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1 Preliminaries and first results

In this talk we consider the logics Li
n

obtained from the (n+1)-valued  Lukasiewicz logics  L
n+1

by taking the order filter generated by i/n as the set of designated elements. The (n+1)-valued
 Lukasiewicz logic can be semantically defined as the matrix logic

 L
n+1 = hLVn+1, {1}i,

where LVn+1 = (LV
n+1,¬,!) with LV

n+1 =
�
0, 1

n

, . . . , n�1
n

, 1
 
, and the operations are defined

as follows: for every x, y 2 LV
n+1, ¬x = 1� x and x ! y = min{1, 1� x+ y}.

Observe that  L2 is the usual presentation of classical propositional logic CPL as a matrix logic
over the two-element Boolean algebra B2 with domain {0, 1} and signature {¬,!}. The logics
 L
n

can also be presented as Hilbert calculi that are axiomatic extensions of the infinite-valued
 Lukasiewicz logic  L1.
The following operations can be defined in every algebra LVn+1: x ⌦ y = ¬(x ! ¬y) =
max{0, x + y � 1} and x � y = ¬x ! y = min{1, x + y}. For every n > 1, xn = x ⌦ · · · ⌦ x
(n-times) and nx = x� · · ·� x (n-times).

For 1  i  n let F
i/n

= {x 2 LV
n+1 : x � i/n} =

�
i

n

, . . . , n�1
n

, 1
 
be the order filter

generated by i/n, and let
Li
n

= hLVn+1, F
i/n

i

be the corresponding matrix logic. From now on, the consequence relation of Li
n

is denoted by
|=Li

n
. Observe that  L

n+1 = Ln
n

for every n. In particular, CPL is L11 (that is,  L2). If 1  i,m  n,

we can also consider the following matrix logic: Li/n
m

= hLVm+1, F
i/n

\ LV
m+1i.

The logic L12 = hLV3, {1, 1/2}i was already known as the 3-valued paraconsistent logic J3,
introduced by da Costa and D’Ottaviano see [4] in order to obtain an example of a paraconsistent
logic maximal w.r.t. CPL.

Definition 1. Let L1 and L2 be two standard propositional logics defined over the same
signature ⇥ such that L1 is a proper sublogic of L2. Then, L1 is maximal w.r.t. L2 if, for every
formula ' over ⇥, if `

L2 ' but 6`

L1 ', then the logic L+
1 obtained from L1 by adding ' as a

theorem, coincides with L2.

In order to study maximality among finite-valued  Lukasiewicz logics defined by order filters
we obtain the following su�cient condition:
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Theorem 1. Let L1 = hA1, F1i and L2 = hA2, F2i be two distinct finite matrix logics over a
same signature ⇥ such that A2 is a subalgebra of A1 and F2 = F1 \A2. Assume the following:

1. A1 = {0, 1, a1, . . . , ak, ak+1, . . . , an} and A2 = {0, 1, a1, . . . , ak} are finite such that 0 62 F1,
1 2 F2 and {0, 1} is a subalgebra of A2.

2. There are formulas >(p) and ?(p) in L(⇥) depending at most on one variable p such that
e(>(p)) = 1 and e(?(p)) = 0, for every evaluation e for L1.

3. For every k + 1  i  n and 1  j  n (with i 6= j) there exists a formula ↵i

j

(p) in L(⇥)
depending at most on one variable p such that, for every evaluation e, e(↵i

j

(p)) = a
j

if
e(p) = a

i

.

Then, L1 is maximal w.r.t. L2.

We use this result to prove that

Theorem 2. Let 1  i,m  n. Then Li
n

is maximal w.r.t. Li/n
m

if the following condition holds:
there is some prime number p and k � 1 such that n = pk, and m = pk�1.

Corollary 1. Let 1  i  p. For every prime number p, Li
p

is maximal w.r.t. CPL

Notice that the above corollary generalizes the well known result:  L
p+1 is maximal w.r.t.

CPL for every prime number p.

Definition 2. Let L1 and L2 be two standard propositional logics defined over the same
signature ⇥ such that L1 is a proper sublogic of L2. Then, L1 is strongly maximal w.r.t. L2 if,
for every finitary rule '1, . . . ,'n

/ over ⇥, if '1, . . . ,'n

`

L2  but '1, . . . ,'n

6`

L1  , then the
logic L⇤

1 obtained from L1 by adding '1, . . . ,'n

/ as structural rule, coincides with L2.

Let i be a strictly positive integer, the i-explosion rule is the rule (exp
i

)
i(' ^ ¬')

?

.

Lemma 1. For every 1  i  n, the rule (exp
i

) is not valid in Li
n

.

Corollary 2. Let 1  i  p. For every prime number p, Li
p

is not strongly maximal w.r.t. CPL

2 Equivalent systems

Blok and Pigozzi introduce in [3] the notion of equivalent deductive systems in the following
sense: Two propositional deductive systems S1 and S2 in the same language L are equivalent
i↵ there are two translations ⌧1, ⌧2 (finite subsets of L-propositional formulas in one variable)
such that:

• � `

S1 ' i↵ ⌧1(�) `S2 ⌧1('),

• � `

S2  i↵ ⌧2(�) `
S1 ⌧2( ),

• ' a`

S1 ⌧2(⌧1(')),

•  a`

S2 ⌧1(⌧2( )).

Theorem 3. For every n � 2 and every 1  i  n, Li
n

and Ln+1 are equivalent deductive
systems.

2
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From the equivalence among Li
n

and  L
n+1, we can obtain, by translating the axiomatization

of the finite valued  Lukasiewicz logic  L
n+1, a calculus sound and complete with respect Li

n

that
we denote by Hi

n

.
Since  L1 is algebraizable and the class MV of all MV-algebras is its equivalent quasivariety

semantics, finitary extensions of  L1 are in 1 to 1 correspondence with quasivarieties of MV-
algebras. Actually, there is a dual isomorphism from the lattice of all finitary extensions of
 L1 and the lattice of all quasivarieties of MV . Moreover, if we restrict this correspondence to
varieties of MV we get the dual isomorphism from the lattice of all varieties of MV and the
lattice of all axiomatic extensions of  L1. Since  L

n+1 = Ln
n

is an axiomatic extension of  L1,
 L
n+1 is an algebraizable logic with the class MV

n

= Q( LV
n+1), the quasivariety generated by

 LV
n+1, as its equivalent variety semantics. It follows from the previous theorem that Li

n

, for
every 1  i  n, is also algebraizable with the same class of MV

n

-algebras as its equivalent
variety semantics. Thus, the lattices of all finitary extensions of Li

n

are isomorphic, and in fact,
dually isomorphic to the lattice of all subquasivarieties of MV

n

, for all 0 < i < n.
Therefore maximality conditions in the lattice of finitary (axiomatic) extensions correspond

to minimality conditions in the lattice of subquasivarieties (subvarieties). Thus, given two
finitary extensions L1 and L2 of a given logic Li

n

, where K
L1 and K

L2 are its associated MV
n

-
quasivarieties, L1 is strongly maximal with respect L2 i↵ K

L1 is a minimal subquasivariety of
MV

n

among those MV
n

-quasivarieties properly containing K
L2 . Moreover, if L1 and L2 are

axiomatic extensions of Li
n

, then K
L1 and K

L2 are indeed MV
n

-varieties. In that case, L1 is
maximal with respect L2 i↵ K

L1 is a minimal subvariety of MV
n

among those MV
n

-varieties
properly containing K

L2 .
The lattice of all axiomatic extensions  L1 is fully described also by Komori in [7], thus

from the equivalence of Theorem 3, we can obtain the following maximality conditions for all
axiomatic extensions of Li

n

.

Theorem 4. Let 0 < i,m  n be natural numbers such that m|n. If L is an axiomatic extension

of Li
n

, then L is maximal with respect to L
i/n

m

i↵ L = L
i/n

m

\ L
i/n

p

k+1 for some prime number p

with p|n and a natural k � 0 such that pk|m and pk+1
6 |m.

As a corollary we obtain that the su�cient condition of Theorem 2 is also necessary.

Corollary 3. Let 1  i,m  n. Then Li
n

is maximal w.r.t. Li/n
m

if and only if there is some
prime number p and k � 1 such that n = pk, and m = pk�1.

To obtain results on strong maximality we need to study finitary extensions of  L1. The
task of fully describing the lattice of all all finitary extensions of  L1, isomorphic to the lattice
of all subquasivarieties of MV , turns to be an heroic task since the class of all MV-algebras
is Q-universal [1]. For the finite valued case it is much simpler, since MV

n

is a locally finite
discriminator variety. Any locally finite quasivariety is generated by its critical algebras [5].
Critical MV-algebras were fully described in [6] and using this description we can obtain some
results on strong maximality.

First we need to introduce the following matrix logics: For every 1  i,m  n,

L̄i
n

= hLVn+1 ⇥ LV2, F
i/n

⇥ {1}i L̄i/n
m

= hLVm+1 ⇥ LV2, (F
i/n

\ LV
m+1)⇥ {1}i

Theorem 5. Let 0 < i  n be natural numbers, let p be a prime number and let r = max{j 2

N : pj |n}. Then we have: For every j such that (i � 1)p < j  ip, Li
n

\ L̄
j/np

p

r+1 is strongly

maximal with respect to Li
n

. Moreover, every finitary extension of some Lj
k

is strongly maximal
with respect Li

n

i↵ it is one of the preceding types.

3
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As a particular case we can also prove the following result.

Theorem 6. Let p be a prime number. Then, for every j such that 0 < j  p:

• L̄j
p

is strongly maximal with respect to CPL and it is axiomatized by Hj

p

plus the j-explosion
rule (exp

j

) j(' ^ ¬')/?.

• Lj
p

is strongly maximal w.r.t. L̄j
p

.

3 Ideal paraconsistent logics

Arieli, Avron and Zamansy introduced in [2] the concept of ideal paraconsistent logics.

Definition 3. Let L be a propositional logic defined over a signature ⇥ (with consecuence
relation `

L

) containing at least a unary connective ¬ and a binary connective ! such that:

(i) L is paraconsistent w.r.t. ¬ , i.e. there are formulas ', 2 L(⇥) such that ',¬' 0
L

 ;
and ! is a deductive implication, i.e. � [ {'} `

L

 i↵ � `

L

'!  ,.

(ii) There is a presentation of CPL as a matrix logic L0 = hA, {1}i over the signature ⇥ such
that the domain of A is {0, 1}, and ¬ and ! are interpreted as the usual 2-valued negation
and implication of CPL, respectively, such that L is a sublogic of CPL.

Then, L is said to be an ideal paraconsistent logic if it is maximal w.r.t. CPL, and every proper
extension of L over ⇥ is not ¬-paraconsistent.

Lemma 2. Let 0 < i  n. Li
n

is paraconsistent w.r.t. ¬ i↵ i

n



1
2

Since for every 0 < i  n, there is a term definable implication )

i

n

which is deductive
implication next result follows from Theorem 6

Theorem 7. Let p be a prime number, and let 1  i < p such that i/p  1/2. Then, Li
p

is a
(p+ 1)-valued ideal paraconsistent logic.1
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1Strictly speaking, in this claim we implicitly assume that the signature of Lip has been changed by adding

the definable implication )i
p as a primitive connective.
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