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Biological soil crusts (biocrusts) form a regular soil surface 
community covering about 12% (~18 × 106 km2) of the 
global terrestrial surface area mainly in dryland regions all 
over the world (Rodrίguez-Caballero et al. 2018a). They 
are composed of varying proportions of photosynthesizing 
cyanobacteria, lichens and bryophytes, which grow together 
with heterotrophic fungi, bacteria and archaea as well as 
microfauna such as protozoa, nematodes and microarthro-
pods (Büdel et al. 2016; Darby and Neher 2016; Maier et al. 
2016; Rosentreter et al. 2016; Seppelt et al. 2016). Biocrusts 
form encrustations covering the uppermost millimetres of 
the soil, thus effectively stabilising surface soils (Bowker 
et al. 2008). They have been shown to fix carbon (C) 
and nitrogen (N), thus bringing nutrients into the mostly 
impoverished soils and influence water cycling and plant 
growth in drylands (Zhang et al. 2015; Barger et al. 2016; 
Chamizo et al. 2016; Sancho et al. 2016; Whitney et al. 
2017; Rodríguez-Caballero et al. 2018b).

In a long-term biodiversity mapping approach of southern 
Africa conducted within the project BIOTA South (financed by 
the German Ministry of Education and Research; BMBF), we 
studied the occurrence and composition of biocrusts along 
a >2 000 km transect running from north-eastern Namibia 

to south-western South Africa, i.e. the Cape of Good Hope 
(Büdel et al. 2010). Along that transect, 28 biodiversity 
observatories were investigated with regard to the presence 
and species composition of biocrusts, and in all six major 
biomes along the transect biocrusts were found (Büdel et al. 
2009, 2010; Haarmeyer et al. 2010; Mager and Hui 2012). 
During that study, a total of 120 species of cryptogams 
comprising 58 cyanobacteria, 29 green algae, one heterokont 
alga, 12 cyanolichens, 14 chlorolichens, two genera of 
liverworts and two genera of mosses were identified (Büdel 
et al. 2009). In the course of the project, two observatories 
within the Succulent Karoo proved to be of particular interest, 
i.e. Soebatsfontein (no. S22; 30°11′11.40″ S, 17°32′36.14″ E, 
elevation 392 m above sea level [asl]) and Goedehoop 
(no. S26; 31°16′36.78″ S, 18°35′29.48″ E, elevation 245 m 
asl; Haarmeyer et al. 2010) in the Knersvlakte, and thus 
these and the adjacent regions were studied in more detail in 
subsequent follow-up studies (Figure 1). 

Study areas

The observatory at Soebatsfontein is located ~50 km 
south-west of Springbok about 30 km from the west coast 
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of South Africa (Figure 1). The climate is characterised by 
arid conditions (aridity index: 0.09) and moderate season-
ality with mean annual precipitation of 131 mm mainly 
falling during the winter months. The mean annual air 
temperature is 19.4 °C ranging from 3.5 °C during winter to 
42.5 °C on hot summer days. The region is characterised by 
gently undulating hills and broad valleys with some gneiss 

outcrops forming local inselbergs (Haarmeyer et al. 2010). 
A characteristic morphological feature within the region are 
heuweltjies, i.e. fossil termite mounds with a diameter of up 
to 32 m, which can be easily recognised in high-resolution 
remote sensing imagery (Figure 2a), forming fertile islands 
with altered soil properties causing the vegetation to differ 
from that on the surrounding matrix soils (Kunz et al. 
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Figure 1: Spatial delimitation of Succulent Karoo and the two study areas (a), and overview of the landscape at Soebatsfontein (b) and 
in the Knersvlakte (c)
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Figure 2: Research site at Soebatsfontein (a) and in the Knersvlakte (b). RGB composites of CASI 2 images; in both images, the central 
marked area has been enlarged and is shown on the righthand side
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2012). The dominating soil groups within the region are 
Leptosols, Durisols and Cambisols. While Durisols occur 
on heuweltjies, Cambisols are mainly found in lower valleys 
between them, where deeper substrates occur. Leptosols 
mainly occur in areas with shallow bedrock. The vegeta-
tion is dominated by leaf-succulent dwarf shrubs, and after 
sufficient rainfall a rich variety of annuals and geophytes can 
be observed. The plant families dominating within the area 
are Aizoaceae and Asteraceae (Haarmeyer et al. 2010). 

The observatory of Goedehoop, also known under the 
name Flaminkvlakte, is located within the Knersvlakte, 
about 40 km north of Vanrhynsdorp, east of the N7 National 
Road (Figure 1; Haarmeyer et al. 2010). The climate is arid 
(aridity index: 0.08) and rainfall shows moderate seasonality 
with 124 mm of annual precipitation mainly falling during 
the winter months and peaking in May. The mean annual 
air temperature is 19.9 °C, reaching minima of 3.5 °C and 
maxima of 46 °C. The region is characterised by gently 
undulating plains with intruding quartz veins and a river 
valley with multiple small tributaries (Figure 2b). Whereas 
uncovered soils and vascular vegetation occur along 
the tributaries, the area in-between is characterised by 
a dense cover of quartz gravel, causing the region to be 
named Knersvlakte (Figure 2b). The soils within the region 
comprise Cambisols, Leptosols, Fluvisols and Solonchak. 
While Solonchaks are typical for salt-enriched quartz 
fields, Cambisols occur on less saline substrates and are 
characterised by an intense red colour and loamy texture. 
Fluvisols occur in dry rivers with frequent occurrence of the 
shrub Galenia africana, whereas Leptosols are found over 
shallow bedrock or larger quartz outcrops. The vegetation 
is dominated by leaf-succulent dwarf shrubs comprising 
two distinct vegetation types; outside the quartz fields, 
taller shrubs, mainly belonging to the families Aizoaceae, 
Chenopodiaceae and Asteraceae, are found, whereas 
the quartz fields are typically inhabited by a rich variety 
of compact dwarf succulent Aizoaceae (Haarmeyer et 
al. 2010). One hundred and fifty-five plant taxa (species 
and subspecies) are restricted to the quartz fields with 
the majority of them being local or regional endemics 
(Schmiedel 2002). 

Biocrust types

Our studies in the Succulent Karoo demonstrated that 
biocrusts are complex communities that can be classified 
according to the dominating photoautotrophic organism 
(Büdel et al. 2009). These biocrust types differed between 
the two study sites. At Soebatsfontein, cyanobacteria-
dominated biocrusts prevailed. After local disturbance, light 
cyanobacteria-dominated biocrusts were the first to form 
thin layers of patchy darker colouration on previously bare 
soils (Figure 3). Under favourable climatic conditions without 
disturbance these started to transform into well-established 
dark cyanobacteria-dominated biocrusts, recognised by 
their uniformly dark-coloured surface, already within the 
first wet season after disturbance (Figure 3d; Dojani et al. 
2011). Frequently, this biocrust type was accompanied by 
cyanobacterial lichens, i.e. lichens with cyanobacteria as the 
photobiont, thus forming cyanolichen-dominated biocrusts. 
These successional stages of cyanobacteria-dominated 

biocrusts were necessary predecessors for chloro-
lichen- and bryophyte-dominated biocrusts to develop 
(Figure 3e and f). Thus, only if soil conditions remained 
stable and water availability was sufficient, bryophyte-
dominated biocrusts could develop within two years after 
disturbance (Dojani et al. 2011). Within this group the two 
types of liverwort- and moss-dominated biocrusts can 
be distinguished, and both of them, as well as chloro-
lichen-dominated biocrusts, occurred at Soebatsfontein 
covering ~2%–4% of the surface area (Figure 3). The 
two bryophyte-dominated biocrusts colonised somewhat 
different microhabitats, as liverwort-dominated crusts grew 
in unshaded open spots if enough water was available, 
whereas moss-dominated biocrusts mainly occurred under 
shrubs and thus in shaded habitats (Weber et al. 2012). 
An additional, but rather rare, biocrust type comprised 
cyanobacteria growing on the lower part and the sides of 
translucent quartz pebbles, forming so-called hypolithic 
biocrusts. This biocrust type occurred independently of 
succession wherever quartz pebbles and favourable climatic 
conditions occurred (Figure 3h). Hypolithic biocrusts are 
exposed to lower light intensities, decreased temperature 
amplitudes and higher moisture contents compared to the 
surrounding soil conditions (Schmiedel and Jürgens 2004; 
Weber et al. 2013). 

At Goedehoop, most of these biocrust types could also 
be found in areas with comparable water availability, but in 
differing composition. Here, hypolithic biocrusts formed the 
most prominent biocrust type, as ~44% of the area was 
covered by quartz pebbles with 69% of them being colonised 
by a hypolithic crust (Weber et al. 2013). Soils adjacent to 
the dry rivers hosted light and dark cyanobacteria-dominated 
as well as cyanobacterial lichen-dominated biocrusts. 
In stable biocrust regions some chlorolichen-dominated 
biocrusts also occurred, whereas bryophyte-dominated 
biocrusts were not or only rarely observed. 

The successional sequence described above, starting 
with cyanobacteria- and leading towards lichen- and 
bryophyte-dominated biocrusts, has been described from 
a variety of dryland regions, for example the Tengger 
Desert in China (Hu and Liu 2003), the Negev Desert in 
Israel (Kidron et al. 2008), the Tabernas Badlands in Spain 
(Lázaro et al. 2008) and the Colorado Plateau in the USA 
(Belnap et al. 2013). Hypolithic crusts have been described 
to occur widely within deserts, such as the Atacama Desert 
of Chile (Warren-Rhodes et al. 2006), the Mojave Desert 
of the USA (Schlesinger et al. 2003), the Negev Desert in 
Israel (Berner and Evenari 1978), the Taklimakan Desert 
(Warren-Rhodes et al. 2007), Australia’s Northern Territory 
(Tracy et al. 2010) and Antarctica (Chan et al. 2013), as 
long as translucent (mostly quartz) stones were present 
and sufficiently embedded in the soil (Pointing 2016). 
Hypolithic crusts were observed to even occur under hyper-
arid conditions that were too dry for any other crust type to 
develop (Warren-Rhodes et al. 2006).

Biodiversity of biocrusts

Biocrusts comprise photoautotrophic organisms accompa-
nied by heterotrophic decomposers and inhabited/grazed by 
microfauna. Although the different organism groups inhabiting 
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biocrusts of the Succulent Karoo have been investigated in 
varying detail, their overall diversity is quite impressive. 

Photoautotrophs
In general, the photoautotrophic organisms in biocrusts 
belong to the groups cyanobacteria, algae, lichens 
(cyano- and chlorolichens) and bryophytes (liverworts and 
mosses; Belnap et al. 2016) and all of them also occur 
in the Succulent Karoo. The cyanobacterial diversity of 
Succulent Karoo biocrusts has been studied in detail by 
Dojani et al. (2014), who used both morphological and 
genetic techniques (a so-called biphasic approach) to 
determine the species composition and diversity. They 
identified 33 species from 12 genera at Soebatsfontein, 
while 24 species belonging to 13 genera were identified 
in the Knersvlakte by means of morphological identifica-
tion techniques. By means of genetic determination based 
on 16S rRNA gene sequences, 59 operational taxonomic 
units (OTUs) were identified in biocrusts of Soebatsfontein, 
while 25 OTUs were determined in Knersvlakte samples 
(based on a 95% similarity level). At Soebatsfontein and in 
the Knersvlakte, 17 and 14 taxa were identified by means 
of both (morphological and molecular) techniques, respec-
tively. The genera Leptolyngbya, Microcoleus, Phormidium, 
Pseudanabaena and Scytonema showed high species 
diversity at both sites (Dojani et al. 2014). There were 
some differences in species composition between both 
sites, which may be linked to differing moisture conditions, 

as observed in studies in the Negev dunefields (Kidron et 
al. 2010), but varying sampling intensity at both Succulent 
Karoo sites may also be relevant here (Dojani et al. 2014). 

Lichens within biocrusts of the Succulent Karoo have 
not been a particular study focus, but during the BIOTA 
South studies, 12 cyanolichen and 14 chlorolichen species 
were identified in biocrusts along the transect (Büdel et al. 
2009), with taxa such as Psora spp. and Toninia spp. being 
frequently observed in the Soebatsfontein region. Lichens 
colonising different habitats along the BIOTA South transect 
were investigated by Zedda and Rambold (published in 
Haarmeyer et al. 2010), who listed 23 soil-inhabiting lichen 
taxa for Soebatsfontein and 32 for the Knersvlakte, the 
majority of them probably serving as biocrust compounds.

Unfortunately, bryophytes of biocrusts in southern Africa 
have not been studied in greater detail, yet. Presently, only 
two genera of liverworts and three genera of bryophytes 
have been found along the BIOTA South transect (Büdel 
et al. 2009). In the Soebatsfontein region, mosses occurred 
quite regularly under shrubs, provided mesoclimatic 
conditions were favourable (see section on global change 
below), and here Ceratodon purpureus was a dominant 
species (Weber et al. 2012). Occasionally, liverworts of 
the genus Riccia were observed in unshaded areas with 
sufficient water availability. 

In addition, quite a number of different algae, i.e. 29 green 
algae and one heterokont alga, were discovered in observa-
tories along the BIOTA transect (Büdel et al. 2009, 2010), 

SUCCESSION

A B C D

E

F

G

HA B C D

E

F

G

H

2 cm 2 cm 2 cm2 cm 2 cm 2 cm

Figure 3: Different types of biocrusts occurring in the Succulent Karoo. During succession, starting out with bare soil (a), light 
cyanobacteria- (b), dark cyanobacteria- (c) and dark cyanobacteria-dominated biocrusts with cyanolichens (d) often form in a subsequent 
manner. From the latter two types chlorolichen- (e), moss- (f) or liverwort-dominated biocrusts (g) may form. Hypolithic biocrusts (h) rely on 
translucent quartz pebbles and form independently of succession
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and in the Succulent Karoo 19 different taxa were found. 
Generally, algae did not dominate but grew in lower 
organism numbers within biocrusts (T Friedl, University 
of Göttingen, pers. comm., 2006) and were therefore not 
appropriate for the delineation of biocrust types.

In general, the biodiversity of photoautotropic organisms in 
biocrusts has been reported to be large, with ~320 species 
of cyanobacteria, ~350 species of eukaryotic algae, 
~550 lichen and ~320 bryophyte species being reported on 
a global scale (Büdel et al. 2016; Rosentreter et al. 2016; 
Seppelt et al. 2016). The cyanobacterial genera prominent 
within biocrusts of the Succulent Karoo are well-known 
biocrust taxa that also fulfill key functional roles, for example 
stabilisation of the soil and nutrient input (Büdel et al. 2016). 
In addition, many lichens, in particular frequently occurring 
species, such as Psora spp., Toninia spp. and Diploschistes 
spp., have been described to occur in multiple biocrust 
habitats under varying macroclimatic conditions (Büdel et al. 
2014; Leavitt et al. 2018). 

Heterotrophic decomposers
The heterotrophic decomposers within different biocrust 
types as compared with bare soil have recently been 
investigated for the Soebatsfontein region (Maier et al. 
2018). Quantitative real-time PCR estimates revealed 
that 16S and 18S rRNA gene copy numbers of bacteria 
and fungi increased from bare soil to dark cyanobacteria-, 
chlorolichen-, and moss-dominated biocrusts with the 
relevance of fungi increasing along a successional 
gradient (Figure 4a). In addition, the alpha diversity of 
bacteria and archaea within biocrusts increased along 
succession with median species numbers (i.e. number of 
OTUs) ranging between 8 178 for bare soil and 11 011 
for moss-dominated biocrusts at a sequencing depth of 
48 009 reads per sample. Using the same procedure, 
a Shannon index ranging between 9.7 for bare soil and 
11.0 for moss-dominated biocrusts was calculated, which 
is in the same range as the bacterial diversity within 
temperate grassland and forest soils (Figure 4b; Kaiser 
et al. 2016; Maier et al. 2018). Bacteria and archaea 
belonged to 13 bacterial and one archaeal phyla. Whereas 
Bacteriodetes, Cyanobacteria and Alphaproteobacteria had 
the highest relative abundance in bare soil, additional phyla, 
such as the Acidobacteria, Chloroflexi, Planctomycetes and 
Verrucomicrobia, were also relevant in biocrusts (Figure 4c). 
The bacterial/archaeal community composition on the 
phylum level appeared fairly similar for the different types 
of biocrusts, whereas there were clear differences between 
communities on the family level. The relative abundance 
of OTUs related to the family Phormidiaceae were 
increased in cyanobacteria-dominated biocrusts, whereas 
Chitinophagaceae were more abundant in chlorolichen- 
and moss-dominated biocrusts compared with bare soil. 
Flavobacteriaceae, Flammeovirgaceae, Rhodobacteraceae 
and Trueperaceae were found more frequently in bare soil 
compared with biocrusts (Figure 4d). 

Similar results have been obtained on the Colorado 
Plateau, where gene copy numbers and diversity values 
increased with successional stage (Garcia-Pichel et al. 
2003). An investigation of the microbial diversity within 
biocrusts of the Kalahari Desert obtained significantly 

lower Shannon indices (~3–5). This difference is probably 
due to the use of different sequencing platforms, primers 
and average number of sequences per sample (1 004 
vs 48 009). However, observed phyla were similar with 
Acidobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, 
Cyanobacteria and Proteobacteria being abundant (Elliott 
et al. 2014). In addition, in lichen-dominated biocrusts of the 
Tabernas Badlands, phyla were similar with Actinobacteria, 
Proteobacteria and Bacteriodetes being most abundant 
(Maier et al. 2014). In a study investigating the microbial 
community in different biocrust types and bare soil of the 
Tengger Desert, observed species numbers were lower but 
also increasing along biocrust successional stages. Some 
phyla showed similar patterns, such as Acidobacteria and 
Chloroflexi, being more abundant in biocrusts compared 
with bare soil, whereas others, such as Actinobacteria 
and Alphaproteobacteria, showed different patterns, while 
Verrucomicrobia were absent (Liu et al. 2017). A change 
in the bacterial composition along the successional stages 
was also observed in biocrusts of the Gurbantunggut Desert 
(Zhang et al. 2016). Bacterial communities in cold desert 
biocrusts of south-western Idaho, USA, comprised overall 
similar bacterial phyla, but Actinobacteria had a much 
higher abundance of ~40%, whereas Acidobacteria and 
Verrucomicrobia were less abundant (Blay et al. 2017). 

Microfauna
In an initial exploratory study the protists within cyano-
bacteria-, chlorolichen-, and moss-dominated biocrusts 
from the Soebatsfontein region were investigated (Dumack 
et al. 2016). During the study, 21 000–27 000 cultivable 
individuals belonging to the groups of amoebae, flagellates 
and ciliates were determined per gram dry weight of crust 
material. In total, 23 different morphotypes were identified 
with gliding bodonids, Spumella-like chrysomonads, 
heteroloboseans and glissomonads being particularly 
abundant. Protist abundance was highly variable between 
samples and thus diversity and abundance did not differ 
significantly between biocrust types. As high diversity 
numbers and biocrust type-specific diversity patterns of 
microfauna have been observed in biocrusts occurring in 
other parts of the world (e.g. south-western USA: Darby et 
al. 2007), we expect a much higher and crust type-specific 
diversity of microfauna to occur within the Succulent Karoo. 

Biocrust classification and mapping 

Biocrust coverage within the Soebatsfontein and 
Knersvlakte region was mapped by means of a newly 
developed hyperspectral remote-sensing technique, which 
proved to be also transferable to other regions of the world 
(Weber et al. 2008; Rodrίguez-Caballero et al. 2017a, 
2017b). This technique utilises the method of continuum 
removal (Clark and Roush 1984) to analyse the spectral 
traits of biocrusts allowing for discrimination between 
biocrusts and bare soil (Weber et al. 2008; Rodrίguez-
Caballero et al. 2017a, 2017b). At Soebatsfontein, ~27% 
of a 2 837 ha site was classified as biocrusts, whereas in 
the Knersvlakte only ~16% of the area was classified as 
biocrusts, while ~42% of the area covering 2 351 ha was 
classified as quartz pebbles potentially hosting hypolithic 
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Figure 4: Fungal and bacterial abundance and diversity in bare soil and in heterotrophic fraction of dark cyanobacteria-, chlorolichen-, and 
moss-dominated biocrusts of the Soebatsfontein region. (a) Quantitative real-time PCR estimates of fungal and bacterial abundance and its 
ratio in bare soil and biocrust types. (b) Alpha diversity measures calculated from Illumina 16S rRNA gene sequencing data of bacteria in 
bare soil and biocrust types, shown as number of observed species (number of operational taxonomic units; filled symbols) and Shannon 
index (open symbols) depending on sequencing depth. (c) Relative abundance, shown as percentage of 16S rRNA reads, of bacterial 
and archaeal phyla in bare soil and biocrust types. (d) Relative abundance of bacterial and archaeal families in bare soil and biocrust 
types, shown as heatmap using ordination method-based ordering of the rows and columns (ordination method: NMDS; ecological distance 
method: Bray–Curtis). The most abundant taxa across all samples are shown. Note that apparent clusters at the far right/left or top/bottom of 
the heatmap may actually belong to the same one. For further details and methods see Maier et al. (2018)
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biocrusts (Figure 5). In the next step, the biomass of the 
photoautotrophic compounds of biocrusts, expressed as 
the chlorophyll content, were analysed for soil-inhabiting 
and hypolithic crusts (Table 1) and thus the overall habitat 
biomass of biocrusts could be determined. Chlorophyll 
contents per surface area were somewhat higher for 
soil-inhabiting biocrusts of Soebatsfontein compared with 
soil-inhabiting and hypolithic crusts in the Knersvlakte, the 
latter two being very similar. Nevertheless, as the overall 
cover value of biocrusts was higher in the Knersvlakte 
compared with those at Soebatsfontein (58 vs 27%), 
mean habitat biomass values were also higher (i.e. 78 vs 
47 mg m−2, respectively). These higher biomass values 
were attained despite the somewhat harsher environmental 
conditions, but facilitated by the additional and widely 
available hypolithic habitat with favourable microclimatic 
conditions (Schmiedel and Jürgens 2004; Weber et al. 
2013; Rodrίguez-Caballero et al. 2017a). 

The biomass values recorded for soil-inhabiting and 
hypolithic crusts are in a similar range as those previously 
reported for cyanobacteria- and cyanolichen-dominated 
biocrusts from Inner Mongolia, the Negev Desert in Israel, 
and the south-western USA (Kidron et al. 2012; Lan 
et al. 2012; Green and Proctor 2016). In other studies, 
quartz fields have been described as a stable habitat 
for cyanobacteria, algae, lichens and mosses, and the 
communities have been observed as ecologically relevant 
primary producers (Schlesinger et al. 2003; Warren-Rhodes 
et al. 2006; Temina and Kidron 2015; Pointing 2016). 

Nitrogen- and carbon-cycling within biocrusts of the 
Succulent Karoo

Biocrusts have been shown to play a relevant role in 
regional and even global N cycling, as cyanobacteria and 
also other bacteria within the biocrusts fix atmospheric N 
(Elbert et al. 2012; Pepe-Ranney et al. 2015; Barger et 
al. 2016). After fixation, the N could be used for biomass 
formation (Veluci et al. 2006), but N compounds could also 
be released into the surrounding environment, being leached 
into deeper soil strata (Thiet et al. 2005), or redistributed by 
wind and water erosion (Eldridge and Rosentreter 1999; 
Barger et al. 2006). In a study conducted using biocrust 
and bare soil samples from the Soebatsfontein region, we 
investigated if and to what extent reactive N compounds, 
such as nitric oxide (NO), nitrous acid (HONO), and nitrogen 

dioxide (NO2), are released during wetting and drying cycles 
(Weber et al. 2015). For this experiment, the samples were 
watered to full water holding capacity (WHC) and the release 
of reactive compounds at 25 °C (room temperature) was 
measured during drying. Whereas no measurable amounts 
of NO2 were emitted by any of the samples, clear emission 
patterns were recorded for NO and HONO. The highest 
emissions were recorded for dark cyanobacteria-dominated 
biocrusts, which emitted maximum amounts of ~173 ± 
18 ng m−2 s−1 of HONO-N and ~208 ± 15 ng m−2 s−1 of 
NO-N at relatively low water contents ranging between 20% 
and 25% WHC (Figure 6). In addition, light cyanobacteria-
dominated biocrusts emitted NO and HONO, but at lower 
concentrations and over a wider moisture range between 
20% and 40% WHC. Chlorolichen- and moss-dominated 
biocrusts showed even lower maxima over a wider range 
of water contents, while emissions from bare soil were 
negligible. If such precipitation-linked emissions occur in 
drylands on a global scale, they may account for 1.7 Tg y−1 
(1.1 Tg y−1 of NO-N and 0.6 Tg y−1 of HONO-N) of reactive N 
emissions, corresponding to ~20% of global NO emissions 
from soils under natural vegetation (Stocker et al. 2013; 
Weber et al. 2015). In a later study investigating the NO 
and HONO emissions in Cyprus, values were clearly lower 
for biocrusts and highest for bare soil samples. In this 
study, emissions correlated with nitrite and nitrate contents, 
which has not been observed for the South African samples 
(Meusel et al. 2018). 

As described above, biocrusts are composed of photo-
autotrophic producers, heterotrophic decomposers 
(i.e. bacteria, fungi and archaea) and microfaunal 
consumers. Thus, their overall CO2 gas exchange during 
active daytime periods is mostly the sum of photoautotrophic 
photosynthesis and heterotrophic respiration processes, 
whereas during night-time all organism groups respire in an 
active physiological state. For the Soebatsfontein region, 
the three main types of cyanobacteria-dominated biocrusts 
with cyanolichens (cyanobacteria/cyanolichen-dominated), 
chlorolichen-dominated and moss-dominated biocrusts have 
been thoroughly analysed by means of CO2 gas exchange 
chamber measurements. Data were assessed under 
controlled laboratory conditions to investigate the physio-
logical response to varying water-, light-, and temperature 
conditions, and in the field to confirm that laboratory 
measurements conformed to the response under natural 
conditions (Weber et al. 2012; Tamm et al. 2018). Whereas 

Soebatsfontein Knersvlakte

Biocrusts Soil-inhabiting 
biocrusts Hypolithic crusts

Biocrust biomass Chl a content (mg m2) 120.8 ± 38.2 86.1 ± 37.8 87.5 ± 37.9
Chl a+b content (mg m2) 177.9 ± 49.2 133.7 ± 59.9 135.2 ± 48.7

Biocrust habitat coverage Area (ha) and 
fractional coverage (%)

766 (27%) 378 (16%) 986 (42%)

Habitat biocrust biomass Total Chl a content (kg) 925 325 862
Total Chl a+b content (kg) 1 356 505 1 333

Table 1: Determination of habitat biomass of biocrusts, based on biocrust biomass and biocrust cover values. Biocrust biomass per surface 
area is shown as chlorophyll (chl) a and chl a+b contents, biocrust cover values are given as absolute values within remote sensing imagery and 
as fractional cover values. Habitat biocrust biomass values were calculated by multiplying biomass values per surface area with surface area. 
Whereas in Soebatsfontein biocrusts mainly occur on soil, the Knersvlakte comprises both soil-inhabiting and hypolithic crusts
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their general response patterns were similar, as they had 
a temperature and water optimum and attained saturation 
at high light intensities, they also showed crust type-specific 
physiological characteristics (Figure 7). With regard to water, 
cyanobacteria/cyanolichen-dominated biocrusts attained 
their optimum at the lowest water content (0.52–0.78 mm 
H2O), followed by chlorolichen- (0.75–1.15 mm H2O) and 
moss-dominated biocrusts (1.76–2.38 mm H2O). In contrast, 
the water compensation point, i.e. the lowest water content 
at which positive net photosynthesis (NP) rates are attained, 
did not differ between biocrust types. Cyanobacteria/
cyanolichen-dominated biocrusts needed the highest light 
intensities before saturation was attained, followed by 
chlorolichen-dominated with medium and moss-dominated 
biocrusts with lowest saturating light intensities. Regarding 
temperature, cyanobacteria/cyanolichen-dominated 
biocrusts had the highest optimum at 37 °C, followed by 
chlorolichen- and moss-dominated biocrusts (both 22 °C). 

Thus, our data revealed that cyanobacteria/cyanolichen-
dominated biocrusts are well-adapted to unshaded 
high-temperature environments and lower amounts of 
rainfall. Chlorolichen-dominated biocrusts need somewhat 
more favourable environmental conditions, i.e. larger 
amounts of water and lower temperatures during active 
periods. Moss-dominated biocrusts make the highest 
demands, as they need relatively large amounts of water 
and lower light and temperature conditions to attain optimum 
conditions for photosynthesis. The highest NP rates 
under optimal conditions were attained by chlorolichen-
dominated biocrusts (3.9 ± 0.1 µmol m−2 s−1), whereas 
cyanobacteria/cyanolichen- and moss-dominated biocrusts 
had substantially lower maximum rates (2.7 ± 0.4 and 2.8 ± 
0.5 µmol m−2 s−1, respectively); for additional information and 
figures, see Weber et al. 2012 and Tamm et al. 2018). 

The described overall CO2 gas exchange patterns were 
also observed for biocrusts from other regions. Investigating 
biocrusts of the Namib Desert, Lange et al. (1992) 
obtained optimum curves for biocrust response to varying 
water contents and saturation curves for their response 
to increasing light intensities. They measured maximum 
NP rates between 0.72 and 1.12 µmol m−2 s−1, thus being 
somewhat lower than the rates observed by our study. 
For cyanolichen-dominated biocrusts from the Sonoran 
Desert with Peltula richardsii and P. patellata as dominating 
organisms, somewhat lower maximum NP values were 
obtained (Büdel et al. 2013), whereas Collema tenax 
biocrusts from the south-western USA attained substan-
tially higher maximum NP rates (i.e. 5.3 ± 0.9 µmol m−2 s−1; 
Lange et al. 1998). For mosses, maximum NP values 
were observed to be within a medium range, as DeLucia 
et al. (2003) obtained values up to 1.9 µmol m−2 s−1 for 
soil-inhabiting rainforest bryophytes, whereas Williams 
and Flanagan (1996) measured higher maxima of 
~7 µmol m−2 s−1 for isolated Sphagnum and 2 µmol m−2 s−1 
for isolated Pleurozium moss tufts. The response of 
biocrusts to high water contents depends on internal 
diffusion barriers and on the dominant biocrust organism. 
Whereas NP rates of the cyanobacterial lichen Collema 
tenax were suppressed at high water contents, lichens such 
as Cladonia convoluta showed no reduced rates at high 
water contents (Lange et al. 1998; Lange and Green 2003; 
Green and Proctor 2016).

Effects of global change

In September 2008, four microclimate stations were 
installed in the Soebatsfontein region to assess the micro-
climatic conditions and the variability between the sites over 
the course of a whole year at 5-minute intervals (Weber et 
al. 2016). Our measurements revealed that mesoclimatic 
conditions at the sites showed clear differences, despite the 
fact that they were maximally 9.3 km apart from each other. 
Sites 1 and 2, which were located somewhat further away 
from the coast, had a lower amount of annual precipitation, 
a lower number of rainy days, and higher mean annual 
temperatures (Figure 8a). At site 4, the mean annual 
temperature was only slightly lower but the annual precipita-
tion substantially higher. Site 3 had the lowest mean annual 
temperatures and annual precipitation amounts comparable 
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Figure 6: Characteristic emission patterns of nitrous acid 
(HONO-N) (a) and nitric oxide (NO-N) (b) from bare soil, 
light cyanobacteria-, dark cyanobacteria-, chlorolichen-, and 
moss-dominated biocrusts collected in the Soebatsfontein region 
during wetting and drying cycles. Data are shown as emissions 
(in ng m−2 s−1 of HONO-N or NO-N, respectively) at varying water 
contents defined as percentage of water holding capacity (WHC). 
The 100% WHC corresponds to 5.14 ± 1.52, 6.81 ± 0.13, 7.41 ± 
1.84, 7.83 ± 0.40, and 9.68 ± 0.96 mm precipitation equivalent in 
bare soil, light cyanobacteria-, dark cyanobacteria-, chlorolichen-, 
and moss-dominated biocrusts, respectively. For further details and 
methods see Weber et al. (2015)
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to site 4. These clear mesoclimatic differences were 
reflected in overall biocrust cover and compositional data. 
Total biocrust cover increased from sites 1 to 4 and was 
significantly higher at sites 3 and 4 compared with sites 1, 
and in addition chlorolichen- and moss-dominated biocrusts 
occurred more frequently at sites 3 and 4, whereas at 
sites 1 and 2 they were only rarely found (Figure 8). 

The warmer and drier conditions at sites 1 and 2 
compared with sites 3 and 4 are analogous to an increase 
in daily temperature and a reduction in total precipita-
tion forecast for the region by the International Panel for 
Climate Change until the year 2100 (Stocker et al. 2013; 
Figure 8b and c). Thus, our data indicate that the cover of 
well-developed, i.e. chlorolichen- and moss-dominated, 
biocrusts, which also have higher biomass contents 
compared with initial biocrusts, may decrease over the next 
decades, which is in line with the described physiological 

preferences analysed during CO2 gas exchange measure-
ments. According to these results, overall biocrust cover 
may also decline. 

These results are in line with experimental global 
change studies, where increased temperatures had 
detrimental effects on biocrust cover, and altered precipi-
tation regimes caused a complete loss of moss-dominated 
biocrust within a single growing season (Reed et al. 2012; 
Maestre et al. 2013). Analyses of a long-term field study 
revealed that both altered climate and physical disturbance 
had similar detrimental effects on the biocrust community 
structure (Ferrenberg et al. 2015). A recently published 
global analysis combining measurement and modelling 
approaches suggested that overall biocrust cover may 
decrease by ~25%–40% within the next 65 years due to 
both climate change and land-use intensification to similar 
extents (Rodrίguez-Caballero et al. 2018a). 

Figure 7: CO2 gas exchange of dark cyanobacteria-dominated biocrust with cyanolichens (a), chlorolichen-dominated biocrust (b) and 
moss-dominated biocrust (c) at varying temperatures, i.e. 7, 22 and 37 °C. Measurements were conducted at varying photon flux density 
(PPFD) and water content at 380 ppm CO2. For further details and methods see Tamm et al. (2018)
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Conclusion

The Succulent Karoo is characterised by a high cover of 
biocrusts, composed of various biocrust types that increase 
along a successional pathway in overall biodiversity, 

biomass and C-fixation potential (Figure 9). These biocrust 
types are not equally distributed throughout the region, as 
well-developed chlorolichen- and moss-dominated biocrusts 
require cooler temperatures and sufficient amounts of precip-
itation, but also stable soil conditions. Thus, with increasing 

18 19 20

50

100

150

200

250

A
N

N
U

A
L 

PR
EC

IP
IT

AT
IO

N
 (m

m
)

MEAN ANNUAL TEMPERATURE (ºC)

100

200

300

A
N

N
U

A
L 

PR
EC

IP
IT

AT
IO

N
 (m

m
)

M
E

A
N

 A
N

N
U

A
L 

TE
M

PE
R

AT
U

R
E 

(º
C

)

Site 3
(76%)

Site 4 
(78%)

Site 1
(64%)

Site 2
(72%)

Light Cyano

Dark Cyano

Cyanolichen

Chlorolichen

Moss

22

20

18

2025 2050 2075 21002005

2025 2050 2075 21002005

(a)

(b)

(c)

Figure 8: Average biocrust coverage (represented by piechart size), composition, precipitation, and temperature at the four different study 
sites along an aridity gradient (a), historical and predicted future mean annual temperature (b) and precipitation (c) for the years 2005 to 
2100 according to four different scenarios: RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red; b). Climatic data were 
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temperatures, decreasing precipitation and increasing 
land-use intensity, overall biocrust cover as well as the 
cover of well-developed biocrusts are expected to decline, 
therefore exposing the region to higher overall erosion rates 
and an increased risk of desertification (Figure 9). 
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