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Abstract: A growing body of research suggests that the mitochondrial genome (mtDNA) is 20 

important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged 21 

in temperature tolerance, driving their use in high or low temperature fermentations. Here we 22 

experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial 23 

hybrids (Saccharomyces cerevisiae x Saccharomyces eubayanus, or Saccharomyces 24 

pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of 25 

hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain 26 

temperature preferences. The strong influence of mitotype on the temperature tolerance of 27 

otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation 28 
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hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly 29 

fermented beverage. 30 

One Sentence Summary: Mitochondrial genome origin affects the temperature tolerance of 31 

synthetic and industrial lager-brewing yeast hybrids. 32 

  33 
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Main Text:  34 

Introduction 35 

Temperature tolerance is a critical component of how species adapt to their environment. The 36 

mitochondrial climatic adaptation hypothesis (1) posits that functional variation between 37 

mitochondrial DNA (mtDNA) sequences (mitotypes) plays an important role in shaping the 38 

genetic adaptation of populations to the temperatures of their environments. Clines of mitotypes 39 

along temperature gradients and associations between mitotype and climate have been observed 40 

for numerous metazoan species, including humans (1, 2). Experiments in invertebrates have 41 

demonstrated directly that different mitotypes can alter temperature tolerance (3, 4), and 42 

mitotype has been associated with adaption to temperature in natural environments (1, 5).  43 

Recent work has suggested that mitotype can also play a role in temperature tolerance in 44 

the model budding yeast genus Saccharomyces (6–8). The eight known Saccharomyces species 45 

are broadly divided between cryotolerant and thermotolerant species (9–11). Thermotolerant 46 

strains (maximum growth temperature ≥36˚C) form a clade that includes the model organism 47 

Saccharomyces cerevisiae (12), while the rest of the genus is more cryotolerant. Most prior 48 

research has focused on thermotolerance or the function of mitochondria under heat stress 49 

(~37˚C), on mitotype differences within S. cerevisiae (6, 8), or on interspecies differences 50 

between S. cerevisiae and its moderately thermotolerant sister species, Saccharomyces 51 

paradoxus (13). The genetic basis of cryotolerance in Saccharomyces has been difficult to 52 

determine using conventional crosses focused on the nuclear genome (14–16). Nonetheless, 53 

given how common mitochondrial adaption to cold conditions is among arctic metazoan species 54 

(17–19), mitotype could conceivably influence cryotolerance in Saccharomyces.  55 

 In a companion study, Li et al. found that the parent providing mtDNA in hybrids of S. 56 

cerevisiae and the cryotolerant species Saccharomyces uvarum had a large effect on temperature 57 
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tolerance (20). Since Saccharomyces eubayanus is the sister species of S. uvarum but ~7% 58 

genetically divergent, we wondered whether the effect of mitotype would extend to industrial 59 

hybrids of S. cerevisiae x S. eubayanus, sometimes called Saccharomyces pastorianus syn. S. 60 

carlsbergensis (21). While S. cerevisiae is well known for its role in human-associated 61 

fermentations, it is generally not used to produce lager-style beers, which are brewed at colder 62 

temperatures than S. cerevisiae can tolerate. Instead, the world's most commonly fermented 63 

beverage is brewed using cryotolerant S. cerevisiae x S. eubayanus hybrids (21) that inherited 64 

their mtDNA from S. eubayanus (22, 23). The recent discovery of non-hybrid strains of S. 65 

eubayanus (21) has sparked substantial interest in understanding the genetics of brewing-related 66 

traits to understand how lager strains were domesticated historically and to develop novel lager-67 

brewing strains (24–28). 68 

Temperature tolerance of S. cerevisiae and S. eubayanus 69 

To establish the temperature tolerance of S. cerevisiae and S. eubayanus, relative growth 70 

scores were calculated at temperatures ranging from 4-37˚C. Two strains of S. cerevisiae (a 71 

laboratory strain and a strain used to brew ale-style beers) and two strains of S. eubayanus (a 72 

derivative of the taxonomic type strain from Patagonia (21) and a strain isolated from North 73 

Carolina that is closely related to the ancestor of lager yeasts (29)) were tested (Table S1 is a 74 

complete list of strains and genotypes). Strains were spotted onto plates containing either glucose 75 

(a fermentable carbon source) or glycerol (a non-fermentable carbon source that requires 76 

respiration to assimilate) and grown for several days (high temperatures) or up to two months 77 

(low temperatures).  78 

S. eubayanus and S. cerevisiae had reciprocal temperature responses. S. eubayanus strains 79 

grew at all temperatures, except 37˚C, while S. cerevisiae strains began to decline in relative 80 

growth at 15˚C and were completely unable to grow at 4˚C (Fig. 1A-B, Fig. S1-4). Strain-81 
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specific differences were also apparent. The S. cerevisiae-laboratory strain (Sc) and the S. 82 

eubayanus-North Carolinian strain (SeNC) grew relatively weakly compared to conspecific 83 

strains. For Sc, relatively poor growth was likely driven by multiple auxotrophies and differences 84 

in growth rates between diploid and haploid yeast strains. The reason for SeNC’s poor 85 

performance is unknown.  86 

Fig. 1 87 

 88 

Fig. 1. Relative growth of S. cerevisiae and S. eubayanus strains.  Relative growth scores of S. 89 

cerevisiae and S. eubayanus strains carrying their native mtDNA from 4-37˚C combined from all 90 

tests on A)  glucose and B) glycerol. Strains are: S. cerevisiae-laboratory strain (Sc), S. 91 

cerevisiae-ale strain (ScAle), S. eubayanus-type strain (Se), and S. eubayanus-North Carolinian 92 

strain (SeNC). Error bars represent standard errors. Parents were not tested for significant 93 

differences. 94 

Influence of mitotype in synthetic lager hybrids 95 

To directly test the role of mtDNA in temperature tolerance, we constructed a panel of 96 

synthetic hybrids of S. cerevisiae x S. eubayanus, controlling the source of mtDNA using crosses 97 

between ρ0 strains lacking mtDNA and ρ+ strains retaining their native mtDNA (Fig. 2A). The 98 

generation of ρ0 strains for crosses requires treating parent strains with ethidium bromide, a 99 
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known mutagen. To control for possible variation in growth as a result of spurious nuclear 100 

mutations, we generated ρ0 strains of each parent in triplicate and used each independently 101 

generated ρ0 strain to make synthetic hybrids, which were all tested. We further verified, by 102 

ANOVA analysis of ρ0 relative growth scores, that variation between ρ0 replicates across 103 

temperatures was minimal (Fig. S5).  104 

Synthetic hybrids tolerated an increased range of temperatures compared to their parents, 105 

regardless of mitotype (Fig. 2B-C, Fig. S1-4). These results support a strong role for the nuclear 106 

genome in temperature tolerance and indicate some level of codominance between alleles 107 

supporting thermotolerance and cryotolerance. Despite generally robust growth across 108 

temperatures, synthetic hybrids with different mitotypes displayed clear and consistent 109 

differences in relative growth. At higher temperatures, S. cerevisiae mitotypes permitted 110 

increased growth relative to S. eubayanus mitotypes, while the same was true for S. eubayanus 111 

mitotypes at lower temperatures. Relative growth was typically high for both mitotypes on 112 

glucose, but statistically significant differences were detected at 5 of 6 temperatures when data 113 

was considered in aggregate (Fig. 2B). On glycerol, the impact of mitotype was exaggerated 114 

(Fig. 2C), and the differences in growth were significant at all temperatures. Subtle background-115 

specific effects were also observed, including a growth defect at 37˚C for the ScAle x SeNC 116 

hybrid carrying ScAle mtDNA (Fig. S1). Arrhenius plots approximated using the relative growth 117 

data displayed the same overall trends (Fig. S6-7).  118 
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Fig. 2 119 

 120 

Fig. 2. Mitotype affects temperature tolerance in synthetic lager hybrids. A) Outline of the 121 

procedure to control the mitotype of synthetic S. cerevisiae x S. eubayanus hybrids. Yeast cells 122 

represent nuclear genomes, and inner circles represent mtDNA. Red indicates genetic material of 123 

S. cerevisiae origin, blue of S. eubayanus origin, and purple hybrid nuclear material. B) On 124 

glucose and C) glycerol, relative growth scores of S. cerevisiae x S. eubayanus synthetic hybrids 125 

with alternate mitotypes from 4-37˚C, combined across all experiments (tiny circles and 126 

triangles). Each hybrid of each mitotype is represented in the above graphs. Mean data for all 127 

synthetic hybrids carrying S. eubayanus mtDNA are represented by large blue circles, and mean 128 

data for all synthetic hybrids with S. cerevisiae mtDNA by large red triangles. Parent strains: S. 129 

cerevisiae-laboratory (Sc), S. cerevisiae-ale (ScAle), S. eubayanus-type (Se), and S. eubayanus-130 

North Carolinian (SeNC). Synthetic hybrids: Sc x Se, ScAle x Se, Sc x SeNC, and SeAle x SeNC. 131 
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ScAle x SeNC and Sc x SeNC hybrids carrying S. cerevisiae mtDNA, for which only single 132 

biological replicates of the crosses were available (see below), are represented by open tiny 133 

triangles. Differences in relative growth between hybrids of different mitotypes with p-values of 134 

<0.05 were considered statistically significant and are indicated by an asterisk. 135 

Because we encountered challenges forming hybrids with a S. cerevisiae x SeNC nuclear 136 

background and an S. cerevisiae mitotype, hybrids of Sc x SeNC with Sc mtDNA and ScAle x 137 

SeNC with ScAle mtDNA were both represented by single biological replicates. The behavior of 138 

these strains suggests that incompatibilities related to mitochondrial function may exist in these 139 

hybrids. To confirm that our results were not being driven by the unusual behavior of these 140 

hybrids, we also excluded these data and again compared the growth of synthetic hybrids with S. 141 

cerevisiae and S. eubayanus mtDNA (Fig. S8). Analyses on this restricted dataset had slightly 142 

less power, but they still suggested that the S. eubayanus mtDNA conferred vigorous growth at 143 

colder temperatures, while the S. cerevisiae mtDNA conferred vigorous growth at warmer 144 

temperatures. 145 

The challenges obtaining S. cerevisiae x SeNC hybrids with S. cerevisiae mtDNA suggest 146 

that strain-specific dominant cytonuclear incompatibilities may exist between S. cerevisiae and 147 

S. eubayanus. Recessive cytonuclear incompatibilities are common both within and between 148 

Saccharomyces species (7, 8), but dominant cytonuclear incompatibilities affecting hybrids could 149 

explain why Saccharomyces interspecies hybrids tend to lose more nuclear genetic material from 150 

the parental genome that did not contribute mtDNA (30, 31). Another group recently described a 151 

separate strain-specific incompatibility between S. cerevisiae and S. eubayanus (28), and the 152 

companion manuscript of Li et al. also describes potential dominant interactions between hybrid 153 
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genomes and mtDNA in crosses between S. cerevisiae and S. uvarum (20). More research is 154 

needed to better characterize this class of cytonuclear incompatibilities.   155 

Influence of mitotype in industrial lager cybrids 156 

 To test if mtDNA still plays a role in temperature tolerance in industrial lager-brewing 157 

hybrids that have been evolving to lagering conditions for many generations, we replaced the 158 

native lager mtDNA of S. eubayanus origin (23) with S. cerevisiae mtDNA from Sc and ScAle, 159 

creating lager cybrids (Fig. 3A). Consistent with results for synthetic hybrids, lager cybrids 160 

carrying S. cerevisiae mtDNA had greater growth at higher temperatures and decreased growth 161 

at colder temperatures, especially on glycerol (Fig. 3B-C, Fig. S9). On glucose, strain-specific 162 

differences between lager cybrids were particularly apparent. At 30˚C and below, lager cybrids 163 

carrying ScAle mtDNA grew significantly less than the parental lager strain with its native 164 

mtDNA (from the lager S. eubayanus parent) (Fig. 3B, Fig. S9A, B), while there was no 165 

difference in growth between the parental lager strain and cybrids carrying Sc mtDNA, except at 166 

temperature extremes (4˚C and 33.5˚C) (Fig. 3B, Fig. S9A, B). On glycerol, both lager cybrids 167 

grew significantly less than the industrial strain at 15˚C and below, while they grew significantly 168 

more at 22˚C and 30˚C (Fig. 3C, Fig. S9A, C), displaying a shift from lager-brewing toward ale-169 

brewing temperatures. Approximate Arrhenius growth plots revealed similar trends (Fig. S10). 170 

These results show that the strong effect of mtDNA on temperature tolerance seen in synthetic 171 

hybrids extends to industrial lager strains under at least some conditions. 172 
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Fig. 3 173 

174 
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Fig. 3. S. cerevisiae mtDNA increases the thermotolerance and decreases the cryotolerance 

of an industrial lager strain. A) Outline of crosses and strain engineering to produce lager 

cybrids. Yeast cells represent the nuclear genome, large inner circles represent mtDNA, and 

small green inner circles represent the HyPr plasmid (32). Lower case “a” and “α” indicate 

mating types. Karyogamy-deficient (kar1-1) strains can be of either mating type and are mated to 

the opposite mating type. Black indicates genetic material from the S. cerevisiae karyogamy-

deficient strain; red, genetic material from a S. cerevisiae parent; blue, genetic material of S. 

eubayanus origin; and purple, a hybrid (i.e. lager) nuclear genome. B) On glucose and C) 

glycerol, growth of a lager strain with native mtDNA (inherited from S. eubayanus lager parent) 

and lager cybrids with S. cerevisiae mtDNA. Error bars represent standard errors, and asterisks 

indicate statistically significant differences in growth between the cybrid and lager with native 

mtDNA (p-value <0.05). 

Origin of the mitotype of industrial lager yeasts 

Compared with ale strains or new hybrids carrying S. cerevisiae mtDNA, the increased 

cold tolerance conferred to new interspecies hybrids carrying S. eubayanus mtDNA would have 

provided an immediate selective advantage at the lower temperatures at which lagers are brewed. 

It is likely that additional changes occurred that affected temperature tolerance during adaption 

to lagering conditions, much of which are likely attributable to changes within the nuclear 

genome. Even so, our data suggest that mitotype had a disproportionate impact on temperature 

tolerance, considering the limited number of genes encoded by mtDNA. Along with previous 

research suggesting hybrid lager yeasts acquired most of their aggressive fermentation traits from 

S. cerevisiae (25, 27, 28), our results suggest they acquired their cold tolerance from S. 

eubayanus in large part by retaining S. eubayanus mtDNA. Our results and methods provide a 

roadmap for constructing designer lager strains where temperature tolerance can be controlled 
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for the first time (24–28). Shifting the temperature preference of synthetic or industrial lager 

strains to warmer fermentation temperatures could substantially reduce the cost of lager brewing 

by reducing production time and infrastructure requirements. The strain-specific differences 

observed further suggest that the S. cerevisiae parent, the S. eubayanus parent, and cytonuclear 

incompatibilities (34), should all be considered during strain construction. Along with the 

companion study of Li et al. (20), the identification of a role for mtDNA in temperature tolerance 

of these yeasts extends support for the mitochondrial climatic adaptation hypothesis (1) to fungi 

and suggests that the outsized role of mtDNA in controlling temperature tolerance may be 

general to eukaryotes.   
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