Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm

Daniel Aldea¹, Lucie Subirana¹, Celine Keime², Lydvina Meister¹, Ignacio Maeso⁴, Sylvain Marcellini³, Jose Luis Gomez-Skarmeta⁴, Stephanie Bertrand¹*, Hector Escriva¹*

¹ Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, F-66650, Banyuls/Mer, France
² IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch, France.
³ 3 Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
⁴ 4 Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain

* To whom correspondence should be addressed at: Laboratoire Arago, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France. E-mail: stephanie.bertrand@obs-banyuls.fr, hescriva@obs-banyuls.fr. Phone: +33(0)468887390, Fax: +33(0)468887393
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that FGF signalling controls the formation of the most anterior somites in amphioxus and, therefore, unravelling the FGF-signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. Here we show, by using a comparative RNA-seq approach and genetic functional analyses, that several transcription factors, such as Six1/2, Pax3/7, and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multi-step evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates “new head”.
Introduction

Body segmentation is a morphological feature shared by several metazoan groups. In vertebrate embryos, the paraxial mesoderm is segmented and forms the so-called somites on both sides of the midline. However, this segmentation does not concern the whole body since the vertebrate mesoderm is not segmented anterior to the otic vesicle. Although the presence of a pseudo-segmentation of the head mesoderm was previously proposed 1-3, molecular and histological data on several vertebrate species do not support such a hypothesis 4-6, or at least do not support serial homology between head mesoderm and somitic mesoderm (see 7 for a review). Vertebrate somites are formed in an antero-posterior progression by epithelialisation of the presomitic mesoderm, a process known as somitogenesis. This segmentation process is under the control of molecular signals (Retinoic Acid, FGF, Wnt and Notch pathways) that act through a clock and wavefront system 8,9. Once somites are formed, they receive signals coming from the surrounding structures and get divided into a sclerotome region, that will give rise to the axial skeleton, and into a dermomyotome region that will further form muscles and dermis 10. By contrast, the head mesoderm, which is in place at the mid-gastrula stage, does not form somites. Rather, it subdivides into the prechordal mesoderm in the most anterior axial region, and, laterally, into the cranial paraxial mesoderm and splanchnic mesoderm whose morphological delimitations are still unclear 11. These territories participate to the formation of some head muscles, part of the neurocranium, and to the formation of the vertebrate heart 12. However, head muscles develop from multiple origins and can derive from anterior somite migrating cells or head mesoderm.

Extant chordates include the vertebrates, their sister group the tunicates, and the cephalochordates (i.e. amphioxus) 13. In cephalochordates as in vertebrates, the paraxial mesoderm forms segmented blocks on both sides of the notochord through the somitogenesis
process. However, this is not the case in tunicates that probably lost this chordate feature. In addition, a major difference exists between vertebrates and amphioxus somitogenesis. While in vertebrates somites are restricted to the trunk mesoderm, in amphioxus, somites form from the most anterior to the most posterior region of the animal \(^{14}\). Moreover, all the amphioxus mesodermal structures, except the axial notochord, derive from the somites. Indeed, cephalochordates do not possess lateral plate mesoderm as do vertebrates. Thus, during cephalochordate embryogenesis, once the somites are formed, they elongate ventrally, and several dorso-ventral regions can be recognized. Along the antero-posterior axis, the cephalochordate somites can be subdivided in several populations. The anterior somites (eight to ten depending on the species) form by enterocoely from the paraxial dorsal roof of the archenteron \(^{15}\), and the most anterior of these somites form under the control of the FGF signal \(^{16}\). The most posterior somites form by schizocoely, directly from the tailbud \(^{17}\), and the signals controlling their formation are still unknown, although a role for FGF and retinoic acid has been discarded \(^{18}\). Most of the genes expressed in the enterocoelic somites during their formation are also expressed in the tailbud during posterior elongation and schizocoelic somite development \(^{19}\), suggesting that the differences between these two populations could result from the dissimilarity in the physical constraints imposed to the presomitic region during these two somitogenesis phases. In support to this view, when schizocoelic somites form, the tailbud is reduced to a small number of cells whereas the roof of the archenteron from which form the enterocoelic somites is a much larger region. Overall, there are until now no functional data arguing for a genetic difference in the control of enterocoelic and schizocoelic somites formation \(^{19}\).

The complete paraxial mesoderm segmentation observed in amphioxus has been proposed to be an ancestral chordate feature \(^{20}\), implying that the vertebrate unsegmented head mesoderm is a derived character whose evolutionary origin has not yet been elucidated. Several
propositions to answer such a question were enunciated (for reviews see 21-26) among which:

(1) the mesoderm of the head appeared through a loss of segmentation of the anterior paraxial mesoderm, (2) the head mesoderm is a new structure that was added in the anterior region or that appeared after the loss of the anterior segmented paraxial mesoderm. Key to bring new insights into this subject is our understanding of the molecular mechanisms controlling somitogenesis in cephalochordates. In order to identify the downstream cascade activated by FGF for the formation of the amphioxus anterior somites 16, we undertook a comparative RNA-seq approach followed by a genetic functional analysis of several transcription factors putatively involved in the control of the formation of the different somitic populations. We show here that ETV1/4/5, Six1/2, Pax3/7 and Zic play different roles during amphioxus somitogenesis, demonstrating the existence of three genetically different somite populations. Moreover, our data on anterior somites formation, together with known literature on tunicates and vertebrates, allow us to propose an evolutionary scenario according to which the vertebrate head mesoderm is of visceral and not paraxial origin as previously proposed, and that reconciles the two main opposed hypotheses on the origin of head muscles.
Results

Comparative RNA-seq approach reveals putative transcription factors downstream of FGF for the control of anterior somitogenesis

To decipher the genetic regulation occurring downstream of FGF during anterior somitogenesis in amphioxus, we undertook a comparative RNA-seq approach (Supplementary Data). We analysed the transcriptomes of embryos treated with the FGF signalling pathway inhibitor SU5402 at stages at which the treatment induces the loss of the anterior somites, and of embryos treated at a later stage in which all the somites form. We focused our attention on genes whose expression profile shows a significant downregulation precisely at the time when anterior somites form in early treated embryos but whose expression is not downregulated otherwise. Indeed, these genes are putative downstream targets of the FGF signalling pathway specifically controlling the formation of anterior somites. These downregulated genes are enriched in GO terms associated with transcription factors and cranial skeletogenesis (Supplementary Fig. 1). To validate our RNA-seq approach, we analysed the expression of more than 80 of them by in situ hybridization (Fig. 1, Supplementary Fig. 1). Our results confirmed that the expression of the candidate genes coding for transcription factors and signalling pathway actors normally expressed in the presumptive anterior somites territory was lost specifically in this region when the FGF signal was inhibited.

Role of ETV1/4/5, Six1/2 and Pax3/7 during amphioxus somitogenesis

Transcription factors putatively involved in the control of anterior somitogenesis identified by the RNA-seq experiment were studied using a functional approach. We first chose the Ets family member ETV1/4/5 because it had been shown to be a target of FGF signalling in amphioxus, and because its vertebrate orthologues are known FGF downstream effectors.
and direct targets. We also selected Pax3/7 and Six1/2 because (i) together with the non-transcription factor partner Eya they were highly downregulated early on after FGF signal inhibition, and (ii) their orthologues are key transcription factors controlling somitogenesis and trunk muscle formation in vertebrates. We assessed the function of ETV1/4/5, Six1/2 and Pax3/7 by constructing constitutive transcriptional activator or repressor chimeras through the fusion of the transcription factor sequence to the VP16 transcriptional activation domain or to the Engrailed repressor domain, respectively. The overexpression of VP16 chimeras for the three transcription factors had no obvious effect on amphioxus embryonic development. Nevertheless, when we injected the ETV1/4/5-Engrailed mRNA, the embryos presented a similar phenotype to embryos in which the FGF signalling pathway has been inhibited during early development. Thus, the injected embryos did not form anterior somites although the posterior somites were present, as shown by the expression of FoxC and Myosin Light Chain (MLC). Interestingly, we also observed this phenotype when the Six1/2-Engrailed mRNA was injected, suggesting that both ETV1/4/5 and Six1/2 are required downstream of FGF for anterior somitogenesis. On the other hand, the embryos injected with the Pax3/7-Engrailed mRNA showed a different phenotype. The embryos were shortened and formed anterior somites as indicated by FoxC and MLC expression. In addition, posterior elongation was stopped and no Brachyury2 expression was detected after gastrulation, advocating for a role of Pax3/7 in the formation of posterior and not of anterior somites.

To better understand the epistatic relationships between these transcription factors, we analysed their expression in injected embryos. We showed that in ETV1/4/5-Engrailed mRNA injected embryos the expression of Six1/2 and Pax3/7 was lost in the presumptive anterior...
paraxial mesoderm (Fig. 2b). When Six1/2-Engrailed mRNA was injected, Pax3/7 anterior expression was also lost while ETV1/4/5 expression was maintained (Fig. 2b). Finally, ETV1/4/5 and Six1/2 expression was maintained upon Pax3/7-Engrailed mRNA injection (Fig. 2b). Together these data suggest that ETV1/4/5 is at the top of the regulatory cascade downstream of the FGF signal followed by Six1/2, which is at a downstream position.

Zic is also an important actor in amphioxus somite formation

In order to discover cis-regulatory elements directly implicated in the regulation of anterior somitogenesis by FGF, whole genome ATAC-seq profiles for amphioxus embryos at gastrula and neurula (early and late) stages were generated. We specifically searched for peaks that (i) are located near the genes we found to be downregulated after early inhibition of the FGF signalling pathway (i.e. in intronic region or at less than 3 kb from the transcription start site), (ii) are present at the gastrula stage but absent at the beginning of neurulation, when the first somites are already specified, and (iii) contain putative Ets binding sites. Only one peak fulfilling these criteria was identified in the first intron of Zic (Fig. 3a). The corresponding sequence was cloned in a GFP reporter plasmid upstream of the Branchiostoma lanceolatum β-actin minimal promoter. Transient transgenic amphioxus injected with this construction showed GFP expression in the dorsal blastopore lip in gastrulae, precisely recapitulating the Zic expression pattern at this stage (Fig. 3b). This suggests that during anterior somite specification, Zic expression might be controlled through the binding of Ets family transcription factors (Fig. 3b). To evaluate the function of Zic during somitogenesis, we injected the Zic-Engrailed chimera mRNA into unfertilized amphioxus eggs. Injected embryos had no anterior somites as shown by the absence of anterior expression of MLC and MRF2 thereby phenocopying SU5402-treated embryos (Fig. 3c, Supplementary Fig. 4).
To better understand the specific role of Pax3/7, Six1/2 and Zic downstream of the FGF signal, we co-injected the Pax3/7-Engrailed mRNA with the Six1/2-Engrailed or the Zic-Engrailed mRNAs. Hence, when we used constitutive repressor fusions to simultaneously interfere with the function of Pax3/7 and Six1/2, we obtained embryos that had lost their anterior and posterior somitic structures and only presented some central somites (Fig. 3d). This phenotype is similar to embryos injected with Pax3/7-Engrailed mRNA and treated with SU5402 (Fig. 3d). By contrast, when Pax3/7-Engrailed and Zic-Engrailed mRNAs were co-injected, no somites formed (Fig. 3d).
Discussion

By employing a functional genetic approach we confirmed the presence of three different somite populations in amphioxus (anterior, intermediate and posterior) \(^{16}\), and we further showed that the formation of each somite type is controlled by a specific set of transcription factors (Fig. 4a). The formation of the most anterior somites is under the control of FGF, probably through the Ets factor ETV1/4/5 which regulates the expression of \(\text{Six}1/2\) and \(\text{Pax}3/7\), \(\text{Six}1/2\) being indispensable for the establishment of this population of somites.

On the other hand, Zic seems to be implicated in the development of all the anterior enterocoelic somites while \(\text{Pax}3/7\) would be required for the formation of the posterior schizocoelic somites, although from our data we cannot exclude that \(\text{Pax}3/7\) is also controlling the formation of the posterior enterocoelic somites (Fig. 4a). Interestingly, in vertebrates, although the all somites form through a similar program, the signals controlling their formation are different in the anterior and posterior regions. Indeed, the clock and wavefront system applies well to the posterior somites whereas the formation of the occipital somites is often resistant to perturbations of the Notch signalling pathway, which is one of the main component of the clock (see \(^{34}\) for a review). However, these differences in anterior and posterior somitogenesis can be hardly compared to what is known in amphioxus as there is no implication of retinoic acid nor FGF signals in the formation of the posterior somites \(^{18}\), and Notch signal perturbation induces incomplete formation of the segmental boundaries of all the cephalochordate somites \(^{35}\). We thus propose that the differences observed between the formation of occipital somites and more posterior somites in vertebrates cannot be paralleled to the differences we observed in this study in the formation of the different amphioxus somite populations.
The functional results we obtained in this work have some important implications for our understanding of the evolutionary origin of the vertebrate unsegmented head mesoderm. In vertebrates, *Pax3*, together with *Six1* and *Six4* and their cofactors *Eya1* and *Eya2*, are important for somite formation and are the main actors activating the expression of the basic helix-loop-helix muscle regulatory factor genes (MRFs) that launch myogenesis in specific regions of the somites. The formation of amphioxus muscles from all three somite populations would therefore be regulated by a similar set of transcription factors to the one controlling trunk muscle formation in vertebrates. On the other hand, the myogenic process in the vertebrate head mesoderm, which is delayed compared to trunk myogenesis and *Pax3* independent, is triggered by *Pitx2* and *Tbx1* upstream of MRFs. Even if *Pax7* is expressed in head muscle stem cells, it is only at a late stage after MRFs expression, and although *Six1* has been shown to control the expression of some MRFs in vertebrate head mesoderm derived muscles, it is always acting downstream of, or in parallel with, *Tbx1*. Interestingly, in contrast to what we observed in amphioxus, *Six1* has been shown to be upstream of FGF signal by regulating *Fgf8* expression in some pharyngeal arches and in the second heart field in mouse. Altogether, these data suggest that the vertebrate *Pax* and *Six* genes are not major upstream regulators of head muscle formation even so they are implicated in some vertebrate species in the activation of some MRFs and/or the maintenance of some head muscle cell progenitors. Interestingly, in amphioxus, *Pitx* expression starts after somitogenesis on the left side of the embryo, ruling out a possible role in somite and muscle formation in this species. Consistently, the injection of a *Pitx-Engrailed* (*Pitx-EN*) chimera mRNA in amphioxus embryos does not lead to somitogenesis defects. In addition, the onset of amphioxus *Tbx1/10* expression occurs well after gastrulation, in the ventral region of the already formed somites, and somites still form in *Tbx1/10* morpholino-injected *Branchiostoma floridae* embryos.
Therefore, from the genetic point of view, vertebrate head mesoderm seems at a first glance not to be homologous to the amphioxus anterior somites, at least in their entirety. While the aforementioned data might seem to support the hypothesis stating that vertebrate head muscles are a vertebrate novelty that was “added” to an amphioxus-like body plan46,47, we would like to propose a distinct interpretation. Indeed, one problem of the “head addition” scenario is that it supposes that amphioxus somites are exclusively homologous to vertebrate somites. However, we and others have provided a sound argumentation against this view48,49, and we suggest that amphioxus somites are homologous to three vertebrate mesodermal compartments: the somites, the cardiopharyngeal mesoderm, and the lateral plate mesoderm. In support of this, the ventral region of amphioxus somites express lateral plate mesoderm markers such as $Ets1/2$50, $FoxF$51, $GATA1/2/3$52, $Hand$52, and $Twist$50. Moreover, this ventral somitic region also expresses heart markers such as $Nk2-tin$53, $Tbx20$54 together with head mesoderm genes such as Alx50 or $Tbx1/10$44. In vertebrates, it has been shown that some progenitors of the vertebrate second heart field derive from the head mesoderm55,56 and, in their sister group the tunicates, the anterior muscles (cardiac muscle cells and muscles of the atrial siphon) have a common origin and depend upon $Tbx1/10$ for their formation57,58. Thus, the comparison of cell fates and gene expression patterns with amphioxus strongly suggest that the ventral part of amphioxus somites, which is therefore segmented at early embryonic stages, would be homologous to both the cardiopharyngeal field of vertebrates and tunicates12,59 and to the lateral plate mesoderm of vertebrates. Hence, the head mesoderm of vertebrates, at least the pharyngeal mesoderm, would be of visceral and not paraxial origin as already proposed12. It would therefore not be a completely novel structure, but a structure homologous to the ventral part of the amphioxus anterior somites.

Altogether, if we assume that the complete anteroposterior segmentation of the paraxial mesoderm, as found in cephalochordates, represents the ancestral state within
chordates, our functional data in amphioxus and known gene expression patterns in chordates allow us to propose an evolutionary scenario that reconciles aspects of the two traditional and seemingly conflictual hypotheses in the field (i.e. “head addition” vs “segmentation loss”). Hence, we propose a series of evolutionary steps explaining how the vertebrate head mesoderm might have derived from the ventral part of an ancestrally fully segmented anterior paraxial mesoderm (Fig. 4b). The first two phases, the order of which we cannot define, would have involved: (i) the segregation of the paraxial mesoderm from the lateral plate mesoderm during gastrulation and the loss of segmentation of the lateral plate mesoderm along the whole antero-posterior axis, and (ii) the regionalisation of the lateral plate mesoderm, in an anterior and a posterior zone, as previously proposed by others. Subsequently, the paraxial mesoderm of the anterior region would have been lost, probably through a functional modification of the role of the FGF signalling pathway, as supported by our data. This last step would have played a crucial role by relaxing the developmental constraints imposed by a segmented paraxial mesoderm and allowing the lateral plate mesoderm to occupy this evolutionary “old” territory for the formation of a “novel” muscular system.
Methods

Embryo manipulation

Ripe adults from the Mediterranean amphioxus species (*Branchiostoma lanceolatum*) were collected at the Racou beach near Argelès-sur-Mer, France, (latitude 42° 32’ 53” N and longitude 3° 03’ 27” E) with a specific permission delivered by the Prefect of Region Provence Alpes Côte d’Azur. *Branchiostoma lanceolatum* is not a protected species. Gametes were collected by heat stimulation as previously described\(^{61,62}\). Prior to pharmacological treatments, and before hatching, embryos were transferred to new Petri dishes with a known final volume of seawater. SU5402 (Calbiochem 572631) was dissolved in dimethyl sulfoxide (DMSO) at \(10^{-2}\) M and added to cultures of embryos at a final concentration of 25 µM at the blastula stage (5 hours post fertilization (hpf) at 19°C) or at the gastrula stage (15.5 hpf at 19°C). Control embryos were raised simultaneously with equivalent concentrations of DMSO in filtered seawater. Embryos were either fixed in PFA4%-MOPS as previously described\(^{63}\) or frozen in liquid nitrogen.

RNA-seq experiment

Total RNA was extracted from embryos 3, 6 or 9 hours post treatment (hpt) using the RNeasy Plus Mini Kit (Qiagen) after disrupting and homogenizing the sample with the TissueLyser (Qiagen). Library preparation and sequencing were performed at the GenomEast Platform, IGBMC, Illkirch, France. Illumina “Truseq RNA sample preparation low throughput” protocol was followed for cDNA synthesis (using 2 µg total RNA), then SPRIworks Fragment Library System I kit (ref A84801, Beckman Coulter, Inc) with the SPRI-TE instrument was used to prepare the libraries, afterwards libraries were purified using AMPure XP beads (Agencourt Biosciences Corporation). Single-end sequencing was performed on Illumina GAIIx platform (54 or 72 bp, 6 hpt libraries) or on Hiseq2000 system (50 bp, 3 and 9 hpt...
libraries). The first 50 bases of pass-filter reads were retained, in order to be comparable between the different samples. These reads were mapped onto a reference transcriptome constructed using the data obtained by Oulion et al., and the data obtained in this study, using bwa v0.6.1 and the following set of parameters: -l 27 -n 4 -e 4. Only uniquely aligned reads were then retained. Subsequent analysis was performed using R v2.15.2: the number of reads aligned to each contig was computed and normalization and differential expression analysis was performed using DESeq v1.10.1. GO terms enrichment analysis was undertaken using Blast2GO.

In situ hybridization

For B. lanceolatum genes not previously published, specific primers were designed for RT-PCR amplification of partial coding regions. Total RNA of B. lanceolatum extracted from a mix of embryos at different developmental stages was used as a template for retro-transcription. Amplification was performed using Advantage 2 Polymerase kit (Clontech) and a touchdown PCR program with annealing temperature ranging from 65 to 40°C. Amplified fragments were cloned using the pGEM-T Easy system (Promega) and sub-cloned in pBluescript II KS+ for probe synthesis. For GFP, probe was synthesized from a pcDNA3-spacer-GFP-NX plasmid (gift from Angela Nieto and Jose Manuel Mingot). Whole mount in situ hybridizations were performed as described in. After in situ hybridization some embryos were washed several times in PBS and labelled using DAPI for further confocal microscopy imaging at the BIOPIC platform.

Plasmid constructions

All the vectors for mRNA synthesis were constructed using the pCS2+ expression vector backbone. Constitutive activator forms of Pax3/7 (VP16-Pax3/7), Six1/2 (VP16-Six1/2) and
ETV1/4/5 (VP16-ETV1/4/5) were created by fusing the coding sequence of the 81 aa
activation domain of VP16 protein to the N-terminal side of the DNA binding domain coding
sequence of Pax3/7 or ETV1/4/5 and to the N-terminal side of the full-length coding sequence
of Six1/2. Constitutive repressor forms of Pax3/7 (Pax3/7-Engrailed), Six1/2 (Six1/2-
Engrailed) and ETV1/4/5 (ETV1/4/5-Engrailed) were created by fusing the coding sequence
of the repressor domain of the engrailed protein to the N-terminal side of the DNA binding
domain coding sequence of Pax3/7 or ETV1/4/5 and to the N-terminal side of the full-length
sequence of Six1/2. The vectors were linearized and in vitro transcription was performed
using the mMESSAGE mMACHINE® SP6 Transcription Kit. Microinjections of plasmids
and mRNA were carried out as described in 69,70.

ATAC-seq experiment

ATAC-seq was undertaken as previously described in 71,72. Embryos were grown at 19°C until
8 hpf, 15 hpf, 36 hpf and 100, 30, 13 embryos were centrifuged at 13,000 rpm to remove
seawater. Embryos were resuspended in 50 µl of cold lysis buffer (10 mM Tris-HCl, pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.1% Igepal). Half of the lysate was centrifuged at 500 g for 10
minutes at 4°C, whereas the other half was used to count nuclei. Supernatant was removed
and the nuclei were resuspended in the following transposition mix (25 µl 2x TD buffer
(Illumina), 2.5 µL Tn5 transposase (Illumina), 22.5 µL nuclease free H2O) and incubated at
37°C for 30 minutes. To adjust the pH, 3 µl of 3M AcoNa (pH5.3) were added to the reaction
mix and the DNA was purified using the MinElute PCR purification Kit (Qiagen), following
the manufacturer’s instructions using 10 µL of elution buffer preheated at 37°C. The
following components were combined for amplification: 10 µL of transposed DNA, 10 µL
nuclease free H2O, 2.5 µL Nextera PCR primer 1 (25 µM) 73, 2.5 µL Nextera PCR primer 2
(25 µM) 73 and 25 µL NEBNext® high-fidelity 2x PCR master mix (NEB). The PCR program
is as follows: 72°C for 5 minutes, 98°C for 30 seconds, followed by 13 cycles at 98°C for 10 seconds, 63°C for 30 seconds and 72°C for 1 minute. Following PCR amplification, we added 3 µl of 3M AcoNa (pH5.3) and the library was purified using the MinElute PCR purification Kit (Qiagen), following the manufacturer’s instructions with 20 µL of elution buffer (37°C).

Data Availability

Sequences for probe synthesis are available in Genbank (see Supplementary Table 1).

RNA-seq data are available under Gene Expression Omnibus (GEO) accession GSE122245.

ATAC-seq data sets presented in this study were previously used in \(^{71,72}\) and are available under Gene Expression Omnibus (GEO) accession GSE68737.

3 Owen, R. *The principal forms of the skeleton and of the teeth*. (Blanchard and Lea, 1854).

Tzahor, E. Heart and craniofacial muscle development: a new developmental theme of
(2009).

Sambasivan, R., Kuratani, S. & Tajbakhsh, S. An eye on the head: the development
and evolution of craniofacial muscles. *Development** 138, 2401-2415,

Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not
cephalochordates are the closest living relatives of vertebrates. *Nature*** 439, 965-968

Bertrand, S. & Escriva, H. Evolutionary crossroads in developmental biology:

Holland, L. Z., Kene, M., Williams, N. A. & Holland, N. D. Sequence and embryonic
expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of
transcription resembles that of its segment-polarity homolog in Drosophila.

Bertrand, S. *et al.* Amphioxus FGF signaling predicts the acquisition of vertebrate

Schubert, M., Holland, L. Z., Stokes, M. D. & Holland, N. D. Three amphioxus Wnt
genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the

Bertrand, S. *et al.* Evolution of the Role of RA and FGF Signals in the Control of
Somitogenesis in Chordates. *PLoS One*** 10, e0136587,

Beaster-Jones, L. *et al.* Expression of somite segmentation genes in amphioxus: a

Acknowledgements

The laboratory of H.E. was supported by the CNRS and the ANR-16-CE12-0008-01 and S.B. by the Institut Universitaire de France. D.A. holds a fellowship from CONICYT “Becas Chile”. J-L.G-S. was supported by the Spanish government (grants BFU2016-74961-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740041) and the institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687). H.E. and S.M. were supported by the ECOS-CONICYT C15S02 grant. We would like to acknowledge the Mediterranean Amphioxus Genome Consortium for providing access to genomic and transcriptomic data before publication. We would like to thank Tokiharu Takahashi for providing the Tol2 mRNA production plasmid. The confocal imaging was undertaken at the BIOPIC platform which belongs to the EMBRC-France infrastructure supported by the ANR (ANR-10-INBS-02).

Author Contributions

Conceptualization: H.E., S.B.
Methodology: H.E., S.B., J-L. G-S., S.M.
Resources: C.K., J-L. G-S., S.M.
Writing–Original Draft: D.A., S.B., H.E.
Supervision: H.E., S.B., J-L. G-S., S.M.

Competing interests

The authors declare no competing interests.
Figure legend

Figure 1. Expression of some candidate genes defined after RNA-seq data analysis in control and SU5402 treated embryos. On the top, schemes of embryos in dorsal view (anterior to the left) and blastopore view (dorsal to the top) are presented with the presumptive anterior somitic mesoderm coloured in purple. Ect: ectoderm; mes: mesendoderm; epi: presumptive epidermis; np: presumptive neural plate. The expression of candidate genes that are expressed in the presumptive anterior somite region in control embryos at 11 hpf and/or 14 hpf is lost in this territory after SU5402 treatment. For ETV1/4/5 and Six1/2, the expression is completely lost. For Eya the expression in the mesendoderm is lost (arrowheads). Pax3/7 anterior expression is lost after treatment (black rectangles). HairyD, Ripply, Hey and Twist expression is lost in the presumptive anterior somites territory (arrowheads). Dorsal views with anterior to the left and blastopore views with dorsal to the top. Scale bar, 50 µm. The expression was analyzed for at least 10 embryos for each stage, condition and gene.

Figure 2. ETV1/4/5, Six1/2 and Pax3/7 are key factors for the formation of amphioxus somites. (a) Expression at 36 hpf of the mesodermal markers MLC, FoxC and Bra2 in control embryos and embryos injected with the mRNA coding for the chimeras ETV1/4/5-Eng, Six1/2-Eng and Pax3/7-Eng. Anterior is to the left and dorsal is to the top in lateral views. Scale bars, 50 µm. (b) Expression at 14 hpf of ETV1/4/5, Six1/2, Pax3/7 and the myogenic factor gene MRF2 in control embryos and in embryos injected with the mRNA coding for the chimeras ETV1/4/5-Eng, Six1/2-Eng and Pax3/7-Eng. Dorsal views with anterior to the left. Scale bar, 50 µm. The number of embryos showing the presented expression pattern is indicated on each panel.
Figure 3. Zic is a major actor for somite formation in amphioxus. (a) Snapshot of the genomic browser at the Zic locus showing the RNA-seq data at 8 hpf and the ATAC-seq peaks at 8 hpf, 15 hpf and 36 hpf. The region with a peak in the first intron that was used for functional study is indicated. This region bears an Ets family putative binding site (orange box). (b) Zic and GFP in situ hybridization at 12 hpf in control embryos and in embryos injected with the reporter construct bearing the putative enhancer shown in (a), respectively. Dorsal is to the top. Scale bar, 50 µm. Ten injected embryos were analyzed and they all show expression in part of the dorsal blastopore lip. The injected embryo presented here is the one with the larger GFP expression. (c) Expression of MLC, MRF2 and Bra2 at 36 hpf in control embryos and in embryos after injection of Zic-Eng mRNA. Anterior is to the left and dorsal to the top for side views. Brackets indicate the anterior region where the notochord still forms whereas somites are absent. Scale bars, 50µm. The number of embryos showing the presented expression pattern is indicated on each panel. (d) Expression of MLC at 36 hpf in embryos after injection of Pax3/7-Eng and Six1/2-Eng mRNAs, after injection of Pax3/7-Eng mRNA and treatment with SU5402, or after injection of Pax3/7-Eng and Zic-Eng mRNAs. Dorsal views with anterior to the left. Scale bar, 50 µm. The number of embryos showing the presented expression pattern is indicated on each panel.

Figure 4. Gene regulatory logic for somites formation in amphioxus and hypothesis for the evolutionary scenario underlying vertebrate head mesoderm origin. (a) Scheme representing the relationships between FGF signal and genes studied in this work for the formation of the three populations of somites in amphioxus. Anterior and intermediate somites form by enterocoely. The most anterior somites formation is dependent upon the FGF signal that activates expression of target genes through the ETV1/4/5 transcription factor. The
formation of intermediate somites is under the control of Zic. On the other hand, the posterior somites that form by schizocoely are dependent upon Pax3/7. Dotted lines indicates expression of the genes that are not required for somites formation. (b) Hypothesis concerning the nature of the vertebrate head mesoderm and its evolutionary history. Lateral views of putative embryos are schematized with anterior to the left and dorsal to the top. Genes expressed in cardiac and pharyngeal mesoderm are in light red, genes expressed in lateral plate mesoderm are in yellow, genes expressed in ventral amphioxus somites or in both cardiopharyngeal and lateral plate mesoderm are in orange. See text for details.
Gastrula (11 hpf)

Dorsal Blastopore

ect mes

11 hpf
Control SU5402

ETV1/4/5
Blastopore Dorsal

14 hpf
Control SU5402

SIX1/2
Blastopore Dorsal

11 hpf
Control SU5402

Hey
Blastopore Dorsal

14 hpf
Control SU5402

Pax3/7
Blastopore Dorsal

Late gastrula (14 hpf)

Dorsal Blastopore

epi np mes

11 hpf
Control SU5402

HairyD
Blastopore Dorsal

Ripply
Blastopore Dorsal

Twist
Blastopore Dorsal

14 hpf
Control SU5402
Figure a

1 Kb

ATAC-seq 36 hpf
ATAC-seq 15 hpf
ATAC-seq 8 hpf
RNA-seq 8 hpf

Exon 1
Exon 2

.......AACATAAACACATCTCTGGATATA CAGTGTTCG.......

Ets Binding Site

Figure b

<table>
<thead>
<tr>
<th>Zic</th>
<th>Zic-Enhancer>GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastopore view</td>
<td>Blastopore view</td>
</tr>
<tr>
<td>Lateral view</td>
<td>Lateral view</td>
</tr>
</tbody>
</table>

Figure c

<table>
<thead>
<tr>
<th>MLC</th>
<th>Control</th>
<th>Zic-Engrailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal view</td>
<td>10/10</td>
<td>4/6</td>
</tr>
<tr>
<td>Lateral view</td>
<td>10/10</td>
<td>4/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRF2</th>
<th>Control</th>
<th>Zic-Engrailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral view</td>
<td>10/10</td>
<td>4/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bra2</th>
<th>Control</th>
<th>Zic-Engrailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral view</td>
<td>10/10</td>
<td>4/5</td>
</tr>
</tbody>
</table>

Figure d

<table>
<thead>
<tr>
<th>Pax3/7-Eng+</th>
<th>Pax3/7-Eng+</th>
<th>Pax3/7-Eng+</th>
<th>SU5402</th>
<th>Zic-Eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLC</td>
<td>6/8</td>
<td>9/10</td>
<td>6/7</td>
<td></td>
</tr>
</tbody>
</table>
Segregation of paraxial and lateral/ventral mesoderm. Loss of segmentation program in the lateral/ventral mesoderm.

Regionalisation of the lateral/ventral mesoderm

Loss of anterior paraxial mesoderm.