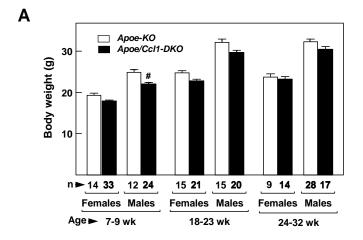
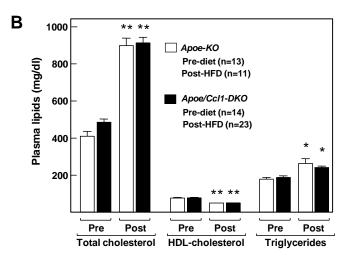
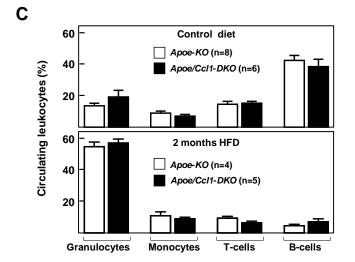
#### SUPPLEMENTARY INFORMATION

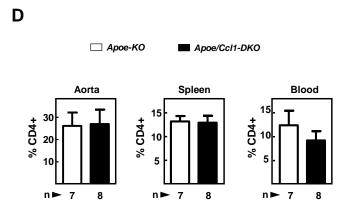
## Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice

Marian Vila-Caballer<sup>a,b,†</sup>, José M. González-Granado<sup>c,d,e,f,†</sup>, Virginia Zorita<sup>c</sup>, Yafa N Abu Nabah<sup>a</sup>, Carlos Silvestre-Roig<sup>c,g</sup>, Alberto del Monte-Monge<sup>c,d</sup>, Pedro Molina-Sánchez<sup>c</sup>, Hafid Ait-Oufella<sup>h</sup>, María J. Andrés-Manzano<sup>c,d</sup>, María J. Sanz<sup>i</sup>, Christian Weber<sup>g</sup>, Leonor Kremer<sup>j</sup>, Julio Gutiérrez<sup>j</sup>, Ziad Mallat<sup>h,k</sup>, Vicente Andrés<sup>c,d,\*</sup>

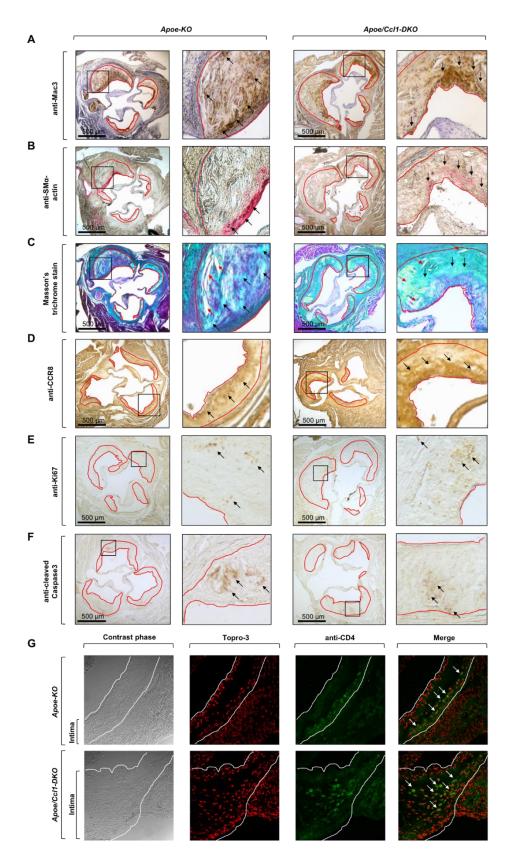

- <sup>a</sup> Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- <sup>b</sup> Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
- <sup>c</sup> Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- <sup>d</sup> CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
- <sup>e</sup> LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- <sup>f</sup> Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM).
- <sup>9</sup> Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
- <sup>h</sup> Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, France
- <sup>1</sup> Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain-INCLIVA, Valencia, Spain
- <sup>j</sup> Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
- <sup>k</sup> Division of Cardiovascular Medicine, University of Cambridge, UK
- <sup>†</sup> These authors contributed equally
- \* Corresponding author: Vicente Andrés (<u>vandres@cnic.es</u>)


#### Current address:

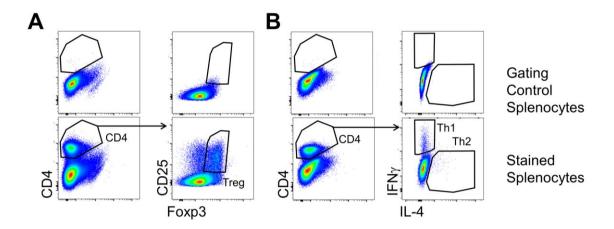

P. Molina: The Tisch Cancer Institute at Mount Sinai, New York, USA


### **Short tittle**:

CCL1-CCR8 inhibition aggravates atherosclerosis








**Supplementary Figure S1: Characterization of Apoe/CcI1-DKO mice. (A)** Body weight of mice of the indicated ages, gender and genotype. #, p <0.05 vs. male *Apoe-KO* (same age). **(B)** Plasma lipids measured at baseline (pre-diet) and after 2 months of HFD (post-diet). \*, p<0.001 and \*\*, p<0.0001 vs. pre-diet (same genotype). **(C)** Percentage of circulating leukocyte populations in male mice fed control or HFD for 2 months. **(D)** Percentage of CD4+ T-cells in aorta, spleen, and blood from control-diet-fed *Apoe*-KO and *Apoe/CcI1-DKO* mice. n=number of mice.



Supplementary Figure S2: Immunohistopathological analysis of atherosclerotic lesions in fat-fed mice. Mice of the indicated genotypes were challenged for 2 months with a high-fat diet and aortic root and ascending aorta cross-sections were examined. Quantitative results for both regions are shown in Fig. 3 and in Supplementary Table S1. Representative images of the aortic root are shown here. (A) anti-Mac3 immunohistochemistry to detect macrophages (arrows). Sections were counterstained with hematoxylin. (B) anti-SMα-actin immunohistochemistry to detect VSMCs (arrows). (C) Masson's trichrome stain to detect collagen (blue staining, black arrows). Red arrows show necrotic cores. (D) anti-CCR8 immunohistochemistry. Arrows show CCR8+ areas. (E) anti-Ki67 immunohistochemistry to detect proliferating cells (arrows). (F) anti-cleaved caspase3 immunohistochemistry to detect apoptotic cells (arrows). (G) anti-CD4 immunofluorescence counterstained with Topro-3. Arrows show CD4+ cells. Red lines in A-F mark atherosclerotic lesion boundaries, and the black boxes in the left images are shown at a higher magnification in the right images. White lines in all immunofluorescence images mark atherosclerotic lesion boundaries.



Supplementary Figure S3: Representative examples of gating strategies for Th1, Th2 and Treg populations. Flow cytometry-determined content of CD4+ T cells and Th1 (CD4+ IFN $\gamma$ +), Th2 (CD4+IL4+) and Tregs (CD4+ CD25<sup>high</sup> FOXP3+) in spleen from 11-month-old mice fed control diet. (A) For Treg determination, samples were fixed, permeabilized and stained with anti-CD4, anti-Foxp3 and anti-CD25 fluorescent antibodies. Expression of Foxp3 and CD25 was analyzed in the CD4-positive cell population. (B) For Th1 and Th2 determination, cells were cultured for 4 hours with PMA and ionomycin in the presence of brefeldin A before fixation, permeabilization and staining with anti-CD4, anti-IFN $\gamma$  and anti-IL-4 fluorescent antibodies. Expression of IFN $\gamma$  and IL-4 was analyzed in the CD4-positive cell population.

# Supplementary Table S1: Quantitative immunohistopathological analysis of atherosclerotic lesions in fat-fed *Apoe-KO* and *Apoe/CcI1-DKO* mice

|            | AORTIC ROOT         |                     |         | ASCENDING AORTA     |                     |         |
|------------|---------------------|---------------------|---------|---------------------|---------------------|---------|
|            | Apoe-KO             | Apoe/CcI1-DKO       | p-value | Apoe-KO             | Apoe/CcI1-DKO       | p-value |
| CCR8       | $0.2192 \pm 0.0459$ | $0.1730 \pm 0.0314$ | 0.43    | $0.2359 \pm 0.0467$ | $0.2835 \pm 0.0326$ | 0.42    |
|            | n=6                 | n=6                 |         | n=6                 | n=6                 |         |
| Mac3       | $0.1339 \pm 0.0098$ | $0.1518 \pm 0.0152$ | 0.38    | 0.1052 ± 0.0158     | 0.1692 ± 0.0269     | 0.08    |
|            | n=10                | n=14                |         | n=10                | n=14                |         |
| SM α-actin | $0.0059 \pm 0.0024$ | $0.0050 \pm 0.0007$ | 0.68    | $0.0038 \pm 0.0007$ | $0.0089 \pm 0.0025$ | 0.10    |
|            | n=10                | n=14                |         | n=10                | n=14                |         |
| Caspase 3  | $0.0026 \pm 0.0007$ | $0.0024 \pm 0.0006$ | 0.84    | 0.0039 ± 0.0017     | 0.0041 ± 0.0013     | 0.92    |
|            | n=10                | n=11                |         | n=11                | n=11                |         |
| Necrotic   | $0.0151 \pm 0.0036$ | $0.335 \pm 0.0093$  | 0.12    | $0.0020 \pm 0.0006$ | $0.0205 \pm 0.007$  | 0.05    |
| core       | n=10                | n=14                |         | n=9                 | n=14                |         |
| Collagen   | $0.1034 \pm 0.0218$ | 0.1331 ± 0.0191     | 0.33    | 0.0424 ± 0.0144     | 0.0650 ± 0.0177     | 0.36    |
|            | n=8                 | n=13                |         | n=10                | n=14                |         |

Mice of the indicated genotypes were challenged for 2 months with a high-fat diet and cross-sections through the aortic root and ascending aorta were examined to quantify the area of the atherosclerotic lesions with immunoreactivity for CCR8, Mac3 (macrophages), SM $\alpha$ -actin (VSMCs), and caspase 3 (apoptosis), or occupied by necrotic cores and collagen (all in mm²). Results are expressed as mean  $\pm$  SEM. The results of some parameters are expressed as percentage of atherosclerotic area in Figure 2 (Mac3) and Figure 3 (CCR8, necrotic core, SM  $\alpha$ -actin, collagen, and caspase 3).