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a b s t r a c t 

We provide a novel adversarial risk analysis approach to security resource allocation decision processes 

for an organization which faces multiple threats over multiple sites. We deploy a Sequential Defend- 

Att ack model f or each type of threat and site, under the assumption that different attackers are unco- 

ordinated, although cascading effects are contemplated. The models are related by resource constraints 

and results are aggregated over the sites for each participant and, for the Defender, by value aggregation 

across threats. We illustrate the model with a case study in which we support a railway operator in allo- 

cating resources to protect from two threats: fare evasion and pickpocketing. Results suggest considerable 

expected savings due to the proposed investments. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t  

t  

O  

e  

a

 

t  

t  

w  

T  

fi  

T  

t  

f  

c  

c  

a  

o  

s  

s  

m  

f  

t  

H  
1. Introduction 

Crime and terrorism constitute major global issues. As an exam-

ple, among the threats considered in the World Economic Forum

(2015) Global Risks report, there are several related with security,

including large-scale terrorist attacks or a major escalation in or-

ganized crime. Similarly, we may find security among the seven

thematic H2020 priorities for European research ( ec.europa.eu/

programmes/horizon2020 ). Governments and organizations world-

wide are indeed increasingly committed to protecting themselves

against various security threats. Recent large-scale terrorist events

like 9/11 or the Madrid train bombings have led to significant na-

tional investments in protective responses, see ( Haberfeld & von

Hassell, 2009 ). However, public opinion has not always seen such

expenditures as prudent or effective, see ( Parnell et al., 2008 ) or

( Sunstein, 2007 ). 

In turn, this has motivated great interest in modeling issues in

relation with security, with varied tools from areas such as relia-

bility analysis, data mining, game theory or complex dynamic sys-

tems. Recent accounts of various techniques and applications in the

field of counterterrorism may be seen in e.g. Ezell, Bennett, von

Winterfeldt, Sokolowski, and Collins (2010) or Wein (2009) . Parnell

et al. (2008) and Enders and Sandler (2011) provide overviews on

strategies, models, and research issues in security risk analysis.

Other relevant work include e.g. Zhuang and Bier (2007) , who dis-
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uss resource allocation for countering terrorism and natural disas-

ers; ( Brown, Carlyle, Salmerón, & Wood, 2006 ), where the protec-

ion of critical infrastructures is addressed; or ( Yang, Kiekintveld,

rdóñez, Tambe, & John, 2013 ), who present mathematical mod-

ls of adversarial behavior to support security forces in their fight

gainst different adversaries. 

We consider problems in which an organization needs to pro-

ect multiple sites from multiple threats. Our case study refers

o deciding the security resource allocation for a railway system

hose operator faces threats from fare evaders and pickpockets.

he figures presented in the paper have been modified from actual

gures to protect the confidentiality of the case study provider.

herefore, the data is realistic data but not actual data . We assume

hat the relevant multiple threats are uncoordinated, in that dif-

erent attackers do not make common cause, although the out-

ome of different types of attacks might affect each other. In our

ase study, fare evaders and pickpockets will not be coordinated,

lthough pickpockets alone and a group of fare evaders will be

rganized. Hausken and Levitin (2012) provide a classification of

ystems defense and attack models. Within such classification, we

hall be facing a case of protection from attacks over multiple ele-

ents with incomplete information. For earlier work on protecting

rom multiple attackers, see ( Hausken & Bier, 2011 ) and references

herein. Haphuriwat and Bier (2011) ; Hausken (2014b) and Levitin,

ausken, and Dai (2014) provide ideas in relation with multiple

ite protection. Bier, Oliveros, and Samuelson (2007) and Hausken

2014a) refer to uncertainty in attacker resources and asset valua-

ion. All of them perform game theoretical analyses under conve-

ient common knowledge assumptions. 
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Fig. 1. Multiagent influence diagram for a bi-threat problem. 

 

p  

c  

c  

y  

t  

o  

q  

a  

a  

d  

w  

o  

f  

s  

p  

2

 

p  

i  

m  

p  

l  

o  

n  

d  

f

2

 

s  

s  

t  

t  

D  

a  

q  

s  

m  

a

 

i  

p  

D  

A  

D  

n  

t

 

a  

t  

f  

a  

d  

c  

o  

o  

w

 

e  

u  

o  

d  

 

l  

f  

i

ψ

S  

1  

s  

u

g

ψ

a  

t

 

o  

s  

a  

l  

m  

n  

s

a  

t  

e  

m  

p  

t

A  

T  

p

 

a  

p

 

p  

t  

r  

s

a

In contrast, we provide an adversarial risk analysis (ARA) ap-

roach, see ( Ríos Insua, Ríos, & Banks, 2009 ), for such problems,

ombining multiple sites, multiple attackers and taking into ac-

ount all relevant uncertainty sources. ARA builds a decision anal-

sis model for one of the agents (she, the Defender), who forecasts

he actions of her adversaries. Then, she will be able to decide her

ptimal defensive actions. Our approach will be based on the Se-

uential Defend-Attack model, see e.g. Brown et al. (2006) or Ríos

nd Ríos Insua (2012) . In it, the Defender first chooses a defense

nd, then, after observing it, the Attacker decides his attack. We

eploy one of such models for each type of threat and site, which

e relate through resource constraints and aggregation of results

ver various sites for each participant and, for the case of the De-

ender, also by value aggregation over the various threats. We as-

ume no particular spatial structure relating the sites, e.g. through

roximity or a neighboring structure, see ( Gil, Ríos, & Ríos Insua,

016 ). 

In Section 2 , we provide a general framework for the basic

roblem of protecting a single site from multiple threats, illustrat-

ng it with our case in Section 3 . Section 4 extends the previous

odel to the protection of multiple sites, applying it to an ex-

anded version of the case study in Section 5 . As described be-

ow, all the involved parameters have been assessed with the aid

f transportation experts, using expert judgment elicitation tech-

iques, see ( O’Hagan et al., 2006 ) or Farquhar (1984) , then vali-

ated at a security transportation workshop, and finally checked

or robustness through sensitivity analysis. 

. Single site multithreat protection 

We start with the basic multithreat protection problem over a

ingle site. We consider a Defender, D , who needs to deploy defen-

ive resources d ∈ D to protect the site from m uncoordinated at-

ackers A 1 , . . . , A m 

. These observe her decision d and, then, respec-

ively, launch attacks a i ∈ A i , i = 1 , . . . , m . The interaction between

 and A i through their corresponding decisions d and a i , leads to

 random result S i ∈ S i . The Defender faces multiattribute conse-

uences c D which depend on her defense effort d and the results

 1 , . . . , s m 

. She then gets her utility u D . Each attacker will get his

ultiattribute consequences c A i , which depend on his attack effort

 i and his result s i , and then gets his utility u A i . 

The problem is illustrated in the multiagent influence diagram

n Fig. 1 , see ( Koller & Milch, 2003 ). For simplicity, we only dis-

lay two attackers, that is m = 2 . White nodes correspond to the

efender, solid (light and dark) gray nodes to attackers A 1 and

 2 , respectively. Striped nodes refer to interactions between the

efender and the attackers. Dashed arrows between node D and

odes A 1 and A 2 indicate that the attackers decide their alterna-

ives after having observed the decision by D . 
As an example, a port authority ( D ) is trying to protect a port

gainst actions from drug smugglers ( A 1 ) and terrorists ( A 2 ) ready

o introduce nuclear weapons. The Defender decisions d are port-

olios which could include sniffer dogs, metal detectors, inspectors

nd others. Drug smuggler decisions a 1 typically would refer to

rug smuggling (timing, placing, quantities) strategies. Terrorist de-

isions a 2 could refer to weapon smuggling strategies, like whether

r not to infiltrate a nuclear weapon. S 1 could refer to the amount

f drugs actually smuggled and S 2 could refer to the number of

eapons smuggled. 

The Defender aims at finding her optimal defense strat-

gy d ∗. She evaluates her consequences through her utility

 D (d, s 1 , . . . , s m 

) . Assuming conditional independence between the

utcomes S i of different attacks, given the defensive resources

 and attacks a i , she needs to assess the probability models

p D (s i | d, a i ) , i = 1 , . . . , m, reflecting which outcomes she finds more

ikely when attacker A i launches attack a i and she has deployed de-

ensive resources d . She gets her expected utility, given the attacks,

ntegrating out the uncertainty over the outcomes of the attacks: 

 D (d| a 1 , . . . , a m 

) = 

∫ 
· · ·

∫ 
u D (d, s 1 , . . . , s m 

) 

× p D (s 1 | d, a 1 ) · · · p D (s m 

| d, a m 

) d s 1 . . . d s m 

. (1) 

uppose that the Defender is able to build the models p D (a i | d) , i =
 , . . . , m, expressing her beliefs about which attack a i will be cho-

en by the i th attacker after having observed d . Since attacks are

ncoordinated, we assume conditional independence of a 1 , . . . , a m 

iven d . Then, D may compute 

 D (d) = 

∫ 
· · ·

∫ 
ψ D (d| a 1 , . . . , a m 

) p D (a 1 | d) · · · p D (a m 

| d) 

× d a 1 . . . d a m 

, 

nd solve max d ψ D ( d ) to find her optimal defense resource alloca-

ion d ∗. 

The only nonstandard assessments in this formulation are those

f p D ( a i | d ). To obtain them, the Defender may put herself into the

hoes of each attacker, and solve their corresponding problem sep-

rately, since they are uncoordinated. For instance, for the prob-

em faced by attacker A 1 , assuming that he is an expected utility

aximizer, see ( French & Ríos Insua, 20 0 0 ), the Defender would

eed his utility u A 1 (a 1 , s 1 ) and probabilities p A 1 (s 1 | d, a 1 ) . Then,

he would solve 

 

∗
1 (d) = argmax 

a 1 ∈A 1 

∫ 
u A 1 (a 1 , s 1 ) p A 1 (s 1 | d, a 1 ) d s 1 , (2)

o find his optimal attack given that she has implemented d . How-

ver, she lacks knowledge about u A 1 and p A 1 . Suppose we may

odel her uncertainty about them through random utilities and

robabilities 
(
U A 1 

, P A 1 

)
, and propagate that uncertainty to obtain

he random optimal attack, given her defense d , 

 

∗
1 (d) = argmax 

a 1 ∈A 1 

∫ 
U A 1 (a 1 , s 1 ) P A 1 (s 1 | d, a 1 ) d s 1 . (3)

hen, we would get p D (a 1 | d) = Pr (A 

∗
1 (d) ≤ a 1 ) , which may be ap-

roximated by Monte Carlo through Algorithm 1 . 

A similar scheme could be implemented in parallel for the other

ttackers, A 2 , . . . , A m 

, leading to estimates ̂ p D (a i | d) of the required

robabilities p D (a i | d) , i = 2 , . . . , m . 

The approach may be generalized in several ways. For exam-

le, the simultaneous, but uncoordinated, implementation of at-

acks a 1 , . . . , a m 

could be jointly detrimental in face of defensive

esources d , which could be shared against various types of attacks,

ee Fig. 2 a. Then, we could rewrite the probability model in (1) as 

p D (s 1 | d, a 1 , . . . , a m 

) · · · p D (s m 

| d, a 1 , . . . , a m 

) , 

nd proceed in a similar fashion. 
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A1 D A2

S1 S2

cA1 cD cA2

uA1 uD uA2

(a) Detrimental effect.

A1 D A2

S1 S2

cA1 cD cA2

uA1 uD uA2

(b) Cascading effect.

Fig. 2. Some generalizations for the bi-threat problem. 

A1 D A2

S1 S2

cD

uD

(a) Defender’s problem.

D A2

S2

cA2

uA2

(b) Attacker A2.

A1 D A2

S1 S2

cA1

uA1

(c) Attacker A1.

Fig. 3. Solving the bi-threat problem with cascading effect. 

Algorithm 1: Simulating the problem for attacker A 1 . 

for d ∈ D 

for k = 1 to K 

for a 1 ∈ A 1 

Draw 

(
u k A 1 , p 

k 
A 1 

)
∼

(
U A 1 , P A 1 

)
Compute ψ 

k 
A 1 

(d , a 1 ) = 

∫ 
u k A 1 (a 1 , s 1 ) p 

k 
A 1 

(s 1 | d , a 1 ) ds 1 
Compute a k 1 (d ) = arg max a 1 ∈A 1 ψ 

k 
A 1 

(d , a 1 ) 

Approximate ̂ p D (a 1 | d ) ≈ # { 1 ≤ k ≤ K : a k 1 (d ) ≤ a 1 } / K 
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Alternatively, there could be a cascading effect between the at-

tack results. For example, see Fig. 2 b, assuming that m = 2 , it could

be that s 2 affects s 1 , so that p D ( s 1 | d , a 1 ) p D ( s 2 | d , a 2 ) in (1) be-

comes p D ( s 1 | d , a 1 , s 2 ) p D ( s 2 | d , a 2 ). Under this assumption, the gen-

eral scheme required to estimate ̂ p D (a i | d) , i = 1 , . . . , m cannot be

implemented in parallel, but requires some sequentiality, as shown

below and illustrated in our case study. 

The influence diagram for the Defender’s problem in this latter

case is shown in Fig. 3 a, where the attacks appear now as chance

nodes. 

Now, the expected utility for the Defender is 

ψ D (d| a 1 , a 2 ) = 

∫ ∫ 
u D (d, s 1 , s 2 ) p D (s 1 | d, a 1 , s 2 ) 

× p D (s 2 | d, a 2 ) d s 1 d s 2 . 

After integrating out the uncertainty over the attacks, we obtain

her expected utility 

ψ D (d) = 

∫ ∫ 
ψ D (d| a 1 , a 2 ) p D (a 1 | d) p D (a 2 | d) d a 1 d a 2 , 

and she obtains the optimal portfolio d ∗ through max ψ ( d ). 
d D 
We need to assess p D ( a 1 | d ) and p D ( a 2 | d ). We start with p D ( a 2 | d ).

he influence diagram for A 2 is sketched in Fig. 3 b. Since the re-

ult of the attack performed by A 2 influences—but is not influ-

nced by—that of A 1 , the estimation of p D ( a 2 | d ) is similar to that

f p D ( a 1 | d ) in the initial basic formulation, as outlined in (2), (3)

nd Algorithm 1 . 

Once we have dealt with the problem referring to A 2 , we may

ddress the problem for A 1 , whose influence diagram is shown in

ig. 3 c. We need to consider the influence of chance node 
A2 (for

im). Indeed, he needs to maximize his expected utility incorpo-

ating his uncertainty about the attacking decision a 2 (given the

efense d ) 

 

∗
1 (d) = argmax 

a 1 ∈A 1 

∫ ∫ ∫ 
u A 1 (a 1 , s 1 ) p A 1 (s 1 | d, a 1 , s 2 ) p A 1 (s 2 | d, a 2 ) 

× p A 1 (a 2 | d) d s 1 d s 2 d a 2 . 

n general, the Defender will not know u A 1 , p A 1 (s 1 | d, a 1 , s 2 ) ,

p A 1 (s 2 | d, a 2 ) and p A 1 (a 2 | d) , but she may acknowledge her un-

ertainty about them through random utilities and probabilities

U A 1 
, P A 1 (s 1 |·) , P A 1 (s 2 |·) , P A 1 (a 2 |·) 

)
, and propagate that uncertainty

o obtain the random optimal attack for each d 

 

∗
1 (d) = argmax 

a 1 ∈A 1 

∫ ∫ ∫ 
U A 1 (a 1 , s 1 ) P A 1 (s 1 | d, a 1 , s 2 ) P A 1 (s 2 | d, a 2 ) 

× P A 1 (a 2 | d) d s 1 d s 2 d a 2 . 

nce with A 

∗
1 (d) , she can obtain p D (a 1 | d) = Pr (A 

∗
1 (d) ≤ a 1 ) , which

an be estimated following a sampling scheme similar to that in

lgorithm 1 . 

For this, we need to assess 
(
U A 1 

, P A 1 (s 1 | d, a 1 , s 2 ) , P A 1 (s 2 | d, a 2 ) ,

 A 1 
(a 2 | d) 

)
, and 

(
U A 2 

, P A 2 (s 2 | d, a 2 ) 
)
. With respect to the random

robabilities, we could base them on the corresponding assess-
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Fig. 4. Influence diagram when evaders and pickpockets are present. 
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ents for the Defender, p D ( s 1 | d , a 1 , s 2 ), p D ( s 2 | d , a 2 ) and p D ( a 2 | d ),

ossibly as we illustrate for P A 2 (s 2 | d, a 2 ) : 

• Should S 2 be discrete, P A 2 (s 2 | d, a 2 ) could be modeled as a

Dirichlet distribution with mean p D ( s 2 | d , a 2 ) and variance ac-

counting for the incumbent uncertainty. In particular, when S 2 
is binary, P A 2 (s 2 | d, a 2 ) would be modeled as a beta distribution,

see ( French & Ríos Insua, 20 0 0 ). 
• Should S 2 be continuous, then P A 2 (s 2 | d, a 2 ) could be a Dirich-

let process with base distribution p D ( s 2 | d , a 2 ) and concentra-

tion parameter δ expressing our uncertainty about such base,

see ( Ferguson, 1973 ). 

For both cases, when lacking information, we could use a suf-

ciently large value for the variance or concentration parameter,

espectively. Note also that, for some probability distributions p D (

), we might have available a sample through Monte Carlo simu-

ation, as e.g. for p D ( a 2 | d ), which would have been obtained after

pplying Algorithm 1 to the problem for attacker A 2 . Should this

appen, we could use the sample variance associated with p D ( ·)
o describe our uncertainty about the corresponding P A 2 (·) , adjust-

ng the variance (or concentration parameter) accordingly. 

As for the random utility, typically we shall have information

bout the interests and objectives of the attackers, see ( Keeney,

007 ) or ( Keeney & von Winterfeldt, 2010; 2011 ), which we would

ggregate with a weighted measurable value function, as by Dyer

nd Sarin (1979) . Based on the relative risk aversion concept, see

 Dyer & Sarin, 1982 ), we could assume risk proneness on the at-

ackers. Finally, the uncertainty would be reflected by distributions

ver the weights and risk proneness coefficients. The proposed

odels for random probabilities and utilities are illustrated within

ur case study. 

Wang and Bier (2013) provide another approach for assessing

dversary preferences using ordinal judgments and the probabilis-

ic inversion method, see ( Kraan & Bedford, 2005 ). 

. Protecting a railway station from fare evasion and 

ickpocketing 

We consider the case of a railway operator ( D ) which needs to

rotect a single station from two threats: fare evasion and pick-

ocketing. The operator has to deal with two types of fare evaders:

1) Standard, regarded as unintentional, who do not pay for the

ervice in a casual manner; and (2) Colluders ( A 1 ), who are in-

entional fare evaders preparing their evasion actions in an orga-

ized way. Reddy, Kuhls, and Lu (2011) provide related work ad-

ressing fare evasion, studied in detail by Ríos Insua, Cano, Pellot,
nd Ortega (2015b) . We model pickpockets ( A 2 ) as a single orga-

ized group, see ( Troelsen & Barr, 2012 ) on combating pickpocket-

ng in public transportation. For this threat, we focus on both se-

urity and image costs, as pickpocketing may decrease the feeling

f security, affecting the operator business level. 

When the operator faces both threats simultaneously, this can

e viewed as a bi-threat Sequential Defend-Attack model with cas-

ading effect, whose influence diagram, adapted from Fig. 2 b, is

hown in Fig. 4 . Light gray nodes refer to fare evasion, dark gray

odes to pickpocketing and white nodes correspond to the opera-

or’s problem. 

The decision node “Countermeasures” refers to the portfolio de-

loyed by the operator to reduce: (1) The theft level; and (2) The

roportion of standard fraudsters and colluders. With respect to

ickpockets, we have uncertainty about the number of thefts and,

onsequently, on its impact over business level. Pickpockets face

osts when preparing their actions, as well as the possibility of

eing fined if caught red-handed. When successful, they obtain a

oot. For fare evasion, we have uncertainty about the proportion

f (standard) fraudsters and the number of customers (influenced,

n turn, by the theft level), from which we obtain the fraud cost.

n the other hand, colluders would decide the proportion of fare

vasion they would undertake, although the actual proportion, as

eflected in node “Prop. of colluders”, would depend also on the

eans implemented by the operator. For clarity, we keep fraud

osts due to standard evaders and colluders separately, but aggre-

ate them in the deterministic node “Costs”. We assume that col-

uders and pickpockets do not coordinate their criminal activities. 

The operator can deploy eight different types of countermea-

ures, displayed in Table 1 . The first five fight fare evasion, whereas

he last four are addressed towards pickpockets (the fifth one could

ffect both threats). We aim at supporting the operator in devising

n optimal security portfolio. We provide a detailed model of the

roblem and, then, fully illustrate the required assessments and

mplementation. 

.1. Case modeling 

Let ( d 1 , d 2 , d 3 , d 5 , d 6 , d 7 ) be, respectively, the inspectors, door

uards, secured automatic access doors, guards, patrols and cam-

ras to be deployed. Their associated unit costs over the planning

eriod will be, respectively, q 1 , q 2 , q 3 , q 5 , q 6 and q 7 . We also use

 binary decision variable d 4 ∈ {0, 1}, with d 4 = 1 indicating the

nvolvement of ticket clerks in observation tasks, and d 4 = 0 , oth-

rwise. As clerks are already hired by the operator, there are no

dditional direct costs associated with the reassignment of their
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Table 1 

Relevant features of countermeasures. 

Role Features 

Fare evasion Pickpocketing 

Inspectors Preventive/recovery — Inspect customers. Collect fines 

Door guards Preventive — Control access points 

Doors Preventive — New secured automatic access doors 

Ticket clerks Preventive — Currently, no implication in security 

Guards Preventive Preventive/recovery Patrol along the facility 

Patrols — Preventive/recovery Trained guard+security dog 

Cameras — Preventive Complicate pickpocket actions 

Awareness campaign — Preventive Alert users about pickpockets 
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duties. However, making them switch from a passive to a proactive

attitude towards the fare evasion problem could entail negative

implications in terms of troubles with unions. We monetize this

assuming a cost q 4 for that. We also assume that a public aware-

ness plan costs q 8 . A binary decision variable d 8 ∈ {0, 1} models

its implementation, with d 8 = 1 meaning that the operator pays

for the awareness plan, and d 8 = 0 , otherwise. The budget avail-

able for the relevant planning period will be B . Then, the feasible

security portfolios d = (d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 ) will satisfy 

q 1 d 1 + q 2 d 2 + q 3 d 3 + q 5 d 5 + q 6 d 6 + q 7 d 7 + q 8 d 8 ≤ B, 

d 1 , d 2 , d 3 , d 5 , d 6 , d 7 ≥ 0 , 

d 1 , d 2 , d 3 , d 5 , d 6 , d 7 integer , 

d 3 ≤ d̄ 3 , 
d 4 , d 8 ∈ { 0 , 1 } , 

(4)

where d̄ 3 is the maximum number of access doors that may be

replaced in the station. 

3.1.1. Pickpocketing 

Pickpocket gangs are organized groups, taking advantage of

crowded situations. Typically, a pickpocket perpetrates the theft,

while his colleagues cover him and try to run away with the loot.

The event flow for a pickpocket attempt is: (a) Some pickpockets

will succeed in committing their theft; (b) Out of them, some will

not be caught, getting the loot; (c) Otherwise, they will be caught

red-handed, losing the loot and being fined. Should they try to

evade the fine, they could be imprisoned, but this rarely happens,

since it is better for pickpockets to pay off the fine immediately

and return to “business as usual”. The gang will attempt to commit

t thefts over the relevant planning period. t will be their decision

variable. 

Operator’s dynamics. In the pickpocketing problem, the operator:

(a) Invests d p = (d 5 , d 6 , d 7 , d 8 ) ; (b) Faces the corresponding delin-

quency level; (c) Possibly observes a reduction in business; (d) Ob-

tains her utility, which will depend on the change in business level

and its operational costs. 

The security investment costs for the operator against pickpock-

eting are 

c (2) 
inv 

(d 5 , d 6 , d 7 , d 8 ) = q 5 d 5 + q 6 d 6 + q 7 d 7 + q 8 d 8 . (5)

As for the business level b , the operator considers that it will not

change much, unless there is a large number of thefts. We use an

average logistic response to model this, see Fig. 5 : 

E[ b| t] = 

b 0 − b r 

1 + exp [ γb (t − t 0 . 5 )] 
+ b r , t > 0 . (6)

Here, b 0 is the ideal business level, free of the pickpocketing

threat (for t 0 � t 0.5 , E [ b | t 0 ] does not differ much from b 0 ); b c is the

business level given the current theft level t c ; and b r is the busi-

ness level for a large number of thefts: as pickpocketing surpasses
 threshold, the business level will tend to attenuate its reduc-

ion stabilizing around b r . t 0.5 designates the number of thefts for

hich the total expected business level reduction b 0 − b r would be

alved. γ b reflects how business level would drop as the number

f thefts increases. We assume a normal distribution for p D ( b | t ),

entered at E [ b | t ], with standard deviation σ b accounting for the

ncertainty over b | t . Depending on the scale, we might need to

runcate p D ( b | t ) at 0. The total balance for the operator will be 

 

(2) 
D 

(d 5 , d 6 , d 7 , d 8 , b) = −c (2) 
inv 

(d 5 , d 6 , d 7 , d 8 ) − (b 0 − b) . 

ickpockets’ dynamics. The problem faced by pickpockets is de-

icted in Fig. 6 . 

Their event flow involves the following steps, where we pro-

ide, when pertinent, the operator’s assessments p D ( ·) about the

nvolved quantities together with her assessments P A 2 (·) about

he corresponding pickpocket’s random distributions, following the

uggestion at the end of Section 2 , concerning Dirichlet distribu-

ions and processes. 

(a) They see the operator’s security investments d p =
(d 5 , d 6 , d 7 , d 8 ) . 

(b) They decide the number t ∈ A 2 of theft attempts they will

undertake, being A 2 the set of plausible values. 

(c) They implement the actual number of theft operations,

t ′ = (1 − τ ) t: due to the measures deployed by the op-

erator, some operations may need to be aborted. We
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use a model t ′ = (1 − τ (d 5 , d 6 , d 7 )) t, where τ ( d 5 , d 6 , d 7 )

is the proportion of aborted thefts with respect to the

original plan, which depends on d 5 , d 6 , d 7 . A typ-

ical assumption for τ would be a beta distribution

p D (τ (d 5 , d 6 , d 7 )) ∼ Be (ατ (d 5 , d 6 , d 7 ) , βτ (d 5 , d 6 , d 7 )) , with τ
close to zero if we feel that pickpockets are very commit-

ted to their plan, thus with ατ � βτ . Then, we model

P A 2 (τ (d 5 , d 6 , d 7 )) as a Dirichlet process with base distribu-

tion p D ( τ ( d 5 , d 6 , d 7 )) and concentration parameter δτ . The

random distribution P A 2 (τ (d 5 , d 6 , d 7 )) = P A 2 (τ | d 5 , d 6 , d 7 ) in-

duces P A 2 (t ′ | t, d 5 , d 6 , d 7 ) . 
(d) The implementation costs of their actions are q p t , where q p 

is the preparation cost per operation. 

(e) They face their operational costs per each effectively at-

tempted operation: 

1. With probability (1 − ξ ) , they will not succeed in the

theft attempt. The only consequences are the prepara-

tion costs. The proportion ξ of successful operations de-

pends on the pickpockets’ ability. However, the presence

of patrols and/or guards, and the influence of aware-

ness campaigns will reduce such value. We model the

operator’s beliefs about ξ through a beta distribution

p D (ξ (d 5 , d 6 , d 8 )) ∼ Be (αξ (d 5 , d 6 , d 8 ) , βξ (d 5 , d 6 , d 8 )) with

standard deviation σ ξ and mean 

E[ ξ | d 5 , d 6 , d 8 ] = ξ0 · exp (−μ5 d 5 − μ6 d 6 − μ8 d 8 ) + ξr . 

Here, μ5 , μ6 and μ8 account for the fact that each ad-

ditional unit of ( d 5 , d 6 , d 8 ) is expected to reduce the

proportion of successful operations. (ξ0 + ξr ) represents

the current success proportion, if no additional coun-

termeasures are deployed, and ξ r the residual propor-

tion that would persist, even if infinite resources ( d 5 , d 6 ,

d 8 ) were deployed. Again, we use a Dirichlet process for

P A 2 (ξ (d 5 , d 6 , d 8 )) ∼ DP 

(
p D (ξ (d 5 , d 6 , d 8 )) , δξ

)
. 

2. With probability ξθ , they succeed in their theft attempts

but are detained afterwards, facing the possibility of be-

ing fined with average fine f p . The detention proportion

θ depends on the number of patrols and guards. How-

ever, such dependence will not be linear: the operator

believes that the additional contribution of each new pa-

trol or guard will be smaller. To acknowledge the op-

erator’s uncertainty about θ , we use a beta distribution

p D (θ (d 5 , d 6 )) ∼ Be (αθ (d 5 , d 6 ) , βθ (d 5 , d 6 )) with standard

deviation σ θ and mean 

E[ θ | d 5 , d 6 ] = 1 − exp (−ρ5 d 5 − ρ6 d 6 ) , 

where ( ρ5 , ρ6 ) account for the fact that each additional

unit ( d 5 , d 6 ) is expected to increase the detention pro-

portion. Then, P A 2 (θ (d 5 , d 6 )) ∼ DP 

(
p D (θ (d 5 , d 6 )) , δθ

)
. 

3. With probability ξ (1 − θ ) , they succeed and avoid get-

ting caught. They get the theft benefit � , which is uni-

formly distributed � ∼ U(� a , � b ) . 

(f) The pickpockets face an expected cost/benefit balance 

c A 2 (t 1 , t 2 , t 3 ) = −q p t − f p t 2 + �t 3 , 

where ( t 1 , t 2 , t 3 ) come from a multinomial distribution 

M 

(
t ′ ; 1 − (1 − τ ) ξ , (1 − τ ) ξθ, (1 − τ ) ξ (1 − θ ) 

)
. 

When necessary, we shall use 

p t 1 t 2 t 3 d p = Pr (t i theft attempts with outcome i, 

i = 1 , 2 , 3 | d p is invested ) , 

where outcome = { 1 , 2 , 3 } corresponds to the pick-

pocket cases described in (e). The random distributions

P A 2 (ξ (d 5 , d 6 , d 8 )) = P A 2 (ξ | d 5 , d 6 , d 8 ) and P A 2 (θ (d 5 , d 6 )) =
P A 2 (θ | d 5 , d 6 ) induce the random distribution P A 2 (c A 2 | t, d p ) . 
(g) The pickpockets get their utility, which depends on the loot

and costs entailed in implementing their decision. We as-

sume that pickpockets are constant risk prone in benefits,

see ( Dyer & Sarin, 1982 ). Therefore, their utility function is

strategically equivalent to 

u A 2 (c A 2 ) = exp (k A 2 · c A 2 ) , k A 2 > 0 . 

A random utility model for the pickpockets could be 

U A 2 (c A 2 ) = exp (k A 2 · c A 2 ) , k A 2 ∼ U(0 , K A 2 ) . 

s a consequence, the pickpockets get their random expected util-

ty 

A 2 (t ′ , t, d p ) = 

∫ ∫ [ ∑ 

t 1 ,t 2 ,t 3 

p t 1 t 2 t 3 d p U A 2 

(
−q p t − f p t 2 + �t 3 

)]
× P A 2 (ξ | d 5 , d 6 , d 8 ) P A 2 (θ | d 5 , d 6 ) d ξ d θ . 

e integrate out the uncertainty over t ′ to get the random ex-

ected utility 

A 2 (t, d p ) = 

∫ 
A 2 (t ′ , t, d p ) P A 2 (t ′ | t, d p ) d t ′ . 

hen, we find the pickpocket’s random optimal theft level, given

he defense d p , through 

 

∗(d p ) = argmax 
t∈A 2 

A 2 (t, d p ) . 

e would simulate as in Algorithm 1 to obtain an estimate of the

ickpocket’s random optimal decision T given the security invest-

ent d p , so that p D (T ≤ t| d p ) = Pr (T ∗(d p ) ≤ t) . 

.1.2. Fare evasion 

The fare evasion problem is described in detail by Ríos Insua

t al. (2015b) . We provide a brief summary of the uncertainty mod-

ls involved, emphasizing the issue that the number of customers

epends on the theft level, reflecting the cascading effect men-

ioned above. 

In relation with standard fare evasion, we distinguish three

ypes of customers: (1) Civic, who pay the ticket; (2) Standard

vaders who do not pay the ticket but are not caught, therefore

roducing a loss of v c , the cost of the ticket; and (3) Standard

vaders who are caught without a ticket, producing an expected

ncome f c due to fines. Denote by N 1 , N 2 and N 3 the number of

ustomers of each type, with N = N 1 + N 2 + N 3 the total number of

ustomers. Let p N i d c be the probability that there are N i customers

f type i, i = 1 , 2 , 3 when the security plan d c = (d 1 , d 2 , d 3 , d 4 , d 5 )

s implemented. 

With respect to colluders, we view them as a “club” which en-

ails M operations over the incumbent planning period. Their event

ow is: (1) Some colluders eventually change their mind deciding

o pay when using the facility; (2) The rest decide not to pay; (3)

ome of these will be inspected and fined. This will partly mitigate

he operator losses associated with fare evasion. Colluders benefit

rom evading the ticket fare, but they face the possibility of being

ned, in addition to having some preparation costs. Denote by ( M 1 ,

 2 , M 3 ) the number of aborted, successful, and failed operations,

espectively, which we assume come from a multinomial distribu-

ion. Let p M 1 M 2 M 3 d c 
be the probabilities that there are M i colluders

f type i, i = 1 , 2 , 3 when d c is invested. 

The benefit/cost balance for the operator, due to fare evasion,

s 

 

(1) 
D 

(N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , d c ) = −v c (N 2 + M 2 ) + f c (N 3 + M 3 ) 

−
5 ∑ 

k =1 

q k d k . (7) 
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Table 2 

Planned investments (thousands of dollars). 

Measure Inspectors Door guards Doors Guards Patrols Cameras Campaign 

Max. 4 4 1 4 4 3 1 

Unit costs 50 25 15 30 35 4.5 40 
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3.1.3. Solving the operator’s bi-threat problem 

In Section 3.1.1 , we sketched how to solve the pickpocketing

problem from the point of view of the attacker. We obtained an

estimate of p D ( t | d p ). By Ríos Insua et al. (2015b) , we show how to

obtain p D ( r | d c ), which models the operator beliefs over the propor-

tion r of fare evasion attempted by colluders, when the security

investment was d c . Note that we need to adapt the methodology

described there to incorporate the inherent cascading effect, as the

number of customers will be affected by the presence of pickpock-

ets through the business level. We explain this in Section 3.1.4 . 

We aggregate now all benefits and costs for the operator, using

(5) and (7) . This includes the investment in countermeasures, the

fraud/fine balance associated with fare evasion, and the reduction

in business level due to pickpocketing: 

c D (N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , d, b) = −v c (N 2 + M 2 ) + f c (N 3 + M 3 ) 

−
8 ∑ 

k =1 

q k d k − (b 0 − b) . 

The operator is constant risk averse to an increase in income, see

( Dyer & Sarin, 1982 ). Therefore, her utility function u D will be

strategically equivalent to u D (c D ) = − exp (−k D · c D ) , with k D > 0. 

We may now evaluate a security portfolio d by computing its

expected utility: 

ψ D (d) = 

∫ {∫ ∫ [ ∑ 

N 1 ,N 2 ,N 3 
M 1 ,M 2 ,M 3 

p M 1 M 2 M 3 d c · p N 1 d c p N 2 d c p N 3 d c · u D (c D ) 

]

× p D (t| d p ) p D (b| t) d t d b 

}
× p D (r| d c ) d r. (8)

We would then maximize ψ D ( d ), subject to (4) , to find the optimal

security plan. 

3.1.4. Model assessments 

We illustrate the model considering a specific railway station,

with features representative of many others in the operator net-

work, with a single street level entrance, and a moderate daily

flow of customers. We choose one year as the relevant planning

period, since the security budget is planned annually. The available

annual security budget for new countermeasures at this station is

$10 0,0 0 0, to be shared against both threats. 

Table 2 displays the maximum additional investments over the

planning period that the operator contemplates for each counter-

measure, as well as their associated unit costs. 

For human resources, we have provided unit annual gross

salaries. The operator would have to hire four full-time

(35 hours/week) workers of each category to fully cover ser-

vice, since the station operates approximately 140 hours weekly.

We also include the overall cost of installing a secured automatic

access door over a whole year, including maintenance and repair,

taking into account the typical door lifetime and, similarly, for

costs associated with cameras. There are 324 feasible portfolios.

As for the redefinition of clerk duties, the operator estimates that

the negotiation with unions over a whole year could cost, in terms

of labor troubles, approximately, $15,0 0 0 (per station). 

We discuss now the assessment of the relevant parameters for

the pickpocketing threat. With respect to theft level, the operator

estimates that, approximately, only one out of every nine thefts
s actually reported, and acknowledges, on average, three reported

hefts per day across the network. This is roughly equivalent to

0,0 0 0 thefts throughout a year. The network has over 100 sta-

ions, of which the incumbent station cannot be regarded as a

otspot. Then, the operator estimates that the current annual num-

er of thefts at such station would be around one half of the aver-

ge value per station. Thus, she chooses a binomial distribution for

he current theft level t c ∼ Bin (100 , 0 . 5) (expected value 50, stan-

ard deviation 5). 

We estimate the reduction in business level due to the pres-

nce of pickpockets through the number of annual sold tickets,

hich has been around 1,0 0 0,0 0 0 over the last five years. As there

re different transportation passes, the effective fare ticket is esti-

ated at v p = $0.75. Then, we set b c = $750,0 0 0. The operator be-

ieves that the ideal business level, without pickpockets, would be

round b 0 = $760,0 0 0. In addition, she thinks that business level

ould never drop below 80% of its current value, i.e. b r = $60 0,0 0 0,

ven for an excessively large number of thefts. She would ex-

ect one half of such reduction if the number of thefts doubles,

.e. t 0 . 5 = 100 , see Fig. 5 . She does not think that deterioration in

usiness will happen drastically and she assesses γb = 0 . 08 . There-

ore, it seems reasonable to use t ∈ { 0 , 1 , . . . , 150 } = A 2 as possible

alues for the pickpockets’ decision variable. Finally, the operator

oes not have great uncertainty about the expected value of E [ b | t ],

hoosing σb = $8 , 0 0 0 . 

We have estimated the costs and consequences for pickpockets

ased on expert judgment: 

• Preparation costs are estimated at $7 per attempted operation.

This accounts for the ticket fare plus some expenses for daily

food, drink and clothes. 
• The fine in case of being caught red-handed depends, to some

extent, on the amount robbed. For simplicity, we assume an av-

erage fine f p = $600 for the whole gang. 
• According to the data collected by the operator from theft com-

plaints, the loot obtained by the whole gang varies uniformly

between � a = $150 and � b = $375. For this, we have used a flat

improper prior distribution ( π(� ′ 
b 
) = 1 for � ′ 

b 
= � b − � a > 0 , see

( Rossman, Short, & Parks, 1998 ). 
• The estimation of the proportion ξ of successful operations is

an involved issue, given that little data is available. We have

assessed the current proportion ξ0 + ξr through a beta Be (3 , 1)

distribution. The operator aims at reducing this proportion to a

target value of ξr = 0 . 05 . We assessed ( μ5 , μ6 , μ8 ) through ex-

pert elicitation. As an illustration, assume that the d 5 guards

were the only countermeasure available. Our experts consid-

ered that having one guard would reduce the success propor-

tion from 0.75 to approximately 0.55. Consequently, we as-

sessed μ5 = 0 . 35 . We checked for robustness of the assessment,

asking the experts about the expected reduction in success pro-

portion if more than one guard were hired, obtaining consis-

tent results. We repeated the same reasoning when varying the

number of patrols, obtaining μ6 = 0 . 55 . The estimation of μ8 

was accomplished using the only possible values, d 8 = { 0 , 1 } ,
leading to μ8 = 0 . 25 . The operator expressed little uncertainty

about her assessment of the Attacker’s distribution. Thus, we

assessed δξ = 0 . 05 . 



D. Ríos Insua et al. / European Journal of Operational Research 252 (2016) 888–899 895 

Table 3 

Expected utilities for representative portfolios for different fare evasion proportions. 

φ0 + φr = 0 . 03 φ0 + φr = 0 . 06 φ0 + φr = 0 . 12 

d Invest. ψ( d ) Income d Invest. ψ( d ) d Invest. ψ( d ) 

(1, 0, 0, 0, 0, 1, 0, 0) 850 0 0 −2.03 −171585 (2, 0, 0, 0, 0, 0, 0, 0) 10 0 0 0 0 −2.59 (2, 0, 0, 0, 0, 0, 0, 0) 10 0 0 0 0 −2 .99 

(0, 4, 0, 0, 0, 0, 0, 0) 10 0 0 0 0 −4.72 −310277 (0, 4, 0, 0, 0, 0, 0, 0) 10 0 0 0 0 −6.02 (0, 4, 0, 0, 0, 0, 0, 0) 10 0 0 0 0 −9 .82 

(0, 0, 1, 0, 0, 0, 0, 0) 150 0 0 −3.32 −239770 (0, 0, 1, 0, 0, 0, 0, 0) 150 0 0 −4.90 (0, 0, 1, 0, 0, 0, 0, 0) 150 0 0 −10 .45 

(0, 0, 0, 0, 0, 0, 3, 0) 13500 −3.54 −252791 (0, 0, 0, 0, 0, 0, 3, 0) 13500 −5.77 (0, 0, 0, 0, 0, 0, 3, 0) 13500 −15 .31 

(0, 0, 0, 0, 0, 0, 0, 1) 40 0 0 0 −4.07 −280640 (0, 0, 0, 0, 0, 0, 0, 1) 40 0 0 0 −6.52 (0, 0, 0, 0, 0, 0, 0, 1) 40 0 0 0 −17 .72 

(0, 4, 0, 1, 0, 0, 0, 0) 10 0 0 0 0 −5.09 −325518 (0, 4, 0, 1, 0, 0, 0, 0) 10 0 0 0 0 −6.49 (0, 4, 0, 1, 0, 0, 0, 0) 10 0 0 0 0 −10 .53 

(0, 1, 1, 1, 2, 0, 0, 0) 10 0 0 0 0 −6.82 −383989 (0, 1, 1, 1, 2, 0, 0, 0) 10 0 0 0 0 −8.69 (0, 1, 1, 1, 2, 0, 0, 0) 10 0 0 0 0 −14 .12 

(0, 0, 0, 1, 2, 0, 0, 1) 10 0 0 0 0 −6.86 −385086 (0, 0, 0, 1, 2, 0, 0, 1) 10 0 0 0 0 −8.88 (0, 0, 0, 1, 2, 0, 0, 1) 10 0 0 0 0 −15 .15 
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• Mimicking the argument, we estimated ρ5 = 0 . 15 and ρ6 = 0 . 4

for the detention proportion θ , with concentration parameter

δθ = 0 . 08 . 

Finally, we assessed the risk coefficient k D in the operator’s util-

ty function. We used the probability equivalent (PE) method, see

 Farquhar, 1984 ), to assess a few values for the utility function and,

hen, fit an appropriate curve through least squares, obtaining a

ood fit for k D = 5 · 10 −6 . With respect to pickpockets, based also

n the PE method, and taking into account the Defender’s uncer-

ainty about the pickpockets’ behavior, we assessed the maximum

isk coefficient in the pickpockets’ utility function, K A 2 
= 10 −5 . 

The assessment of the parameters in relation with the fare eva-

ion threat is based on the discussion by Ríos Insua et al. (2015b) ,

lthough, as mentioned, here we have to incorporate the cascad-

ng effect arising from pickpocketing. We briefly outline the re-

ults for those parameters needed to solve the bi-threat problem.

he average number N of customers will depend on the number

 of thefts through the average business level b as expressed in

6) . We modeled N as a Poisson distribution, N ∼ Pois (λ) , with

= b/ 0 . 75 , inheriting the uncertainty in b . In addition, ( N 1 , N 2 , N 3 )

ill follow (conditionally independent given d c ) Poisson distribu-

ions with parameters λ1 = λ(1 − φ(d c )) , λ2 = λφ(d c )(1 − q (d 1 ))

nd λ3 = λφ(d c ) q (d 1 ) , respectively, being φ( d c ) the proportion of

raudsters and q ( d 1 ) that of customers inspected, see ( Ríos Insua

t al., 2015b ) for details. For the number of colluder operations

 , we use a Poisson-gamma model, with diffuse, but proper, prior

or the Poisson parameter μ, see ( French & Ríos Insua, 20 0 0 ). We

btained that, a posteriori, μ| data ∼ G(150 0 0 0 . 1 , 5 . 1) , which shall

e estimated, when necessary, through its posterior expectation

 ( μ| data ) ≈ 30 0 0 0. 

For the proportion of fraudsters we assume a model φ(d c ) =
0 · exp 

(
− ∑ 5 

k =1 γk d k 
)

+ φr . We use a beta-binomial model for the

urrent fraud proportion, (φ0 + φr ) , with a noninformative prior,

ee ( French & Ríos Insua, 20 0 0 ). Based on information provided

y the operator, we get the posterior Be (3 · 10 4 + 1 , 10 6 + 1) , with

xpected value 0.03 and negligible variance. The reduced target

are evasion proportion is 0.01. The γ k ’s were assessed through

xpert elicitation, much the same as we did for the μj ’s, obtain-

ng γ1 = 0 . 13 , γ2 = 0 . 72 , γ3 = 0 . 45 , γ4 = 0 . 23 and γ5 = 0 . 84 . Other

elevant parameters are the fare ticket (for the fare evasion threat,

e consider the single-ride fare, v c = $2) and the average fine in

ase someone is caught without a valid ticket ($100). However, ac-

ording to the metro operator, approximately only one sixth of the

mposed fines are actually paid off, giving an effective average fine

er caught evader of, roughly, $17. We shall use this value for f c in

ur computations. 

.1.5. Solution 

We discuss the case solution. We have simulated 10,0 0 0 years

f operations for each portfolio d , to identify the optimal one. Fig. 7

hows the estimated expected utility of the 324 feasible portfolios.
From left to right, the portfolio numbering begins with portfolio

1, d = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ; portfolio #2, d = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 1) ;

nd so on, increasing sequentially the values in d 8 , d 7 , . . . , d 2 and

 1 , being the last feasible portfolio #324, d = (2 , 0 , 0 , 1 , 0 , 0 , 0 , 0) .

he optimal portfolio is d ∗ = (1 , 0 , 0 , 0 , 0 , 1 , 0 , 0) , #276, corre-

ponding to hiring one inspector and one patrol. Its estimated ex-

ected utility is −2 . 03 , associated investment $85,0 0 0, and global

xpected decrease in income for the operator $171,585 (due to the

nvestment, plus the expected balance between the fraud and the

ollected fines, which is −$42,980, and the expected reduction in

usiness level, which amounts to $43,605). The next two portfo-

ios with highest expected utilities are d ∗∗ = (1 , 0 , 0 , 0 , 0 , 1 , 1 , 0) ,

orresponding to one inspector, one patrol and one camera, with

ssociated investment of $89,500 and expected losses of $177,492;

nd d ∗∗∗ = (1 , 0 , 0 , 1 , 0 , 1 , 0 , 0) , corresponding to one inspector and

ne patrol, and the involvement of clerks in observation tasks, with

ssociated investment of $85,0 0 0, and expected losses of $185,656.

s we can observe, when the operator faces multiple threats with

imilar impact, she has to distribute her available resources to fight

gainst all threats. The optimal portfolio includes countermeasures

pecific to each threat: inspectors and patrols. Note that although

atrols are more expensive than guards, they are preferable be-

ause of their higher deterrent effect. 

The left column of Table 3 shows similar results for other rel-

vant portfolios. We have included (when feasible) those portfo-

ios for which the investment is maximum in one of the coun-

ermeasures, with no investment in the other ones. We have

lso considered those portfolios with highest investments. As we

an observe, these are not necessarily the most effective ones

n terms of operator’s expected utility. For instance, the portfo-

io in the last row exhausts the available budget, and incurs in

dditional costs associated with the change in clerk duties. How-

ver, its expected utility is worse ( −6 . 86 ) than that of the optimal

ortfolio ( −2 . 03 ). 

Due to the complexity of the model and that many parameters

re assessed judgmentally, we need to perform sensitivity anal-

sis. We assess here possible sensitivity to variations in the fare

vasion proportion. Note first that the proportion estimated above

 φ0 + φr = 0 . 03 ) is not constant but, rather, depends on the specific

ay and time considered, varying between 0.005 and 0.12, accord-

ng to the operator. We are interested in evaluating the impact of

igher proportions on the operator’s costs. For this, we repeat the

revious calculations for proportions 0.06 and 0.12, shown in the

entral and right columns of Table 3 , respectively. As we can ob-

erve, under higher fare evasion proportions, the operator needs to

ake bigger investments. The optimal portfolio in both cases is (2,

, 0, 0, 0, 0, 0, 0), corresponding to hiring two inspectors, with as-

ociated investment of $10 0,0 0 0 and expected losses of $190,207

nd $137,218, respectively. The second best portfolio is (1, 0, 0, 0,

, 1, 0, 0) when φ0 + φr = 0 . 06 ; and (2, 0, 0, 1, 0, 0, 0, 0) when the

roportion is 0.12: just the optimal portfolio plus the expenses as-

ociated with the change in clerk duties. Under these settings, hir-
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Fig. 7. Operator’s estimated expected utility when both threats are present. 
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ing as many inspectors as possible becomes crucial, as they have

authority for imposing fines. 

These results suggest that when the relative impact of one of

the threats dominates, the operator might need to reallocate re-

sources to better fight against it, possibly unprotecting herself from

the other threats. However, we found model performance sensitive

to several other factors, especially to variations on the proportion

of tickets inspected by each new inspector. Thus, it is essential that

inspectors indeed carry out their task, so as to ensure an effective

fight against fare evasion. 

4. Multisite multithreat protection 

We consider now the multisite case. An organization needs to

protect from m threats over n sites. The threats are uncoordinated

and the sites are not spatially related. The strategy we apply is to

deploy one of the models in Section 2 over each site. Resource con-

straints for the Defender and for each of the attackers coordinate

the models. The Defender and each of the attackers aggregate val-

ues attained at nodes, applying their utility function. 

The Defender deploys defensive resources d j over site j, j =
1 , . . . , n . These must fulfill certain constraints which we repre-

sent through g(d) ∈ D, where d = (d 1 , . . . , d n ) . This might include,

among others, financial constraints concerning a maximum bud-

get; logistic constraints, like the impossibility of deploying certain

resources separately (e.g. a sniffer dog has to be always accom-

panied by trained personnel), or the requirement of having some

critical infrastructure protected 24/7; or political constraints, like

the need of having each site minimally protected. The i th attacker

will perform attack a ij over the j th site. In turn, each attacker’s

strategy should satisfy certain constraints h i (a i ) ∈ A i , where a i =
(a i 1 , . . . , a in ) , i = 1 , . . . , m . This might also account for financial

constraints, like a limited budget to buy sophisticated weapons or

instruct hackers; or human resource constraints, like the need of

having, ideally, a minimum number of attackers over each site,

among others. The interaction between the Defender and the i th

attacker over site j will yield a random result S ij . 

The Defender aggregates her results through u D (d, s 1 , . . . , s m 

) ,

where s 1 = (s 11 , . . . , s 1 n ) , . . . , s m 

= (s m 1 , . . . , s mn ) . She needs to find

her optimal defense strategy, d ∗, subject to the corresponding con-

straints. Under appropriate conditional independence assumptions

over attack results, she needs to build the conditional models
 D ( s ij | d j , a ij ), i = 1 , . . . , m, j = 1 , . . . , n, expressing her uncertainty

bout the outcome s ij of the attack a ij launched by attacker A i over

ite j when she has deployed defensive resources d j . By integrating

ut such uncertainty, she will get her expected utility: 

 D (d| a 1 , . . . , a m 

) = 

∫ 
· · ·

∫ 
u D (d, s 1 , . . . , s m 

) p D (s 11 | d 1 , a 11 ) · · ·
p D (s mn | d n , a mn ) d s 1 . . . d s m 

. 

uppose the Defender is able to build the models p D ( a ij | d j ), i =
 , . . . , m, j = 1 , . . . , n, reflecting her beliefs about which attack will

e chosen by attacker A i against site j , when protected by defensive

esources d j . Then, she will be able to compute 

 D (d) = 

∫ 
· · ·

∫ 
ψ D (d| a 11 , . . . , a mn ) p D (a 11 | d 1 ) · · · p D (a mn | d n ) 

× d a 11 . . . d a mn , 

nd solve max ψ D ( d ) subject to g(d) ∈ D. 

The assessments p D ( a ij | d j ), i = 1 , . . . , m, j = 1 , . . . , n are non-

tandard. Following the strategy in Section 2 , we can solve sepa-

ately the problem for attacker A i , who attacks sites 1 to n , subject

o constraints h i (a i ) ∈ A i , i = 1 , . . . , m . As an example, in order to

olve the problem faced by attacker A 1 , the Defender would need

is utility u A 1 (a 1 , s 1 ) and probabilities p A 1 (s 1 j | d j , a 1 j ) , j = 1 , . . . , n .

hen, she would solve the optimization problem 

 

∗
1 (d) = argmax 

h 1 (a 1 ) ∈A 1 

∫ 
· · ·

∫ 
u A 1 (a 1 , s 1 ) p A 1 (s 11 | d 1 , a 11 ) · · ·

× p A 1 (s 1 n | d n , a 1 n ) d s 11 . . . d s 1 n . 

owever, the Defender does not know u A 1 and the p A 1 ’s. To model

er uncertainty about them, she uses random utilities and proba-

ilities 
(
U A 1 

, P A 1 (s 11 |·) , . . . , P A 1 (s 1 n |·) 
)

and, then, propagates the un-

ertainty to obtain the m -dimensional random optimal action 

 

∗
1 (d) = argmax 

h 1 (a 1 ) ∈A 1 

∫ 
· · ·

∫ 
U A 1 (a 1 , s 1 ) P A 1 (s 11 | d 1 , a 11 ) · · ·

× P A 1 (s 1 n | d n , a 1 n ) d s 11 . . . d s 1 n . 

hen, she would get p D (A 1 ≤ a 1 | d) = Pr (A 

∗
1 
(d) ≤ a 1 ) . For an esti-

ate of p D ( a 1 | d ), we could proceed through a sampling scheme

imilar to that in Algorithm 1 . The problems faced by the other

ttackers A 2 . . . , A m 

will be solved in the same way, providing es-

imates ̂ p D (a i | d) , i = 2 , . . . , m of the required probabilities. Exten-

ions similar to those provided in Section 2 could be given here. 
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Table 4 

Optimal portfolio for the bi-threat problem in four stations. 

d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 Invest. ( −) Fines ( + ) Loss fare ( −) Loss pick. ( −) 

S 1 0 0 0 — 0 1 0 — 35,0 0 0 — 101,938 42,595 

S 2 0 0 0 — 0 1 0 — 35,0 0 0 — 114,280 33,757 

S 3 1 0 1 — 0 0 0 — 65,0 0 0 162,688 234,401 127,994 

S 4 0 0 2 — 0 1 0 — 65,0 0 0 — 394,731 78,290 

Total 1 0 3 1 0 3 0 0 20 0,0 0 0 162,688 845,170 282,636 
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c  
. Protecting from fare evasion and pickpocketing at several 

tations 

We extend the case in Section 3 to several stations. The railway

ystem analyzed in our case study comprises more than 100 sta-

ions. To better illustrate ideas, we consider a small representative

roup of n = 4 stations. As described before, we build a model like

hat in Section 3 for each station. Thus, for station j ∈ {1, 2, 3, 4},

e deploy resources d j ≡ ( d j 1 , d j 2 , d j 3 , d j 5 , d j 6 , d j 7 ), with meanings

s in Section 3.1 . The decision d 4 on whether or not to change the

lerk duties is made for the whole network; the associated costs

ill be proportional to the number of stations. The investment in

n awareness plan is also common for the entire network, and will

e denoted d 8 ∈ {0, 1}, with the same meaning as in Section 3.1 .

f the operator has a global budget B for investing in new counter-

easures, the resources will have to fulfill the constraints 

4 
 

j=1 

(
7 ∑ 

k =1 
k � =4 

q k d jk 

)
+ q 8 d 8 ≤ B, 

 ≤
4 ∑ 

j=1 

d jk ≤ d̄ k , k = 1 , . . . , 7 , k � = 4 , 

 jk integer , j = 1 , . . . , 4 , k = 1 , . . . , 7 , k � = 4 , 

 j3 ≤ d̄ j3 , j = 1 , . . . , 4 , 

 4 , d 8 ∈ { 0 , 1 } . 
ere, d̄ j3 is the maximum number of secured automatic access

oors that may be replaced at site j , and the d̄ k ’s, the overall max-

mum allowable number for each resource. Finally, note that some

dditional constraints could possibly apply for certain sites. 

We provide specific constraints and parameters for the exam-

le. Stations 1–3 have an average annual flow of customers of

,0 0 0,0 0 0, whereas Station 4 has 5,0 0 0,0 0 0 under current opera-

ional conditions. The security additional budget is $20 0,0 0 0 for

he network, on top of the current one. There is an additional re-

uirement that the investment at each station has to lie between

30,0 0 0 and $70,0 0 0, except for Station 4, in which the minimum

nvestment has to be $50,0 0 0. Besides, for image reasons, the in-

estment in the whole network has to be, at least, $120,0 0 0. Re-

ource upper bounds are d̄ k = 4 , k = 1 , 2 , 3 , 5 , 6 , and d̄ 7 = 8 . More-

ver, the operator indicates that, at most, two units of each coun-

ermeasure should be deployed at a single station. 

As the impact of both threats over the four incumbent stations

egards: 

• Stations 1 and 2. There are moderate levels of fare evasion, φ0 +
φr = 0 . 03 , M = 30 0 0 0 ; and pickpocketing: we assume a range

{ 0 , 1 , . . . , 100 } for t . 
• Station 3. There is a high level of fare evasion, φ0 + φr = 0 . 12 ,

M = 120 0 0 0 and a moderate level of pickpocketing. This is rep-

resentative of stations not so well protected against fare eva-

sion. It is required to hire, at least, one inspector. 
• Station 4. There is a moderate level of fare evasion and a

high pickpocketing level: we assume a range of values t ∈
{ 0 , 1 , . . . , 150 } . This is representative of pickpocketing hotspots,
typically busy stations close to main transport hubs. In this sta-

tion, the presence of, at least, a patrol is required. 

For simplicity, we consider just one group of pickpockets oper-

ting at each station, although they frequently belong to the same

ang and move between stations. We assume that countermea-

ures and attackers are static, in that they are not allowed to move

etween stations. This may sound unrealistic, but we have to keep

n mind that we are planning security in annual terms. Operational

ecisions, like patrolling routes, may be decided at a later stage,

ee our final discussion. 

There are 26 decision variables and 16 constraints. The num-

er of security portfolios is too large to implement the enumera-

ion strategy in Section 3 . Alternatively, we use a genetic algorithm,

ee ( Goldberg, 1989 ), with fitness function given by the operator’s

xpected utility, which generalizes (8) by including contributions

rom the four stations. In our computations, we have used the

uilt-in ga function with default options, implemented in MATLAB
2013b ( The MathWorks, 2013 ). Specifically, the algorithm

topped when the weighted average relative change in the best fit-

ess function value over 50 generations was less than or equal to

0 −6 . After 10,0 0 0 replications, we obtained the optimal portfolio,

hown in Table 4 , together with relevant information about invest-

ents at each station, expected money collected through fines, and

xpected losses due to fare evasion and pickpocketing. 

As we can observe, investing in door guards, cameras and the

wareness plan seems not worthwhile for the operator, given

he constraints. She should involve ticket clerks in observation

asks, with an impact on costs. Investments at Stations 1 and

 coincide, as expected, since both have similar features: the

perator invests $35,0 0 0 in one patrol. At Station 3, the main

ssue was fare evasion. Thus, in addition to the required inspector,

he optimal portfolio suggests installing an automatic access door,

ith associated overall investment of $65,0 0 0. Finally, Station 4

as the busiest one, implying a potentially greater impact of fare

vasion and, especially, pickpocketing. The presence of at least one

atrol was mandatory. Additionally, two automatic access doors

hould be installed at this station, with a global investment of

65,0 0 0. Under this policy, the annual expected losses for the

perator are $1,225,118, corresponding to $20 0,0 0 0 of investments

plus $60,0 0 0 of negotiation costs with the unions concerning

lerk duties), $6 82,4 82 in the fraud/fine balance, and $282,636

f business lost due to pickpocketing. This might seem a large

mount, but keep in mind that, should the operator not invest

n new countermeasures, the expected loss would be around

2.5 m: thanks to the deployed portfolio, the operator is able to

alve expected losses. Other portfolios entail minor changes with

espect to the optimal portfolio and have similar expected utility.

or instance, the second best portfolio, with annual expected

osses of $1,229,250 for the operator, simply changes the decision

n where to install an automatic access door: from Station 3 to

ither Station 1 or 2. 

Computations took around seven hours on a standard laptop

unning Windows . Table 5 summarizes computing times for sev-

ral stations and replications 

As we can observe, times are linear in the number of repli-

ations but nonlinear in the number of stations. Indeed, for the
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Table 5 

Computing times (in hours). 

# rep n = 4 n = 8 n = 16 n = 32 

10 0 0 0 .7 2 .7 6 .6 15 .6 

20 0 0 1 .4 5 .5 13 .2 31 .2 

30 0 0 2 .1 8 .2 19 .9 46 .9 
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whole network, with more than 100 stations, the computation

takes over one week with 10,0 0 0 replications. Even though com-

putations could be improved with faster parallel machines, recall

that this is a tactical decision made yearly, making such comput-

ing times actually acceptable. 

Beyond the computational burden induced by a large number

of sites, note that there might be considerable elicitation burden.

In our case study, we have assumed the same responses at vari-

ous stations, thus with the same parameters. But it could be the

case that different stations have different responses. One way to

mitigate such elicitation burden would be to somehow cluster sites

with similar features and perform the elicitation for just one of the

stations in the cluster. 

6. Discussion 

We have provided a methodology for protecting multiple sites

from multiple uncoordinated threats, based on ARA. First, we have

dealt with the multithreat problem over a single site, deploying a

Sequential Defend-Attack model for each attacker. Then, we have

extended the formulation to multiple sites, using one of those

models over each site, with models coordinated by resource con-

straints for each participant, and value aggregation over various

sites and, for the case of the Defender, also across various threats.

We have illustrated the approach with a case study in railway se-

curity, in which an operator is concerned with the impact of fare

evasion and pickpocketing over the quality and efficiency of the

service. Although colluders and pickpockets do not coordinate their

attacks, there is a cascading effect between them: the actions of

pickpockets will affect the number of customers through the busi-

ness level, and this might have an influence over the fare evasion

result. 

Our example referred to crime but similar ideas may be applied

to fighting terrorism. The key difference would be in the adversar-

ial objectives. Crime cases would refer more to business-like ob-

jectives, whereas terrorism cases would rather refer to political ob-

jectives. see ( Keeney & von Winterfeldt, 2010 ) for references. Note

that both types of adversaries might appear in a same problem.

For example, our railway operator, besides fare evasion and pick-

pocketing, might be interested in fighting terrorism and graffiti. 

Several issues remain to be addressed. We have assumed that

attackers responsible of different types of threats are uncoordi-

nated. However, it would be conceivable that they are coordinated.

For instance, we could envisage a scenario in which a terrorist

group shares its zone of influence with other criminal organiza-

tions as, e.g., drug dealers or a local mafia. By coordinating their

attacks over different sites, the attackers could take advantage of

their own and others’ resources, allocating them so as to inflict as

much damage as possible to the Defender, obtaining higher rev-

enue than if attacking separately. 

The chosen model is static, since we have not allowed for mo-

bility of resources. This is sufficient for our purposes, as we refer to

annual planning. One way to tackle this issue would be to consider

a model allowing for further interactions among the Defender and

the attackers: we could assume that the attackers have some de-

gree of mobility between different sites, trying e.g. to move away

from better protected sites or, alternatively, concentrating their at-
acks on the most valuable targets. This may be dealt with more

ynamic models, like the Sequential Defend-Attack-Defend model,

ee ( Brown et al., 2006 ) or ( Ríos & Ríos Insua, 2012 ). Alternatively,

he approach here may be seen at the tactical level, deciding what

esources to deploy. Once this has been resolved, we would de-

ide the patrolling schedule at an operational level, with models as

n e.g. Alpern, Morton, and Papadaki (2011) ; Brown, Saisubrama-

ian, Varakantham, and Tambe (2014) ; or Zoroa, Fernández-Sáez,

nd Zoroa (2012) . 

Beyond the standard parametric sensitivity analysis performed,

 key assumption would be whether the adversary actually per-

orms an expected utility analysis. Thus, we would face a concept

ncertainty issue. By Ríos Insua, Banks, and Ríos (2015a) , we have

escribed how to deal with other rationality types of adversaries

nd how to mix such types. 

A final important issue refers to validation. The model can be

alidated in, at least, four ways: (1) Assumptions and elicitations

ay be validated by third parties in dedicated seminars, as we

erformed in the workshops mentioned. (2) Some model compo-

ents were data based and we used standard (Bayesian) goodness-

f-fit approaches. Others were based on expert judgment and we

ould use consistency checks, as explained for the μ parameters in

ection 3.1.4 . (3) Other aspects could be validated through sensitiv-

ty analysis, as discussed in Section 3.1.5 . (4) In addition, the actual

alidation could be done after applying the model under the same

ircumstances. Note, however, that these are dynamic. For example,

n increasingly severe crisis might make population more prone

o evade fares or turn more people into pickpocketing as a means

f life. Finally, another way to ascertain the validity of the solu-

ion would be to test several competing solutions simultaneously

ver different homogeneous clusters of sites, and check whether

he proposed solution is providing the best response. 
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