the present paper we attack the converse direction. We establish that rectifiability is
necessary for absolute continuity of the harmonic measure. This is a free boundary prob-
lem. However, the departing assumption, absolute continuity of the harmonic measure with
respect to the Hausdorff measure of the set, is essentially the weakest meaningfully possible
from a PDE point of view, putting it completely out of the realm of more traditional work,
e.g., that related to minimization of functionals. At the same time, absence of any a priori
topological restrictions on the domain (porosity, flatness, suitable forms of connectivity)
notoriously prevents from using the conventional PDE toolbox.

To this end, recall that the series of paper by Kenig and Toro [KT1, KT2, KT3] estab-
lished that in the presence of a Reifenberg flatness condition and Ahlfors-David regularity,
log k ∈ VMO if and only if ν ∈ VMO, where k is the Poisson kernel with pole at some
fixed point, and ν is the unit normal to the boundary. Moreover, given the same background
hypotheses, the condition that ν ∈ VMO is equivalent to a uniform rectifiability condition
with vanishing trace. Going further, in [HMU] the authors proved that, in a uniform domain
Ω having an Ahlfors-David regular boundary, scale-invariant bounds on k in Lp (or the
weak-A∞ condition for harmonic measure) imply uniform rectifiability of ∂Ω. Moreover,
the same result was recently established, more generally, for an open set Ω (not necessarily
connected), satisfying an interior cork-screw (i.e., interior porosity) condition and having
an Ahlfors-David regular boundary, see [HM2]. An important underlying thread of all these
results is a priori topological restrictions on the domain, for instance, Ahlfors-David reg-
ularity immediately implies porosity: there is r0 > 0 so that every ball B centered at ∂Ω
of radius at most r0 contains another ball B′ ⊂ Rn+1 \ ∂Ω with r(B) ≈ r(B′), with the
implicit constant depending only on the Ahlfors-David regularity condition.

The present work develops some intricate estimates on the harmonic measure and the
Green function which take advantage of the absolute continuity of harmonic measure in
a hostile geometrical environment at hand and ultimately yield bounds on the (suitably
interpreted) Riesz transform

Rµ(x) =

∫
x− y

|x− y|n+1
dµ(y),

applied to the harmonic measure µ = ωp. The latter allows us to invoke the recent resolution
of the David-Semmes conjecture in co-dimension 1 ([NToV1], [NToV2], see also [HMM]
in the context of uniform domains), establishing that boundedness of the Riesz transforms
implies rectifiability. We note that in Theorem 1.1 connectivity is just a cosmetic assumption
needed to make sense of harmonic measure at a given pole. In the presence of multiple
components, one can work with one component at a time.

An interesting point is that the original problem on geometry of harmonic measure never
mentions any singular integrals whatsoever, let alone non-homogeneous ones. However, it
turns out that non-homogeneous harmonic analysis point of view again proved itself very
useful, exactly as it happened in solving David-Semmes conjecture in co-dimension 1.

Our paper arises from the union of two separate works, [AMT2] and [HMMTV], which
will not be published. In [AMT2], a version of Theorem 1.1 was proved under the addi-
tional assumption that the boundary of Ω is porous in E (in the sense described above).
In [HMMTV] the porosity assumption was removed. Both works, [AMT2] and [HMMTV]
are available only as preprints on ArXiv. For the purposes of publication we combined them
into the present manuscript.
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The organization of the paper is as follows. After recalling some notation in Section 2,
we recall and develop some lemmas concerning harmonic measure in Section 3, as well
as review the definition of the cubes of David and Mattila [DM]. One particularly useful
result from here which may be of independent interest is Lemma 3.3, an inequality relating
harmonic measure and the Green function previously known for NTA domains or for open
sets with ADR boundary but which now holds in any bounded domain. The main body of
the proof of Theorem 1.1 is contained in Section 4, and in Section 5 we discuss some of its
application, such as classifying all sets of absolute continuity for NTA domains.
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2. SOME NOTATION

We will write a . b if there is C > 0 so that a ≤ Cb and a .t b if the constant C
depends on the parameter t. We write a ∼ b to mean a . b . a and define a ∼t b similarly.

For sets A,B ⊂ Rn+1, we let

dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B}, dist(x,A) = dist({x}, A),

We denote the open ball of radius r centered at x by B(x, r). For a ball B = B(x, r) and
δ > 0 we write r(B) for its radius and δB = B(x, δr). We letUε(A) be the ε-neighborhood
of a set A ⊂ Rn+1. For A ⊂ Rn+1 and 0 < δ ≤ ∞, we set

Hnδ (A) = inf
{∑

i diam(Ai)
n : Ai ⊂ Rn+1, diam(Ai) ≤ δ, A ⊂

⋃
iAi
}
.

Define the n-dimensional Hausdorff measure as

Hn(A) = lim
δ↓0
Hnδ (A)

and the n-dimensional Hausdorff content as Hn∞(A). We let m denote the Lebesgue mea-
sure in Rn so that, for some universal constant c depending on n and all Lebesgue measur-
able subsets A ⊆ Rn,Hn(A) = cm(A). See Chapter 4 of [Ma] for more details.
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Given a signed Radon measure ν in Rn+1 we consider the n-dimensional Riesz transform

Rν(x) =

∫
x− y

|x− y|n+1
dν(y),

whenever the integral makes sense. For ε > 0, its ε-truncated version is given by

Rεν(x) =

∫
|x−y|>ε

x− y
|x− y|n+1

dν(y).

For δ ≥ 0 we set
R∗,δν(x) = sup

ε>δ
|Rεν(x)|.

We also consider the maximal operator

Mn
δ ν(x) = sup

r>δ

|ν|(B(x, r))

rn
,

In the case δ = 0 we writeR∗ν(x) := R∗,0ν(x) andMnν(x) :=Mn
0ν(x).

In what follows, Ω will always denote a connected domain. If Ω is bounded, for f a con-
tinuous function on ∂Ω, the set of upper functions for f are the superharmonic functions
h on Ω for which lim infΩ3x→ξ h(x) ≥ f(ξ), ξ ∈ ∂Ω. If we define uf (x) = inf{h(x) :
h is an upper function for f} for x ∈ Ω, the usual Perron method shows that uf is a har-
monic function. One can alternatively work with lower functions by replacing superhar-
monic by subharmonic, lim inf by lim sup and inf by sup. By the Riesz representation
theorem, there is a Radon measure measure ωx on ∂Ω satisfying

uf (x) =

∫
f dωx for all f ∈ Cc(∂Ω),

which we call the harmonic measure for Ω with pole at x. We refer the reader to [Hel,
Chapter 3] for full details. For unbounded domains, harmonic measure can similarly be
defined (see for example [HM1, Section 3]).

3. PRELIMINARIES FOR HARMONIC MEASURE

3.1. Equivalence between (a) and (b) in Theorem 1.1. An easy application of the Radon-
Nykodim Theorem shows that the statements (a) and (b) in Theorem (a) are equivalent.
Indeed, assume that the statement (a) holds. To prove (b), consider E ⊂ ∂Ω such that
Hn(E) < ∞ and Hn � ω on E. By the Radon-Nykodim Theorem, there is a function
g ∈ L1(ωp) such that Hn|E = gωp|E . Let F ⊆ E be the set where g > 0. Then
Hn|F = Hn|E and Hn � ωp � Hn on F . Hence ωp|F is n-rectifiable by the statement
(a). SoHn|F is n-rectifiable, or equivalently, F is n-rectifiable.

The converse implication (b)⇒ (a) is analogous and is left for the reader.

3.2. Properties of the Green function. Let E denote the fundamental solution for the
Laplace equation in Rn+1, so that E(x) = cn |x|1−n for n ≥ 2, and E(x) = −c1 log |x| for
n = 1, c1, cn > 0. A Green function GΩ : Ω× Ω→ [0,∞] for an open set Ω ⊆ Rn+1 is a
function with the following properties: for each x ∈ Ω,GΩ(x, y) = E(x−y)+hx(y) where
hx is harmonic on Ω, and whenever vx is a nonnegative superharmonic function that is the
sum of E(x− ·) and another superharmonic function, then vx ≥ GΩ(x, ·) ([Hel, Definition
4.2.3]).
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An open subset of Rn+1 having a Green function will be called a Greenian set. The class
of domains considered in Theorem 1.1 are always Greenian. Indeed, all open subsets of
Rn+1 are Greenian for n ≥ 2 ([Hel, Theorem 4.2.10]); in the plane, if H1(∂Ω) > 0, then
∂Ω is nonpolar (p. 207 Theorem 11.14 of [HKM]) and domains with nonpolar boundaries
are Greenian by Myrberg’s Theorem (see Theorem 5.3.8 on p. 133 of [AG]).

For a bounded open set, we may write the Green function exactly [Hel, Lemma 5.5.1]:
for x, y ∈ Ω, x 6= y, define

(3.1) G(x, y) = E(x− y)−
∫
∂Ω
E(x− z) dωy(z).

For x ∈ Rn+1 \ Ω and y ∈ Ω, we will also set

(3.2) G(x, y) = 0.

Note that the equation (3.1) is still valid for x ∈ Rn+1 \ Ω and y ∈ Ω by [Hel, Theorem
3.6.10]. The case when x ∈ ∂Ω and y ∈ Ω is more delicate and the identity (3.1) may fail.
However, we have the following partial result:

Lemma 3.1. Let Ω be a Greenian domain and let y ∈ Ω. For m-almost all x ∈ Ωc we have

(3.3) E(x− y)−
∫
∂Ω
E(x− z) dωy(z) = 0.

Clearly, in the particular case where m(∂Ω) = 0, this result is a consequence of the
aforementioned fact that (3.1) also holds for all x ∈ Rn+1 \ Ω, y ∈ Ω, with G(x, y) = 0.
However, Theorem 1.1 deals with arbitrary domains in Rn+1 and so we cannot assume that
m(∂Ω) = 0.

Proof. LetA ⊂ Ωc be a compact set withm(A) > 0. Observe that the functionUA = E∗χA
is continuous, bounded in Rn+1, and harmonic in Ac. Then, by Fubini we have for all
y ∈ Ω, ∫

A

(
E(x− y)−

∫
∂Ω
E(x− z) dωy(z)

)
dm(x)

= UA(y)−
∫
∂Ω

∫
E
E(x− z) dm(x) dωy(z)

= UA(y)−
∫
∂Ω
UA(z) dωy(z) = 0,

using that UA is harmonic in Ω ⊂ Ac and bounded on ∂Ω for the last identity. Since the
compact set A ⊂ Ωc is arbitrary, the lemma follows. �

Let us remark that a slightly more elaborated argument shows that the identity (3.3) holds
forHs-almost all x ∈ Ωc, for any s > n− 1.

Remark 3.2. As a corollary of the preceding lemma we deduce that

G(x, y) = E(x− y)−
∫
∂Ω
E(x− z) dωy(z) for m-a.e. x ∈ Rn+1.

We will also need the following auxiliary result.
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Lemma 3.3. Let n ≥ 2 and Ω ⊂ Rn+1 be a bounded open connected set. LetB = B(x0, r)
be a closed ball with x0 ∈ ∂Ω and 0 < r < diam(∂Ω). Then, for all a > 0,

(3.4) ωx(aB) & inf
z∈2B∩Ω

ωz(aB) rn−1G(x, y) for all x ∈ Ω\2B and y ∈ B ∩ Ω,

with the implicit constant independent of a.

Proof. Fix y ∈ B ∩ Ω and note that for every x ∈ ∂(2B) ∩ Ω we have

(3.5) G(x, y) .
1

|x− y|n−1
≤ c

rn−1
≤ c ωx(aB)

rn−1 infz∈2B∩Ω ωz(aB)
.

Let us observe that the two non-negative functions

u(x) = c−1G(x, y) rn−1 inf
z∈2B∩Ω

ωz(aB) and v(x) = ωx(aB)

are harmonic, hence continuous, in Ω\B. Note that (3.5) says that u ≤ v in ∂(2B)∩Ω and
hence limΩ\2B3z→x(v − u)(z) = (v − u)(x) ≥ 0 for every x ∈ ∂(2B) ∩ Ω. On the other
hand, for a fixed y ∈ B ∩ Ω, one has that limΩ3z→xG(z, y) = 0 for every x ∈ ∂Ω with
the exception of a polar set ([Hel, Theorem 5.5.4]). Gathering all these we conclude that
lim infΩ\2B3z→x(v− u)(z) ≥ 0 for every x ∈ ∂(Ω \ 2B) with the exception of a polar set.
Finally, we clearly have that v ≥ 0 on Ω\2B and also that u(x) . rn−1 |x−y|1−n ≤ 1 for
every x ∈ Ω \ 2B and y ∈ B ∩ Ω. Thus v − u is bounded from below in Ω \ 2B. We can
now invoke the maximum principle [Hel, Lemma 5.2.21] to conclude that u ≤ v on Ω\2B
and hence in Ω \ 2B. �

3.3. Bourgain’s Lemma. We recall a result of Bourgain from [Bo].

Lemma 3.4. There is δ0 > 0 depending only on n ≥ 1 so that the following holds for
δ ∈ (0, δ0). Let Ω ( Rn+1 be a bounded domain, n− 1 < s ≤ n+ 1, ξ ∈ ∂Ω, r > 0, and
B = B(ξ, r). Then

ωx(B) &n,s
Hs∞(∂Ω ∩ δB)

(δr)s
for all x ∈ δB ∩ Ω.

Proof. Without loss of generality, we assume ξ = 0 and r = 1. We denote

ρ =
Hs∞(∂Ω ∩ δB)

δs
.

Let µ be a Frostman measure supported in δB ∩ ∂Ω so that
• µ(B(x, r)) ≤ rs for all x ∈ Rn+1 and r > 0,

• ρδs ≥ µ(δB) ≥ cρδs where c = c(n) > 0.
First assume n > 1. Define the function

u(x) =

∫
1

|x− y|n−1
dµ(y),

which is harmonic out of suppµ and satisfies the following properties:
(i) For x ∈ δB,

u(x) ≥ 21−nδ1−nµ(δB) ≥ c21−nδs−n+1ρ.
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(ii) For every x ∈ Rn+1, since µ(δB) ≤ δs and s > n− 1,

u(x) =

∫
δB

∫ |x−y|−1

0
(n− 1)tn−2dtdµ(y) = (n− 1)

∫ ∞
0

tn−2µ(B(x, t−1))dt

≤ (n− 1)

(∫ 1
2δ

0
tn−2µ(δB) +

∫ ∞
1
2δ

tn−2−sdt

)

≤ δs−n+1(n− 1)

(
2−n+1

n− 1
+

2s−n+1

s− n+ 1

)
≤ δs−n+1 6(n− 1)

s− n+ 1
.

(iii) For x ∈ Bc,

u(x) =

∫
1

|x− y|n−1
dµ(x) ≤ 2n−1µ(δB) ≤ 2n−1ρdeltas.

Set

v(x) =
u(x)− supBc u

supu
.

Then

(a) v is harmonic in (δB ∩ ∂Ω)c,
(b) v ≤ 1,
(c) v ≤ 0 on Bc,
(d) for x ∈ δB and δ ≤ (21−2nc)

1
n−1

v(x) ≥ c21−nδs−n+1ρ− 2n−1ρδs

6(n−1)
s−n+1δ

s−n+1
≥ cs− n+ 1

6(n− 1)
2−nρ.

Let φ be any continuous compactly supported function such that φ ≡ 1 on B and 0 ≤
φ ≤ 1. Note that the previous items imply that v is subharmonic in Ω and satisfies
lim supΩ3x→ξ v(x) ≤ φ(ξ), that is, v is a lower function for φ. Hence the the usual Perron
method in bounded domains gives that

∫
φdωx ≥ v(x) for every x ∈ Ω (let us recall that∫

φdωx is precisely the sup of all lower functions for φ). Taking next the infimum over all
such φ, we get ωx(B) ≥ v(x) for every x ∈ Ω, and the lemma follows easily.

Now we consider the case n = 1. Define ρ and µ just as before but now set

u(x) =

∫
log

1

|x− y|
dµ(y).

Again, this is harmonic off of suppµ and satisfies the following properties:

(i) For x ∈ δB,

u(x) ≥ log
1

2δ
µ(δB) ≥ cρδs log

1

2δ
.

(ii) Also, for x ∈ B, since s ∈ (0, 2) (assuming δ < 1
4 )

u(x) ≤
∫
δB

∫ |x−y|−1

1
2

1

t
dtdµ(y) =

∫ ∞
1
2

µ(B(x, t−1))

t
dt ≤

∫ 1
2δ

1
2

µ(δB)

t
dt+

∫ ∞
1
2δ

1

t1+s
dt

= δs log
1

δ
+

2sδs

s
≤ 8

s
δs log

1

2δ
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(iii) For x ∈ Bc (assuming δ < 1
4 )

u(x) ≤ µ(δB) log 2 ≤ min{ρ, 1}δs log 2 ≤ 2

s
min{ρ, 1}δs log

1

2δ
.

(iv) The previous two estimates give u ≤ 8
sδ
s log 1

2δ .

Define v just as before. For x ∈ δB and δ < e−
2 log 2
c /2

v(x) ≥
cρδs log 1

2δ − ρδ
s log 2

6
sδ
s log 1

2δ

≥ cs

16
ρ.

From here the proof continues just as before and this completes the case n = 1. �

3.4. The dyadic lattice of David and Mattila. Now we will consider the dyadic lattice
of cubes with small boundaries of David-Mattila associated with ωp. This lattice has been
constructed in [DM, Theorem 3.2] (with ωp replaced by a general Radon measure). Its
properties are summarized in the next lemma.

Lemma 3.5 (David, Mattila). Consider two constants C0 > 1 and A0 > 5000C0 and
denote W = suppωp. Then there exists a sequence of partitions Dk of W into Borel
subsets Q, Q ∈ Dk, with the following properties:

• For each integer k ≥ 0, W is the disjoint union of the “cubes” Q, Q ∈ Dk, and if
k < l, Q ∈ Dl, and R ∈ Dk, then either Q ∩R = ∅ or else Q ⊂ R.

• The general position of the cubes Q can be described as follows. For each k ≥ 0
and each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈W, A−k0 ≤ r(Q) ≤ C0A
−k
0 ,

W ∩B(Q) ⊂ Q ⊂W ∩ 28B(Q) = W ∩B(zQ, 28r(Q)),

and
the balls 5B(Q), Q ∈ Dk, are disjoint.

• The cubes Q ∈ Dk have small boundaries. That is, for each Q ∈ Dk and each
integer l ≥ 0, set

N ext
l (Q) = {x ∈W \Q : dist(x,Q) < A−k−l0 },

N int
l (Q) = {x ∈ Q : dist(x,W \Q) < A−k−l0 },

and
Nl(Q) = N ext

l (Q) ∪N int
l (Q).

Then

(3.6) ωp(Nl(Q)) ≤ (C−1C
−3(n+1)−1
0 A0)−l ωp(90B(Q)).

• Denote by Ddbk the family of cubes Q ∈ Dk for which

(3.7) ωp(100B(Q)) ≤ C0 ω
p(B(Q)).

We have that r(Q) = A−k0 when Q ∈ Dk \ Ddbk and

(3.8) ωp(100B(Q)) ≤ C−l0 ωp(100l+1B(Q))

for all l ≥ 1 such that 100l ≤ C0 and Q ∈ Dk \ Ddbk .
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We use the notation D =
⋃
k≥0Dk. Observe that the families Dk are only defined for

k ≥ 0. So the diameters of the cubes from D are uniformly bounded from above. Given
Q ∈ Dk, we denote J(Q) = k. We set `(Q) = 56C0A

−k
0 and we call it the side length of

Q. Notice that
1

28
C−1

0 `(Q) ≤ diam(B(Q)) ≤ `(Q).

Observe that r(Q) ∼ diam(B(Q)) ∼ `(Q). Also we call zQ the center of Q, and the cube
Q′ ∈ Dk−1 such that Q′ ⊃ Q the parent of Q. We set BQ = 28B(Q) = B(zQ, 28 r(Q)),
so that

W ∩ 1
28BQ ⊂ Q ⊂ BQ.

We assume A0 big enough so that the constant C−1C−3d−1
0 A0 in (3.6) satisfies

C−1C−3d−1
0 A0 > A

1/2
0 > 10.

Then we deduce that, for all 0 < λ ≤ 1,

ωp
(
{x ∈ Q : dist(x,W \Q) ≤ λ `(Q)}

)
+ ωp

({
x ∈ 3.5BQ : dist(x,Q) ≤ λ `(Q)}

)
≤ c λ1/2 ωp(3.5BQ).

We denote Ddb =
⋃
k≥0Ddbk . Note that, in particular, from (3.7) it follows that

(3.9) ωp(3BQ) ≤ ωp(100B(Q)) ≤ C0 ω
p(Q) if Q ∈ Ddb.

For this reason we will call the cubes from Ddb doubling.
As shown in [DM, Lemma 5.28], every cube R ∈ D can be covered ωp-a.e. by a family

of doubling cubes:

Lemma 3.6. Let R ∈ D. Suppose that the constants A0 and C0 in Lemma 3.5 are chosen
suitably. Then there exists a family of doubling cubes {Qi}i∈I ⊂ Ddb, with Qi ⊂ R for all
i, such that their union covers ωp-almost all R.

The following result is proved in [DM, Lemma 5.31].

Lemma 3.7. Let R ∈ D and let Q ⊂ R be a cube such that all the intermediate cubes S,
Q ( S ( R are non-doubling (i.e. belong to D \ Ddb). Then

(3.10) ωp(100B(Q)) ≤ A−10n(J(Q)−J(R)−1)
0 ωp(100B(R)).

Given a ball B ⊂ Rn+1, we consider its n-dimensional density:

Θω(B) =
ωp(B)

r(B)n
.

From the preceding lemma we deduce:

Lemma 3.8. Let Q,R ∈ D be as in Lemma 3.7. Then

Θω(100B(Q)) ≤ C0A
−9n(J(Q)−J(R)−1)
0 Θω(100B(R))

and ∑
S∈D:Q⊂S⊂R

Θω(100B(S)) .A0,C0 Θω(100B(R)).
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For the easy proof, see [To3, Lemma 4.4], for example.

From now on we will assume that C0 and A0 are some big fixed constants so that the
results stated in the lemmas of this section hold.

4. THE PROOF OF THEOREM 1.1

4.1. The strategy. It is enough to prove the statement (a) in the theorem. We fix a point
p ∈ Ω far from the boundary to be specified later. To prove that ωp|E is rectifiable we
will show that any subset of positive harmonic measure of E contains another subset G
of positive harmonic measure such that R∗ωp(x) < ∞ in G. Applying a deep theorem
essentially due to Nazarov, Treil and Volberg, one deduces that G contains yet another
subset G0 of positive harmonic measure such that Rωp|G0

is bounded in L2(ωp|G0). Then
from the results of Nazarov, Tolsa and Volberg in [NToV1] and [NToV2], it follows that
ωp|G0 is n-rectifiable. This suffices to prove the full n-rectifiability of ωp|E .

One of the difficulties of Theorem 1.1 is due to the fact that the non-Ahlfors regularity
of ∂Ω makes it difficult to apply some usual tools from potential of theory, such as the ones
developed by Aikawa in [Ai1] and [Ai2]. In our proof we solve this issue by applying some
stopping time arguments involving the harmonic measure and a suitable Frostman measure.

The connection between harmonic measure and the Riesz transform is already used, at
least implicitly, in the work of Hofmann, Martell and Uriarte-Tuero [HMU], and more ex-
plicitely in the paper by Hofmann, Martell and Mayboroda [HMM]. Indeed, in [HMU], in
order to prove the uniform rectifiability of ∂Ω, the authors rely on the study of a square
function related to the double gradient of the single layer potential and the application of an
appropriate rectifiability criterion due to David and Semmes [DS]. Note that the gradient of
the single layer potential coincides with the Riesz transform away from the boundary.

4.2. Reduction to bounded domains. We now begin the proof of Theorem 1.1 (a) in
earnest, and begin by reducing it to the bounded case.

Lemma 4.1. If Theorem 1.1 (a) holds for Ω bounded, then it holds for all Ω ⊆ Rn+1,
n ≥ 1.

Proof. Here we will follow the construction of harmonic measure from [HM1, Section 3].
To that end we fix x0 ∈ ∂Ω and N large enough and set ΩN = Ω ∩ B(x0, 2N), whose
harmonic measure is denoted by ωN . We may assume that E in the hypotheses of Theorem
1.1 is bounded (otherwise E may be chopped into bounded pieces and we may work with
each of them separately). We assume that N is large enough (say N ≥ N0) so that E ⊂
B(x0, N/2) and observe that from [HM1, Section 3] and the inner and outer regularity
of harmonic measure we can easily see that for every fixed x ∈ Ω, ωxN (A) ↗ ωx(A) as
N → ∞ for every Borel bounded set A ⊂ ∂Ω. In particular, ωp|E � Hn|E implies that
ωpN |E � Hn|E . Note that in the process we may have lost the connectivity of ΩN so we
need to take Ωp

N the connected component of ΩN containing p. Call EN = ∂Ωp
N ∩ E

and note that ωpN |EN � Hn|EN . If Hn(EN ) = 0 then ωpN |EN (EN ) = 0 and hence
ωpN |EN is n-rectifiable. Otherwise, 0 < Hn(EN ) ≤ Hn(E) <∞ and by the bounded case
we conclude that ωpN |EN is n-rectifiable. Note also that ωpN |E\EN ≡ 0 (ωpN is supported
on ∂Ωp

N ). Hence, wpN |E is n-rectifiable, that is, there exists a Borel set FN ⊂ E with
ωpN (FN ) = 0 and a countable collection of (possibly rotated) Lipschitz graphs {ΓNj }j so
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that E ⊂ FN ∪ (∪jΓNj ). We next set F0 = ∩N≥N0FN which is a Borel set satisfying
that ωpN (F0) = 0 for every N ≥ N0. This implies that ωp(F0) = limN→∞ ω

p
N (F0) = 0.

Clearly, E ⊂ F0 ∪ (∪N≥N0 ∪j ΓNj ) and this shows that ωp|E is rectifiable as desired. �

Thus, assume Ω is a connected bounded open set and let E be as in Theorem 1.1 (a), fix
a point p ∈ Ω, and consider the harmonic measure ωp of Ω with pole at p. The reader may
think that p is deep inside Ω.

Let g ∈ L1(ωp) be such that
ωp|E = gHn|∂Ω.

Given M > 0, let
EM = {x ∈ ∂Ω : M−1 ≤ g(x) ≤M}.

Take M big enough so that ωp(EM ) ≥ ωp(E)/2, say. Consider an arbitrary compact set
FM ⊂ EM with ωp(FM ) > 0. We will show that there exists G0 ⊂ FM with ωp(G0) > 0
which is n-rectifiable. Clearly, this suffices to prove that ωp|EM is n-rectifiable, and letting
M →∞ we get the full n-rectifiability of ωp|E .

Let µ be an n-dimensional Frostman measure for FM . That is, µ is a non-zero Radon
measure supported on FM such that

µ(B(x, r)) ≤ C rn for all x ∈ Rn+1.

Further, by renormalizing µ, we can assume that ‖µ‖ = 1. Of course the constant C above
will depend on Hn∞(FM ), and the same may happen for all the constants C to appear, but
this will not bother us. Notice that µ� Hn|FM � ωp. In fact, for any set H ⊂ FM ,

(4.1) µ(H) ≤ CHn∞(H) ≤ CHn(H) ≤ CM ωp(H).

4.3. The bad cubes. Now we need to define a family of bad cubes. We say that Q ∈ D is
bad and we write Q ∈ Bad, if Q ∈ D is a maximal cube satisfying one of the conditions
below:

(a) µ(Q) ≤ τ ωp(Q), where τ > 0 is a small parameter to be fixed below, or

(b) ωp(3BQ) ≥ Ar(BQ)n, where A is some big constant to be fixed below.
The existence maximal cubes is guaranteed by the fact that all the cubes from D have side
length uniformly bounded from above (sinceDk is defined only for k ≥ 0). If the condition
(a) holds, we write Q ∈ LM (little measure µ) and in the case (b), Q ∈ HD (high density).
On the other hand, if a cube Q ∈ D is not contained in any cube from Bad, we say that Q
is good and we write Q ∈ Good.

Notice that ∑
Q∈LM∩Bad

µ(Q) ≤ τ
∑

Q∈LM∩Bad
ωp(Q) ≤ τ ‖ω‖ = τ = τ µ(FM ).

Therefore, taking into account that τ ≤ 1/2 and that ωp|FM = g(x)Hn|FM with g(x) ≥M ,
we have by (4.1)

1

2
ωp(FM ) ≤ 1

2
=

1

2
µ(FM ) ≤ µ

(
FM \

⋃
Q∈LM∩Bad

Q
)

≤ CHn
(
FM \

⋃
Q∈LM∩Bad

Q
)
≤ CM ωp

(
FM \

⋃
Q∈LM∩Bad

Q
)
.
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On the other hand, we claim that Θn,∗(x, ωp) := lim supr→0
ωp(B(x,r))

(2r)n <∞ for ωp-a.e.
x ∈ E. Indeed, by [Ma, Theorem 2.12], limr→0 ω(B(x, r))/Hn|E(B(x, r)) exists and is
finite for Hn-a.e. x ∈ E. Also, since we have assumed that Hn(E) < ∞, [Ma, Theorem
6.2] gives lim supr→0Hn|E(B(x, r))/(2 r)n ≤ 1 for Hn-a.e. x ∈ E. Gathering these two
we conclude that Θn,∗(x, ωp) < ∞ for Hn-a.e. x ∈ E and hence for ωp-a.e. x ∈ E since
by assumption ω|E � Hn|E . This shows the claim.

As a consequence we next claim that for any δ > 0 and for A big enough

ωp
(
FM

⋂( ⋃
Q∈HD

Q

))
< δ ωp(FM ).

Indeed it is straightforward to show that

ωp
(
FM

⋂( ⋃
Q∈HD

Q

))
≤ ωp

(
{x ∈ E : Mnωp(x) ≥ 4−nA}

)
and since ωp(FM ) > 0 it suffices to see that ωp(Ek) → 0 as k → ∞ with Ek = {x ∈ E :
Mnωp(x) > k}. If this were not true we would have that ωp(Ek) ≥ c > 0 for all k ≥ 1,
and then ωp({x ∈ E : Mnωp(x) = ∞}) ≥ c. We know from the previous claim that
Mnωp <∞, ωp-a.e. in E, hence get a contradiction.

From the above estimates it follows that for δ small enough

(4.2) ωp
(
FM \

⋃
Q∈Bad

Q

)
> 0,

if τ and A have been chosen appropriately.

For technical reasons we have now to introduce a variant of the family Ddb of doubling
cubes defined in Section 3.4. Given some constant T ≥ C0 (where C0 is the constant in
Lemma 3.5) to be fixed below, we say that Q ∈ D̃db if

ωp(100B(Q)) ≤ T ωp(Q).

We also set D̃dbk = D̃db ∩Dk for k ≥ 0. From (3.9) and the fact that T ≥ C0, it is clear that
Ddb ⊂ D̃db.

Lemma 4.2. If the constant T is chosen big enough, then

ωp
(
FM ∩

⋃
Q∈D̃db0

Q \
⋃

Q∈Bad
Q

)
> 0.

Notice that above D̃db0 stands for the family of cubes from the zero level of D̃db.

Proof. By the preceding discussion we already know that

ωp
(
FM \

⋃
Q∈Bad

Q

)
> 0.

If Q 6∈ D̃db, then ωp(Q) ≤ T−1ωp(100B(Q)). Hence by the finite overlap of the balls
100B(Q) associated with cubes from D0 we get

ωp
( ⋃
Q∈D0\D̃db

Q

)
≤ 1

T

∑
Q∈D0

ωp(100B(Q)) ≤ C

T
‖ωp‖ =

C

T
.
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Thus for T big enough we derive

ωp
( ⋃
Q∈D0\D̃db

Q

)
≤ 1

2
ωp
(
FM \

⋃
Q∈Bad

Q

)
,

and then the lemma follows. �

Notice that for the points x ∈ FM \
⋃
Q∈BadQ, from the condition (b) in the definition

of bad cubes, it follows that

ωp(B(x, r)) . Arn for all 0 < r ≤ 1.

Trivially, the same estimate holds for r ≥ 1, since ‖ωp‖ = 1. So we have

(4.3) Mnωp(x) . A for ωp-a.e. x ∈ FM \
⋃
Q∈BadQ.

4.4. The key lemma about the Riesz transform of ωp on the good cubes.

Lemma 4.3 (Key lemma). Let Q ∈ Good be contained in some cube from the family D̃db0 ,
and x ∈ Q. Then we have

(4.4)
∣∣Rr(BQ)ω

p(x)
∣∣ ≤ C(A,M, T, τ, d(p)),

where, to shorten notation, we wrote d(p) = dist(p, ∂Ω).

Proof of the Key Lemma in the case n ≥ 2. To prove the lemma, clearly we may assume
that r(BQ)� dist(p, ∂Ω) for anyQ ∈ Good. First we will prove (4.4) forQ ∈ D̃db∩Good.
In this case, by definition we have

(4.5) µ(Q) > τ ωp(Q) and ωp(3BQ) ≤ T ωp(Q).

Let ϕ : Rn+1 → [0, 1] be a radial C∞ function which vanishes on B(0, 1) and equals 1
on Rn+1 \ B(0, 2), and for ε > 0 and z ∈ Rn+1 denote ϕε(z) = ϕ

(
z
ε

)
and ψε = 1 − ϕε.

We set

R̃εωp(z) =

∫
K(z − y)ϕε(z − y) dωp(y),

where K(·) is the kernel of the n-dimensional Riesz transform.
Let δ > 0 be the constant appearing in Lemma 3.4 about Bourgain’s estimate. Consider

a ball B̃Q centered at some point from BQ ∩ ∂Ω with r(B̃Q) = δ
10 r(BQ) and so that

µ(B̃Q) & µ(BQ), with the implicit constant depending on δ. Note that, for every x, z ∈ BQ,
by standard Calderón-Zygmund estimates∣∣R̃

r(B̃Q)
ωp(x)−Rr(BQ)ω

p(z)
∣∣ ≤ C(δ)Mn

r(B̃Q)
ωp(z),

and
Mn

r(B̃Q)
ωp(z) ≤ C(δ, A) for all z ∈ BQ,

since Q being good implies that Q and all its ancestors are not from HD. Thus, to prove
(4.4) it suffices to show that

(4.6)
∣∣R̃

r(B̃Q)
ωp(x)

∣∣ ≤ C(δ, A,M, T, τ, d(p)) for the center x of B̃Q.
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To shorten notation, in the rest of the proof we will write r = r(B̃Q), so that B̃Q =
B(x, r). For a fixed x ∈ Q ⊂ ∂Ω and z ∈ Rn+1 \

[
supp(ϕr(x − ·)ωp) ∪ {p}

]
, consider

the function

ur(z) = E(z − p)−
∫
E(z − y)ϕr(x− y) dωp(y),

so that, by Remark 3.2,

(4.7) G(z, p) = ur(z)−
∫
E(z − y)ψr(x− y) dωp(y) for m-a.e. z ∈ Rn+1.

Since the kernel of the Riesz transform is

(4.8) K(x) = cn∇E(x),

for a suitable absolute constant cn, we have

∇ur(z) = cnK(z − p)− cnR(ϕr(· − x)ωp)(z).

In the particular case z = x we get

∇ur(x) = cnK(x− p)− cn R̃rωp(x),

and thus

(4.9) |R̃rωp(x)| . 1

d(p)n
+ |∇ur(x)|.

Since ur is harmonic in Rn+1 \
[
supp(ϕr(x−·)ωp)∪{p}

]
(and so in B(x, r)), we have

(4.10) |∇ur(x)| . 1

r
−
∫
B(x,r)

|ur(z)| dm(z).

From the identity (4.7) we deduce that

|∇ur(x)| . 1

r
−
∫
B(x,r)

G(z, p) dm(z) +
1

r
−
∫
B(x,r)

∫
E(z − y)ψr(x− y) dωp(y) dm(z)

=: I + II.(4.11)

To estimate the term II we use Fubini and the fact that suppψr ⊂ B(x, 2r):

II .
1

rn+2

∫
y∈B(x,2r)

∫
z∈B(x,r)

1

|z − y|n−1
dm(z) dωp(y)

.
ωp(B(x, 2r))

rn
.Mnωp(x).

We intend to show now that I . 1. Clearly it is enough to show that

(4.12)
1

r
|G(y, p)| . 1 for all y ∈ B(x, r) ∩ Ω.

To prove this, observe that by Lemma 3.3 (with B = B(x, r), a = 2δ−1), for all y ∈
B(x, r) ∩ Ω, we have

ωp(B(x, 2δ−1r)) & inf
z∈B(x,2r)∩Ω

ωz(B(x, 2δ−1r)) rn−1 |G(y, p)|.

On the other hand, by Lemma 3.4, for any z ∈ B(x, 2r) ∩ Ω,

ωz(B(x, 2δ−1r)) &
µ(B(x, 2r))

rn
≥
µ(B̃Q)

rn
.
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Therefore we have

ωp(B(x, 2δ−1r)) &
µ(B̃Q)

rn
rn−1 |G(y, p)|,

and thus
1

r
|G(y, p)| . ωp(B(x, 2δ−1r))

µ(B̃Q)
.

Now, recall that by construction µ(B̃Q) & µ(BQ) ≥ µ(Q) and B(x, 2δ−1r) = 2δ−1B̃Q ⊂
3BQ, since r(B̃Q) = δ

10r(BQ), and so we have

1

r
|G(y, p)| . ωp(B(x, 2δ−1r))

µ(B̃Q)
.
ωp(3BQ)

µ(Q)
.
ωp(Q)

µ(Q)
≤ C,

by (4.5). So (4.12) is proved and the proof of the Key lemma is complete in the case n ≥ 2,
Q ∈ D̃db.

Consider now the case Q ∈ Good\D̃db. LetQ′ ⊃ Q be the cube from D̃db with minimal
side length. The existence of Q′ is guaranteed by the fact that we have assumed that Q is
contained in some cube from D̃db0 . For all y ∈ BQ then we have

|Rr(BQ)ω
p(y)| ≤ |Rr(BQ′ )ω

p(y)|+ C
∑

P∈D:Q⊂P⊂Q′
Θω(2BP ).

The first term on the right hand side is bounded by some constant depending onA,M, τ, . . .

by the previous case since Q′ ∈ D̃db ∩ Good. To bound the last sum we can apply Lemma
3.8 (because the cubes that are not from D̃db do not belong to Ddb either) and then we get∑

P∈D:Q⊂P⊂Q′
Θω(2BP ) . Θω(100B(Q′)) . Θω(3BQ′),

where we have used that Q′ ∈ D̃db. Finally, since Q′ 6∈ HD, we have Θω(3BQ′) . A. So
(4.4) also holds in this case. �

Proof of the Key Lemma in the planar case n = 1. We note that the arguments to prove
Lemma 3.3 fail in the planar case. Therefore this cannot be applied to prove the Key Lemma
and some changes are required.

We follow the same scheme and notation as in the case n ≥ 2 and highlight the important
modifications. We claim that for any constant α ∈ R,

(4.13)
∣∣R̃rωp(x)

∣∣ . 1

r
−
∫
B(x,r)

|G(y, p)− α| dm(y) +
1

d(p)
+M1ωp(x).

To check this, we can argue as in the proof of the Key Lemma for n ≥ 2 to get

(4.14) |R̃rωp(x)| . 1

d(p)
+ |∇ur(x)|.

Since ur is harmonic in R2 \
[
supp(ϕr(x− ·)ωp) ∪ {p}

]
for any constant α′ ∈ Rn, we

have
(4.15)

|∇ur(y)| . 1

r
−
∫
B(y,r)

|ur(·)− α′| dm(z), B(y, r) ⊂ R2 \
[
supp(ϕr(x− ·)ωp) ∪ {p}

]
.
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Note that this estimate is the same as the one in in (4.10) in the case n ≥ 2 with α′ = 0
and y = x. Let α′ = α′(x) = α + β

∫
ψr(x − z)dωp(z) where we choose β =

−
∫
B(0,3r) E(z)dm(z). Recall that x has been fixed and hence α is a constant. We can now

apply (4.15) with y = x since B(x, r) ⊂ R2 \
[
supp(ϕr(x − ·)ωp) ∪ {p}

]
and identity

(4.7) to deduce that

|∇ur(x)| . 1

r
−
∫
B(x,r)

|G(z, p)− α| dm(z)

+
1

r
−
∫
B(x,r)

∫
|E(z − y)− β|ψr(x− y) dωp(y) dm(z)

=: I + II,(4.16)

for any α ∈ R.
To estimate the term II we apply Fubini and that E(·) = −c1 log | · | is a BMO function:

II ≤ c

r

∫
y∈B(x,2r)

−
∫
z∈B(x,r)

|E(z − y)− β| dm(z) dωp(y)

.
c

r

∫
y∈B(x,2r)

−
∫
z′∈B(0,3r)

∣∣E(z′)− β
∣∣ dm(z′) dωp(y)

.
ωp(B(x, 2r))

r

≤M1ωp(x).(4.17)

Note that in the second inequality we applied the change of variables z′ = z − y and we
took into account that if y ∈ B(x, 2r) and z ∈ B(x, r), then |z′| = |z − y| < 3r. Hence
(4.13) follows from (4.14), (4.16) and (4.17)

Choosing α = G(z, p) with z ∈ B(x, r) in (4.13) and averaging with respect Lebesgue
measure for such z’s, we get∣∣R̃rωp(x)

∣∣ . 1

r5

∫∫
B(x,r)×B(x,r)

|G(y, p)−G(z, p)| dm(y) dm(z) +
1

d(p)
+M1ωp(x),

where we understand that G(z, p) = 0 for z 6∈ Ω. Now for m-a.e. y, z ∈ B(x, r), p far
away, and φ a radial smooth function such that φ ≡ 0 in B(0, 2) and φ ≡ 1 in R2 \B(0, 3),
we write

c1(G(y, p)−G(z, p)) = log
|z − p|
|y − p|

−
∫
∂Ω

log
|z − ξ|
|y − ξ|

dωp(ξ)

=

(
log
|z − p|
|y − p|

−
∫
∂Ω
φ

(
ξ − x
r

)
log
|z − ξ|
|y − ξ|

dωp(ξ)

)
−
∫
∂Ω

(
1− φ

(
ξ − x
r

))
log
|z − ξ|
|y − ξ|

dωp(ξ) = Ay,z +By,z.

Notice that the above identities also hold if y, z 6∈ Ω, and observe that
|z − p|
|y − p|

≈ 1 and
|z − ξ|
|y − ξ|

≈ 1 for ξ 6∈ B(x, 2r).

We claim that

(4.18) |Ay,z| .
ωp(B(x, 2δ−1r))

infz∈B(x,2r)∩Ω ωz(B(x, 2δ−1r))
.
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We defer the details till the end of the proof. By Lemma 3.4, we get

inf
z∈B(x,2r)∩Ω

ωz(B(x, 2δ−1r)) &
µ(B(x, 2r))

r
≥
µ(B̃Q)

r
.

and thus
|Ay,z|
r
.
ωp(B(x, 2δ−1r))

µ(B̃Q)
.
ωp(Q)

µ(Q)
,

by the doubling properties of Q (for ωp) and the choice of B̃Q.
To deal with the term By,z we write:

|By,z| ≤
∫
B(x,3r)

(∣∣∣∣log
r

|y − ξ|

∣∣∣∣+

∣∣∣∣log
r

|z − ξ|

∣∣∣∣) dωp(ξ).

Thus ∫∫
B(x,r)×B(x,r)

|By,z| dm(y) dm(z)

. r2

∫
B(x,r)

∫
B(x,3r)

∣∣∣∣log
r

|y − ξ|

∣∣∣∣ dωp(ξ) dm(y).

Notice that for all ξ ∈ B(x, 3r),∫
B(x,3r)

∣∣∣∣log
r

|y − ξ|

∣∣∣∣ dm(y) . r2.

So by Fubini we obtain

1

r5

∫∫
B(x,r)×B(x,r)

|By,z| dm(y) dm(z) .
ωp(B(x, 3r))

r
.M1ωp(x).

Together with the bound for the term Ay,z , this gives∣∣R̃rωp(x)
∣∣ . ωp(Q)

µ(Q)
+M1ωp(x) +

1

d(p)
. 1,

sinceM1ωp(x) . 1 by (4.3).

It remains now to show (4.18). The argument uses the ideas in Lemma 3.3 with some
modifications. Recall that

Ay,z = Ay,z(p) = log
|z − p|
|y − p|

−
∫
∂Ω
φ

(
ξ − x
r

)
log
|z − ξ|
|y − ξ|

dωp(ξ)

=: log
|z − p|
|y − p|

− vx,y,z(p)

where y, z ∈ B(x, r) and p is far away. The two functions

q 7−→ Ay,z(q) and q 7−→ c ωq(B(x, 2δ−1r))

infz∈B(x,2r)∩Ω ω
z
Ω(B(x, 2δ−1r))

are harmonic in Ω \B(x, 2r). For all q ∈ ∂B(x, 2r) ∩ Ω we clearly have

|Ay,z(q)| ≤ c ≤
c ωq(B(x, 2δ−1r))

infz∈B(x,2r)∩Ω ω
z
Ω(B(x, 2δ−1r))

.
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Since Ay,z(x) = 0 for all x ∈ ∂Ω \ B(x, 3r) except for a polar set we can apply the
maximum principle and obtain (4.18), as desired (the maximum principle is justified in the
same way as in the proof of Lemma 3.3). �

From the Key Lemma above we deduce the following.

Lemma 4.4. Let Q ∈ Good be contained in some cube from the family D̃db0 , and x ∈ Q.
Then we have

(4.19) R∗,r(BQ)ω
p(x) ≤ C(A,M, T, τ, d(p)),

where, to shorten notation, we wrote d(p) = dist(p, ∂Ω).

4.5. The end of the proof of Theorem 1.1 (a). Set

G = FM ∩
⋃

Q∈D̃db0

Q \
⋃

Q∈Bad
Q.

and recall that, by Lemma 4.2,

ωp(G) > 0.

As shown in (4.3), we have

(4.20) Mnωp(x) . A for ωp-a.e. x ∈ G.

On the other hand, from Lemma 4.4 is also clear that

(4.21) R∗ωp(x) ≤ C(A,M, T, τ, d(p)) for ωp-a.e. x ∈ G.

Now we will apply the following result.

Theorem 4.5. Let σ be a Radon measure with compact support on Rn+1 and consider a
σ-measurable set G with σ(G) > 0 such that

G ⊂ {x ∈ Rn+1 :Mnσ(x) <∞ and R∗σ(x) <∞}.

Then there exists a Borel subsetG0 ⊂ G with σ(G0) > 0 such that supx∈G0
Mnσ|G0(x) <

∞ andRσ|G0
is bounded in L2(σ|G0).

This result follows from the deep non-homogeneous Tb theorem of Nazarov, Treil and
Volberg in [NTrV] (see also [Vo]) in combination with the methods in [To1]. For the detailed
proof in the case of the Cauchy transform, see [To2, Theorem 8.13]. The same arguments
with very minor modifications work for the Riesz transform.

Recall that that ∂Ω is compact as we are in the case when Ω is bounded. From (4.20),
(4.21) and Theorem 4.5 applied to σ = ωp, we infer that there exists a subset G0 ⊂ G such
that the operator Rωp|G0

is bounded in L2(ωp|G0). By Theorem 1.1 of [NToV2] (or the
David-Léger theorem [Lé] for n = 1), we deduce that ωp|G0 is n-rectifiable.
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5. SOME COROLLARIES

Here we list a few corollaries of Theorem 1.1.

From Theorem 1.1 in combination with the results of [Az] we obtain the following char-
acterization of sets of absolute continuity for NTA domains.

Corollary 5.1. Let Ω ⊂ Rn+1 be an NTA domain (or in the case n = 1, any simply
connected domain), p ∈ Ω, n ≥ 1, and let E ⊂ ∂Ω be such that Hn(E) < ∞ and
ωp(E) > 0. Then ωp|E � Hn|E if and only if E may be covered by countably many
n-dimensional Lipschitz graphs up to a set of ωp-measure zero.

The forward direction is just Theorem 1.1 (a). The reverse direction for n = 1 follows
from either the Local F. and M. Riesz Theorem of Bishop and Jones (see Theorem 1 of [BJ])
and in the n > 1 case from the first main result from [Az], which says that, for an NTA
domain, whenever a Lipschitz graph Γ (amongst more general objects) has ω(Γ) > 0, then
ω � Hn on Γ.

Corollary 5.2. Let Ω ⊂ Rn+1 be an NTA domain whose exterior (Ωc)◦ is also NTA, p ∈ Ω,
n ≥ 1, and let E ⊂ ∂Ω be such that 0 < Hn(E) < ∞. Then Hn|E � ωp|E if and
only if E may be covered by countably many n-dimensional Lipschitz graphs up to a set of
Hn-measure zero.

The first direction is Theorem 1.1 (b), while the reverse direction follows from the second
main result from [Az], which says that, for NTA domains with NTA complements,Hn � ω
on any Lipschitz graph Γ.
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[To3] X. Tolsa. Rectifiable measures, square functions involving densities, and the Cauchy transform.
Preprint 2014. arXiv:1408.6979. To appear in Mem. Amer. Math. Soc.

[Vo] A. Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces. CBMS
Regional Conf. Ser. in Math. 100, Amer. Math. Soc., Providence, 2003.

[W] T. Wolff, Counterexamples with harmonic gradients in R3. Essays on Fourier analysis in honor
of Elias M. Stein (Princeton, NJ, 1991), 321–384, Princeton Math. Ser., 42, Princeton Univ. Press,
Princeton, NJ, 1995.

[Wu] J-M. Wu, On singularity of harmonic measure in space. Pacific J. Math. 121 (1986), no. 2, 485–
496.

[Z] W.P. Ziemer, Some remarks on harmonic measure in space. Pacific J.Math., 55, 629–637, 1974.
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