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Abstract   

 

The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for 

leukocytes that plays an important role in inflammatory processes and diseases through binding 

to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. 

We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed 

apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital 

microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly 

deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated 

with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte 

Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg 

recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-

density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings 

demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting 

interleukin 10 production and Treg recruitment and function. 
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Highlights 

 CCL1 ablation impairs vascular Treg recruitment and function 

 CCL1 ablation is associated with reduced IL-10 production, impaired Th2 response, and 

increased Th1 response  

 Inactivation of CCL1-CCR8 axis aggravates atherosclerosis development 
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Abbreviations: 

 

Apoe: apolipoprotein E 

Apoe-KO: apolipoprotein E-null mice  

Apoe/Ccl1-DKO: apolipoprotein E-CCL1 doubly-deficient mice 

BMdM: bone marrow-derived macrophage 

CCL1: CC chemokine 1 (also named TCA3 and I-309) 

CCR8: chemokine (C-C motif) receptor 8 

HFD: high-fat diet 

IL-10: interleukin 10  

Ldlr-KO: low-density lipoprotein receptor-null mice  

RFP: red fluorescent protein 

Th: helper T cell  

Treg: regulatory T cell 

VSMC: vascular smooth muscle cell 
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1. Introduction 

 

Atherosclerotic disease is the main cause of mortality worldwide [1, 2]. The disease features a 

robust inflammatory component that is characterized by lipid deposition and leukocyte 

recruitment in the artery wall during all disease phases [3]. The initiation and progression of 

atherosclerosis both involve chronic inflammatory responses to lipoprotein deposition in the 

arterial intima. These inflammatory responses are caused by activation of both innate and 

adaptive immunity [4, 5]. The innate immune response is triggered by the accumulation of 

certain lipid and protein components of apoB lipoproteins, which cause an inflammatory 

reaction that activates endothelial cells and stimulates the entry of bone-marrow-derived 

monocytes into the intima. Intimal Ly6Chi monocytes differentiate into macrophages that 

acquire an inflammatory phenotype, which promotes atherosclerosis development [4, 5]. The 

adaptive immune response involves CD4+ T cells, which have been shown to promote 

atherosclerosis in fat-fed mice [6]. When naïve CD4+ T cells are activated after the recognition 

of an antigen presented by dendritic cells, they undergo a process of division and differentiation 

into several helper T (Th) cell subsets, including Th1, Th2, Th17, and regulatory T cells (Tregs) 

[7]. Several studies have shown that Th1 responses are pro-atherogenic in mice [8-11], 

contrasting with the atheroprotective effect of Tregs [12, 13]. Regarding anti-inflammatory 

cytokines, both interleukin-10 (IL-10) [14, 15] and transforming growth factor-β [16, 17] have 

been shown to protect against atherosclerosis in mice.  

 

Chemokines are key mediators of cell trafficking [18-20]. The chemokine (C-C) motif receptor 

8 (CCR8) ligand CC chemokine 1 (CCL1, also called TCA3 and I-309) was initially described 

as a cytokine expressed by activated T lymphocytes [21]. CCL1 acts as a potent chemoattractant 

for monocytes and lymphocytes [22] and has been proposed to contribute to macrophage and 

lymphocyte recruitment and activation [23] in several inflammatory diseases, including type 1 

diabetes [24], atopic asthma [25], atopic dermatitis [26, 27], Kaposi sarcoma [28], septic 

peritonitis [29], liver fibrosis [30], and experimental autoimmune encephalomyelitis [31]. In 

addition, CCL1 may be involved in immune homeostasis, particularly through effects on Tregs 

[32]. In the context of the cardiovascular system, CCL1 is expressed in endothelial cells, 

macrophages, and the extracellular area of human atherosclerotic plaques [33]; moreover, 

CCL1 stimulates vascular smooth muscle cell (VSMC) migration [28] and activates endothelial 

cells in response to arterial wall injury [34]. However, the role of CCL1 in atherosclerosis 

remains unknown.  

 

In the present study, we investigated whether the CCL1-CCR8 axis plays a role in mouse 

atherosclerosis. To this end, we generated atherosclerosis-prone mice deficient for CCL1 by 

crossing Ccl1-null mice with apolipoprotein E-null mice (Apoe-KO). Our results show that 

disruption of the CCL1-CCR8 axis impairs vascular Treg recruitment and function and 

promotes atherosclerosis.  
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2. Materials and methods 

 

2.1. Mice and diets. Wild-type mice, Apoe-KO mice, and LDL receptor-null mice (Ldlr-KO, 

CD45.1 genotype) were obtained from Charles River Laboratories (Wilmington, 

Massachusetts, USA). Transgenic Foxp3-mRFP mice expressing red fluorescent protein in 

Tregs were a gift from Dr. Richard A. Flavell (Yale University School of Medicine, New 

Haven, Connecticut, USA) [35]. Ccl1-KO [36] and Apoe-KO mice were crossbred to generate 

Apoe/Ccl1-DKO mice. All mice were on a C57BL/6J genetic background. Mice for the flow 

chamber and intravital experiments were males. All other experiments were performed using 

littermates of both genders. After weaning, mice were maintained on a low-fat (control) 

standard diet (2.8% fat; Panlab, Barcelona, Spain) or placed on pro-atherogenic high-fat diet 

(HFD) for the indicated periods, starting at 2 months of age (10.8% total fat, 0.75% cholesterol, 

S4892-E010, Ssniff, Soest, Germany). Animal experiments were approved by the local ethics 

committee and the Spanish Ministry of Agriculture and Fisheries, Food and Environment. All 

animal procedures conformed to EU Directive 86/609/EEC and Recommendation 2007/526/EC 

regarding the protection of animals used for experimental and other scientific purposes, 

enforced in Spanish law under Real Decreto 1201/2005. 

 

  

2.2. Ccl1 mRNA expression studies. Femoral bone marrow-derived macrophages (BMdMs) 

and aortic VSMCs cultures were obtained from Apoe-KO mice as previously described [37]. 

Cultures were maintained at 37 °C in a humidified 5% CO2 atmosphere with DMEM/10% 

FBS/10% macrophage-colony stimulating factor medium for BMdMs, and 20% 

FBS/DMEM/Fungizone medium for VSMCs. VSMC cultures were not used above passage 7, 

and purity was confirmed by immunohistochemistry with anti-SMα-actin monoclonal alkaline 

phosphatase conjugated antibody (1/20 dilution, clone 1A4, a-5691, Sigma, San Luis, Missouri, 

USA) and Fast Red substrate (Sigma). BMdMs and VSMCs were stimulated for 20 hours with 

tumor necrosis factor α (TNFα, 10 or 50 ng/ml, Sigma), interferon γ (IFNγ, 20 or 200 U/ml, 

Peprotech, Rocky Hill, NJ, USA), or angiotensin II (AngII, 10-6 or 10-5 M, Calbiochem, Merck 

KGaA, Darmstadt, Germany) (all of mouse origin). 

 

Total RNA was isolated from cultured cells and mouse aortas using TRIzol (Invitrogen, 

Carlsbad, California, USA). RNA purity and concentration were determined from the A260/280 

ratio. cDNA was obtained by reverse transcription using Superscript III First Strand Synthesis 

Supermix (Invitrogen). Complementary DNA was amplified in TaqMan gene Expression 

Assays (TaqMan MGB probes, FAMTM dye-labeled): Mm00441236 (Ccl1), Mm99999115 

(Ccr8), and Mm00607939 (using β-actin as endogenous control). The relative Ccl1 expression 

level was calculated from technical triplicates for each sample using the 2-ΔΔCt formula and were 

expressed relative to Apoe-KO mice fed the control diet.  

 

The RT-qPCR primer sequences were as follows:   

Mouse RFP-FW: 5’-ACTACAAGAAGCTGTCCTTCC-3’ 

Mouse RFP-RV: 5’-ATGTTTAAACTTACCCTCCCAG-3’ 
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Mouse β-actin-FW: 5’-GACGGCCAGGTCATCACTATTG-3’ 

Mouse β-actin-RV: 5’-AGGAAGGCTGGAAAAGAGCC-3’.   

 

2.3. Metabolic measurements and circulating leukocyte analysis. Mouse blood was collected 

in EDTA tubes. For circulating lipid measurements (total cholesterol, HDL-cholesterol, and 

triglycerides), mice were fasted overnight and plasma was obtained by blood centrifugation. 

Lipids were measured using enzymatic procedures (WAKO, Richmond, VA, USA). HDL-

cholesterol was determined after precipitation of the apoB-containing lipoproteins with 

dextran-sulphate/MgCl2 (Sigma) [38].  

Following lysis of erythrocytes, circulating T-cells (CD3+), B-cells (CD19+), and 

monocytes/granulocytes (CD11b+) were analyzed by flow cytometry after leukocytes were 

stained for rat anti-mouse cd11b-FITC IgG2b monoclonal antibody (1/100 dilution, clone 

M1/70, 557396, Becton Dickinson, Franklin Lakes, New Jersey, USA), hamster anti-mouse 

CD3e chain-PE-Cy7 monoclonal antibody (1/10 dilution, clone 145-2C11, 552774, Becton 

Dickinson), and rat anti-mouse CD19-FITC IgG2a monoclonal antibody (1/25 dilution, clone 

6D5, MCA1439F, Serotec, Dusseldorf, Germany). Monocytes were distinguished from 

granulocytes by their granular content as reflected in low/high side scatter (SSC) [39]. 

 

2.4. Quantification of atherosclerosis burden and immunohistochemical characterization of 

atherosclerotic lesions. All studies were performed by an investigator blinded to genotype. 

Atherosclerosis was quantified in Apoe-KO and Apoe/Ccl1-DKO mice fed HFD for 2 months, 

and in -irradiated and bone marrow-transplanted Ldlr-KO mice fed HFD for 1 week. Aortic 

tissue was embedded in paraffin and cut into 5-m cross-sections. The extent of atherosclerosis 

was calculated as the intimal area in the aortic root and ascending aorta as previously described 

[37]. Five cross-sections separated 8-12 μm were analysed in each region. The distance between 

sections in the aortic root and ascending aorta was approximately 70 μm. 

Immunohistopathological examination of atheromas included the quantification of 

VSMCs, collagen, necrotic core, T lymphocytes, CCR8-immunoreactive cells, macrophages, 

proliferating cells, and apoptotic cells (see below). The content of lymphocytes and 

proliferating cells was expressed as cells/mm2, whereas the content of VSMCs, collagen, 

necrotic core, CCR8-expressing cells and macrophages was expressed as both percentage 

(stained area normalized by total plaque area) and absolute content (mm2 of plaque area stained 

for each marker).  

VSMCs were identified with alkaline-phosphatase-conjugated mouse anti-SMα-actin 

monoclonal antibody (1/20 dilution, clone 1A4, a-5691, Sigma) and Fast Red substrate (Sigma). 

Collagen was identified with Masson’s trichrome stain. Necrotic cores were identified as 

hollows formed in preparations as a consequence of the deparaffinization protocol. T 

lymphocytes were identified with biotin-conjugated anti-CD4 antibody (0.5 mg/ml, clone 

L3T3, BD-PharMingen) and streptavidin-conjugated Alexa-fluor 488 (1/300 dilution, S11223, 

Invitrogen) and were mounted after nuclear counterstaining using Topro-3 (1/1000 dilution, 

T3605, Invitrogen). CCR8+ area was identified with goat anti-CCR8 polyclonal antibody 

(1/200 dilution, ab1663, Abcam, Cambridge, United Kingdom). Macrophages were identified 

with rat anti-Mac3 monoclonal antibody (1/200 dilution, clone M3/84, sc-19991, Santa Cruz 

Biotechnology). Specimens were counterstained with hematoxylin. Proliferating cells were 
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identified with rabbit anti-Ki67 monoclonal antibody (prediluted, clone SP6, MAD-000319QD 

Master Diagnóstica, Granada, Spain) and apoptotic cells with rabbit anti-cleaved Caspase3 

(Asp175) polyclonal antibody (1/10 dilution, 9661, Cell signalling, Danvers, Massachusetts, 

USA). 

After incubation with primary antibodies and extensive washes, specimens were 

incubated with appropriate HRP-conjugated secondary antibodies: goat anti-rat-HRP (sc-2006) 

for Mac3, donkey anti-goat-HRP (sc-2042) for CCR8 and goat anti-rabbit-HRP (sc-2004) for 

Ki67 and Caspase3 (all from Santa Cruz Biotechnology, 1/300 dilution). Immunocomplexes 

were detected using streptavidin-HRP (TS-060-HR, Lab vision Corporation, USA) and DAB 

substrate (BUF021A, AbD Serotec). Images were captured with an Olympus CAMEDIA-

C5060 wide zoom digital camera mounted on a stereomicroscope Axiolab (Carl Zeiss, Jena, 

Germany) except for T lymphocyte immunofluorescence, which was visualized with a 

TCS/SP2 confocal microscope (Leica Microsystems, Wetzlar, Germany). All images were 

analyzed by computer-assisted morphometric analysis using Metamorph software (Molecular 

Devices, California, USA).  

 

2.5. Flow chamber. Whole blood was collected from 5-month-old wild-type male mice (pooled 

from 6-8 mice for each replicate) and perfused in flow chambers containing vehicle-coated or 

CCL1-coated coverslips. For coating, cover slips (Corning incorporation, Sigma) were coated with 

soluble mouse recombinant CCL1/TCA3 (5 mg/ml, R&D systems, Minneapolis, USA) and 

incubated at 4°C for 18 hours. To inhibit non-specific interactions with polystyrene, cover slips 

were previously incubated with 1% bovine serum albumin (Sigma) at 37°C for 1 hour. 

Subsequently, vehicle- and CCL1-coated cover slips were perfused with whole blood (diluted 10-

fold and maintained at 37°C) for 5 minutes at a constant shear rate of 0.75 dynes/cm2, followed by 

perfusion for 20 minutes with Hanks’ balanced salt solution (HBSS). The Glycotech flow chamber 

was assembled, and 10 random fields of interacting leukocytes were visualized and recorded on 

the CCL1-coated cover slip surface (x20 objective, x10 eyepiece) b phase contrast microscopy.  

 

2.6. Intravital microscopy in cremaster muscle. Male wild-type, Apoe-KO, and Apoe/Ccl1-DKO 

mice (approximately 24 weeks old) fed the HFD for 1 week were anesthetized by intraperitonal 

injection with a mixture of xylazine hydrochloride (10 mg/kg) and ketamine hydrochloride (200 

mg/kg). A polyethylene catheter was placed in the jugular vein to permit intravenous 

administration of additional anesthetic if needed. The cremaster muscle was dissected free of 

tissues and exteriorized onto an optical clear viewing pedestal. The muscle was cut longitudinally 

with a cautery and held flat against the pedestal by attaching silk sutures to the corners of the tissue. 

The muscle was then perfused continuously at a rate of 1 ml/min with warmed bicarbonate-

buffered saline (pH 7.4). The cremasteric microcirculation was then observed using an intravital 

microscope (Nikon Optiphot-2, SMZ1, Badhoevedorp, Netherlands) equipped with a 50x 

objective (Nikon SLDW, Badhoevedorp, The Netherlands) and a 10x eyepiece. A video camera 

(Sony SSC-C350P, Koeln, Germany) mounted on the microscope projected the image onto a color 

monitor and the images were video recorded for playback analysis and quantified as described 

[40].  
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2.7. Proliferation assays. CD4+ T cells, CD4+CD25+ Tregs and CD4+CD25- effector T cells 

were purified from spleens using magnetic cell separation (Miltenyi Biotech) as previously 

described [12]. To analyze T cell proliferation, CD4+ cells (1x105 cells/well) were co-cultured 

for 72 h at 37°C with 104 CD11c+ dendritic cells and soluble anti-CD3 (1μg/ml). Cells were 

pulsed with [3H]-thymidine for the last 18 h (1 μCi/well, Amersham, Little Chalfont, United 

Kingdom). Thymidine incorporation was assessed using a TopCount NXT scintillation counter 

(Perkin Elmer, Waltham, Massachusetts, USA).  

To analyze Treg functions, effector T cells were cultured alone or co-cultured with 

purified Tregs (at 1:8, 1:4, 1:2 or 1:1 ratio) in round-bottom 96-well microplates (0.5x105 

cells/well; total volume 200 μl/well). Cells were stimulated with purified soluble CD3-specific 

antibody (1 μg/ml, BD-PharMingen) in the presence of antigen-presenting cells purified on 

CD11c-coated magnetic beads (Miltenyi Biotech). Cells were cultured at 37°C for 72 h and 

pulsed with [3H] thymidine for the last 18 h (1 μCi/well, Amersham). Thymidine incorporation 

was assessed using a TopCount NXT scintillation counter (Perkin Elmer). 

 

2.8. IL-10 quantification. IL-10 was quantified from blood samples and culture medium with 

a specific ELISA (Bender MedSystems, Vienna, Austria and BD Biosciences, San Jose, 

California, USA). Blood samples of Apoe-KO and Apoe/Ccl1-KO mice fed the HFD for 1 week 

or 2 months were collected in EDTA tubes to obtain plasma by centrifugation. For detection of 

IL-10 production in culture medium, splenocytes (106/mL) were stimulated with LPS (10 

μg/ml) and IFN-γ (100 UI/ml) for 24 or 48 hours. For detection in culture medium of untreated 

BMdMs, supernatants were concentrated with Amicon Ultra-15 3,000 Nominal Molecular 

Weight Limit Centrifugal filters (Millipore, Burlington, Massachusetts, USA). The amount of 

IL-10 was normalized to total protein content. 

 

2.9. Bone marrow transplantation and anti-CCR8 antibody treatment. CD45.1 Ldlr-KO 

recipient mice received 13 Gy of total body irradiation administered in two treatments from a 

137Cs source (MARK 1-68 A; Shepherd and Associates). Bone marrow cells from CD45.2 

Foxp3-mRFP mice were transplanted into Ldlr-KO recipients by i.v. injection immediately after 

irradiation. Approximately four weeks after transplantation, the chimeric condition of the mice 

was assessed by flow cytometry analysis of blood cells stained with a combination of FITC-

conjugated anti-CD45.1 and v450-conjugated anti-CD45.2 antibodies (both from Tonbo 

Bioscience, San Diego, California, USA), which confirmed that more than 90% of the cells 

analyzed were derived from the transplanted bone marrow cells.  

One month after transplant, irradiated Ldlr-KO mice were challenged with HFD and 

received i.p. injections of either anti-CCR8 antibody or isotype control every two days for 1 

week (100 µg/mouse). Atherosclerosis burden was quantified in the aortic root by 

hematoxylin/eosin staining. Treg content in the abdominal aorta was estimated by qPCR 

quantification of mRFP mRNA levels. Total RNA was isolated with Qiazol Lysis Reagent 

(Qiagen, Hilden, Germany) and isopropanol precipitation or with the RNeasy Mini kit (Qiagen). 

RNA concentration and purity were assessed from the ratio of absorbances at 260 and 280 nm. 

Complementary DNA was synthesized from total RNA (0.1 to 1 µg per reaction) with the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, California, USA) 

using random primers and RNase Inhibitor. Quantitative PCR was performed with the ABI 
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PRISM 7900HT Sequence Detection System using PCR Power SYBR Green PCR Master Mix 

(both from Applied Biosystems), with technical triplicates for each sample. Gene expression 

was analyzed by the comparative Ct method using the qBasePLUS software (Biogazelle, 

Zwijnaarde, Belgium) and the housekeeping gene β-actin as the internal control. 

 

2.10. Flow cytometry quantification of aortic and splenic immune cell content.  

 

Splenic immune cell content determination was performed as previously described [7, 41, 42]. 

Briefly, spleens from 11-month-old mice fed control diet were isolated and cellular content was 

obtained after mechanical processing. Cellular suspension was cultured in RPMI + 10%FCS 

and stimulated with phorbol 12 myristate 13 acetate (PMA, 10 ng/mL, Sigma-Aldrich) and 

ionomycin (1µM, Sigma-Aldrich) in the presence of brefeldin A (5µg/mL, Sigma-Aldrich) for 

4 h at 37 °C. After washing, cells were fixed using Fixation/Permeabilization buffer 

(Invitrogen) for Th1 and Th2 determination and Foxp3 Fixation/Permeabilization buffer (BD-

Pharmingen) for Treg staining. Aortic immune cell content quantification was performed as 

previously described [43, 44]. Aortas from 11-month-old Apoe-KO and Apoe/Ccl1-DKO mice 

fed the HFD for 1 week were isolated and digested for 1 h at 37ºC with an enzyme cocktail 

containing collagenase I (450 units/mL), collagenase XI (250 units/mL), DNase I (120 

units/mL), and hyaluronidase (120 units/mL). After washing, cells were incubated with RPMI 

+ 10%FCS for 1 h at 37ºC to restore internalized surface antigens. Splenic or aortic isolated 

cells were then stained as indicated with rat anti-mouse CD4 (clone RM4-5), rat anti-mouse 

CD25 (clone PC61.5), rat anti-mouse FOXP3 (clone FJK-16s), rat anti-mouse IFNγ (clone 

XMG1.2), and rat anti-mouse IL-4 (clone 11B11) (all from Invitrogen) and were analyzed with 

a FACSCanto II flow cytometer (Becton Dickinson, Franklin Lakes, New Jersey, USA). Data 

were analyzed with FlowJo Software 10.1 (Flowjo LLC, Ashland, Oregon, USA). 

 

2.11. Statistical analysis. Results are represented as mean ± standard error of the mean (SEM). 

Statistical analyses were performed with Prism GraphPad Software (La Jolla, California, USA) 

and IBM SPSS (Armonk, New York, USA). Statistical significance was calculated by two-

tailed Student’s t-test or ANOVA with Bonferroni’s post-hoc multiple comparison test, as 

appropriate. Data normality was examined using Shapiro-Wilk test, whereas homoscedasticity 

was confirmed by Levene's test. Non-parametric tests were applied when necessary. Results 

were considered statistically significant for p-values <0.05. 

 

 

3. Results 

 

 

3.1. CCL1 ablation aggravates atherosclerosis in fat-fed Apoe-KO mice. We first performed 

qPCR studies to quantify aortic Ccl1 mRNA expression in Apoe-KO mice fed either normal 

chow or a HFD for 1 week and 2 months, revealing a progressive induction of Ccl1 in fat-fed 

mice (Fig. 1A). To investigate which cell types contribute to Ccl1 upregulation under pro-

inflammatory conditions in the artery wall, we performed experiments with primary cultures of 

VSMCs and BMdMs derived from Apoe-KO mice.  Treatment of VSMCs with the 
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proatherogenic agents TNFα and IFN, but not with Ang II, upregulated Ccl1 mRNA 

expression level, with no significant effects on Ccr8 mRNA levels (Fig. 1B, left). Compared 

with VSMCs, BMdMs exhibited lower level of Ccl1 and Ccr8 expression, which was not 

significantly affected by TNF, IFNγ, and AngII (Fig. 1B, right). These results suggest that 

VSMCs contribute significantly to Ccl1 induction in the inflamed vessel wall of fat-fed Apoe-

KO mice.  

To assess whether CCL1 plays a role in atherosclerosis, we generated Apoe/Ccl1-DKO 

mice doubly deficient for Apoe and Ccl1. As expected, body weight in mice fed normal chow 

increased significantly during post-natal development and was higher in males than in age-

matched females (Supplementary Fig. S1A). No between-genotype differences were seen in 

body weight except in the youngest male Apoe/Ccl1-DKO mice, which were slightly leaner 

than age-matched Apoe-KO controls (Supplementary Fig. S1A). Likewise, Ccl1 deficiency 

did not affect plasma levels of total cholesterol, HDL-cholesterol, or triglycerides in mice fed 

either normal chow or challenged for 2 months with the HFD (Supplementary Fig. S1B). Fat 

feeding significantly increased total cholesterol and triglycerides while decreasing HDL-

cholesterol in plasma of mice of both genotypes. 

We also analyzed circulating leukocyte populations. Consistent with previous studies 

[45], challenging mice for 2 months with HFD significantly increased the percentage of 

granulocytes and reduced the percentage of B-cells, without significantly affecting the relative 

abundance of monocytes and T-cells (Supplementary Fig. S1C). Ccl1 disruption did not affect 

the relative abundance of these circulating blood cells in either normal-diet-fed mice or HFD-

fed mice (Supplementary Fig. S1C). Similarly, CD4 T-cell percentages among CD45+ cells 

were undistinguishable in aorta, spleen and blood of Apoe-KO and Apoe/Ccl1-DKO mice fed 

control diet, as revealed by flow cytometry (Supplementary Fig. S1D).   

 To assess the role of CCL1 in atherosclerosis, we quantified disease burden in aortic 

cross-sections of mice of both genotypes challenged with the HFD for 2 months. These studies 

revealed a significant increase in atheroma size in both the aortic root and ascending aorta of 

fat-fed Apoe/Ccl1-DKO mice compared with Apoe-KO counterparts (Fig. 2A). We also 

assessed the consequence of inactivating Ccl1 on plaque composition. Apoe/Ccl1-DKO 

atheromas had lower percentage of area covered by macrophages, and this difference reached 

statistical significance in the aortic root (Fig. 2B). However, no between-genotype differences 

were found in absolute macrophage content (mm2 of Mac3-immunoreactive plaque area, 

Supplementary Table S1). Moreover, other neointimal parameters measured in aortic root and 

ascending aorta of fat-fed Apoe/Ccl1-DKO mice did not show statistically-significant 

differences, neither when measured as percentages nor as absolute values, including necrotic 

core content and expression of CCR8, CD4 (T-cells), SMα-actin (VSMCs), collagen, Ki67 (cell 

proliferation marker), and caspase 3 (apoptosis marker) (Fig. 3, and Supplementary Table 

S1). Supplementary Fig. S2 shows representative images of all markers analyzed in aortic root 

cross-sections of Apoe-KO and Apoe/Ccl1-DKO mice.  

 

3.2. CCL1 enhances leukocyte adhesion in vitro and in vivo. We next performed flow chamber 

experiments to investigate whether immobilized CCL1 can arrest peripheral leukocytes. Blood 

freshly collected from wild-type mice fed the control diet was perfused over CCL1-coated cover 



11 

 

slips under flow conditions. Leukocyte adhesion was significantly higher in CCL1-coated 

coverslips than in vehicle-treated coverslips (Fig. 4A). 

To investigate the role of CCL1 in in vivo leukocyte trafficking under pro-atherogenic 

conditions, we performed intravital microscopy in cremasteric arterioles of wild-type, Apoe-

KO, and Apoe/Ccl1-DKO mice fed the HFD for 1 week. Leukocyte adhesion in arterioles was 

significantly higher in Apoe-KO mice than in wild-type controls and was abolished in 

Apoe/Ccl1-DKO mice (Fig. 4B). No between-genotype differences were observed in other 

hemodynamic parameters, such as arteriolar shear rate and diameter (Fig. 4B). Since Ccl1 

disruption did not affect the percentage of circulating leukocyte populations (Supplementary 

Fig. S1C), our results suggest that the effects of CCL1 deficiency on leukocyte adhesion were 

due to CCL1-mediated leukocyte-vessel wall interactions.  

 

3.3. CCL1 regulates Treg accumulation and function, Th1/Th2 balance, and IL-10 

production. CCL1 might regulate atherosclerosis development by affecting the recruitment, 

proliferation, and/or effector function of Th cells in atherosclerotic plaques. The observation 

that the percentage of CD4+ T-cells is unaltered in Apoe/Ccl1-DKO aorta, spleen, and blood 

(Supplementary Fig. S1D) suggested that CCL1 does not affect the recruitment or 

proliferation of this cell type. However, CCL1 disruption was accompanied by a lower 

percentage of Tregs in aorta and spleen, with no effect in blood (Fig. 5A and Supplementary 

Fig. S3A). To assess whether CCL1 controls Treg function, we evaluated the ability of splenic 

Tregs (CD4+CD25+ T-cells) to inhibit the proliferation of naïve CD4+CD25- T-cells that were 

activated with anti-CD3 plus anti-CD28 antibodies. CCL1 disruption did not affect the 

proliferative activity of CD4+ T-cells isolated from spleen and lymph nodes (Fig. 5B). 

However, CCL1 disruption reduced Treg suppressive activity on T effector cells (Fig. 5C). 

Since IL-10 has been shown to mediate Treg inhibitory functions [46], we analyzed the 

production of IL-10 by quantifying its concentration in the culture medium of LPS+IFNγ-

stimulated splenocytes. These in vitro studies showed reduced IL-10 production in splenocytes 

of fat-fed Apoe/Ccl1-DKO mice (Fig. 5D). Likewise, Ccl1 disruption was associated with 

reduced IL-10 production by BMdMs (Fig. 5E), and plasma IL-10 levels were significantly 

lower in HFD-fed Apoe/Ccl1-DKO mice than in Apoe-KO controls (Fig. 5F). Consistent with 

lower percentage of Tregs in aorta and spleen and IL-10 levels upon Ccl1 disruption, 

Apoe/Ccl1-DKO mice had a higher splenic Th1 content and a lower Th2 content than Apoe-KO 

controls (Fig. 5G and Supplementary Fig. S3B).  

 

3.4. Antibody-mediated CCR8 blockade inhibits aortic Treg recruitment and promotes 

atherosclerosis. By interacting with its ligand CCL1, the receptor CCR8 plays a pivotal role in 

restraining immunity via Treg cell activation [31]. To further investigate the role of CCR8 in 

Treg function in the setting of atherosclerosis, we performed bone marrow transplant 

experiments in CD45.1 Ldlr-KO mice that were lethally-irradiated and reconstituted with bone 

marrow cells of Foxp3-mRFP knock-in mice, which express RFP in Tregs [35]. After recovery, 

transplanted mice were injected with CCR8 blocking antibody (or isotype control) and 

challenged with the HFD for 1 week. Rfp mRNA was then quantified by RT-PCR as a measure 

of aortic Treg infiltration. Compared with mice treated with isotype control antibody, animals 

injected with anti-CCR8 antibody had a lower content of RFP-expressing cells in the aorta (Fig. 
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6A), suggesting a role for CCR8 in the recruitment of Tregs to the inflamed vessel wall. 

Inhibition of Treg recruitment upon treatment with anti-CCR8 in transplanted Ldlr-KO mice 

was accompanied by an increased atherosclerosis burden in the aortic root (Fig. 6B).     

 

 

 

 

 

4. Discussion 

 

Chemokines and their receptors play key roles at all stages of atherosclerosis by regulating 

multiple processes involved in disease initiation, progression, and complications (eg, leukocyte 

and platelet recruitment and activation, mobilization of immune cells from bone marrow and 

recruitment into atherosclerotic plaques, and cell differentiation, proliferation, apoptosis, and 

survival) [18-20]. The chemokine CCL1 and its receptor CCR8 regulate leukocyte trafficking 

in several pathophysiological scenarios [30, 47-50]. In the context of cardiovascular disease, 

previous studies showed CCL1 expression by endothelial cells in human arterial specimens and 

in injured mouse femoral arteries [28, 33, 51]. However, a direct role of the CCL1-CCR8 axis 

in atherosclerosis has not been demonstrated before. In this study, we establish for the first time 

a causal relationship between CCL1 expression and atherosclerosis development. We observed 

a progressive upregulation of CCL1 in the aorta of fat-fed Apoe-KO mice. Our studies with 

cultured cells stimulated with pro-inflammatory agents suggest that VSMCs, but not 

macrophages, contribute to CCL1 upregulation in the inflamed vessel wall. We also found that 

Ccl1 disruption aggravates HFD-induced atherosclerosis in the aortic root and ascending aorta 

of Apoe-KO mice without affecting body weight, plasma lipid levels, or the abundance of 

circulating leukocytes. Likewise, Ccl1 disruption did not affect important features of 

atherosclerotic plaques, such as the percentage of area occupied by T-cells, VSMCs, collagen, 

and necrotic cores, as well as the percentage of proliferating and apoptotic cells. 

Immobilized CCL1 promoted leukocyte adhesion in in vitro flow chamber assays, and 

CCL1 ablation was associated with reduced leukocyte adherence in the in vivo intravital 

microscopy studies. Although fat-fed Apoe/Ccl1-DKO mice had lower percentage of 

macrophages in atherosclerotic lesions in the aortic root (measured as percentage of Mac3-

immunoreactive area), total content of neointimal macrophages (measured as Mac3-

immunreactive area in atheromata) was similar to that seen in Apoe-KO controls. Moreover, 

Ccl1 disruption did not affect the relative and total macrophage content in atherosclerotic 

lesions in the ascending aorta. These findings suggest that macrophages do not contribute 

significantly to aggravated atherosclerosis upon Ccl1 disruption. We therefore turned our 

attention to Tregs, which express CCR8 [52, 53], and protect against atherosclerosis [12, 13, 

32]. Clinical studies also support a role for Tregs in human atherosclerosis [54-57]. Treg cells, 

but not effector T cells, decline during atherosclerotic lesion development [58], possibly as a 

result of phenotypic plasticity and differences between Treg and effector T cells in migration 

into lesions, susceptibility to death, and proliferative activity [5, 59]. Previous studies also 

showed the importance of CCL1 for Treg migration [60, 61]. We therefore hypothesized that 

CCL1 might affect Treg recruitment and/or function in atheromas. Our results show reduced 
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Treg content in the spleen and aorta of Apoe/Ccl1-DKO mice, without changes in blood, 

suggesting a role for CCL1 in Treg recruitment. 

Tregs play critical roles in the inhibition of inflammatory responses and the regulation of 

autoimmunity [62, 63]. In line with previous studies implicating the CCL1-CCR8 axis in Treg 

function [31], our in vitro studies reveal that Apoe/Ccl1-DKO Tregs have a reduced ability to 

inhibit T-effector cells, without affecting their proliferative activity. Tregs reduces T effector 

functions through a variety of mechanisms, including direct contact with antigen-presenting 

cells, destruction of inflammatory cells, and production of immunosuppressive regulators such 

as IL-10 [64-66]. CCL1 potentiates human Treg function in part through inducing IL-10 

expression [31], and IL-10 deficiency increases the number and activity of inflammatory cells, 

promoting pro-inflammatory cytokine production and accelerating atherosclerosis in mice [14]. 

In our analysis, Ccl1 disruption impaired IL-10 production by BMdMs and LPS- and IFNγ-

stimulated splenocytes obtained from mice fed the HFD for 2 months and markedly reduced 

plasma IL-10 in Apoe/Ccl1-DKO mice fed the HFD for 1 week or 2 months compared with 

Apoe-KO controls. These findings suggest that reduced IL-10 production contributes to 

increased atherosclerosis induced by Ccl1 disruption. Further studies are required to assess 

whether Ccl1 ablation affects the expression of other Treg-associated cytokines (eg., IL-35, 

TGF).  

CCR8 is expressed predominantly in Tregs and also in small fractions of Th2 cells, 

monocytes, and NK cells, but not in Th1 cells [52, 67-71]. Human CCR8 has four known 

ligands: CCL1, CCL8, CCL16, and CCL18 [72-74]. Of these, CCL1 is unique in potentiating 

the suppressive function of human Tregs [31]. CCL1, CCL8, and CCL16 have also been 

identified as mouse CCR8 ligands, with CCL1 being considered the only booster of the 

suppressive activities of mouse Tregs [31]. Our results show that treatment of fat-fed Ldlr-KO 

mice with CCR8-blocking antibodies reduces Treg content in aorta and enhances aortic 

atherosclerosis, consistent with a role for this receptor in Treg recruitment. Previous studies in 

Tregs have shown that CCL1 binding to CCR8 upregulates STAT3-dependent Foxp3 

expression while inducing CD39, Granzyme B, and IL-10 [31]. Further studies are warranted 

to assess whether modulation of these factors in Tregs contributes to the regulation of 

atherosclerosis by the CCL1-CCR8 axis.  

 

5. Conclusions 

 

Our findings demonstrate increased atherosclerosis upon inactivation of the CCL1-CCR8 axis, 

which is mediated by reduced Treg recruitment into the inflamed artery wall and defective Treg 

function, possibly due to increases in both IL-10 production and Th1:Th2 ratio. Further studies 

are warranted to assess whether treatment with CCL1 offers a possible route to atherosclerosis 

inhibition.  
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FIGURE LEGENDS 

 

 

Fig. 1. Induction of Ccl1 expression in aorta of fat-fed Apoe-KO mice, and Ccl1 and Ccr8 

expression analysis in primary VSMCs and BMdMs. (A) RT-qPCR analysis of Ccl1 

expression in aorta of Apoe-KO mice fed a control diet or an atherogenic high-fat diet (HFD) 

for 1 week or 2 months. Results are expressed relative to Apoe-KO mice fed control diet. (B) 

RT-qPCR analysis of Ccl1 and Ccr8 expression in primary VSMCs and BMdMs derived from 

Apoe-KO mice. Cells were incubated during 20 h with the indicated doses of tumor necrosis 

factor α (TNFα), interferon γ (IFNγ) and angiotensin II (AngII). Results are expressed relative 

to basal expression in untreated VSMCs. *, p<0.05 vs. basal condition. In A, n indicates the 

number of samples (each containing 2 aortas). In B, n indicates the number of culture plates 

(each containing VSMCs or BMdM from 3 mice).  
 

 

Fig. 2. Ccl1 disruption aggravates diet-induced atherosclerosis. (A) Quantification of 

atherosclerosis burden measured as intimal area in aortic root and ascending aorta cross-

sections of mice fed the HFD for 2 months. (B) Quantification of neointimal macrophage 

content in cross-sections of aortic root and ascending aorta of mice fed the high-fat diet for 2 

months. Data are the % of the neointimal area covered by immunohistochemistry-detected 

Mac3-immunoreactive macrophages. Total macrophage content quantified as mm2 of Mac3-

immunoreactive areas is shown in Supplementary Table S1. (C) Representative specimens 

immunostained for Mac3 and counterstained with hematoxylin. The red line marks the 

boundaries of atherosclerotic lesions. Scale bar: 500 µm. n= number of mice. *, p<0.05. 

 

Fig. 3. Ccl1 disruption does not affect aortic CCR8 expression or atherosclerotic plaque 

characteristics. Quantified immunohistopathological analysis of aortic root and ascending 

aorta from 2-month-HFD-fed Apoe-KO and Apoe/CCL1-DKO mice. Cross-sections were 

analyzed for neointimal content of CCR8, CD4+ T-cells, necrotic core, VSMCs (SMα-actin+), 

collagen (Masson’s trichrome staining), proliferating cells (Ki67+), and apoptosis (caspase 3+). 

n=number of mice. Representative images are shown in Supplementary Fig. S2, and results 

expressed as total area are in Supplementary Table S1.  

 
 

Fig. 4. Ccl1 mediates leukocyte adhesion in vitro and in vivo. (A) In vitro leukocyte adhesion 

in flow chamber assays. Whole blood of wild-type mice was perfused in flow chambers 

containing vehicle-coated or CCL1-coated coverslips. n=number of coverslips. (B) In vivo 

intravital microscopy analysis of leukocyte adhesion, shear rate, and vessel diameter in 

cremaster arterioles of 1-week-HFD-fed wild-type, Apoe-KO, and Apoe/Ccl1-DKO mice. 

n=number of mice. **, p<0.01; ***, p<0.001 
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Fig. 5. Ccl1 disruption increases the Th1:Th2 ratio, inhibits Treg recruitment and 

suppressive function, and reduces CD4+ T cell IL-10 production and plasma IL-10 levels. 

(A) Flow cytometry-determined content of Tregs (CD4+ CD25high FOXP3+) as a percentage of 

CD4+ T-cells in aorta, spleen, and blood of 11-month-old control-diet-fed mice. Results are 

shown relative to Apoe-KO mice for aorta and as bare percentages for spleen and blood (n=7 

Apoe-KO; n=8 Apoe/Ccl1-DKO). (B) Proliferation of CD4+ T cells isolated from spleen and 

lymph nodes of 11-month-old control-diet-fed Apoe-KO and Apoe/Ccl1-DKO mice (triplicates 

of 3 pooled mice per genotype). (C) Inhibition of wild-type effector T cell proliferation upon 

co-culture with splenic CD4+CD25+ Tregs isolated from 11-month-old control-diet-fed Apoe-

KO and Apoe/Ccl1-DKO mice (triplicates of 3 pooled mice per genotype). The effector T 

cell:Treg ratio is shown in the horizontal axis. (D) IL-10 production in LPS- and IFNγ-

stimulated splenocytes of mice fed the HFD for 2 months (n=9 mice per genotype). (E) IL-10 

production in BMdMs of Apoe-KO mice fed the HFD for 2 months (n=4 culture plates, each 

containing BMdMs from 3 mice per genotype). (F) Plasma IL-10 in fat-fed mice (n=7 Apoe-

KO mice and n=5 Apoe/Ccl1-DKO mice fed the HFD for 1 week; n=8 Apoe-KO and Apoe/Ccl1-

DKO mice fed the HFD for 2 months). (G) Flow cytometry-determined percentage of Th1 

(CD4+IFNγ+ and CD4+IL-2+) and Th2 (CD4+IL-4+) leukocytes in spleen of 11-month-old 

control-diet-fed mice. Results are expressed relative to total CD4+ leukocytes (n=3 mice per 

genotype). *, p<0.05; **, p<0.01. 

 

 

Fig. 6. Antibody-mediated CCR8 blockade inhibits aortic Treg recruitment and promotes 

atherosclerosis development. Ldlr-KO mice were gamma-irradiated and transplanted with 

bone marrow cells of Foxp3/mRFP mice (expressing RFP in Tregs). One month after irradiation 

and transplant, mice were challenged with the HFD and injected with either anti-CCR8 antibody 

or isotype control antibody every 2 days. Mice were sacrificed after 1 week. (A) Relative Treg 

accumulation in aorta quantified from qPCR-determined RFP expression. (B) Atherosclerosis 

burden determined as the intimal area in the aortic root of Ldlr-KO mice fed the HFD for 1 

week. Representative hematoxylin/eosin-stained cross-sections are shown, with red line 

marking atherosclerotic lesion boundaries. n=number of mice. *, p<0.05. 
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