
ACCEPTED MANUSCRIPT

1

1 The influence of temperature and salinity on the impacts 

2 of Lead in Mytilus galloprovincialis

3

4 Rosa Freitasa*, Carla Leitea, João Pintob, Marcelo Costab, Rui Monteirob, 

5 Bruno Henriquesb, Francesco Di Martinoa, Francesca Coppolaa, Amadeu 

6 M.V.M. Soaresa, Montserrat Soléc, Eduarda Pereirab

7

8 aDepartamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, 

9 Portugal

10 bDepartamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 

11 3810-193 Aveiro, Portugal

12 cInstituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain

13

14

15

16

17

18

19

20 *Corresponding Author: Rosa Freitas, Departamento de Biologia & CESAM, 

21 Universidade de Aveiro, 3810-193 Aveiro, Portugal

22



ACCEPTED MANUSCRIPT

2

24 Abstract

25 Mussels, such as the marine bivalve Mytilus galloprovincialis are sentinels for 

26 marine pollution but they are also excellent bioindicators under laboratory conditions. 

27 For that, in this study we tested the modulation of biochemical responses under 

28 realistic concentrations of the toxic metal Lead (Pb) in water for 28 days under different 

29 conditions of salinity and temperature, including control condition (temperature 17±1.0 

30 ºC and salinity 30±1.0) as well as those within the range expected to occur due to 

31 climate change predictions (±5 in salinity and +4ºC in temperature). A comprehensive 

32 set of biomarkers was applied to search on modulation of biochemical responses in 

33 terms of energy metabolism, energy reserves, oxidative stress and damage occurrence 

34 in lipids, proteins as well as neurotoxicity signs. The application of an integrative 

35 Principal Coordinates Ordination (PCO) tool was successful and demonstrated that Pb 

36 caused an increased in the detoxification activity mainly evidenced by glutathione S-

37 transferases and that the salinities 25 and 35 were, even in un-exposed mussels, 

38 responsible for cell damage seen as increased levels of lipid peroxidation (at salinity 

39 25) and oxidised proteins (at salinity 35). 

40

41 Keywords: climate change; metal(oid)s; bioaccumulation; mussels; oxidative 

42 stress; metabolism
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44 1. INTRODUCTION

45 Environmental pollution by potential toxic elements, such as metals, has been a topic 

46 of concern over the last decades, with several studies highlighting not only the accumulation of 

47 these elements in different aquatic compartments but also their impacts on freshwater and 

48 marine organisms (among others, Al Naggar et al., 2018; Ansari et al., 2004; Bielen et al.,

49 2015). As a result of their persistence and ability to bioaccumulate metals are reported to exert 

50 toxic effects in bivalves through interference on their redox pathways, resulting in the 

51 overproduction of reactive oxygen species (ROS) that may react with cellular targets including 

52 lipids and proteins and alter the activity of antioxidant and biotransformation enzymes (Freitas et 

53 al., 2018; Monteiro et al., 2019; Regoli and Giuliani 2014). Studies conducted with Mercury 

54 (Hg), Arsenic (As), Copper (Cu) and Cadmium (Cd), all elements on the top list of the most 

55 hazardous materials, already showed the capacity of these elements to interfere on bivalve�s 

56 biochemical performance (Company et al., 2004; Coppola et al., 2018ab; Freitas et al., 2018; 

57 Gagnaire et al., 2004; Nardi et al., 2017; Samuel et al., 2005; Zhang et al., 2010). In what 

58 regards to Lead (Pb), one of the most widely distributed metals in marine and estuarine systems 

59 (Chakraborty et al., 2012; de Souza Machado et al., 2016; Singh et al., 2011), recent 

60 information has highlighted the impacts of this metal towards bivalves inhabiting these areas 

61 (e.g., Marques et al., 2018). Under laboratory conditions, the impacts induced by Pb in bivalves 

62 were also demonstrated, evidencing the capacity of this metal to disturb organism�s oxidative 

63 status. For example, Zhang et al. (2010) demonstrated that in the bivalve Chlamys farreri

64 exposed to Pb the antioxidant capacity was compromised resulting in increased levels of lipid 

65 peroxidation. Also, Wadige et al. (2014) revealed that in the freshwater bivalve Hyridella 

66 australis the total antioxidant capacity decreased while lipid peroxidation and lysosomal 

67 membrane destabilization increased alongside to Pb exposure. Nonetheless, Freitas et al. 

68 (2014) demonstrated that when exposed to an increasing gradient of Pb the clam Ruditapes 

69 decussatus activated their defence mechanisms (e.g. antioxidant enzymes and metallothionein 

70 content) preventing the occurrence of cellular damage. Such former evidences indicate that 

71 impacts by Pb may vary according to species but also on metal concentration and length of 

72 exposure.
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73 Besides exposure to pollutants, aquatic systems are currently subjected to increased 

74 atmospheric carbon dioxide (CO2) concentrations, at present already above ~400 ppm 

75 compared to pre-industrial revolution levels (Pörtner et al., 2014). Such CO2 increase is 

76 responsible for the rise in global temperature, with a concomitant increase in mean seawater 

77 values of about 0.7°C since pre-industrial times, and a further rise of 3-4 ºC is foreseen at the 

78 end of this century (Collins et al., 2013; Pörtner et al., 2014). Additionally, extreme weather 

79 events, including heavy rainy or long drought periods, are expected to increase in frequency 

80 and intensity (Pörtner et al., 2014). Such environmental changes, associated to climate 

81 modification, may contribute to alterations in seawater characteristics, namely in terms of 

82 salinity and temperature. This can further result into changes in organism�s sensitivity towards 

83 pollutants but also into modification of pollutants properties and their associated toxicity (Attig et 

84 al., 2014; Byrne, 2012; Coppola et al., 2018a; Izagirre et al., 2014; Manciocco et al., 2014; 

85 Mazzoto et al., 2013). In fact, marine and in particular estuarine organisms are naturally and 

86 simultaneously exposed to multiple stressors, including the ones associated to water 

87 characteristics and pollutants presence, with growing evidences that combined stressors 

88 frequently interact and often amplify effects (Dijkstra et al., 2013). However, interactions 

89 between stressors may be complex and difficult to predict, showing from additive, synergetic to 

90 antagonist effects. According to recent studies, oxidative stress was enhanced in bivalves 

91 exposed to Hg and As under warming conditions (Coppola et al., 2017; Coppola et al., 2018a; 

92 Freitas et al., 2017). On the other way, Nardi et al. (2018) demonstrated that the effects induced 

93 by Cd in M. galloprovincialis were not altered by increased temperatures. Recently, Moreira et 

94 al. (2018) demonstrated that changes in salinity and temperature altered the impacts of As in 

95 the embryo-larval development of oysters. The same authors also showed that salinity 

96 influences the biochemical response of Crassostrea angulata pyster to As (Moreira et al., 2016).

97 Despite few studies have addressed the combined effects of metal(oid)s and climate 

98 change related factors (see references above), the importance of considering different 

99 environmental variables when evaluating the toxicity of pollutants in aquatic organisms, 

100 including those of emerging concern, has repeatedly been highlighted (see for example De 

101 Marchi et al., 2018; Freitas et al., 2016a). Such information is of upmost relevance in order to 

102 identify realistic scenarios and protect marine organisms exposed to combined stressors. As 
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103 extreme weather events will become more frequent, multiple stressor experiments including 

104 climate predictions and presence of pollutants should be encouraged. Therefore, considering 

105 that Pb is among one of the six regulated substances in the EU Directive and its use in 

106 electronic devices is increasing worldwide, the present study aimed to evaluate the toxicity of 

107 this metal in the marine species Mytilus galloprovincialis. This bivalve was exposed to an 

108 environmentally realistic concentration of Pb under different seawater salinity and temperature 

109 conditions, resembling actual and predicted climate change scenarios. To this end, the impacts 

110 by Pb were assessed in parameters that refer to the mussel�s metabolic capacity, antioxidant 

111 and biotransformation defences, lipids and protein damage as well as neurotoxicity.  

112

113
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115 2. MATERIALS AND METHODS 

116 2.1 Experimental conditions

117 Mytilus galloprovincialis (mean total weight 25.5 ± 7.5 g) were collected in April 2017 

118 during low tide in a subtidal area located at the Mira Channel (Ria de Aveiro, northwest of 

119 Portugal). After sampling, the specimens were placed in aquaria for depuration and acclimation 

120 to laboratory conditions for 15 days. During this period the mussels were maintained at 17±1.0 

121 ºC, salinity 30±1.0 and pH 8.0±0.1, resembling conditions at the sampling area, and kept under 

122 continuous aeration. Artificial seawater was made using a commercial salt (Tropic Marin®SEA 

123 salt) and deionized water. Along the acclimation seawater was renewed 2-3 times per week 

124 after which mussels were fed with AlgaMac Protein Plus.

125 Before starting the experiment water with different salinities (25, 30, 35) was prepared 

126 and distributed among different aquaria that were placed in two climatic rooms set at the test 

127 temperatures (17 and 21 ºC). The two test water temperatures were reached in each aquarium 

128 after 24h being placed in the respective climatic rooms. Afterwards, mussels were distributed 

129 among different aquaria, to evaluate the exposure to Pb, under different salinity and 

130 temperature values, following 8 conditions: salinity 25 and temperature 17 ºC; salinity 30 and 

131 temperature 17 ºC (control condition resembling sampling site characteristics); salinity 35 and 

132 temperature 17 ºC; salinity 30 and temperature 21 ºC; all in the presence (50 µg/L) or absence 

133 (0 µg/L) of Pb. Lead (Lead nitrate, CAS No: 10099-74-8, EC No: 233-245-9; 1000 mg/L) was 

134 purchase from Sigma-Aldrich and the standard solutions was made in miliQ water.

135 Lead concentration (50 µg/L) was selected considering World Health Organization 

136 (WHO) recommendation of Pb in drinking water (WHO, 2013), and concentrations of Pb in 

137 highly contaminated coastal ecosystems (among others, Bakary et al., 2015, Vázquez-Sauceda 

138 et al., 2012). Furthermore, the concentration of Pb chosen is much lower than that allowed in 

139 industrial wastewaters (1.0 mg/L) that can be discharged into aquatic ecosystems 

140 (Environmental Protection Agency (EPA 2002); Portuguese Decree-law 236/98). Also, previous 

141 studies (data not shown) testing similar water concentration originated mussels Pb 

142 concentrations in the range of those chronically present in bivalves from a low contaminated 

143 estuary (0.3 to 5 µg/g, Ria de Aveiro, Portugal) (Figueira et al., 2011; Freitas et al., 2012). 
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144 Three aquaria were used per condition (3 replicates per condition), with 9 L of capacity 

145 and containing 12 mussels each. During the exposure period, water samples from each 

146 aquarium were collected immediately after Pb spiking to ensure chemical nominal 

147 concentration. At the end of the experimental period (28 days) Pb concentrations were also 

148 determined in whole soft tissue of mussels.

149 During the exposure, mussels were maintained at constant aeration; temperature (17 

150 or 21 ºC) and salinity (25, 30 or 35), parameters that were daily checked and readjusted if 

151 necessary. Along the exposure period, mussels were fed with AlgaMac Protein Plus three times 

152 per week and seawater was renewed weekly, after which the experimental conditions were re-

153 established, also ensuring seawater parameters and Pb concentration. No mortality was 

154 observed during this 28-day experimental period.

155 After the exposure time, the whole soft tissue of 9 mussels per condition (3 per 

156 replicate) was removed from the shells and individually homogenized using a mortar and pestle 

157 under liquid nitrogen. The homogenised tissue of each individual was divided into aliquots of 0.5 

158 g fresh weight (FW) of soft tissue, which were used for biomarkers analyses and to determine 

159 Pb concentrations. 

160

161 2.2 Lead quantifications 

162 Lead concentrations in water samples were directly analysed by inductively coupled 

163 plasma atomization-mass spectrometry (ICP-MS � Themo X series) after dilution and 

164 acidification with HNO3 2 % (v/v), to pH < 2. The limit of quantification (LOQ) of the method was 

165 2 μg/L, with an acceptable relative standard deviation among replicates <10%.

166 Tissue samples were analysed by two techniques, ICP-MS and inductively coupled 

167 plasma optical emission spectrometry (ICP-OES - Jobin Yvon Activa M) for the low and high 

168 concentrations, respectively. LOQ for ICP-MS was of 0.02 µg/g dry weight (DW) and for 

169 ICP-OES was of 1.9 µg/g (DW), and quality control was ensured by analysing all samples in 

170 triplicate and imposing a coefficient of variation of less than 10 %. Prior to analysis, tissue 

171 samples were freeze dried and homogenised for microwave assisted acid digestion sample 

172 preparation method. The digestion was done in closed Teflon vessels, by adding the reagent 

173 mix (1 mL HNO3 + 2 ml H2O2 + 1 mL H2O) to 200 mg of dry tissue and following the heating 
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174 program: 15 min of temperature increase to 190 ºC and then hold at 190 ºC for 3 min. After 

175 cooling down, the digests were collected to a final volume of 25 mL with ultrapure water. To 

176 ensure quality control of these results each digestion cycle held a blank sample (< LOQ in both 

177 techniques, n = 4), a sample made in duplicate (coefficient of variation < 10 %; n= 4) and 

178 analysis of certified reference material (Tort-3, lobster hepatopancreas, mean recovery of 116 

179 %; n =5).

180

181 2.3 Biochemical parameters

182 For each condition, indicators of metabolic capacity (electron transport system activity, 

183 ETS), energy reserves (total protein content, PROT; glycogen content, GLY), and oxidative 

184 stress status (levels of lipid peroxidation, LPO; and Protein carbonylation, PC; activities of 

185 superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx; and glutathione S-

186 transferases, GSTs) were measured. Soft tissue samples were individually sonicated for 15 s 

187 and centrifuged for 20 min at 10 000 g (or 3 000 g for ETS) at 4 ºC, using specific buffers for 

188 each biomarker at the ratio 1:2 (w/v) (Andrade et al., 2018; 2019; De Marchi et al., 2018). 

189 Supernatants were either stored at -80 ºC or immediately analysed. All biochemical parameters 

190 were performed in duplicate and using a microplate reader. 

191

192 2.3.1 Metabolic capacity and energy reserves

193 ETS activity was measured based on King and Packard (1975) protocol and 

194 modifications by De Coen and Janssen (1997). Absorbance was recorded during 10 min at 490 

195 nm with intervals of 25 s. The extinction coefficient (Ɛ) 15,900 M-1cm-1 was used to calculate the 

196 amount of formazan formed. Results were expressed in nmol per min per g of FW. 

197 GLY quantification was based on the sulphuric acid method (Dubois et al. 1956), using 

198 a standard calibration curve of glucose (0�10 mg/mL). Absorbance was read at 492 nm after 

199 incubation during 30 min at room temperature. Results were expressed in mg per g of FW. 

200 PROT content was determined according to the spectrophotometric Biuret method 

201 (Robinson and Hogden, 1940). Bovine serum albumin (BSA) was used to prepare a standard 

202 calibration curve (0�40 mg/mL). Absorbance was read at 540 nm. The results were expressed 

203 in mg per g of FW.
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204

205 2.3.2 Antioxidant and defences

206 SOD activity was determined by the Beauchamp and Fridovich (1971) method after 

207 modifications by Carregosa et al. (2014). The standard calibration curve was obtained using 

208 purified SOD (0.25-60 U/mL). Absorbance was read at 560 nm after 20 min incubation at room 

209 temperature. Results were expressed in U per g of FW, where one unit (U) represents the 

210 quantity of the enzyme that catalyzes the conversion of 1 μmol of substrate per min. 

211 CAT activity was quantified according to the Johansson and Borg (1988) method and 

212 modifications by Carregosa et al. (2014). The standard calibration curve was obtained using 

213 formaldehyde (0�150 μmol/L). Absorbance was measured at 540 nm. The enzymatic activity 

214 was expressed in U per g of FW, where U represents the amount of enzyme that caused the 

215 formation of 1.0 nmol formaldehyde per min at 25 °C. 

216 GPx activity was quantified following Paglia and Valentine (1967). The absorbance 

217 was measured at 340 nm in 10 sec intervals during 5 min and the enzymatic activity was 

218 determined using the extinction coefficient (Ɛ) 6.22 mM−1cm−1. The results were expressed as U 

219 per g of FW, where U represents the amount of enzyme that caused the formation of 1 μmol

220 NADPH oxidized per min.

221 GSTs activity was quantified following Habig et al. (1974) protocol with some 

222 adaptations by Carregosa et al. (2014). GSTs activity was measured spectrophotometrically at 

223 340 nm, using the extinction coefficient (Ɛ) 9.6 mM−1 cm−1. The enzymatic activity was 

224 expressed in U per g of FW, where U is defined as the amount of enzyme that catalysis the 

225 formation of 1 μmol of dinitrophenyl thioether per min.

226

227 2.3.3 Indicators of cellular damage 

228 LPO levels were determined by the quantification of malondialdehyde (MDA), a by-

229 product of lipid peroxidation, according to the method described in Ohkawa et al. (1979). 

230 Absorbance was measured at 535 nm and the amount of MDA formed was calculated using the 

231 extinction coefficient (Ɛ) 156 mM-1 cm-1. The results were expressed in nmol per g of FW.

232 The quantification of carbonyl groups in oxidized proteins (PC) was done following the 

233 2,4-dinitrophenylhydrazina (DNPH) alkaline method (Mesquita et al. 2014). Absorbance was 



ACCEPTED MANUSCRIPT

10

234 measured at 450 nm and the extinction coefficient (Ɛ) 22,308 M−1 cm−1 was used to calculated 

235 PC levels, expressed in nmol per g of FW.

236

237 2.3.4 Neurotoxicity

238 AChE activity was determined using Acetylthiocholine iodide (ATChI 5 mM) as 

239 substrate, according to the methods of Ellman et al. (1961) with modication by Mennillo et al. 

240 (2017). The activity was measured at 412 nm during 5 min and expressed in nmol/min per g of 

241 FW using the extinction coefficient (Ɛ) 13.6 mM-1cm-1.

242

243

244 2.4 Data analysis 

245 To evaluate the bioaccumulation of Pb in mussels� tissues, the bioconcentration factor 

246 (BCF) was calculated at each exposure condition. BCF was defined as the ratio of the 

247 concentration in the organism in respect to the concentration measured in water. The 

248 calculation is based on the equation from Arnot and Gobas (2006):

249 =
  ℎ 
  ℎ 

250

251 All the biochemical results (ETS, GLY, PROT, SOD, CAT, GPx, GSTs, LPO, PC, 

252 AChE) and Pb concentrations, for all conditions, were individually submitted to a non-parametric 

253 permutational analysis of variance (PERMANOVA Add-on in Primer v7). A one-way hierarchical 

254 design was followed in this analysis. When significant differences were observed in the main 

255 test pairwise comparisons were performed. Values lower than 0.05 were considered as 

256 significantly different. The null hypotheses tested were: for each biomarker and each Pb 

257 concentration (0 or 50 µg/L), no significant differences existed among salinity and temperature 

258 levels, represented in figures by letters (lowercase letters for non-contaminated conditions; 

259 uppercase letters for contaminated conditions); for each biomarker at each salinity and 

260 temperature levels, no significant differences existed between non-contaminated and 

261 contaminated mussels, represented in figures with asterisks. For non-contaminated and 
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262 contaminated organisms no significant differences existed in terms of Pb concentration among 

263 different salinity and temperature levels, represented by lower case letters in Tables.

264 The matrix expressing biomarkers and Pb concentrations per condition was 

265 normalised and the Euclidean distance calculated and distance among centroids (i.e. the mean 

266 position of all the points representing a given sample) was visualized in Principal Coordinates 

267 Ordination (PCO) analysis. In the PCO graph, the variables (biomarkers and Pb concentrations) 

268 presenting a correlation higher than 75% with conditions spatial distribution were represented 

269 as superimposed vectors.
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271 3. RESULTS 

272 3.1 Lead concentrations in water and organisms 

273 Concentrations of Pb measured in water collected immediately after spiking showed 

274 neither significant differences among non-contaminated temperature and salinity conditions nor 

275 among contaminated ones (Table 1). Trace amounts of Pb were also detected in water of 

276 unexposed conditions (1.1-8.2 μg/L), while in those exposed to Pb concentrations ranging 

277 between 63.1 and 74.2 µg/L, slightly higher than the targeted nominal concentration (Table 1). 

278 The concentrations of Pb in mussel�s soft tissues showed significantly higher (about 3-

279 4 fold) values in organisms exposed to Pb in comparison to non-contaminated ones, with no 

280 significant differences among mussels exposed to different conditions (Table 2). The BCF 

281 estimated ranged between 0.02-0.03 with no clear influence of salinity and temperature 

282 parameters.

283

284 3.2 Biochemical parameters

285 3.2.1 Metabolic capacity and energy reserves

286 In non-contaminated mussels, significantly lower ETS values were observed in those 

287 maintained to salinity 35 in comparison to the remaining conditions. In Pb exposed mussels, 

288 significantly lower ETS values were observed at salinities 30 and 35 at control temperature (17 

289 ºC). At salinity 30, ETS increased at 21ºC but decreased at 17ºC in Pb exposed mussels in 

290 respect to non-contaminated ones (Figure 1A).

291 GLY content was only significantly lower at salinity 35 in respect to 30 in non-

292 contaminated mussels. By contrast, in the presence of Pb, GLY was significantly enhanced at 

293 the salinity 35. At the control salinity (30), lower GLY content was observed in contaminated 

294 mussels maintained at both tested temperatures (Figure 1B).

295 PROT content in mussels at 17 ºC was significantly higher at salinity 25 both for non-

296 contaminated and Pb contaminated conditions. When considering the temperature influence at 

297 salinity 30, PROT reserves were higher in non-contaminated specimens maintained both at 17 

298 and 21 ºC (Figure 1C).

299
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300 3.2.2 Antioxidant and biotransformation defences

301 SOD activity in non-contaminated mussels differed at the three tested salinities at 17 

302 ºC, with the lowest activity seen at 25. In Pb exposed mussels held at the same temperature, 

303 SOD was significantly increased only at salinity 30. At this salinity, the effect of temperature was 

304 inverse, while SOD increased in Pb exposed mussels held at 17 ºC, it decreased in 

305 contaminated mussels at 21 ºC (Figure 2A).

306 CAT activity was little affected by salinity and it only increased in unexposed mussels 

307 at the higher salinity of 35 at 17 ºC. At 21 ºC and salinity 30, CAT activity was significantly 

308 higher in non-contaminated mussels than in those exposed to Pb at the same temperature and 

309 those held at 17 ºC at the same salinity (Figure 2B).

310 GPx activity was highly salinity dependent, with significantly higher values at salinity 

311 25 in non-contaminated mussels; while in all the Pb exposed groups this activity was 

312 significantly lower at this salinity condition. In regard to the influence of temperature at salinity 

313 30, Pb exposed mussels displayed significantly lower GPx activity than non-contaminated 

314 mussels at the two temperatures; with significantly higher GPx values at 17 ºC (Figure 2C).

315 GSTs activity was significantly lower in non-contaminated and contaminated mussels 

316 at salinity 25 and temperature 17 ºC. Mussels maintained at salinity 30 and different 

317 temperatures (17 and 21 ºC) showed the same response, with significantly higher GSTs values 

318 in contaminated mussels (Figure 3).

319

320 3.2.3 Indicators of cellular damage 

321 LPO values were significantly higher in non-contaminated mussels maintained at 

322 salinity 25 but they were significantly lower in the Pb exposed group held at the same condition. 

323 At 21 ºC and salinity 30 LPO values significantly increased in Pb exposed mussels, while at 17 

324 ºC and salinity 30 an opposite response was observed (Figure 4A).

325 Oxidised proteins measured as PC significantly increased at salinities of 25 and 35 

326 even in the non-exposed mussels. Oxidised proteins content was significantly higher in mussels 

327 at 21 ºC and salinity 30 in comparison to organisms maintained at the same salinity but 17 ºC 

328 (Figure 4B).

329
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330 3.2.4 Neurotoxicity 

331 AChE activity was significantly increased at salinities 25 and 35 in contaminated 

332 mussels, while an opposite response was observed in non-contaminated mussels with 

333 significantly lower AChE values observed at salinities 25 and 35. No effects were observed due 

334 to temperature differences (Figure 5).

335

336 Due to the large number of biomarkers considered (10), physical variables (2 

337 temperatures and 3 salinities) and two chemical conditions (presence and absence of Pb) that 

338 generate complex responses, an integrative multicomponent analysis was considered. The 

339 PCO axis 1 explained 31.7% of the total variation clearly separating Pb contaminated mussels 

340 (except organisms at 17 ºC and salinity 25), in the positive side of the axis, from non-

341 contaminated organisms, distributed in the negative side of the axis (Figure 6). The variables 

342 that better explained the variation were: Pb concentration, PC levels, CAT and GSTs activities, 

343 presenting a high correlation with axis 1 positive side (Pb and GSTs) and negative side (CAT 

344 and PC). The PCO vertical dimension (PCO axis 2) explained 27.6% of the total variation 

345 separating non-contaminated mussels at control conditions (salinity 30 and temperature 17 ºC) 

346 and salinity 25 in the negative side, from the other conditions in the positive side. LPO 

347 represents high correlation with PCO axis 2 negative side (Figure 6).

348
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350 4. DISCUSSION 

351 In the present study, the amount of Pb accumulated in whole mussel tissue 

352 demonstrated that fluctuation of salinity (± 5) and temperature (4º C) from the present ones 

353 (identified as control salinity 30 and temperature 17ª C), did not influence the concentration of 

354 this metal or its BCF values. However, this behaviour can differ from other elements under the 

355 similar temperature scenarios. For instance, Coppola et al (2017, 2018) already demonstrated a 

356 different bioaccumulation pattern of Hg and As in M. galloprovincialis under different 

357 temperatures: Hg concentration decreased and As concentrations increased in M. 

358 galloprovincialis exposed to 21 ºC compared to those held at 17 ºC. 

359 Despite limited variations in Pb bioaccumulation in mussels at different environmental 

360 conditions, the biochemical responses varied dependng on the physical water conditions in both 

361 Pb-contaminated and non-contaminated mussels. Due to the comprehensive set of biomarkers 

362 tested and the complexity of the responses obtained at the different water conditions, the PCO 

363 analysis was considered in order to interpretate the extend of the changes as it integrates the 

364 various responses measured and reports on which factors may better explain the observed 

365 differences. Derived from the PCO analysis, the influence of Pb exposure alone was confirmed 

366 while the modulation in the biochemical responses observed by the different temperature and 

367 salinity conditions was less obvious.

368 The parameters related to energy metabolism such as ETS, which corresponds to the 

369 overall mitochondrial activity in relation to energy production, was not a mechanism that 

370 significantly contributed to the differences observed as it did not show a correlation >75% with 

371 all tested conditions, reason why it did not appear as an explanatory vector in the PCO. Neither 

372 did the GLY content account for explaining differences among tested conditions. Despite the 

373 limited influence of ETS in the overall responses, the highest salinity alone decreased mussel�s 

374 metabolic capacity regardless of Pb exposure. However, under Pb contamination, mussels 

375 significantly increased their metabolism at the salinity 25 and the highest temperature (21 ºC). 

376 Thus, two strategies were seen adopted by mussels: one, by decreasing their metabolism at 

377 higher salinity regardless of Pb presence but also under Pb exposure at actual salinity (control 

378 salinity 30), and this way avoiding the accumulation of Pb as a protective measure; and a 

379 second strategy by increasing their metabolic rate under Pb exposure at lower salinity (25) and 
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380 high temperature (21ºC) conditions, which were in turn correlated with increased GLY and 

381 PROT consumption particularly at higher temperature. Previous studies with bivalves already 

382 demonstrated that under control salinity (30) and temperature (17 ºC) conditions, exposure to 

383 metals strongly decreased their metabolic capacity (Bielen et al., 2016; Coppola et al., 2017; 

384 Coppola et al., 2018; Izagirre et al., 2014; Nardi et al., 2017), while under combined stressful 

385 conditions (salinity and pollution) their metabolic capacity increased (Moreira et al., 2016). Thus 

386 both strategies can be alternatively adopted in bivalves. The neurotoxicity marker AChE did not 

387 seem to be a mechanism that significantly contributed to the identification of differences among 

388 tested conditions (correlation <75%). Salinities 5 units over and under the control value (salinity 

389 30) either decreased (non-contaminated mussels) or increased (Pb exposed mussels) this 

390 enzymatic activity. The interpretation of this result is difficult in bivalves since a clear 

391 physiological role of this activity, other than the neurotoxicity due to AChE inhibition, is not yet 

392 clear (Sole et al., 2018). Other metals such as Ni (Attig et al., 2010) and Cd (Chalkiadaki et al., 

393 2014) are reported as AChE inhibitors in bivalves, whereas an increase in AChE in the bivalve 

394 Perna indica exposed to As was interpreted as an attempt to reduce the neurotransmitter 

395 excess in the synaptic clefts (Rajkumar, 2013).

396 From the PCO analysis (Figure 6) three clear groups can be outlined. One 

397 encompassing 3 out of 4 Pb exposed conditions, those being highly correlated with GSTs 

398 activity. These results clearly demonstrated that biotransformation enzymes (GSTs) were 

399 activated in the presence of Pb, independently on the salinity and temperature levels. The 

400 capacity to increase the activity of these enzymes to detoxify their cells from Pb was formerly 

401 demonstrated in bivalves exposed to metals (Attig et al., 2010; Oliveira et al., 2018; Monteiro et 

402 al., 2019). A second group included control salinity (30) and high temperature unexposed 

403 mussels with high correlation with PROT reserves, the antioxidant CAT activity and the 

404 ocurrence of oxidised proteins (PC). This second group with increased PROT reserves and 

405 antioxidant CAT defences seemed to be sufficient to prevent LPO occurrence but not protein 

406 oxidation. An increase in PROT content was already showed by Freitas et al. (2016b) in 

407 Ruditapes philippinarum exposed to increased As concentrations (0, 4 and 17 mg/L) and a 

408 range of salinities (14, 21, 28, 35 and 42) as a measure to face stress. A third group included 

409 low salinity and low temperature unexposed mussels with a close relationship with GPx activity 
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410 and LPO levels. This third group, although included the mussels exhibiting the highest 

411 antioxidant GPx activity, it lacked the action of other efficient antioxidant defences such as CAT 

412 and SOD. In fact, SOD activity was the lowest under temperature 17 ºC and salinity 25, and 

413 consequently LPO occurrence was not prevented in this particular group. Such antioxidant 

414 response patterns indicate that even non-contaminated mussels tried to avoid cellular damage 

415 when facing unfavourable water conditions (i.e., out of salinity 30 and temperature 17 ºC) by 

416 increasing particular antioxidant defences. The response of antioxidant enzymes to 

417 unfavourable physical water parameters was already described in mussels and other bivalves, 

418 with i) inhibition of SOD under highly stressful conditions of salinity (Gonçalves et al., 2017), or 

419 ii) increase of antioxidant defenses in bivalves exposed to salinity decreases (Freitas et al., 

420 2017; Velez et al., 2016) or salinity increases (Rahman et al., 2019); also to temperature 

421 elevation (Coppola et al., 2018; Rahman et al., 2019; Verlecar et al., 2007) or decreased pH 

422 (Matozzo et al., 2013). The present results highlight that the presence of Pb generated complex 

423 antioxidant responses under unfavourable salinity and temperature conditions. That is it under 9 

424 stressing situations 5 decreases and 1 increase were recorded for the three antioxidant 

425 enzymes measured. Three out of the 5 decreases were due to increased temperature 

426 evidencing that antioxidant defenses may be compromised under warming conditions and Pb 

427 contamination in mussels. A more limited capacity of these enzymes to act when under 

428 combined stressful conditions was already demonstrated by other authors (Maria and Bebianno, 

429 2011; Freitas et al., 2017). 

430 As a consequence of mussel�s efficent activation of their defence mechanisms, in 

431 general, no LPO or PC ocurrence was observed in Pb contaminated mussels. Only one 

432 exception being LPO elevation in Pb exposed mussels reared at higher temperature and 

433 highlights this as the worst case situation. Efficent defence response were also observed in M. 

434 galloprovincialis exposed to Cd and Hg (Coppola et al., 2017; Rocha et al., 2015), 

435 demonstrating the capacity of bivalves to avoid cellular damage by increasing their antioxidant 

436 defences. 

437

438 Conclusion
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439 This study demonstrates the usefullness of aplying multicomponent tools when 

440 assessing the effects of several physico-chemical conditions in a comprehensive set of 

441 variables embracing aspects that relate to energy metabolism, antioxidant defenses, oxidative 

442 stress damage and neurotoxicity. Exposure to Pb induced mostly the conjugation detoxification 

443 reactions by GSTs regardless of salinity or temperature conditions. Nonetheless, salinities of 25 

444 and 35 when compared to the control one (30) were also revealed as stressful situations that 

445 did not prevent the ocurrence of oxidised lipids (measured as LPO levels at salinity 25) or 

446 oxidised proteins (measured as PC at salinity 35) even in uncontaminated mussels. 

447 Temperature alone had more influence in modulating the responses in non-contaminated 

448 mussels (separated in the PCO) than those exposed to Pb since the presence of the 

449 contaminant seem to mask the effect of the temperature and they appear highly related in the 

450 PCO axis.  

451
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Figure captions

Figure 1. A: Electron transport system activity (ETS), B: Glycogen content (GLY) and 

C: Protein content (PROT), in Mytilus galloprovincialis under different conditions: Pb-

contaminated and non-contaminated mussels at salinities 30, 25 and 35 and at 

temperature 17 ºC, Pb-contaminated and non-contaminated mussels at salinity 30 and 

at temperature 21 ºC. Values are presented as mean + standard deviation. Significant 

differences (p ≤ 0.05) among salinity and temperature conditions are represented with 

different letters: lowercase letters for non-contaminated mussels and uppercase letters 

for contaminated mussels. Significant differences (p ≤ 0.05) between non-contaminated 

and contaminated mussels for each salinity and temperature condition are represented 

with an asterisks. White bars represent non-contaminated mussels. Grey bars 

represent contaminated mussels.

Figure 2. Activities of A: Superoxide dismutase (SOD); B: Catalase (CAT); and C: 

Glutathione peroxidase (GPx), in Mytilus galloprovincialis under different conditions 

(see legend Figure 1). Values are presented as mean + standard deviation. Significant 

differences (p ≤ 0.05) among salinity and temperature conditions are represented with 

different letters: lowercase letters for non-contaminated mussels and uppercase letters 

for contaminated mussels. Significant differences (p ≤ 0.05) between non-contaminated 

and contaminated mussels for each salinity and temperature condition are represented 

with an asterisks. White bars represent non-contaminated mussels. Grey bars 

represent contaminated mussels.

Figure 3. Activity of Glutathione S-transferases (GSTs), in Mytilus galloprovincialis

under different conditions (see legend Figure 1). Values are presented as mean + 

standard deviation. Significant differences (p ≤ 0.05) among salinity and temperature 

conditions are represented with different letters: lowercase letters for non-contaminated 
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mussels and uppercase letters for contaminated mussels. Significant differences (p ≤

0.05) between non-contaminated and contaminated mussels for each salinity and 

temperature condition are represented with an asterisks. White bars represent non-

contaminated mussels. Grey bars represent contaminated mussels.

Figure 4. Levels of A: Lipid peroxidation (LPO); B: Protein carbonylation (PC); and C: 

reduced/oxidised glutathione ratio (GSH/GSSG), in Mytilus galloprovincialis under 

different conditions (see legend Figure 1). Values are presented as mean + standard 

deviation. Significant differences (p ≤ 0.05) among salinity and temperature conditions 

are represented with different letters: lowercase letters for non-contaminated mussels 

and uppercase letters for contaminated mussels. Significant differences (p ≤ 0.05) 

between non-contaminated and contaminated mussels for each salinity and 

temperature condition are represented with an asterisks. White bars represent non-

contaminated mussels. Grey bars represent contaminated mussels.

Figure 5. Activity of Acetylcholinesterase (AChE), in Mytilus galloprovincialis under 

different conditions (see legend Figure 1). Values are presented as mean + standard 

deviation. Significant differences (p ≤ 0.05) among salinity and temperature conditions 

are represented with different letters: lowercase letters for non-contaminated mussels 

and uppercase letters for contaminated mussels. Significant differences (p ≤ 0.05) 

between non-contaminated and contaminated mussels for each salinity and 

temperature condition are represented with an asterisks. White bars represent non-

contaminated mussels. Grey bars represent contaminated mussels.

Figure 6. Centroids ordination diagram (PCO) based on Pb concentrations and 

biochemical markers measured in Mytilus galloprovincialis under different conditions 

(see legend Figure 1). Black letters represented contaminated mussels while grey 

letters represent non-contaminated mussels. Pearson correlation vectors are 



ACCEPTED MANUSCRIPT

superimposed as supplementary variables, namely biochemical data (r > 0.75): PC, 

CAT, PROT, GPx, Pb, GSTs, LPO.
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 Metabolism increased at lower salinity and higher temperature in Pb exposed 

mussels.

 Overall, exposure to Pb increased detoxification activity measured as GSTs.

 Antioxidant defences failed to prevent LPO at the lowest salinity in controls.

 Damaged proteins occurred at the highest salinity in unexposed mussels.
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Table 1. Mean Lead concentrations (µg/L) in water samples weekly and immediately sampled 

after spiking during the experimental period (28 days), at each condition. Non-contaminated 

(mussels exposed to 0 µg/L of Lead) and contaminated (mussels exposed to 50 µg/L of Lead) 

conditions. For non-contaminated and contaminated mussels, significant differences (p ≤ 0.05) 

among different salinity and temperature conditions are represented with different lower case 

letters. 

Conditions Salinity Temperature
(ºC)

Water Pb 
concentrations (µg/L)

Non-contaminated 25 17 5.3±2.9 a

30 17 4.6±2.5 a

35 17 3.6±2.5 a

30 21 6.3±0.6 a

Contaminated 25 17 66.6±7.5 a

30 17 69.9±4.3 a

35 17 67.7±2.1 a

30 21 65.2±2.1 a
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Table 2. Mean Lead concentrations (µg/g) in mussel�s soft tissues collected at the end of the 

experimental period (28 days), at each water condition. Non-contaminated (mussels exposed 

to 0 µg/L of Lead) and contaminated (mussels exposed to 50 µg/L of Lead) conditions. For non-

contaminated and contaminated mussels, significant differences (p ≤ 0.05) among different 

salinity and temperature conditions are represented with different lower case letters. BCF- 

Bioconcentration factor. 

Conditions Salinity Temperature
(ºC)

Tissue Pb 
concentrations (µg/g)

BCF

Non-contaminated 25 17 0.63±0.10a -
30 17 0.44±0.03b -
35 17 0.43±0.07b,c -
30 21 0.38±0.01c -

Contaminated 25 17 1.8±0.2a 0.027
30 17 1.6±0.2a 0.023
35 17 1.3±0.2a 0.019
30 21 1.4±0.2a 0.021


