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After introducing a master formula for the Majorana neutrino mass matrix, we present a master
parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This
parametrization can be used for any model that induces Majorana neutrino masses. The application of the
master parametrization is also illustrated in an examplemodel, with special focus on its lepton flavor violating
phenomenology.
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I. INTRODUCTION

The Standard Model (SM) of particle physics stands as
one of the most successful physical theories ever built.
However, despite its tremendous success, it cannot describe
all particle physics phenomena. Neutrino oscillation experi-
ments have firmly established that neutrinos have nonzero
masses and mixings, hence demanding an extension of the
SM that accounts for them.
Many neutrino mass models have been proposed.

A short list, to quote only a few reviews and general
classification papers, includes models with Dirac [1,2] or
Majorana neutrinos [3], with neutrino masses induced at
tree level or radiatively at one-loop/two-loop [4] or three-
loop [5], at low- [6] or high-energy scales, and by operators
of dimension 5 or higher dimensionalities [7].
The goal of this article is twofold. First, wewill introduce a

master formula that unifies all Majorana neutrino mass
models, which can be regarded as particular cases of this
general expression. And second, we will present a master
parametrization for the Yukawa matrices appearing in this
formula. The parametrization presented in this article extends
previous results in the literature [8] and can be used for any
model that induces Majorana neutrino masses.

II. THE MASTER FORMULA

With full generality, a Majorana neutrino mass matrix
can be written in the form

m ¼ fðyT1My2 þ yT2M
Ty1Þ: ð1Þ

Here m is the 3 × 3 complex symmetric neutrino mass
matrix,1 which can be diagonalized as

Dm ¼ diagðm1; m2; m3Þ ¼ UTmU; ð2Þ

with U a 3 × 3 unitary matrix (U†U ¼ UU† ¼ I3). The
matrices y1 and y2 are general dimensionless n1 × 3 and
n2 × 3 complex matrices, respectively, and M is a n1 × n2
complex matrix with dimension of mass. Without loss of
generality, we will assume n1 ≥ n2. We note that m must
contain at least two nonvanishing eigenvalues in order to
explain neutrino oscillation data. Therefore, in the follow-
ing we consider rm ¼ rankðmÞ ¼ 2 or 3.
Equation (1) is a master formula valid for all Majorana

neutrino mass models. This can be illustrated with several
examples. The simplest one is based on the popular seesaw
mechanism [9–14], in particular, on the standard type-I
seesaw with three generations of right-handed neutrinos.
The light neutrino mass matrix in this model is given by
m ¼ −hH0i2yTM−1

R y, an expression that can be obtained
with the master formula by taking f ¼ −1, y1 ¼ y2 ¼
y=

ffiffiffi
2

p
, and M ¼ hH0i2M−1

R . Here, hH0i ¼ v=
ffiffiffi
2

p
is the

SM Higgs vacuum expectation value (VEV) and MR the
Majorana mass matrix for the right-handed neutrinos.
Moreover, these matrices are all 3 × 3 and hence n1 ¼ n2 ¼
3 in this model. The mass matrices of more complicated
Majorana neutrino models can also be accommodated with
the master formula. For instance, the inverse seesaw [15]
would correspond to M ¼ hH0i2ðMT

RÞ−1μM−1
R , with μ the

small lepton number violating mass scale in this model,
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1We focus on the case of three generations, because there are
only three active neutrinos. It is straightforward to generalize to a
larger number, if one wants to include, e.g., light sterile neutrinos.
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whereas the scotogenicmodel [16], inwhich neutrinomasses
are induced at the one-loop level, corresponds to f ¼
λ5=ð16π2Þ and M ¼ hH0i2M−1

R Floop, with λ5 the coupling
of the quartic term ðH†ηÞ2 involving the standard (H) and
inert (η) scalar doublets, andFloop a matrix of loop functions.
In particular, models with y1 ≠ y2 can be described with the
master formula, as shown belowwith the specific example of
the Babu-Nandi-Tavartkiladze model [17].

III. THE MASTER PARAMETRIZATION

Our goal after introducing the master formula in Eq. (1)
is to establish a parametrization of the y1 and y2 Yukawa
matrices with three properties:

(i) General: valid for all models.
(ii) Complete: containing all the degrees of freedom

(d.o.f.) in the model.
(iii) Programmable: easy to use in phenomenological

analyses.
We will call this parametrization of the Yukawa matrices

the master parametrization. We now proceed to present
it. The Yukawa matrices y1 and y2 can be generally
parametrized as

y1 ¼
1ffiffiffiffiffiffi
2f

p V†
1

0
BB@

Σ−1=2WA

X1

X2

1
CCAD̄ ffiffiffi

m
p U†; ð3Þ

y2 ¼
1ffiffiffiffiffiffi
2f

p V†
2

�
Σ−1=2Ŵ�B̂

X3

�
D̄ ffiffiffi

m
p U†: ð4Þ

Several matrices have been defined in the previous two
expressions, where � denotes the conjugate matrix. We have
defined thematrix D̄ ffiffiffi

m
p as diagð ffiffiffiffiffiffi

m1

p
;

ffiffiffiffiffiffi
m2

p
;

ffiffiffiffiffiffi
m3

p Þ if rm ¼ 3

or diagð ffiffiffiffiffiffi
m1

p
;

ffiffiffiffiffiffi
m2

p
;

ffiffiffi
v

p Þ if rm ¼ 2. In fact, v can be replaced
in this definition by any nonvanishing reference mass scale
since it is a dummy variable that drops out in the calculation
of the neutrino massmatrix. A singular-value decomposition
has been applied to the matrix M,

M ¼ VT
1 Σ̂V2; ð5Þ

where Σ̂ is a n1 × n2 matrix that can be written as

Σ̂ ¼

0
BB@

Σ 0

0 0n2−n

0n1−n2

1
CCA; ð6Þ

and Σ ¼ diagðσ1; σ2;…; σnÞ is a diagonal n × n matrix
containing the positive and real singular values of
M (σi > 0). Therefore, we define n as the number of nonzero
singular values of the matrix M. Since the total number of
singular values ofM is n2, it is clear that n ≤ n2. It is possible
to have vanishing singular values which are specifically
encoded in the zero square ðn2 − nÞ × ðn2 − nÞmatrix0n2−n.
V1 and V2 are n1 × n1 and n2 × n2 unitary matrices and can

be found by diagonalizing the square matrices MM† and
M†M, respectively. X1, X2, and X3 are, respectively,
ðn2 − nÞ × 3, ðn1 − n2Þ × 3, and ðn2 − nÞ × 3 arbitrary
complex matrices with dimensions of mass−1=2. Ŵ is an
n × n matrix defined as

Ŵ ¼ ðW W̄ Þ; ð7Þ
where W is an n × r complex matrix, with r ¼ rankðWÞ,
such that W†W ¼ WTW� ¼ Ir, and W̄ is an n × ðn − rÞ
complex matrix, built with vectors that complete those inW
to form an orthonormal basis ofCn. Therefore, Ŵ is a unitary
complex n × n matrix. A is an r × 3 matrix, which can be
written as

A ¼ TC1; ð8Þ
withT anupper-triangular r × r invertible squarematrixwith
positive real values in the diagonal, andC1 is an r × 3matrix.
B̂ is an n × 3 complex matrix defined as

B̂ ¼
�
B

B̄

�
; ð9Þ

with B̄ an arbitrary ðn − rÞ × 3 complex matrix and B an
r × 3 complex matrix given by

B≡ BðT;K; C1; C2Þ ¼ ðTTÞ−1½C1C2 þ KC1�; ð10Þ
where we have introduced the antisymmetric r × r square
matrix K and the 3 × 3 matrix C2. The exact form of the
matrices C1 and C2 depends on the values of rm and r. For
rm ¼ r ¼ 3 these matrices take the form

C1 ¼ I3; C2 ¼ I3 þ K12

T13

T11

0
B@

0 0 0

0 0 1

0 −1 0

1
CA; ð11Þ

while the expressions for other cases, as well as a rigorous
mathematical proof of the master parametrization, will be

TABLE I. Matrices containing free parameters in the master
parametrization. Even though the matrix C2 does not contain any
free parameter, we include it in this list since its form depends on
the values of rm and r.

Matrix Dimensions Property Real parameters

X1 ðn2 − nÞ × 3 Absent if n ¼ n2 6ðn2 − nÞ
X2 ðn1 − n2Þ × 3 Absent if n1 ¼ n2 6ðn1 − n2Þ
X3 ðn2 − nÞ × 3 Absent if n ¼ n2 6ðn2 − nÞ
W n × r rð2n − rÞ
T r × r Upper triangular

with ðTÞii > 0
r2

K r × r Antisymmetric rðr − 1Þ
B̄ ðn − rÞ × 3 Absent if n ¼ r 6ðn − rÞ
C1 r × 3 Case-dependent 0 or 2
C2 3 × 3 Case-dependent � � �
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given elsewhere [18].We summarize thematrices that appear
in the master parametrization and count their free parameters
in Table I.

IV. PARAMETER COUNTING

In order to guarantee that the master parametrization is
complete, a detailed parameter counting must be per-
formed. In full generality, one can write

#free ¼ #y1 þ #y2 − #eqs − #extra ¼ 6ðn1 þ n2Þ− #eqs − #extra;

ð12Þ

where #y1 ¼ 2 · 3 · n1 and #y2 ¼ 2 · 3 · n2 are the number of
real d.o.f. in y1 and y2, respectively, and #eqs is the number
of independent (real) equations contained in Eq. (1). Since
this matrix equation is symmetric, one would naively
expect to have 6 complex equations, which would then
translate into 12 real restrictions on the elements of y1 and
y2. However, one can check by direct computation that for
r ¼ 1 one of the complex equations is actually redundant
and can be derived from the other five. Therefore,

#eqs ¼
�
12 for r ¼ 3 or 2;

10 for r ¼ 1:
ð13Þ

Note that the case r ¼ 1 is allowed only because (1)
contains two terms, each of which in principle can be of
rank 1, as long as the rank of the sum of both terms is 2.
Finally, #extra is the number of extra (real) restrictions
imposed on y1 and y2. In the most common case of the
standard type-I seesaw one has #extra ¼ 0. However, sce-
narios with additional restrictions have #extra ≠ 0. The total
number of free parameters #free must match the sum of the
number of free parameters in each of the matrices appearing
in the master parametrization of Eqs. (3) and (4). Therefore,

#free ¼ #X1
þ #X2

þ #X3
þ #Aþ #W þ #Bþ #B̄þ #C1

¼ #X1
þ #X2

þ #X3
þ #T þ #W þ #K þ #B̄þ #C1

: ð14Þ
In the previous expressions we have taken #W̄ ¼ 0 and
assigned all the free parameters in the product W̄ B̄ to B̄.
This is possible because these two matrices always appear
in the combination W̄ B̄ and, given that all the parameters
contained in B̄ are free, #W̄ B̄ ≡ #B̄.
It proves convenient to discuss a particular example

in order to understand the general parameter counting
procedure. Let us consider n1 ¼ n2 ¼ n ¼ 3 and focus
on a scenario with ðrm; rÞ ¼ ð3; 3Þ. In this case Σ̂≡ Σ,
#eqs ¼ 12 and #extra ¼ 0. Therefore, from Eq. (12), one

finds #ð3;3Þfree ¼ 24. Using now Eq. (14), one finds

#ð3;3Þfree ¼ 24 ¼ #ð3;3ÞW þ #ð3;3ÞA þ #ð3;3ÞB þ #ð3;3ÞC1
¼ 15þ #ð3;3ÞW ;

ð15Þ

where #ð3;3ÞW ¼ 9 is the number of real free parameters in the

matrixW in the (3,3) case. We point out that #ð3;3ÞW ¼ 9 also
follows from the fact that W is a unitary 3 × 3 matrix,
which makes a good consistency check of the parameter
counting we just performed. In addition, we note that

#ð3;3ÞA ¼ 9 and #ð3;3ÞB ¼ 6.

V. THE CASAS-IBARRA LIMIT

One must finally compare the master parametrization to
previously known parametrizations in the literature. In
particular, let us compare to the Casas-Ibarra parametriza-
tion [8]. As already explained above, the type-I seesaw
corresponds to y1 ¼ y2 ¼ y=

ffiffiffi
2

p
, n1 ¼ n2 ¼ n ¼ r ¼ 3,

f ¼ −1, and M ¼ hH0i2M−1
R . Furthermore, in this model

the symmetric matrix M can be diagonalized by a single
matrix, V1 ¼ V2, which can be taken to be the identity if
the right-handed neutrinos are in their mass basis, and the
matrices X1;2;3, W̄, and B̄ drop from all the expressions.
Finally, imposing y1 ¼ y2 is equivalent to WTWA ¼ B.
Solving this matrix equation leads to B ¼ ðATÞ−1 and
allows one to define R ¼ WA, with R a general 3 × 3
orthogonal matrix. Replacing all these ingredients into
Eqs. (3) and (4) one finds

y ¼
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ iΣ−1=2RD ffiffiffi

m
p U†; ð16Þ

which is nothing but the Casas-Ibarra parametrization for
the type-I seesaw Yukawa matrices. We note that R can be
identified with the usual Casas-Ibarra matrix [8]. Imposing
y1 ¼ y2 leads to 18ð¼ 9 · 2Þ real constraints; this is
#extra ¼ 18. Therefore, direct application of the general
counting formula in Eq. (12) leads to #free ¼ 6. These are
the free real parameters contained in R which can be
parametrized by means of 3 complex angles. We conclude
that the Casas-Ibarra parametrization can be regarded as a
particular case of the general master parametrization.

VI. AN APPLICATION

The full power of the master parametrization is better
illustrated with an application to the BNT model [17]. In
addition to the SM particles, the model contains three
copies of the vectorlike fermions ψL;R transforming as
ð1; 3;−1Þ under the SM gauge group and an exotic scalarΦ
transforming as ð1; 4; 3=2Þ. The quantum numbers of the
new particles in the BNT model are given in Table II.
The Lagrangian of the model contains the following

pieces relevant for neutrino mass generation:

TABLE II. New particles in the BNT model.

Generations SUð3Þc SUð2ÞL Uð1ÞY
Φ 1 1 4 3=2
ψL;R 3 1 3 −1
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−L ⊃ yψ L̄HψR þ yψ̄ L̄cΦψL þMψ ψ̄ψ þ H:c:; ð17Þ

where we have omitted SUð2ÞL and flavor indices to
simplify the notation. The scalar potential of the model
is given by

V ¼ M2
HjHj2 þM2

ΦjΦj2 þ 1

2
λ1jHj4 þ 1

2
λ2jΦj4

þ λ3ðjHj2jΦj2Þ1 þ λ4ðjHj2jΦj2Þ3 þ λΦ½H3Φ† þ H:c:�:
ð18Þ

HereH is the SM Higgs doublet. We note that there are two
possible SUð2ÞL contractions of jHj2jΦj2, corresponding to
the λ3 and λ4 quartic terms. All the couplings in the scalar
potential must be real, with the exception of λΦ, which can
be complex. The introduction of λΦ ≠ 0 precludes the
introduction of a nonvanishing lepton number forΦ. In fact,
one can easily see that lepton number is broken in two units
in the BNT model. Furthermore, this term induces a
nonzero VEV for the neutral component of Φ, Φ0, which
is given by

hΦ0i ¼ vΦffiffiffi
2

p ¼ λΦv3

2
ffiffiffi
2

p
M2

Φ
: ð19Þ

In the BNT model, neutrino masses are generated at
dimension 7 as shown in Fig. 1. The resulting expression
for the neutrino mass matrix is

m ¼ λΦv4

4M2
Φ
½yTψM−1

ψ yψ̄ þ yTψ̄ðM−1
ψ ÞTyψ �: ð20Þ

The usual Casas-Ibarra parametrization cannot be
applied in this model since one has two independent
y1 ¼ yψ and y2 ¼ yψ̄ Yukawa matrices. Therefore, in order
to guarantee that the parameters measured in neutrino
oscillation experiments are correctly reproduced one must
make use of the master parametrization. In order to apply
the master parametrization we must first identify the

different pieces taking part of the neutrino mass expression
in the BNT model, Eq. (20). By direct comparison to the
master formula in Eq. (1) we identify

f ¼ λΦv2

2M2
Φ
; M ¼ v2

2
M−1

ψ : ð21Þ

Furthermore, in this model y1, y2, andM are 3 × 3matrices
and then n1 ¼ n2 ¼ 3. One also has three nonvanishing
singular values in M and therefore n ¼ 3 and Σ̂≡ Σ.
Finally, taking r ¼ rm ¼ 3, the matrices X1;2;3 and B̄ are
absent, while C1 and C2 are given in Eq. (11).
The application of the master parametrization is now

straightforward. In the numerical scans that follow, the
values of the neutrino oscillation parameters from the
global fit [19] are imposed, thus guaranteeing the consis-
tency with oscillation experiments. We have implemented
the model in SARAH [20] and obtained numerical results
with the help of SPheno [21]. In the following we
concentrate on the lepton flavor violating (LFV) phenom-
enology of the model. The LFV observables have been
computed with FlavorKit [22]. Some selected results on the
LFV observable Brðμ → eγÞ are shown in Figs. 2 and 3.
When running a numerical scan of the BNT model, one can
assume specific simple forms for the matrices that appear in
the master parametrization (such as T ¼ I or K ¼ 0) or
cover more general parameter regions. Figure 2 shows the
results of a random scan with/without using the freedom in
the matrices T and K as a function of vΦ, while Fig. 3
shows a contour plot in the plane [T11, T12]. Both examples
serve to demonstrate that it is important to scan over all
allowed d.o.f. in order to obtain a general result.FIG. 1. Neutrino mass generation in the BNT model.

FIG. 2. Example points for Brðμ → eγÞ in the BNT model as a
function of the quadruplet VEV vΦ. This figure has been obtained
by allowing the neutrino oscillation parameters to vary within the
3σ ranges determined by the global fit [19], assuming normal
hierarchy, MΨ randomly taken in the interval [0.5, 2] TeV, and
W ¼ I. The purple points correspond to a scan in which the
entries of the matrices T and K are randomly taken in the
following ranges: Tii ∈ ½0; 2� and Kij, Tij (with i ≠ j) ∈ ½−1; 1�.
The black points in the foreground correspond to a simplified
scan with T ¼ I and K ¼ 0.
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VII. FINAL DISCUSSION

The master parametrization allows one to explore the
parameter space of any Majorana neutrino mass model in a
complete way, while fixing at the same time the parameters
to be in agreement with all neutrino data. The master
parametrization is easy to program, thus making parameter
space exploration more direct than ever. The master para-
metrization may also provide analytical insight on some
scenarios.
The application of the master parametrization is straight-

forward. First, one must use the information from neutrino

oscillation experiments to fix the light neutrino masses and
leptonic mixing angles appearing in D̄ ffiffiffi

m
p and U, respec-

tively. Then, by comparing the expression for the mass
matrix of the light neutrinos in the model under consid-
eration with the general master formula in Eq. (1), one can
easily identify the global factor f, the Yukawa matrices y1
and y2 as well as the matrix M. The latter can be singular
value decomposed to determine Σ, V1, and V2, while the
Yukawa matrices y1 and y2 are expressed in terms of a set of
matrices (Ŵ, X1;2;3, B̄, T, K, and C1;2) by means of the
master parametrization in Eqs. (3) and (4). In a numerical
analysis one can simply randomly scan over the free
parameters contained in these matrices to completely
explore the parameter space of a given model.
In closing, we should also point out some potential

limitations of our approach: In exceptional cases, the
master parametrization may become either unnecessary,
not direct or impractical. Exceptional cases are simply
those for which y1 and y2 are not completely free
parameters. A first category of exceptional models is given
by those with y1 ¼ y2 ¼ I, such as in type-II seesaw.
However, this example of an unnecessary case can also
trivially be solved. More involved situations are found in
models with symmetric [23] or antisymmetric [24–27]
Yukawa matrices, or models in which the Yukawa matrices
have specific textures imposed by flavor symmetries. For
such cases the master parametrization may be applicable
only with additional constraints or become even imprac-
tical. We plan to return to a more detailed discussion of
these cases in a future publication [18].
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