
Automatic compiler-guided reliability improvement
of embedded processors under proton irradiation

Alejandro Serrano-Cases1, Yolanda Morilla2, Pedro Martín-Holgado2,
Sergio Cuenca-Asensi1 and Antonio Martínez-Álvarez1

1Dept. of Computer Technology, Univ. of Alicante, Spain
2National Centre for Accelerators (Univ. of Sevilla, CSIC, JA), Spain

Introduction
• COTS processors are not designed to cope with the harmful effects of radiation and, because of their nature, traditional hardware redundant

techniques can not be applied to their structural components. A potential software method for modifying the reliability without instrumenting the
code is operating the way programs are built (compiled). Modern compilers, such as GNU-GCC offer a set of optimizations which are intended to
reduce the code size or the execution. However, they do not offer any predefined optimization associated with reliability improvements.

• The goal of this research is twofold: Demonstrate that the fault tolerance of embedded software can be improved just by selecting the appropriated
compilation parameters and optimizations. And propose an automatic exploration strategy for tunning the compilation process focused on
softerror mitigation.

Compiler-guided Hardening
Our proposal combines two algorithms:

• Genetic Algorithm (GA) provides an ef-
ficient exploration of the solutions space.
An individual is defined by its genes (an
specific combination of compiler optimiza-
tions and parameters). GA makes use of
crossover and mutation to combine two in-
dividuals in a new one sharing the genes
of both parents.

• Multi-Objective-Optimization algo-
rithm (MOO) ranks the individuals of a
given generation taking into account dif-
ferent and opposed objectives that affect
reliability. Non-dominate solutions offer
the best trade-offs (Pareto Optimal
Front).

⇒ MOOGA iterates over several generations of-
fering all the individuals in the Pareto Front.

⇒ Chromosome definition.

Conclusions
Modern compilers can be tune to improve code
reliability by means of optimizing simultane-
ously fault coverage, execution time and mem-
ory size. Our automatic strategy offers an ef-
ficient method to find the versions with the
best tradeoffs among them. Simulation results
matches the behavior of applications under pro-
ton irradiation.

Experimental Setup
• Device Under Test: ARM cortex-A9 architecture, embedded in a 28nm CMOS device Xilinx

Zynq XC7010 System on Chip. Algorithms from BeeBs Benchmarks: Matrix Multiplication,
QuickSort, NDES, Dijkstra and BubbleSort.

• Compiler: GNU-GCC from Linaro project, version arm-eabi-gcc v7.2-2017.11 (Board Sup-
port Package provided by Xilinx).

MOOGA Simulation
Previous to the irradiation, an optimization stage using MOOGA was performed for each application
to elicit their behavior in terms of three objectives: fault coverage (percentage of ACE faults, i.e.
SDC+HANG), performance (execution time in Kcycles) and memory footprint (KiB).

40 60 80 100 120 140 160 180 200
KCycles

20

22

24

26

A
C

E
 %

-O0

-O1

-O2-O3

-Os

-Ofast
MaxMWTF

MinACE

MaxACE

100 200 300 400 500

20

22

24

26

-O0

-O1

-O2-O3
-Os

-Ofast

MinMWTF

MaxMWTF

MinACE

MaxACE

Pareto

20 40 60 80 100 120
KCycles

14

16

18

20

22

24

26

A
C

E
 %

-O0

-O1

-O2-O3
-Os

-Ofast

MinMWTF

MaxMWTF

MinACE

MaxACE

⇒ Overall results. BubbleSort (left): 9% improvement on fault coverage whereas its performance
improved about 12x. NDES (right): 12% of fault coverage improvement and performance variation
closed 5x.
⇒ Interesting individuals: Pareto Front (red), default optimization flags (Ox), fault coverage bound-
aries (MaxACE, MinACE), Mean Work to Failure boundaries (MaxMWTF, MinMWTF).

Radiation Results
The testing campaign was carried out at the beginning of 2018 at the National Centre for Accelerators.
⇒ 15.2 MeV protons, beam uniformity >90%, fluence accuracy 10%

⇒ Correlation between the simulated and irradiated results can be seen highlighted (red means worst
reliability, green means best reliability)
⇒ BubbleSort evaluated without using any on-chip memories (OCM or cache) shows also a good
correlation.

Acknowledgement
This work was funded by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund Refs:ESP2015-68245-C4-3-P and C4-4-P.


