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Abstract. In this article we will review some notions of infiniteness that appear in Hilbert space
operators and operator algebras. These include proper infiniteness, Murray von Neumann’s clas-
sification into type I and type III factors and the class of Følner C*-algebras that capture some
aspects of amenability. We will also mention how these notions reappear in the description of
certain mathematical aspects of quantum mechanics, quantum field theory and the theory of su-
perselection sectors. We also show that the algebra of the canonical anti-commutation relations
(CAR-algebra) is in the class of Følner C*-algebras.
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1 Introduction

In this article we will review some situations in which different notions of infinity manifest
in quantum mechanics and quantum field theory. To begin let us recall some reasonable and
basic definitions of finiteness in set theory (cf., [29, Introduction]). A set X can be called
finite if any of these conditions holds:

(F1) there is a bijection ϕ : X → {1, . . . , n} for some n ∈ N;
(F2) there does not exist a (disjoint) partition X = X1 t X2 such that |X| = |X1| = |X2|,

where | · | denotes the cardinality of a set;
(F3) every injective map f : X → X is surjective.

The characterization (F1) uses the external structure of the natural numbers and is con-
structive, while (F2) identifies finiteness through the absence of a certain kind of decomposi-
tion, which resembles a paradoxical decomposition. The last item (F3) refers to Dedekind’s
definition of finiteness and is intrinsic to the structure. All these ideas and, in particular,
their negation, reappear in a very natural way in the context of linear operators and operator
algebras. This is how they also enter in the description of some aspects of Quantum Theory.

? Supported by research projects MTM2017-84098-P and Severo Ochoa SEV-2015-0554 of the Spanish Min-
istry of Economy and Competition (MINECO), Spain.
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For infinite sets on which, in addition, a dynamic is defined one can further classify the
system according to the dichotomy amenable versus paradoxical. It must be highlighted that
dynamics is here understood in a wide sense, such as the action of a group on a space or as the
action of an algebra on itself by left multiplication. The idea of amenability was introduced in
the context of group actions by von Neumann in 1929 (cf. [37]) and its absence in the action
of the rotation group on the unit ball B1 ⊂ R3 was recognized as a fundamental reason that
explains the possibility of paradoxically decomposing B1. This fact eventually came to be
known as the Banach-Tarski paradox (cf., [44,38,41]). Since then this dichotomy amenable
versus paradoxical has enriched many other fields including algebras, metric spaces and op-
erator algebras. Roughly speaking, amenable structures have an internal approximation in
terms of finite substructures (the so-called Følner sequences) that have controlled growth
with respect to the dynamics considered. It is therefore clear that all finite structures are nor-
mally amenable, while infinite structures might be or not. We refer to [29,15,16,18,23,26,1,2]
for additional motivation and results on this body of work.

The aim of this article is to review some results showing the different degrees of infinite-
ness that appears in some situations in Quantum Theory. We also bring into this analysis the
class of Følner C*-algebras that capture some aspects of amenability in the context of opera-
tor algebras. These algebras can be characterized in terms of a sequence of unital completely
positive linear maps into matrices which are asymptotically multiplicative. We will show that
the CAR-algebra is in this class. We begin reviewing some notions of infiniteness that appear
in the description of Hilbert space operators and operator algebras. In particular we intro-
duce notions of proper infiniteness and Murray von Neumann’s classification into type I and
type III factors. We also recall some important results in local quantum physics in relation
to this topic, in particular, Borchers property or the construction of the field algebra in the
theory of superselection sectors.

2 Operators and Operator Algebras in Hilbert Spaces

LetH be a complex separable Hilbert space and denote by B(H) the set of all bounded linear
operators onH. Given an operator T ∈ B(H), its operator norm is given by

‖T‖ := sup
‖x‖=1

‖Tx‖ , (1)

where ‖x‖ is the Hilbert space norm of the vector x ∈ H induced by the scalar product 〈·, ·〉.

Example 1. (i) If H ∼= Cn, then B(H) ∼= Mn(C). In this case, it is well known that any
isometry is necessarily a unitary, i.e., for anyM ∈ B(H) withM∗M = 1, thenMM∗ =
1. This realizes Dedekind’s notion (F3) of finiteness in the context of linear maps, since
any injective map must as well be surjective.

(ii) IfH ∼= `2(N) (the Hilbert space of square summable sequences), denote its canonical ba-
sis by {ei}i∈N. The infinite dimension of the Hilbert space has now several consequences
that can be understood as a linear analogy to Hilbert’s Hotel. The following examples of
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non-unitary isometries can be understood as a negation of the finiteness condition (F3)
in the linear context.

a) Unilateral shift: Let Sei := ei+1, i ∈ N, i.e., S ∼=


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...

. . . . . . . . .

. Then we have

S∗S = 1, but SS∗ = 1 − P0, where P0 (·) := 〈e0, ·〉 e0 is the range one projection
onto the linear subspace C · e0. In this case one says that 1 is an infinite projection
(see Definition 1 below).

b) Generators of the Cuntz algebra: define S1ei := e2i and S2ei := e2i+1. These are
isometries (i.e., S∗1S1 = S∗2S2 = 1) and satisfy, in addition,

S∗1S2 = 0 and S1S
∗
1 + S2S

∗
2 = 1 .

In other words, the ranges of S1 and S2 are infinite dimensional and mutually orthog-
onal subspaces of `2(N), giving a negation of the finiteness condition (F2). In this
case one says that 1 is a properly infinite projection (see Definition 1 below).

(iii) Partial isometries: A linear map V : H → H is a partial isometry if V ∗V is an orthog-
onal projection, which is called domain projection. This condition directly implies that
V V ∗ is also a projection, the so-called range projection. These partial isometries are a
generalization of the notion of isometry.

Next we introduce two types of operator algebras that will be important for this article,
namely, C*- and von Neumann algebras. General references on this topic are, e.g., [17] or
[12, Chapter 2]. We call a *-subalgebraA ⊂ B(H) a C*-algebra if it is closed with respect to
the uniform topology, i.e., the topology defined by the operator norm ‖·‖ (cf., Eq. (1)). Impor-
tant examples of C*-algebras are those generated by isometries having mutually orthogonal
ranges. For n ≥ 2, the Cuntz algebra On is the essentially unique C*-algebra generated by
isometries S1, . . . , Sn satisfying

S∗i Sj = δij1, i, j ∈ N , and
n∑
i=1

SiS
∗
i = 1 .

Example 1 shows how these isometries can be realized as elements of B(`2(N)).
A unital *-subalgebraN ⊂ B(H) is a von Neumann algebra if it is closed under the weak

operator topology. A useful and alternative way to understand this class of algebras is through
the notion of commutant of a set of operators. If S is a self-adjoint subset of B(H) (i.e., if
S ∈ S ⊂ B(H), then S∗ ∈ S), then we denote by S ′ the commutant of S in B(H), i.e., the
set of all operators in B(H) commuting with all elements in S. Von Neumann’s celebrated
bicommutant theorem shows that a unital *-subalgebraN ⊂ B(H) is a von Neumann algebra
iff N = N ′′. Therefore, if S is a self-adjoint subset of B(H), then S ′′ is the smallest von
Neumann algebra containing S. A von Neumann algebraN is called a factor if it has a trivial
center, i.e., if N ∩N ′ = C · 1.
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Any von Neumann algebra is generated as a norm-closed space by the set of its projec-
tions, which we denote by P(N ). Therefore, the classification we are interested in of von
Neumann algebras is based on the classification of P(N ). For the purpose of this article, it is
enough to assume that the von Neumann algebra N is a (nonzero) factor, since general von
Neumann algebras can be canonically decomposed into factors.

Definition 1. Let N be a factor and denote by P(N ) its lattice of orthogonal projections in
N . All the following definitions are modulo N , that is, depend on N . For P,Q ∈ P(N ) we
say

(i) P is minimal if P 6= 0 and for any projection P0 ∈ P(N ), P0 ≤ P implies either P0 = 0
or P0 = P .

(ii) P ∼ Q if there exists a partial isometry V ∈ N such that P = V ∗V and Q = V V ∗. The
relation ∼ is called also Murray von Neumann equivalence.

(iii) P is finite (modN ) if the only projection P0 ∈ P(N ) with P ∼ P0 ≤ P is the projection
P itself.
If P is not finite then it is called infinite (modN ). That is, there is a P0 ∈ P(N ) such
that P ∼ P0 < P , namely, P is equivalent to a proper subprojection of itself.
P is properly infinite if there exist P1, P2 ∈ P(N ) such that P ∼ P1 ∼ P2, P1+P2 ≤ P
and P1P2 = 0, i.e., P1H ⊥ P2H.

(iv) A factor N is called finite (respectively, infinite or properly infinite) if 1 is a finite (re-
spectively, infinite or properly infinite) projection.

Remark 1. a) The definition of finite, infinite and properly infinite projections can be stated
similarly in the context of C*-algebras. It is clear from Example 1 that 1 ∈ Mn(C) is a
finite projection. On the contrary B(`2(N)) is an infinite C*-algebra via the equivalence
1 ∼ 1− P0 < 1.
Finally, the Cuntz algebras On (and any C∗-algebra containing them), are the prototypes
of properly infinite C∗-algebras, since we have from Example 1 that S1S∗1+· · ·+SnS∗n =
1 while

1 = S∗1S1 = · · · = S∗nSn and S∗i Sj = δij1.

b) It follows from the definition that any minimal projection in a von Neumann algebra is
automatically finite. The most prominent example of minimal projection is the range one
projection Px(·) := 〈x, ·〉x, defined for any x ∈ H with ‖x‖ = 1.
It should be noted that if P is a minimal projection in a von Neumann algebraN , then the
corner algebra is one-dimensional, i.e., PNP = CP . Moreover, all minimal projections
are equivalent.

According to the properties of the lattice of projections we mention next some large
subclasses of factors.

Definition 2. Let N be a factor and P(N ) its lattice of projections.

(i) N is said to be of type I if P(N ) contains a minimal nonzero projection.
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(ii) N is said to be of type III if P(N ) contains no nonzero finite projection.

Type III factors show, roughly speaking, the highest degree of infiniteness. In fact, for
this class of algebras any nonzero projection admits the following halving property (which
can be understood as a negation of (F2) in the linear context).

Lemma 1. LetN be a factor and P(N ) its lattice of projections. Then P ∈ P(N ) is infinite
if and only if P admits the following decomposition

P = (P −Q) +Q for some Q ≤ P and P ∼ Q ∼ (P −Q) .

For simplicity we will focus in this article only on these two classes of factors. Type II
factors (those having no minimal projections but having nonzero finite projections) are also
important in describing certain aspects quantum theory (see, e.g., [30,36]).

3 Følner C*-algebras

Motivated by the dichotomy amenable versus paradoxical in group theory we will introduce
in this section the class of Følner C*-algebras. These algebras correspond to the amenable
groups, in the sense of having a good internal approximation in terms of matrices that have
controlled growth with respect to the dynamics given by the product. We will also define the
notion of algebraic amenability and some relation to the class of Følner C*-algebras. These
ideas will be used in the next section.

For the next definition, recall that a tracial state on a C∗-algebra A is a positive and
normalized functional τ : A → C that satisfies the usual tracial property τ(AB) = τ(BA)
for anyA,B ∈ A. In the next definition we specify the subclass of amenable traces (see, e.g.,
[13, Chapter 6]).

Definition 3. Let A ⊂ B(H) be a unital and separable C*-algebra. A is called a Følner
C*-algebra if it has an amenable trace τ , i.e., a tracial state onA that extends to a state ψ on
B(H) that has A in its centralizer, i.e.,

τ = ψ|A and ψ(XA) = ψ(AX) , A ∈ A , X ∈ B(H) .

From this definition it follows immediately that any unital C∗-subalgebra of a Følner C∗-
algebra is again in this class and that any finite dimensional algebra is a Følner C∗-algebra,
since the usual normalized trace of a matrix will do.

Remark 2. The state ψ in the preceding definition is called hypertrace in the literature and
this class of algebras is also referred as weakly hypertracial (see [11] and references therein).
The preceding definition is equivalent to the intrinsic definition of an abstract Følner C∗-
algebra A in terms of a sequence of unital completely positive linear maps into matrices
ϕn : A →Mk(n) which are asymptotically multiplicative. This approach shows explicitly the
finite approximation scheme of this class of algebras (cf., [3, Theorem 4.3]). Moreover, this
class of algebras are also relevant in problems of spectral approximation (cf., [4,10,33,35]).
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We will conclude by introducing the notion of algebraically amenable algebras. We will
restrict to the case of subalgebras of C∗-algebras, but the definition and results are true for
arbitrary algebras over arbitrary fields (cf. [23,1,26]).

Definition 4. Let A ⊂ A be a *-subalgebra of a C∗-algebra A. We call A algebraically
amenable if there is a sequence {Wk}∞k=1 of finite dimensional subspaces of A satisfying

lim
k→∞

dim(AWk +Wk)

dim(Wk)
= 1 , A ∈ A .

Next we mention an important relation between algebraic amenability and the class of
Følner C∗-algebras. For a complete proof we refer to [2, Theorem 3.17].

Theorem 1. Let A ⊂ A be a dense *-subalgebra of a unital separable C∗-algebraA. If A is
algebraically amenable, then A is a Følner C∗-algebra.

4 Quantum Physics

In the mathematical description of a physical theory one needs to specify the set of ob-
servables, the set of states and, possibly, the family of symmetries of the theory, typically
described in terms of a group action. For a description of a quantum theory (as opposed to
a classical theory) one can use the language of non-commutative operator algebras and their
state space. Symmetries are then incorporated to this setting via a representation of the cor-
responding group in terms of automorphisms of the operator algebra. These representations
are typically implemented in terms of unitary representations of the group (see, e.g., [12,
Chapters 2 and 3] or [31, Part I]). One of the conceptual advantages of (non-commutative)
C*-algebras is the neat distinction between the abstract algebra, whose self-adjoint elements
correspond to observables, and its state space and the corresponding representations on a con-
crete Hilbert space. This point of view particularly pays off in Quantum Field Theory, where
there is an abundance of inequivalent representations associated with abstract observables
(cf. [24]; see also Subsection 4.3 below).

4.1 TypeI Algebras and Quantum Mechanics

The most elementary example of a type I factor is B(H), where H is a finite or (separable)
infinite dimensional Hilbert space. Many situations in Quantum Mechanics can be described
in terms of this example. Pure states correspond in this context to minimal projections and
mixed states are described in terms of normalized and positive trace class operators.

We begin by making precise the fact that B(H) is, in fact, the prototype of this kind
of factors. It is illustrative to give a sketch of the proof since it shows how the minimality
condition is used.

Proposition 1. Let N ⊂ B(H) be a factor of type I . Then there exist separable Hilbert
spaces K1 and K2 and a unitary U : H → K1 ⊗K2 with UNU∗ = B(K1)⊗ 1.
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Proof. Let {Pj}j∈J ⊂ P(N ) be a maximal family of mutually orthogonal minimal pro-
jections. By maximality it follows that H ∼=

⊕
j∈J PjH. Moreover, by minimality of pro-

jections, all Pi, Pj must be equivalent for any pair i, j ∈ J . Therefore, there are partial
isometries V1j ∈ N with V1jV ∗1j = P1 and V ∗1jV1j = Pj , j ∈ J . This implies that N is
generated by the set {V1j | j ∈ J} since we have

N 3 N =
∑
i,j∈J

PiNPj =
∑
i,j∈J

λijV
∗
1iV1j , (2)

where the coefficients λij ∈ C are specified by the relation

V1iPiNPjV
∗
1j ∈ P1NP1 = CP1 , (3)

which, again, uses the minimality of P1. In fact, note that

V1iPiNPjV
∗
1j = λijP1 and hence PiNPj = λijV

∗
1iP1V

∗
1j = λijV

∗
1iV1j . (4)

Finally, consider the discrete set J = {1, 2, . . . |J |} with |J | ∈ N ∪ {∞} and define the
unitary map

U∗ : `2(J , P1H)→ H

by means of U∗ξ :=
∑

j V
∗
1jξj , where ξ = (ξj)

|J |
j=1 ∈ `2(J , P1H). Using now the equiva-

lence `2(J , P1H) ∼= `2(J ) ⊗ P1H one can show that the algebra generated by {UV1jU∗ |
j ∈ J} is isomorphic to B(`2(J ))⊗ 1, because

UV ∗1iU
∗UV1jU

∗ = UV ∗1iV1jU
∗ ∼= Eij ⊗ 1 (5)

where {Eij | i, j ∈ J} is a set of matrix units in `2(J ).

Remark 3. From the results mentioned in Section 2 it is clear that B(H) with dimH = ∞
is an infinite as well as properly infinite C*-algebra. Nevertheless, observe that the structure
of type I factors allows to have subalgebras of Følner type. For instance, take two non-
commuting range one projections P,Q ∈ B (H), the von Neumann algebra generated by
them will be finite-dimensional, and hence Følner. Note that this reasoning is not possible in
the context type III von Neumann algebras.

4.2 The CAR-Algebra

In this section we give a proof that the C∗-algebras associated to the canonical anti-commutation
relations (CAR-algebras) are, in fact, Følner C∗-algebras. We begin by recalling its definition
and some standard properties (see, e.g., [12, Section 5.2.2]).

Let h be a complex separable Hilbert space with scalar product 〈·, ·〉. We denote by
CAR(h) the algebraically unique C*-algebra generated by 1 and a(f), f ∈ h, such that
the following relations hold:

(i) The map h 3 f 7→ a(f) is antilinear.
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(ii) a(f1)a(f2) + a(f2)a(f1) = 0 , f1, f2 ∈ h .
(iii) a(f1)a(f2)∗ + a(f2)

∗a(f1) = 〈f1, f2〉1 , f1, f2 ∈ h .

The algebra CAR(h) is simple, has a unique tracial state and satisfies ‖a(f)‖ = ‖f‖ for
any f ∈ h. In the proof of the next theorem we exploit the finite approximation structure of
the CAR-algebra.

Proposition 2. Let h be a complex separable Hilbert space. Then CAR(h) is a Følner C∗-
algebra and its unique tracial state is amenable.

Proof. If dim h = n <∞, then CAR(h) ∼=M2n(C) and hence Følner because it is finite di-
mensional. If dim h =∞we may describe the CAR-algebra as a uniformly hyper-finite alge-
bra of type 2∞ (see [17, III.5.4]). In fact, CAR(h) is the inductive limit of finite-dimensional
algebras An ∼=M2n(C) with injective embedding

An 3 A 7→
(
A 0
0 A

)
∈ An+1 .

Consider the *-algebra A := ∪∞n=1An, which is dense in CAR(h). We will prove that A
is algebraically amenable (cf. Definition 4) and therefore, by Theorem 1, we conclude that
CAR(h) is a Følner C∗-algebra. Define the finite dimensional subspaces (in fact subalgebras)
Wk := Ak, k ∈ N. Then, since any A ∈ A is contained in Ak0 for some k0 ∈ N we conclude
that for any k ≥ k0 we have AWk ⊂Wk, and therefore dim(AWk +Wk) = dim(Wk) and

lim
k→∞

dim(AWk +Wk)

dim(Wk)
= 1 .

Finally, since CAR(h) has a unique tracial state it must be amenable.

4.3 Local Quantum Physics

In this subsection we address several manifestations of infinity that appear in quantum field
theory. For this analysis we use the axiomatic approach proposed by Haag and Kastler in
the sixties using the language of operator algebras (see, e.g., [28,27,40,5]), usually known
as Algebraic Quantum Field Theory or Local Quantum Physics. In this formulation the ob-
servables become the primary objects of the theory and are described by selfadjoint elements
in an abstract C∗-algebra. Here one considers the observables to be localized in spacetime,
which, in this article, we restrict to be the 4-dimensional Minkowski space. The fundamen-
tal object of study is a net of von Neumann algebras labeled by spacetime regions in R4.
Concretely, we consider the index set

I := {O ⊂ R4 | O open and bounded region in Minkowski space}

and a net of von Neumann algebras is denoted by

I 3 O 7→ N (O) ⊂ B(H) .
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Associated with this net we can define the global algebra byR :=
(
∪
O∈I
N (O)

)′′
.

We begin by recalling the axioms of the vacuum representation. The axioms specifying
this representation of the net I 3 O 7→ N (O) are physically motivated and have physical and
mathematical consequences. These rules formalize general principles of relativistic quantum
mechanics like, e.g., Poincaré covariance or causality. Characteristic for the vacuum state is
its invariance under the Poincaré group and the (relativistic) spectrum condition.

(A1) Isotony: If O1 ⊂ O2 then N (O1) ⊂ N (O2).

(A2) Additivity: If O = ∪jOi then N (O) =
(
∪j N (Oj)

)′′
.

(A2′) Weak additivity: For each O0 ∈ K we have
(
∪

a∈R4
N (a+O0)

)′′
= R.

(A3) Causality: If O1 ⊥ O2 (i.e., O1 and O2 are causally disjoint), then N (O1) ⊂ N (O2)
′.

(A4) Covariance: There is a strongly continuous unitary representation of the universal cover
of the proper orthocronous Poincaré group G := R4 o SL(2,C), U : G → U(H) such
that

N (gO) = αg(N (O)) = U(g)N (O)U(g)−1 , αg ∈ AutR , g ∈ G .

(A5) Spectrum condition: The spectrum of the generators of the space-time translations is
contained in the closed forward light cone, i.e.,

σ
(
U(R4)

)
⊂ V+ .

(A6) Existence of a vacuum vector: There exists a unit vector Ω ∈ H (called the vacuum
vector) such that(

∪O∈K N (O)
)
Ω is dense inH and U(g)Ω = Ω , g ∈ G .

For concrete examples of nets satisfying these axioms we refer to the free-net construc-
tion in [6,32] as well as references therein. An immediate and surprising consequence of this
set of axioms is the so-called Reeh-Schlieder Theorem.

Theorem 2. Let I 3 O 7→ N (O) ⊂ B(H) be a net satisfying the axioms of the vacuum rep-
resentation. For every nonempty region O ∈ I the vacuum vector Ω is cyclic and separating
for N (O), i.e., the set N (O)Ω ⊂ H is dense in H and, for any local operator N ∈ N (O),
one has that NΩ = 0 implies N = 0.

This result implies, in particular, that any nonzero local projection in N (O) has (for any
nonempty O ∈ I) a nonzero expectation value in the vacuum. Moreover, this result also
shows that the vacuum in quantum field theory is entangled for any pair of local algebras
N (O1), N (O2) with O1 ⊥ O2. We refer, e.g., to [5, §1.3] for a complete proof of the Reeh-
Schlieder theorem which makes explicit use of the covariance axiom, weak additivity and the
spectrum condition. For additional motivation, results and references see [39,42].
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The next result is known as Wightman’s inequality. Let O1,O2 ∈ I and denote by
O1 b O2 if O1 ⊂ O2 and the distance of O1 to the boundary of O2 is positive, i.e.,
dist(O1, ∂O2) > 0.

Theorem 3. Let I 3 O 7→ N (O) ⊂ B(H) be a net satisfying the axioms of the vacuum
representation and such that the global algebraR is non-Abelian. Then for anyO1 b O2 we
have that N (O1) $ N (O2).

This result implies that for each O ∈ I the local algebras N (O) are necessarily infinite
dimensional, since for O1 b O2 we must have dimCN (O1) < dimCN (O2). A complete
proof of Wightman’s inequality can be found in [5, §1.4] which uses explicitly the isotony
axiom as well as covariance and weak additivity.

Local algebras are not only infinite dimensional, they are typically type III (showing
the highest degree of infiniteness). The change in relativistic quantum mechanics to a net
of algebras localized in spacetime regions O ∈ I forces the radical change to type III (as
opposed to a type I description in quantum mechanics). For specific regions such as a space-
like wedge or for theories which, in addition, have conformal covariance, it can be even
shown that the local algebras correspond to the unique hyperfinite type III1 factor (see, e.g.,
[27, Section V.6] for details).

We conclude this section mentioning Borchers property which implies that, generically,
local algebras are almost type III . This property, which is strongly based on the positivity
of the energy, is enough in many applications. For a proof we refer to [5, §1.11 and 1.12].
Before stating the next result, recall from Section 2 that for a von Neumann algebra is of
type III all nonzero projections are equivalent to 1.

Theorem 4. Let I 3 O 7→ N (O) ⊂ B(H) be a net satisfying the axioms of the vacuum
representation, with unique vacuum vector Ω. AssumeO1,O2 ∈ I satisfyO1 b O2 and that
there exists an O ∈ J with O ⊂ O⊥1 ∩O2. Then for any nonzero projection P ∈ N (O1) we
have

P ∼ 1 mod N (O2) .

As an application of type III structure appearing in quantum field theory we refer, e.g.,
to the explanation of Fermi’s two atom system (cf. [14,43]).

4.4 The Theory of Superselection Sectors

The theory of superselection sectors allows from an analysis of a physically motivated family
of states to understand three central aspects in elementary particle physics: the composition
of charges, the classification of particle statistics and the charge conjugation. In this final
subsection we will mention briefly the role that Cuntz algebras play in this frame, confirming
again the importance of properly infinite C*-algebras in quantum field theory. The theory
of superselection sectors as stated by the Doplicher-Haag-Roberts (DHR) selection criterion
[27,19,20], is formulated in the frame of local quantum physics and led to a profound body of
work, culminating in the general Doplicher-Roberts (DR) duality theory for compact groups
[22].
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The DHR criterion selects a distinguished class of “admissible” representations of a
quasilocal algebra A of observables, which has trivial center Z := Z(A) = C1. This class
of representations specifies a so-called DR-category T , which is a full subcategory of the
category of endomorphisms of the C*-algebraA. Furthermore, from this endomorphism cat-
egory T the DR-analysis constructs a C*-algebra F ⊃ A together with a compact group
action α : G 3 g → αg ∈ Aut(F) such that:

– A is the fixed point algebra of this action;
– T coincides with the category of all “canonical endomorphisms” of A, associated with

the pair {F , αG}.

Physically, F is identified as a field algebra and G with a global gauge group of the sys-
tem. The pair {F , αG}, which we call Hilbert C*-system (see below for a precise definition),
is uniquely determined by T up to isomorphisms. Conversely, {F , αG} determines uniquely
its category of all canonical endomorphisms. Therefore {T ,A} can be seen as the abstract
side of the representation category of a compact group, while {F , αG} corresponds to the
concrete side of the representation category of G, and, roughly, any irreducible representa-
tions of G is explicitly realized within the Hilbert C*-system. One can state the equivalence
of the “selection principle”, given by T and the “symmetry principle”, given by the com-
pact group G. This is one of the crucial theorems of the Doplicher-Roberts theory (see also
[5,25,40] for additional results and motivation).

We conclude explaining the structure of Hilbert C*-systems. These are, roughly speaking,
a very special type of C*-dynamical system (F , αG) that, in addition, contain the information
of the representation category of the compact group G. We denote the dual object of G by Ĝ,
which is defined as the set of (unitary) equivalence classes of continuous irreducible unitary
representations of G (on complex separable Hilbert spaces). A Hilbert space H ⊂ F , where
F is a unital C*-algebra, is called algebraic if the scalar product 〈·, ·〉 of H is given by
〈A,B〉1 := A∗B for A, B ∈ H. Henceforth, we consider only finite-dimensional algebraic
Hilbert spaces. The support of H is defined by suppH :=

∑d
j=1 ΨjΨ

∗
j , where {Ψj

∣∣ j =
1, . . . , d} is any orthonormal basis of H. We consider here only algebraic Hilbert space H
with suppH = 1. For any D ∈ Ĝ consider the following projection on F

ΠD(·) :=
∫
G
χD(g)αg(·) dg ,

where χD is the modified character of the class D, i.e., χD(g) := dim(D) Tr(D(g)). The
subspacesΠD,D ∈ Ĝ, are called spectral subspaces of F . Note that if one chooses the trivial
representation ι ∈ Ĝ, then the corresponding spectral subspace is the fixed point algebra

Πι(F) := {A ∈ F | αg(A) = A , g ∈ G} ,

which in our context turns out to coincide with the C*-algebra A.

Definition 5. A C*-dynamical {F , αG} with a compact group G is called a Hilbert C*-
system if for eachD ∈ Ĝ there is an algebraic Hilbert spaceHD ⊂ ΠDF , such that αG acts
invariantly onHD, and the unitary representation αG |HD

is in the equivalence class D ∈ Ĝ.
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Note that any algebraic Hilbert space HD, D ∈ Ĝ, generates a Cuntz algebra On with
n = dimD which are all subalgebras of the field algebra F . Moreover, any algebraic Hilbert
spaceHD specifies a canonical endomorphism of the fixed point algebra by

ρD(A) =

n∑
i=1

ΨiAΨ
∗
i ,

where {Ψi
∣∣ i = 1, . . . , n} is any orthonormal basis of HD. Since the suppHD = 1 the

canonical endomorphisms are also unital, i.e., ρD(1) = 1.

Remark 4. In the DR-theory the center Z of the C*-algebra A plays a special role. If A
corresponds to the inductive limit of a net of local C*-algebras indexed by open and bounded
regions of Minkowski space, then the triviality of the center ofA is a consequence of standard
assumptions on the net of local C*-algebras. But, in general, the C*-algebra appearing in the
DR-theorem does not need to be a quasilocal algebra and, in fact, one has to assume explicitly
that Z = C1 in this context (see [22, Theorem 6.1]). Therefore from a systematical point of
view it is natural to study the properties and structural modifications of this rich theory if one
assumes the presence of a nontrivial center Z ⊃ C1. From a physical point of view one can
interpret the elements of the centerZ ofA as classical observables contained in the quasilocal
algebra. Nevertheless the effect of the presence of classical observables in superselection
theory requires a more careful analysis of the corresponding fundamental axioms. We refer
to [8,7,9] for an analysis of the DR-duality theory in the case the relative commutant of the
corresponding Hilbert C*-system satisfies the following minimality condition:

A′ ∩ F = Z .

Concrete realization of these systems in terms of Cuntz-Pimsner algebras, a class of properly
infinite C*-algebras generalizing Cuntz algebras, can be found in [34].
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6. H. Baumgärtel, M. Jurke and F. Lledó, On free nets over Minkowski space, Rep. Math. Phys 35 (1995)

101-127.
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35. F. Lledó and D. Yakubovich, Følner sequences and finite operators, J. Math. Anal. Appl. 403 (2013) 464–

476.
36. P. Naaijkens, Localized endomorphisms in Kitaev’s toric code on the plane, Rev. Math. Phys., 23 (2011)

347–373, 2011
37. J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929) 73–116.
38. A.L. Paterson, Amenability, American Mathematical Society, Providence, Rhode Island, 1988.
39. M. Redhead, More ado about nothing, Fund. Phys. 25 (1995) 123-137.
40. J.E. Roberts, More lectures on algebraic quantum field theory, In Noncommutative Geometry, S. Doplicher

and R. Longo (eds.), Lecture Notes in Mathematics Vol. 1831, Springer Verlag, Berlin, 2004.
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