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Well, I suggest you gentlemen invent a way to put

a square peg in a round hole. Rapidly.

From the film Apollo X111 (Ron Howard, 1995)
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Resumen

La viticultura de precision permite mejorar la calidad y produccion de la
uva, al mismo tiempo que optimiza el uso de los recursos, reduciendo el
impacto ambiental. Para su correcta implementacién es necesaria la
medida precisa y georreferenciada del estado del vifiedo, de forma que se
represente la variabilidad intra e inter parcela. Los recientes progresos en
sistemas de geo-posicionamiento y sensores capaces de monitorizar el
vifiedo de forma rapida, no invasiva y precisa han impulsado el desarrollo
e implementacion de la viticultura de precisién, aunque su uso comercial
es limitado. Entre los diferentes tipos de sensores disponibles, destacan
los basados en analisis de imagen, que estan experimentando un fuerte
desarrollo en los ultimos afios gracias a su bajo coste y amplio rango de
aplicaciones. Debido a sus caracteristicas, el andlisis de imagen es una
tecnologia clave para la viticultura de precisién y su implantacion
comercial.

El objetivo principal de este trabajo es el desarrollo de nuevas
metodologias de monitorizacion del vifiedo mediante el analisis de
imagen. Con esta finalidad se han desarrollado y evaluado nuevas técnicas
para: i) estimacion del nimero de flores por inflorescencia; ii) prediccidon
de la cosecha; y iii) evaluacion del estado de la “canopy”. Para ello se han
utilizado diferentes métodos de adquisicion de imagen, incluyendo la
captura manual, el uso de “smartphones” y la utilizaciéon de plataformas
moviles que realizan la adquisicidon de forma automatica.

La precisién del algoritmo para el conteo de flores por inflorescencia fue
superior al 90% en todas las variedades evaluadas. Con el fin de facilitar el
uso de esta metodologia en el vifiedo, se desarrolld una versién mejorada
del algoritmo compatible con “smartphones” de sistema operativo
Android. La aplicacion fue capaz de identificar correctamente el 84% de las
flores presentes por imagen, obteniendo una precisién del 94% y un error
cuadratico medio (RMSE) de 37,1 en la estimacién del nimero total de
flores por inflorescencia.

La prediccidon de la cosecha se realizé mediante dos enfoques distintos: a
partir de imagenes capturadas de forma manual utilizando un fondo
blanco o con una plataforma mdévil capaz de realizar la captura de forma
automatizada. En el primer caso se logré la clasificacion correcta del 98%



y 92% de los pixeles correspondientes a racimos y hojas respectivamente,
obteniéndose la estimacién de la produccidn con alta precisién (R?=0,73).
En el segundo caso se utilizd el modelo Booleano para mejorar la precision
de la estimacion frente a oclusiones y errores de segmentacion,
obteniéndose un error (RMSE) de 203g por cepa.

La capacidad de medida del estado de la “canopy” mediante andlisis de
imagen se ha evaluado con experimentos ejecutados en Nueva Zelanda,
Croacia, y Espafia, de forma que se pudo valorar la robustez del sistema
frente a diferentes variedades y sistemas de manejo. Se obtuvo un
coeficiente de determinacion superior a 0,90 para la relacion entre el
método de referencia (“point quadrat analysis”) y el algoritmo de andlisis
de imagenes (capturadas manualmente utilizando un fondo blanco) para
cada uno de los experimentos y de R*=0,93 cuando todos los datos se
analizaron de forma conjunta. Para aumentar la aplicabilidad comercial de
la metodologia, se modificé un “quad” de forma que la captura de las
imagenes se realizara de forma automatica y continua a una velocidad en
torno a 7 km/h. Con esta metodologia se pudo evaluar la porosidad del
vifiedo (R%>0,85) y hojas expuestas (R?>0,71), y gracias a la alta densidad
de muestreo se pudieron realizar mapas representativos de la variabilidad
del vifedo. Finalmente, también se evalud la capacidad de estimar el peso
de la madera de poda, que es un indicador del vigor del vinedo. Mediante
el andlisis de las imagenes capturadas de manera manual se obtuvo una
estimacién (R?=0,91) con un error (RMSE) de 87,7g por cepa. Cuando la
captura de imagenes se realizé de forma automatizada y en continuo, la
precisién descendid ligeramente (RMSE=115,7; R?=0,85), pero con una
importante reduccién en el esfuerzo requerido para la obtencion de las
imagenes.

Los resultados obtenidos muestran que el analisis de imagen es una
tecnologia de gran interés para la viticultura de precision. El bajo coste de
los sensores, la captura rdpida y no destructiva y la alta precision y
variedad de los parametros que pueden ser medidos representa
importantes ventajas frente a los métodos clasicos. Los algoritmos
desarrollados permiten la estimacién del numero de flores por
inflorescencia, prediccidon de la produccidn y evaluacién de la “canopy”
con gran precision. La posibilidad de captura de imdagenes desde
plataformas mdviles reduce el esfuerzo de captura y permite la generacion
de mapas, facilitando el uso de estas técnicas a nivel comercial en el sector
viticola.



Palabras clave: anilisis de imagen, sensores no-invasivos, estimacion del
numero de flores, estimacion de la produccién, evaluacion de la canopy,
vidVitis vinifera L.






Abstract

Precision viticulture is a technique that aims at improving grapevine
production and quality while reducing the environmental impact by
optimising resource use. For its implementation, the correct,
georeferenced, precise measurement of the vine status which represent
the inter- and intra-field variability is mandatory. The development of the
geo-positioning systems and sensing technologies, capable of monitoring
vine status in a non-invasive, fast and reliable way has stimulated the
development and implementation of precision viticulture. Image analysis
techniques are currently of increased interest to agricultural monitoring.
Their low costs and wide range of applications make them ideal for crop
status evaluation.

The main goal of this PhD thesis is to provide new reliable, objective and
simple methodologies for vineyard status monitoring using image analysis.
To this end, different procedures have been developed to do so: i)
assessment of flower number per inflorescence; ii) estimation of the yield
before harvest; and iii) evaluation of canopy status. The use of different
capturing procedures (manual, smartphone based and on-the-go) was also
taken into account, tested and analysed.

The algorithm developed for the assessment of flower number per
inflorescence provided estimations with over 90% precision for all the
studied varieties. When an improved version of this algorithm was
implemented for use in an Android smartphone, the precision rose to the
94%. The new version identified 84% of the flowers present in the image
correctly. The number of flower that were visible per image (not all the
flowers are visible in the image due to occlusions) was used to estimate
the total flower number using a non-lineal model with a root mean square
error (RMSE) of 37.1.

The vyield assessment before harvest was carried out using two
approaches: firstly, a series of vine images were captured manually using
a white screen as background, resulting in a classification performance of
98% for clusters and 92% for leaves, this allowed the assessment of the
yield with R? = 0.73. Not all the berries are visible in a vine image due to
occlusion from clusters or other parts of the vine. Secondly, the use of a
Boolean model was used to reduce the error associated to the occlusion



and segmentation errors, resulting in an error in the yield estimation of
RMSE = 203g per vine from images captured on-the-go.

Canopy status assessment was carried out with a multi-site experiment
conducted in New Zealand, Croatia and Spain. The comparison between
the reference method (point quadrat analysis) and the results obtained by
analysis of manually captured images (taken on the field using a white
screen as background) yielded a determination coefficient over 0.90 on
every evaluated site and R?=0.93 when all the data was analysed together.
The following experiment was carried out using a modified all-terrain
vehicle (ATV) for the automatic image capture at a speed of approximately
7 km/h. This setup permitted high sampling rate data capture and thus
vine status map generation. The correlations obtained for the canopy
porosity and exposed leaves showed a R?>>0.85 and R?>0.71 respectively.
Finally, the pruning wood weight is a classic vine vigour indicator. The use
of manually captured images (with white screen as background) resulted
in RMSE=87.7g and R?=0.91. When the images were captured with a
modified ATV the precision slightly dropped to RMSE=115.7 and R?=0.85
but with a significant reduction in the capturing effort.

The results show how computer vision can provide valuable information
on vineyard status for precision viticulture. The low cost of the sensor, its
non-destructive and fast capturing process offers a great advantage over
classical manual reference methods. Image analysis showed high precision
in the assessment of flower number per inflorescence, yield estimation
and canopy status assessment. The possibility to capture the images on-
the-go greatly increases its applicability reducing the effort for data
capturing and allowing map generation.

Keywords: image analysis, non-invasive sensing technologies, flower
number estimation, vyield estimation, canopy status assessment,
grapevine, Vitis vinifera L.
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Introduction

1 Introduction

1.1 Precision viticulture

1.1.1 Definition and origin

Precision agriculture is a new term used for a technique that has been
applied since the early stages of agriculture, and one of the first references
of intra-field heterogeneity can be read in the Parable of the Sower! from
the Bible (Matthew 13 v 8). Subsistence farmers noticed that the
development of cultivars was not uniform in a given plot. To increase
productivity, they divided their lands into smaller areas with
heterogeneous characteristics that are more appropriate to the farming of
a particular crop. In this sense, precision agriculture was encouraged by
the need to get enough food to ensure the survival of the family (Oliver,
2010). In the second half of the XIX century the introduction of
mechanization and intensive production drove the change of merging
small fields into larger ones. This increase in plot area was motivated by
the use of tractors that allow managing wider areas, which were also
preferred to avoid the need for continuous manoeuvre. This resulted in an
increase of the intra-plot variability and complexity with the management
of new bigger plots.

The term precision agriculture appears to be first used in 1990 in a seminar
held in Montana State University, but the same techniques were
previously referred to as “site specific crop management” (Oliver, 2010).
The modern concept of precision agriculture has been boosted by the
development of new sensors, GPS technology and the use of differential
corrections (DGPS), which has allowed for precise geo-localization.
Furthermore, the development of geographical information systems (GIS),
software used to combine the data obtained and generate maps, has

IHearken; Behold, there went out a sower to sow: And it came to pass, as he sowed, some
fell by the way side, and the fowls of the air came and devoured it up. And some fell on
stony ground, where it had not much earth; and immediately it sprang up, because it had
no depth of earth: But when the sun was up, it was scorched; and because it had no root,
it withered away. And some fell among thorns, and the thorns grew up, and choked it, and
it yielded no fruit. And other fell on good ground, and did yield fruit that sprang up and
increased; and brought forth, some thirty, and some sixty, and some a hundred. And he
said unto them, He that hath ears to hear, let him hear.

13



Introduction

made possible the practical implementation of precision agriculture
(Zhang et al., 2002).

Precision viticulture is a branch of precision agriculture and is stimulated
by vineyard variability. The management of this variability in a uniform
way reduces the quality of berries and increases management costs
(Proffitt et al., 2006). Even though the results of applying precision
viticulture have become quite obvious, it is a only field of study despite the
fact thatin the coming years a huge increase in the use of these techniques
is foreseen (Schrijver, 2016).

Due to ever growing competition in the wine market, increasing grape
quality and yield have become of utmost importance while reducing
production costs. In this way, the viticulturist can compete better in such
an environment. These objectives require a revision of the classic
viticulture techniques and the application of new ones, which allows an
increase in the quality and sustainability of the agricultural procedures.
The optimization of field/crop inputs such as water, fertilizers and
chemicals to reduce costs and ensure environmental preservation
(Matese & Di Gennaro, 2015). The concept of precision viticulture pursues
these objectives, providing the required information to meet the existent
needs of each homogeneous and non-homogenous area within the
vineyard.

Vineyards are considered to be a high value crop with an important focus
on quality. Over 3 million hectares of vineyards were managed in EU
during 2017 of which almost 80% were for quality wine. In 2015 Spain
contained the largest area of all the EU countries devoted to grapes for
wine (941,000 ha or 30% of EU total area), followed by France (803,000 ha
or 25%), Italy (610,000 ha in 2010 or 19%) and, at a distance, Portugal
(199,000 ha or 6%) (Eurostat, 2017). The grape production is mainly
dedicated to quality, governmentally certified wine. Spain and France
together accounted for about two-thirds of the total quality wine area in
the EU (Eurostat, 2017).

Spatial variability of the vineyard is linked to many causes such as the
heterogeneity of the field (topography elevation, slope, aspect, proximity
to plot boundary and streams), soil (soil fertility, depth, water holding
capacity, texture, electrical conductivity or pH), crop variability (crop
density, height), anomalous factors (weed infestation, plagues, diseases,

14



Introduction

wind or other weather event damage) and management variability (tillage,
fertilizer application, cultural practices) (Zhang et al., 2002), which
determines the differential response of the vineyard (Ferreira et al., 2010;
Proffitt et al., 2006). However, understanding the iterations between the
different factors generating this variability and the vineyard is a difficult
task, which depends on the specific conditions of each plot. This can be
perceived not only in the different characteristics found in wines produced
in different regions, but also can be observed at the intra-plot scale
(Proffitt et al., 2006). Figure 1 shows an image of a vineyard located in La
Rioja’s appellation (Spain) at the beginning of the season. A zone with
lower vine vigour can be observed in the centre of the image, also affecting
the under-vine vegetation cover. Without the information about this
heterogeneity, the viticulturist has to treat the variability as “noise” (Cook
& Bramley, 1998) and manage the vineyard as an homogeneous field
resulting in inadequately covering the needs of all the vines or in a waste
of inputs.

Figure 1: Image of vineyard at the beginning of the season located in La Rioja’s appellation
(Spain) where the spatial variability is visible: a low vigour zone in the centre of the image
surrounded by vines with stronger vegetative development.
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The re-parcelling processes carried out in developed countries has led to
larger plots resulting in the rise in intra-plot variability due to different soil
or topographic properties that were intrinsic to the same plot. Because of
the management necessities and the development of the available
technologies, the concept of precision viticulture has evolved into intra-
plot management. This site-specific management (SSM) requires two
components to be deployed (Proffitt et al., 2006): firstly, the development
of sensors that can obtain dense sampling of the variables in a non-
invasive way as not to alter the normal development of the vineyard
during the season; and secondly: the geo-localization of the data under
study to allow the creation of maps or zoning of the vineyard.

Precise positioning of the data obtained by means of global navigation
satellite systems (GNSS) has been available since 1999. GNSS technology
(of which GPS is the most widely used at present) provides current, highly
accurate 3D position (x, y, z) information. The available precisions is to the
centimetre when differential correction techniques are applied using a
network of fixed ground-based reference stations (Matese & Di Gennaro,
2015).

The first applications of precision viticulture were conducted in the USA
(Wample et al., 1999) and Australia (Bramley & Proffitt, 1999) almost
simultaneously. This initial test was based on the use of load cells installed
in automated harvesters to generate yield maps. The increased interest in
precision viticulture techniques spurred more research works in Australia
(Bramley et al., 2000; Bramley, 2001; Bramley & Lamb, 2003), France
(Tisseyre et al., 2001; Ojeda et al., 2005), Italy (Matese et al., 2009) and
Spain (Arnd et al., 2005; Arnd, 2005).

Research in precision viticulture is currently being performed around the
world, Australia being the most advanced country (Hall et al., 2011; Liu et
al., 2015, 2017), followed by USA (Nuske et al., 2011a, 2014). New world
wine regions are also contributing to the development of precision
viticulture: Canada (Reynolds, 2010; Marciniak et al., 2017); Chile
(Sepulveda-Reyes et al., 2016; Poblete-Echeverria et al., 2017); and South
Africa (Smit et al., 2010). In Europe, the main contributions were made by
France (Cerovic et al., 2012), Italy (Palliotti et al., 2011; Matese & Di
Gennaro, 2015), Germany (Roscher et al., 2014; Kicherer et al., 2015a) and
Spain (Bellvert et al., 2014; Diago et al., 2016a).
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Apart from the first studies using load cells, other sensors utilised at the
beginning of precision viticulture were soil sensors (Adamchuk et al.,
2004), radiometric sensors (Zhang et al., 2002), and remote sensing
(Montero et al., 1999; Flexas et al., 2000). In 2006 Proffitt et al. published
a book summarising the application of these new technologies. A review
article containing the techniques used for the implementation of precision
viticulture was released by Arné et al. (2009) and more recently by Matese
& Di Gennaro (2015).

Image analysis techniques are especially applicable to viticulture, because
of the high crop value in addition to the quality being the key to obtain a
high sale price (Zarco-Tejada et al., 2014). Moreover, due to its consumer
use, there is a strong interest in the development of high quality image
sensors at a reduced price. Capturing good images is the first step, but it
is also necessary to create algorithms that can analyse them to extract
useful data. This task is known as image analysis. The applications of image
analysis in precision viticulture include yield prediction at different vine
development stages: pre-flowering (Liu et al., 2017); flowering (Millan et
al., 2017); pre-veraison (Nuske et al., 2014; Aquino et al., 2017); and at
harvest (Diago et al., 2012b; Font et al., 2015). Other applications currently
being developed are canopy status assessment (Gatti et al., 2016; Kicherer
et al., 2017) and plague/pest assessment (Kole et al., 2014).

The information obtained by sensors must be used for designing a
management plan. Thus aiming at satisfying the specific requirements of
the crop in relation to the spatial variability within the vineyard (Proffitt et
al., 2006). The integration of the management plan and modern machinery
create the concept of site specific vineyard management (SSM) allowing
the application of inputs according to the needs of the vines instead of
average quantities per hectare (Matese & Di Gennaro, 2015). This
management is carried out by specialised machinery, identified as
variable-rate technologies (VRT), that can be applied for the regulation of
input usage such as water (Matese et al., 2009), fertilizers and pesticides
(Berenstein et al., 2010).

The use of robotics in farming has become a strong development field,
with many agricultural robots (agbots) already in the final stage of
development, and some of which have already been put on the market
(Matese & Di Gennaro, 2015). Agbots will be autonomous and able to
perform various task via a reconfiguration of its structure (Schrijver, 2016).
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The research on these devices is not only limited to arable land crops, but
includes robots for monitoring vineyard status as VineRobot (Diago et al.,
2016b), which can be seen in Figure 2, vineyard pruning robots (Botterill
et al., 2016) and vineyard spraying robots (Ogawa et al., 2006).The use of
such devices will have huge impact in a high value crop as vineyards, and
thus the development of these technologies is expected to increase in
future years. The use of agbots will transform agriculture practices,
speeding up the energy transition to electricity as a power source for the
machinery, minimizing soil compaction and erosion thanks to the use of
lighter equipment that will be used only where and when needed. Labour
requirements and resource inputs will be reduced at the same time as
yield and quality are increased, resulting not only in cost optimization but
also in reduced environmental impact (Schrijver, 2016).

Figure 2: VineRobot prototype for autonomous vineyard monitoring.

1.1.2 Implementation and benefits

The application of precision agriculture permits optimisation of the
production steps. It is widely accepted that better decision making in
agriculture practices should provide an array of benefits (Zarco-Tejada et
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al., 2014). From the economic point of view, a review of 234 studies
published from 1988 to 2004 revealed that the implementation of
precision agriculture was profitable in an average of 68% of the cases
(Griffin et al., 2004). The wine market is very competitive, and the
opportunity to increase benefits provides an important advantage to the
grape-growers. In contrast to other crops, quality is key in grape
production. For example, in the EU, 80% of grapes produced are
designated to quality wine elaboration (Eurostat, 2017).

The environmental degradation associated with agriculture is reduced by
the application of precision agriculture (Zarco-Tejada et al., 2014).
Environmental impact reduction was assessed by Schrijver (2016), and will
include the reduction of the soil erosion (from 17 T/ha per year to 1 T/ha
per year) and fuel consumption (10%) due to the use of automatic machine
guidance. Schrijver (2016) also pointed out that inputs usage will be
optimised, including a reduction in the cost of pesticides (up to 30%).
When the vine architecture is used to optimise treatments, there can be a
reduction up to 84.5% if early and localised pest or disease detection is
combined with VRA. The fine tuning in the use of fertilizers will also
decrease environmental impact with a reduction of the residual nitrogen
in soils up to 50%, along with a reduction in soil and fertilizers run-off by
controlled irrigation and soil texture maps. The use of patch herbicide
spraying instead of homogeneous application can reduce herbicide needs
to 20% of their current usage.

The combination of precision agriculture and the inclusion of IT in
agriculture production will also contribute to food safety by improving
tracking, tracing and documenting (Schrijver, 2016). The food chain will be
easier to monitor by authorities, producers and consumers.

The implantation of precision agriculture also presents benefits for society
and working conditions, reducing work fatigue and labour requirements
(Zarco-Tejada et al., 2014).

19



Introduction

Figure 3: Producers use of precision agriculture technologies over time in USA. Data
elaborated from that of Erickson & Widmar (2015). Data for 2018 is estimated.

A survey by Erickson & Widmar (2015) on the use of precision agriculture
in EEUU showed an increase especially associated to VRT technologies
(Figure 3). The implantation of yield monitoring systems, which are
expected to be used by 60% of the producers is important to note.

The precision farming market is also expected to rise (Figure 4) up to 4.5
billion euros in 2020. The increase in the market is currently sustained, and
there are no evidences of a plateau in the market size in the coming years.
This is associated to a stage of introduction/growth in the product life cycle
that agrees with the current stage of development of precision agriculture.
The leaders in market sales are currently North America and Europe as
shown in Figure 5. This leadership is expected to drive the development of
new technologies these regions (Dressler et al., 2015).
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Figure 4: Estimated global precision farming market size from 2014 to 2020 (in billion
euros). Data elaborated from that of Dressler et al. (2015).
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Figure 5: Estimated global precision farming market size in 2016 by region (in billion euros).
Data elaborated from that of Dressler et al. (2015).

Even though the application of precision agriculture is increasing, there
are barriers to its use. A report from the European Commission (Zarco-
Tejada et al., 2014) identified a lack of technical expertise and knowledge,
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deficiency in the infrastructures and institutional restrictions as well as
high investment costs. Meanwhile, the principal impediments identified
by Erickson & Widmar (2015) from the final users point of view are shown
in Figure 6. The economic cost greatly limits the application, along with the
stabilization in confidence by farmers over time, showing how the results
of the precision agriculture are not obvious to farmers. It must be noted
that this survey does not only focus on precision viticulture, but on
precision agriculture as a whole. The demand for high quality in the case
of grape production will probably induce the expansion of the application
of precision viticulture in the future.

Figure 6: Barriers to the expansion of precision agriculture over time in USA. Data
elaborated from that of Erickson & Widmar (2015).

On the other hand, an evaluation of the barriers faced by dealers (Figure
7), found the inadequate costs or fees to customers to be the prominent
cause (related to the excessive cost perceived by the clients) and the rapid
change of technologies that require constant investment. This is
associated to the phase of development that is experimenting precision
agriculture, which has not yet reached the plateau associated to other
well-established technologies (Erickson & Widmar, 2015).
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Figure 7: Dealer barriers to the expansion of precision agriculture over time in USA. Data
elaborated from that of Erickson & Widmar (2015)

1.1.3 Vegetative status and yield assessment

Grapevine, as a perennial ligneous plant, has an annual growth cycle
composed of vegetative and reproductive cycle (Keller, 2015). It begins
with bud break (buds are the small part of the vine that rest between the
vine's stem and the petiole) in the spring and ends with the leaf fall in
autumn followed by winter dormancy. The fruit production cycle is
comprised of 2 years: the buds that sprout in the first year give rise to
shoots bearing buds which will fruit during the second season.

The transition from winter dormancy to active growth is marked by the
exude of xylem sap from pruned surfaces and others wounds. This sap flow
or “bleeding” is associated with the restoration of the metabolic activity in
the root system and it seems to be related to soil temperature, starting
when it rises above 7 °C (Keller, 2015). The initial growth of the shoots
depends on the reserves stored in the roots and the wood of the vine from
the previous season until the leaves start to develop, allowing the energy
and the carbohydrate to be obtained from photosynthesis. In warm
climates, after about 4 weeks shoots growth starts to rapidly accelerate
with the shoots growing in length an average of 3 cm a day (Robinson &
Harding, 2015). The shoot growth continues as the temperature rises until
the onset of fruit ripening at which time the lignification occurs,
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transforming shoots into canes. During this period the latent buds that will
evolve into shoots during the next season enter a dormant state.

The flowering stage takes place 40-80 days after bud break. The vines, as
other woody perennials, have a juvenile phase of 2 to 4 years before they
are able to produce flowers. This phase guarantees that the reserves of
the plant will be enough to support fruit production (Keller, 2015). The
inflorescences are formed during the bloom the year that precedes the
flowering, so the future number of inflorescences is determined the year
before.

The fruit set takes place after the flowering stage. The fertilized flowers
begin to develop the berry and seeds. Not every flower becomes fertilized,
and the non-fertilized fall from the inflorescence. After fruit set, the grape
berries are green with low sugar content; they grow until near half its final
size when they enter in the veraison phase. The colour of the grape evolves
to red/black or yellow/green depending on the grape varieties. This colour
change corresponds to the chlorophyll in the skin being replaced by
anthocyanin (red varieties) or carotenoids (white varieties) (Robinson &
Harding, 2015) and marks the change from partly photosynthetic to wholly
dependent on the vine for nutrient generation (Keller, 2015). After the
complete ripeness of the grapes, the clusters can be harvested.

Accurate yield prediction is essential for successful yield regulation and
thus to improve and maintain wine quality (Martin et al., 2003; Dunn,
2010). Traditional yield components determination is carried out by
counting the number of clusters per vine and then detaching and counting
the berries in the lab. This method is destructive and labour demanding,
so it is difficult to increase the number of data points to accurately
represent the vineyard variability. Also, the manual sampling procedure is
subjective and prone to errors in yield forecasting (Clingeleffer, 2001).

The yield components are defined as the number of clusters per vine
(representing 60% of yield variation), number of berries per cluster (30%
of yield variation) and berry size (10% of yield variation) as studied by
(Clingeleffer, 2001). The average yield can be obtained by combining these
three components.

It must be noted that the 60% of the yield variability is associated to the
number of cluster per vine, and this is determined during the previous
season and is clearly visible during the flowering stage. The measurement
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of the number of inflorescences during the flowering phase will account
for a high variability; moreover, if the number of berries can be estimated
from the flower number, 90% of the variation in yield is accounted for at
the flowering stage, providing data with plenty of time to perform
corrective management practices on the vine, if necessary.
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1.2 Sensing technologies in precision viticulture

Traditional vineyard monitoring requires a lot of man-work and labour,
because of the use of manual procedures (Smart & Robinson, 1991). For
example, evaluation of vine vigour and vegetative growth has been
traditionally done using indicators as shoot length, pruning weight, leaf
area and porosity that are manually measured. Similar problems are
encountered when the soil characteristics are measured, requiring labour
intensive sampling as ground pits (Rossi et al., 2013). Moreover, for the
assessment of plant status, the measurement of chemical compounds
such as nitrogen or chlorophyll require the destructive processing of some
samples and its analysis using wet chemistry, high performance liquid
chromatography (HPLC) or near-infrared spectroscopy (NIRS) (Ghozlen et
al., 2010). These laboratory analyses are expensive, require trained
personnel and specialized equipment and are limited by the concern of
the representativeness of the samples. Conversely, the use of non-invasive
sensing require less time and workforce than the reference methods
(Tregoat et al., 2001), thus is ideal for precision agriculture purposes.

The spatial variability associated to the vineyard requires site-specific
management to obtain the best quality and yield from the vineyard. The
use of fast, non-invasive sensors that can be mounted on mobile platforms
for continuous measurements on-the-go (Arnd et al., 2009; Zerger et al.,
2010; Matese & Di Gennaro, 2015) allows the accurate measurement of
intra-vineyard variability. The next step in vineyard monitoring will be the
use of robots for autonomous monitoring.

There are two basic sensor types that can be applied from a distance:
active and passive sensors. Active sensors emit some sort of energy and
its reflection from the surface is perceived by the sensor (Jones &
Vaughan, 2010). Passive sensors measure the reflected energy originated
from an external source as the sun and can measure in many ranges of the
electromagnetic spectrum depending on the application. Passive sensor
applications include visible range (Nuske et al., 2011a; Kicherer et al.,,
2017), near infrared (Fernandes et al., 2014) and short wave infrared for
thermal measurements (Bellvert et al.,, 2014; Pou et al., 2014). Active
sensors have more wide application and technologies, such as ultrasonic
sensors (Palleja & Landers, 2017), LIDAR (Grocholsky et al., 2011; Mack et
al., 2017; Tagarakis et al.,, 2017), soil sensors (Rossi et al., 2013),
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fluorescence sensors (Rey-Caramés et al., 2016) or active spectral sensors
(Rossi et al., 2013; Fernandez-Novales et al., 2017).

The continuous advances in sensor devices, data processing and
information technologies have facilitated the measurement of diverse
plant status indicators. Different reviews of their application in precision
viticulture have been published. It is worth mentioning the ones by Arné
et al., (2009), Zerger et al. (2010) and more recently Matese & Di Gennaro
(2015).

The data obtained by using sensors must be associated to their
geographical position to be able to establish vineyard variability. The geo-
referencing of the data can be achieved by using the Global Navigation
Satellite Systems (GNSS) technology. The GPS is the most widely used
(zarco-Tejada et al., 2014), but the European geostationary navigation
overlay service (EGNOS) from the EU, Russian GLONASS or Chinese BeiDou
can also be used to increase accuracy.

The analysis of the geo-referenced data recorded by different sensors is
carried out using geographic information systems (GIS). GIS is a computer
software that associates a database with its position, allowing for the
analysis, display and storage of spatially referenced data (Proffitt et al.,
2006). This software is used for mapping information in different layers,
including terrain data such as slope or altitude, climatic variables, or data
acquired by sensors. The layers can be represented alone or combined to
determine the different management zones within a vineyard and thus
enabling the use of precision viticulture.

Described and discussed below are some of the more prominent sensor
technologies that are applied in precision agriculture and more specifically
in precision viticulture.

1.2.1 Fluorescence sensors

Fluorescence is the rapid re-emission of absorbed radiative energy, usually
at characteristic wavelengths, which corresponds to energy transitions of
pigments (Jones & Vaughan, 2010). Chlorophyll fluorescence is one of the
most widely used indicators of the plant health. Two types of pigments can
be assessed with fluorescence sensors when applied to grapevines: leaf
chlorophyll content (Rey-Caramés et al., 2016) and epidermal flavonols
(Diago et al., 2012a). The Multiplex 3 (Force A) is a device composed by
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light emitters and sensors and is able to measure the fluorescence without
direct contact in the field (Ghozlen et al., 2010). This device can be used
manually operated or vehicle mounted (Figure 8) for on-the-go monitoring
(Diago et al., 2016b).

Figure 8: Multiplex sensor (Force A) mounted on an ATV.

1.2.2 Spectral sensors

The electromagnetic spectrum provides information about the chemical
characteristics of an object. Certain chemical compounds have unique
spectral “fingerprints” known as spectral signatures, which can be
identified using spectral sensors. The applications include alterations in
photosynthetic activity, nutritional status, plant health and vigour (Matese
& Di Gennaro, 2015).

There are two principal sensor types: punctual radiometers and spectral
cameras. The first provide spectral information for one sample point, while
the cameras measure the spectrum of every pixel in the image.

The principal descriptors of these sensors are the wavelength resolution
(also known as radiometric resolution) and range defining the compounds
that can be identified.
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Figure 9: Manually operated punctual radiometer.

There are commercial handheld radiometer devices (Figure 9) and vehicle
mounted versions have recently become available on the market (Figure
10).

Figure 10: Adjustment of an ATV mounted experimental spectrometer for non-destructive
assessment of berry composition.

Spectral cameras generate a hypercube containing the spectra
corresponding to every pixel in the image. This hypercube can be
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visualized also as composed by multiple images, each one corresponding
to one waveband. The advantage of these sensors in contrast to
radiometers is that dimensional information is also acquired, every pixel
spectra can be easily compared with its neighbourhood, allowing the
comparison between different regions. A spectral camera designed for
unnamed aerial vehicle (UAV) integration is showed in Figure 11.

Figure 11: Multispectral camera with four spectral bands (Red, Green, Red edge and NIR),
RGB camera, solar light spectra calibration and GPS designed for UAV integration.

1.2.3 Thermal sensors

Thermal sensors have also been used in precision viticulture to assess
plant water status in the vineyard. Thermal sensors assess the surface
temperature of an object from the emitted infrared radiation in a non-
invasive fast way.

Leaf temperature increases with stomatal closure, interrupting the cooling
effect of evapotranspiration, which occurs as a result of water stress in an
attempt to reduce water consumption (Costa et al., 2010). As a result, the
canopy temperature can be used as an indicator of plant water status
(Jones & Vaughan, 2010; Baluja et al., 2012) and thus to regulate irrigation
scheduling optimising water usage (Jones, 1999).
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Figure 12: Thermal camera mounted on an ATV for on-the-go canopy temperature
measurement. The thermal image of the canopy is shown on the tablet screen.

Applications in viticulture include punctual sensors, which only provide
one value per measurement (Sepulveda-Reyes et al., 2016), and thermal
cameras (Figure 12), where temperatures corresponding to every pixel are
visualised (Pou et al., 2014).

1.2.4 Electrical resistivity soil sensors

There is quite a lot of research on the relationship between soil properties,
topography, vigour and plant and grape composition (Arnd, 2005;
Reynolds, 2010; Tardaguila et al., 2011).

Electrical resistivity soil and inductive sensors are used to find the depth
of bed rock, thickness of bands of clay, groundwater and to evaluate soil
salinity. These sensors measure the electrical conductivity of the soil that
is determined by the relative amounts and types of clay, salts, rock and
water (Proffitt et al., 2006). The use in the vineyard includes on-the-go
sensors (Figure 13) that permit fast and extensive soil mapping for site
specific management (Rossi et al., 2013).
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Figure 13: A resistivity soil sensor for on-the-go operation in a vineyard located in La Rioja
appellation. The four rolling electrodes enabled measurements on approximately 0.5, 1 and
2 m depths.

1.2.5 RGB sensors

RGB sensors are increasingly being used in precision viticulture, mainly
because of their reduced cost as a consumer technology, availability and
range of applications. As opposed to other sensors, the image does not
provide information by itself and must be analysed to extract it. Image
analysis consist of a set of techniques that allows extracting meaningful
information from images and it is a field of pertinent research and
development.

RGB sensors can be operated manually, mounted in agricultural vehicles
(Grocholsky et al., 2011; Gatti et al., 2016) or UAVs (Arnd et al., 2009;
Matese et al., 2015). Moreover, the increase in the use of smartphones
with high quality cameras and processing capabilities has permitted the
development of apps that can not only take images in the field, but also
analyse them (Fuentes et al., 2012b, 2012a; Aquino et al., 2015a).

A revision of the applications of RGB sensors in precision viticulture is
provided in section 1.3.4.

32



Introduction

1.3 Computer vision

1.3.1 Origin and evolution

Computer vision is a set of techniques associated to artificial intelligence,
whose objective is to allow a computer to “understand” an image or more
precisely “the construction of explicit, meaningful description of physical
objects from images” (Ballard & Brown, 1982). It is a relatively new field
with its origins back in the late 1960s. At the beginning, it was believed by
some pioneers of artificial intelligence and robotics, that solving the
“visual-input” problem will be an easy step to go forward with more
complicated problems such as higher-level reasoning and planning
(Szeliski, 2011). An anecdote that corroborated with this perception took
place in MIT in 1966: the artificial intelligence group proposed a summer
project for his undergraduate students. The objective was to link a camera
to a computer and get the computer to describe what “it” saw (Papert,
1966).

Computer vision tries to resolve an inverse problem, attempting to
discover some unknowns given insufficient information to fully identify
the solution (Szeliski, 2011). Humans and animals can solve this problem
effortless, while computer vision algorithms are unable to reach the
performance of a two-year old baby (Szeliski, 2011). The difficulties of the
“vision problem” are analysed in the next section.

David Marr created a paradigm of how vision work in his posthumous book
“Vision” (Marr, 1982). In image analysis this work was probably the most
influential ever produced (Huang, 1996); it set up a bottom-up approach
for scene understanding (Cipolla et al., 2014): the application of low-level
image processing algorithms generates the “primal sketch”; from this
sketch a 2.5D one is obtained using binocular image; and, finally, high-level
techniques are used to obtain 3D representation of the scene (Huang,
1996). The inherent ambiguities of optical structure greatly limit the
applicability of the bottom-up representation. The generation of complete
3D models of the objects in an image is not necessary for most of the
computer vision applications, therefore algorithms should be goal driven,
and in many cases, can be qualitative.

In recent years, computer vision has become key technology in a wide
variety of real world applications (Szeliski, 2011), which include (but is not
limited to): medical imaging; photogrammetry; optical character
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recognition (OCR); in-line quality inspection and control; surveillance;
fingerprint recognition/biometrics; and autonomous driving.

Even when the design of computer vision algorithms is highly application
dependant, there are some typical functions which are common to many
setups (Sonka et al., 2008; Szeliski, 2011):

e Image acquisition: many types of sensors and capturing setups
(i.e.:illumination, scene control, optics) can be used depending on
the application.

e Pre-processing: includes noise reduction, contrast enhancement
and other transformations to enhance the image and simplify its
processing.

e Detection/segmentation: some parts of the image are selected as
relevant for further processing.

e Feature extraction: different features such as lines, edges, interest
points or shape/texture can be extracted.

e High-level processing: this processing is limited to segmented
objects and includes the estimation of specific parameters or
recognition of parameters.

e Decision making: the final decision required for the application
can be generated from the extracted data.

1.3.2 Complexity of the computer vision problem

The vision problem is a very complicated task. Almost no research problem
has been properly solved, and the solutions are brittle: the application of
an algorithm for solving a problem can be successful in one situation but
not in other (Huang, 1996). As stated in the previous section, the lack of
information prevents the obtention of a solution; an overview of the
problem is given below. A revision of the complex landscape of the
computer vision can be viewed in Sonka et al. (2008)

The first simplification is associated to the representation of a 3d scene on
a 2d image (Sonka et al., 2008). A small object close to the camera is
represented in same way as a big one positioned far away, so it is not
possible to solve this problem without extra information as binocular
cameras or active sensors (i.e. time of fly or structured light). Also, the
image capturing process is not precise and noise is inherently present in
the images. Mathematical tools can be used to attenuate the effect of the
noise, but at the cost of the use of more complex analysis.
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In general, the analysis of images corresponds to the analysis of a huge
amount of data (Sonka et al., 2008), which is increased if video is used.
Even though technical advances in memory and computer power over the
last decades has been spectacular, the amount of data limits the
possibilities of real time analysis and limits the imposed use of algorithms,
which utilise local windows to process the image. The analysis of regions
of the image limits the capacity of context establishing and thus image
understanding (Sonka et al., 2008).

The expectations of the performance of a computer vision are high
because of the comparison with that of the human visual system. The
human vision complexity is usually underestimated, but it is comprised by
a very complex image acquisition system associated to the capacity to
apply previous knowledge and experience (Huang, 1996). For example,
face recognition is a task that humans can realise under all kinds of
variations in illumination, viewpoint, face expression or even when the
reference image was taken many years ago. Also, the “faces databank”
seems also to have no limit in our brain. There appears to be little hope in
building a computer vision system that can get close to this performance
(Huang, 1996).

Perceptual psychologist have studied the anthropological visual procedure
for decades and a complete solution to this problem was not founded yet
(Szeliski, 2011). The human vision system is indeed very complex and the
mind perceives more information than the raw stimulus, which is
somehow processed. A clue of how the system works was tested using
opticalillusions. Figure 14 left shows the Kanizsa’s Triangle (Kanizsa, 1997).
In this illusion, a white triangle that does not exist is seen. The mind seems
to perceive forms from edges and then visualises the white triangle. The
Miller-Lyer optical illusion is shown in Figure 14 right, in this illusion the
perceived length of the lines appears different, probably due to
perspective corrections of the human visual system.
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Figure 14: Left: Kanizsa's Triangle (Kanizsa, 1997) in this optical illusion an inexistent white
triangle is perceived over the rest of the figures. Right: The Miiller-Lyer optical illusion where
equal segments look bigger or smaller depending on whether the arrow ends point inwards
or outwards. Fibonacci / Wikimedia Commons / CC-BY-SA-3.0 / GFDL.
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Optical illusions prove that the human vision system is very complex and
that the image analysis has a great weight in human image understanding.

1.3.3 Computer vision in precision agriculture

Computer vision-based systems are being increasingly applied to
automate inspection tasks in agriculture and food processing. The use of
this technology makes it feasible to monitor plant and crop development
in a much faster way than any manual non-destructive procedure, allowing
supervising with objectivity and repeatable criteria. The growing interest
in this research topic is represented by the increase in the number of
publications related to the field (Figure 15).
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Figure 15: Number of publications listed in the web of science for the terms “computer vision
and agriculture” during the last two decades. Data elaborated from that of the Web of
Science.

One of the most important applications of computer vision in agriculture
is the post-harvest in-line inspection and classification of fruit and
vegetables. These measurements were usually done manually, in
subjective, slow, expensive and tedious procedures, which was
undoubtedly prone to human errors (Paulus et al., 1997). Nowadays,
several manufacturers around the world produce sorting machines
capable of pre-grading fruits by its characteristics, such as size, colour,
texture and weight. Machine vision systems can automate these tasks
increasing the repeatability, the inspection speeds, while decreasing costs.
An extensive study of the different technologies and techniques was made
by Sun (2016) showing not only their actual and current use, but also
depicting their future challenges.

Contrary to the quality inspection of manufactured goods, vegetable and
fruit inspection has great variability in its characteristics due to its
biological nature. Moreover, the colour and texture of goods can evolve
during time. It is necessary to generate computer vision algorithms
capable of working with this variability and at the same time produce
precise and repeatable measurements.
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Infield monitoring also is a current field of research where computer vision
can be applied to measure the status of plants. These applications added
the difficulties of uncontrolled illumination and scene when compared to
in-line inspection. The light conditions may change (e.g. from direct
sunshine to cloudy sky) during the same capturing stage altering the
colours and conditions for image formation. One of the first applications
of infield computer vision was weed control and a prototype is described
in Lee et al. (1996). The detection of weeds will help reduce the use of
herbicides, optimising cost and environmental impact. The automatic and
real-time detection of weeds is the foundation for VRA herbicide
application.

Infield and pre-harvest fruit detection is another major application of
computer vision. Manual yield predictions are coarse, imprecise, labour
demanding and destructive. Rapid, accurate and infield fruit crop yield
predictions based on computer vision will allow for managing crops,
optimising harvest operations and will help growers with storing, selling
and shipping decision-making.

Apart from the previous considerations and limitations with infield
operations, in the case of fruit detection, the partial occlusion of fruits
from other parts of the vegetation or other fruit is common; therefore,
algorithms must be able to detect the fruit even when it is partially visible.
Fruit detection has been applied to numerous cultivars such as mangos
(Qureshietal., 2017), apples (Wang et al., 2012), citrus fruits (Bansal et al.,
2013; Sengupta & Lee, 2014), tomatoes (Schillaci G et al., 2012) and
pineapples (Chaivivatrakul et al., 2010).

Given the rapid development of plant genomic technologies, the manual
determination of plant phenotype limits the possibility to dissect the
genetics of quantitative traits. Computer vision, as a fast and reliable tool
for monitoring a high number of samples is perfect for the quantification
of plant phenotypes. The development of new genotype editing
techniques has driven the development of numerous applications, many
of which are listed in a recent review by Li et al. (2014).

1.3.4 Computer vision in precision viticulture

The use of computer vision in viticulture is increasing owing to the
advantages of vine monitoring over manual assessment. Vine status
evaluation is a requisite for applying precision viticulture, whose use
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improves the economic profitability, fruit quality and environmental
sustainability. Although image analysis and computer vision have the
potential of enhancing the speed and accuracy of many parameters
assessment in precision viticulture, the task is challenging, mainly for the
unstructured environment and the scarcity of stable features, which can
be applied collectively in grapevines. The terrain, vegetation, visibility,
illumination and atmospheric conditions are not well defined,
unpredictable and variable over time. Furthermore, indicators to be
measured correspond to objects with variable and non-uniform
characteristics such as size, colour, shape, texture and location.

The use of inspection chambers allows obtaining images under controlled
and defined conditions, including uniform illumination and structured
background. Images of clusters in an inspection chamber (Figure 16) were
used for the assessment of cluster yield components (berry weight, berry
number and cluster weight) (Diago et al., 2015; Liu et al., 2015; Ivorra et
al., 2015), and cluster compactness (Cubero et al., 2015). Individual berry
weight and size can also be estimated using image analysis algorithms
(Cubero et al., 2014; Kicherer et al., 2015b), reducing considerably the
measuring time in some experiments such as plant phenotyping.

Figure 16: Inspection chamber for berry image acquisition. The berries were placed in a
plate for proper image acquisition, the camera and the illumination were positioned in top
of the chamber.
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The assessment of vineyard infection and diseases is a very subjective
task, greatly affected by operator bias. Image processing of in-lab captured
pictures has a great potential in the objective assessment of plant
resistance and phenotype. Boso et al. (2004) conducted an experiment
evaluating infection severity and evolution over leaf disks in different cv.
Albarifio clones. In a similar study, Peressotti et al. (2011) developed a
semi-automatic image analysis algorithm for assessing of downy mildew
sporulation on vine leaf disk to perform quantitative trait locus (QTL)
analysis of infection resistance. A fully automated methodology based on
fuzzy set theory was presented by Kole et al. (2014), obtaining a success
rate of over 87% for the infected area segmentation. Although these
methods offer important advances in plant health monitoring, they
require cutting the leaves to be processed in the laboratory. A step further
on this procedure was presented in Meunkaewjinda et al. (2008). They
developed a methodology able to work in field, but with some restrictions
in the scene (no complex background and only one leaf being examined
with controlled light, orientation and size), for the analysis of manually
acquired images using hybrid intelligent system.

The application of infield computer vision techniques to monitor vineyard
status is an important step for site specific management. One of the most
interesting techniques associated with on-site monitoring is VRA
technique, which can be applied for fertilizer, pesticide and herbicide
dosage optimisation. An automated vineyard foliage analysis algorithm
was developed by Braun et al. (2010). The system is composed of a wide-
angle camera and a distinctively coloured canvas placed behind the
vineyard row, both mounted on a vehicle. The canopy is segmented using
a Bayesian colour classifier and the spray flow is adapted to the canopy
surface. A similar system was developed by Berenstein et al. (2010) with
the advantage of not needing to place a canvas behind the vineyard row.
The proposed methodology was capable of segmenting grape and foliage
to guide the application of hormones and pesticides precisely. Nutritional
deficiencies can also be monitored and quantified using image analysis.
Potassium deficit was assessed by Rangel et al. (2016) on vine leaves using
KNN-based image segmentation. The proposed methodology consisted of
the analysis of images of leaves taken under controlled conditions.

Canopy monitoring is used not only for VRA but also as an indicator of
vineyard status and variability. The detection of non-productive vine is a
key factor in reducing the drain on infrastructure and was addressed by
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green pixel thresholding in video frames by Tang et al. (2016). The
assessment of manually captured images (Figure 17) to segment clusters,
gaps, canes and leaves (Diago et al., 2016c) is currently being employed.

Figure 17: Manual vine imager acquisition using a tripod mounted digital camera,
controlled background and semi-controlled illumination (use of a diffuser to avoid direct-
sunlight).

Recently, thanks to the advance in the computing capabilities and the use
of improved imaging sensors in smartphones, the development of
applications for precision viticulture has become an option(Fuentes et al.,
2012a,2013; De Bei et al., 2015; Aquino et al., 2015a). Figure 18 shows the
image capturing process with one of these smartphone applications.
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Figure 18: Infield image capture and analysis using a smartphone app (VitisFlower) for
number of flower per inflorescence estimation.

Cluster detection is one of the main applications of computer vision in
precision viticulture, as it allows yield forecasting and quality assessment.
One of the first research projects in this field was carried out by Dunn &
Martin (2004). In this study, a series of images of the canopy from
Cabernet Sauvignon grapevines were manually captured, using a white
screen as background. Threshold values were manually set over the RGB
components to segment the fruit pixels from the images. Different image
analysis techniques have been applied to grape and cluster detection:
Zernike moments and SVM (support vector machine) were used by
Chamelat et al. (2006) to detect grapes on images captured manually in
the field. Reflection points on grapes surface generated by the artificial
illumination on images captured at night was used to identify the berries
by (Font et al., 2014). 3D reconstruction of bunches from images captured
manually was tested by Herrero-Huerta et al. (2015).
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Figure 19: Modified ATV for on-the-go RGB image capture. The vehicle is equipped with
automatic triggering, camera and GNSS receiver.

The use of automated and on-the-go capturing platforms (Figure 19)
reduces labour requirements and allows dense vineyard sampling. One of
the first use of this capturing devices is described in Nuske et al. (2011 &
2014), who developed a computer vision algorithm based on a set of
descriptors for shape, texture and colour to detect grape berries and
estimate the yield from berry number. Automated image capture was also
used by Font et al. (2015) to estimate the yield from the area of the
segmented clusters, Liu & Whitty (2015) used it to segment cluster using
SVM combining colour and texture information.

Vineyard yield can also be estimated in early stages of vine development
providing more time to adjust the managing practices. Liu et al. (2017)
used a shoot detection system to estimate yield from images captured
with a vehicle mounted low cost camera. Manually captured images of
inflorescences in conjunction with mean berry weight and berry set were
also tested for yield estimation by Millan et al. (2017).

Due to the perennial nature, the acquisition of phenotypic data is mainly
realized infield and by manual methods. The application of computer
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vision for field phenotyping offers the advantage of the objective
evaluation of the descriptors and reduces the necessary time for data
acquisition. Initial research in this field was documented in Herzog et al.
(2014), highlighting the importance of this field to meet the fast
development of genotyping method to support grapevine breeding. A
method for grapevine growth assessment using dense reconstruction was
presented by Klodt et al. (2015). The presented algorithm allows
monitoring leaves, stems and grapes. Winter canes also provided
information about the vigour of the plant, e.g., Kicherer et al. (2017) used
RGB cameras to manually capture infield images with a white screen as
background to measure the potential vine balance. Other descriptors can
be assessed using computer vision, such as winter grapevine buds (Pérez
et al.,, 2017), berry number per cluster (Aquino et al., 2017) or flower
number per inflorescence (Diago et al., 2014; Aquino et al., 2015b).
Moreover, the automation of the image acquisition procedure to measure
more than 250 vines per hour was presented in Kicherer et al. (2015a).
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2 Objectives

The main objective of this PhD Thesis was to develop and apply new
sensing technologies and algorithms based on computer vision to assess
vineyard status (Vitis vinifera L.) in the scope of precision viticulture.

Along with this main goal, other specific objectives have been pursued:

To assess flower number per inflorescence

To estimate yield components before harvest under field
conditions.

To evaluate on-the-go canopy status, including cluster exposure,
porosity and pruning weight within a vineyard.

To develop a mobile platform for on-the-go vineyard status
assessment using RGB sensors.

To map yield components and canopy status of the vineyard.
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3 Experimental section

3.1 Assessment of flower number per inflorescence

The assessment of flower number per inflorescence is a great example of
the applicability of image analysis techniques to precision viticulture. The
first article included in this section describes a computer vision algorithm
that is capable of automating this task, with a process that does not
destroy the inflorescence, and avoids interferences in the flowering
process that permits studying the reproductive performance.

The applicability of image analysis algorithms for flower count has greatly
increased with the development of an Android-based smartphone
application. This application, reviewed in the second article included in this
section, allows for rapid, non-destructive and on-the-field flower number
per inflorescence assessment.

The relation between the number of flowers that are visible in an image,
and the total number of flowers per inflorescence was assessed using
linear and non-linear models in a wide number of varieties. Moreover, the
number of flowers, as the first visible indicator of yield, was tested for yield
estimation, obtaining a R=0.79 when combined with the fruit set value
and if the average berry weight is available, the coefficient of
determination rises to 0.91.
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3.1.1 Number of flower per inflorescence assessment

Titulo de la publicacién: Assessment of flower number per inflorescence
in grapevine by image analysis under field conditions

Autores: DIAGO, M.P., SANZ-GARCIA, A., MILLAN, B., BLASCO, J,
TARDAGUILA, J.

Publicado en: Journal of the Science of Food and Agriculture, 94(10), 1981-
1987 (2014) DOI: 10.1002/jsfa.6512

Resumen:

El nimero de flores y la tasa de cuajado son factores clave que determinan
la produccién de la vid. Actualmente, los métodos practicos utilizados para
la determinacién del niumero de flores por inflorescencia (un proceso
necesario para el cdlculo de la tasa de cuajado) son muy laboriosos y
lentos. El trabajo que se presenta a continuacién propone el uso de una
metodologia basada en el andlisis de imagenes RGB para la estimacién del
numero de flores por inflorescencia de forma automatica.

Se adquirieron un total de noventa imagenes de inflorescencias de Vitis
vinifera L. correspondientes a las variedades Tempranillo, Graciano vy
Mazuelo utilizando una camara compacta. Estas imagenes se utilizaron
para ajustar y evaluar los algoritmos de analisis de imagen para el conteo
del nimero flores.

El algoritmo desarrollado fue capaz de estimar el numero total de flores
por inflorescencia con una precision superior al 90% para todas las
variedades evaluadas.
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Contribucion del autor de la Tesis:

La contribucién de Borja Millan fue determinante para la realizacién del
articulo, e incluye el diseiio experimental y la generacion de los algoritmos
de andlisis de imagen que permiten la estimacién del numero de flores por
inflorescencia. Ademas, Borja Millan realizé el analisis de los resultados y
la generacién de modelos para el documento final.

50




Experimental section

The Publisher and copyright holder corresponds to Journal of the Science

of Food and Agriculture. The online version of this journal is the following
URL:

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0010
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3.1.2 Smartphone app for number of flower assessment

Titulo de la publicacidn: vitisFlower® Development and testing of a novel
android-smartphone application for assessing the number of grapevine
flowers per inflorescence using artificial vision techniques

Autores: AQUINO, A., MILLAN, B., GASTON, D., DIAGO, M.P,,
TARDAGUILA, J.

Publicado en: Sensors 15(9), 21204-21218 (2015) DOI:
10.3390/5150921204

Resumen:

La floracidon y la tasa de cuajado de la vid son los factores mas
determinantes de la produccién. En esta investigacidon se presenta una
aplicacion desarrollada para “smartphones” que permite el conteo de
flores por inflorescencia de forma no invasiva a partir de imagenes
capturadas en el vifiedo.

La aplicacién, llamada vitisFlower, guia al usuario durante la captura de la
imagen, que se realiza con la cdmara del propio dispositivo. La fotografia
es analizada para identificar y contar las flores presentes. La aplicacion es
compatible con “smartphones” con sistema operativo Android y esta
implementada utilizando las librerias OpenCV.

VitisFlower ha sido evaluada en 140 imagenes de inflorescencias
correspondientes a 11 variedades de Vitis vinifera L., siendo capaz de
identificar correctamente mas del 84% de las inflorescencias con una
precisién superior al 94%. También se evalué el rendimiento en cuatro
“smartphones” que representan un amplio rango en de capacidad de
procesamiento. Los anadlisis mostraron diferencias importantes en el
tiempo necesario para el andlisis de las imagenes, pero sin ser excesivo en
ningun caso, por lo que la aplicacién puede usarse con dispositivos de
gama baja.
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Contribucion del autor de la Tesis:

El autor de esta Tesis realizé el disefio experimental, implementacién de
los algoritmos de la aplicacién vitisFlower y testeo con datos de campo.
Ademas, participd en la redaccién del documento final.
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Keywords: Android application; OpenCV4Android; OpenCV library; image analysis;
grapevine flower counting; yield prediction; Vitis vinifera L.; precision viticulture;
precision agriculture

1. Introduction

Precision agriculture proposes the development and use of new technologies for improving crop
management and quality. In the field of viticulture, there has been an increasing interest over the
last few years in the development of innovative image-based techniques for objective vineyard
monitoring [ 1-6]. This approach would allow one to increase management efficiency by providing more
accurate control of agronomic parameters. Undoubtedly, it would produce an outstanding positive
impact on grape-growing sustainability, as well as on grape and wine quality.

Flowering and fruit set (rate of flowers becoming grapes) are two physiological processes that
strongly determine grapevine yield [7]. Furthermore, 30% of yield seasonal variation is associated with
the number of berries per cluster and 60% with the number of clusters per vine [8,9], impacted by the
pruning load and bud fruitfulness. The knowledge of the rate of fruit set at very early stages (prior to
bunch closure) is of great value for grape growers, as this variable can be used to estimate or predict the
final yield at harvest, provided a historical value of average berry weight, and the average cluster number
per vine for each vineyard is available for each vineyard. Flowering and fruit set, together with berry
size, have also a great impact on grape and wine quality, since they define the number of berries
per cluster and contribute to determining the cluster architecture and compactness, which are a
recognized key indicators of grape and wine quality [10]. Due to their importance and multi-factorial
variability [7,11,12], there are a great number of viticultural actions aimed at controlling their
behavior [7,13—19]. So far, flowering and fruit set cannot be accurately assessed, since manual flower
counting is unfeasible, as it is extremely time and labor demanding, besides being mostly destructive.

The huge recent progress of mobile devices (also known as smartphones) has opened a wide range of
opportunities that were previously unviable. Their portability, accessibility, computing performance and
the high quality of the cameras they currently include are features that have enabled the development of
innovative applications in fields, like medicine, sport, geography and agriculture, among others.
Specifically, in viticulture, there are still not many examples of smartphone applications. One of them
was recently presented by De Bei et al. [20,21]. These authors developed an application for measuring
grapevine canopy architecture using image analysis techniques on images acquired with the device’s
camera. The application was developed exclusively for iOS smartphones, not being commercial yet.

The goal of the present work was to develop and to test the reliability and computational efficiency
of a novel smartphone application, called vitisFlower®, for automatically, efficiently and non-invasively
counting flowers in grapevine inflorescence images taken directly in the vineyard. This application
benefits from the fact that the number of flowers in an inflorescence image is strongly correlated to the
actual flower number in the real inflorescence [22], to provide the user with a powerful tool for flowering
assessment. The application, called vitisFlower®, was developed and implemented for Android devices
with the aim of maximizing its availability to users, since this operating system is the most extended
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worldwide [23]. The application was tested following a double approach. On the one hand, the
application was tested by taking and analyzing 140 inflorescence images of 11 grapevine varieties using
two different devices: a high-end and a mid-range device. In this way, not only its accuracy in detecting
grapevine flowers was evaluated, but also its reliability to properly work on devices of different
capabilities. On the second hand, the application’s computational efficiency was also evaluated by
performing a benchmarking study using four devices covering the whole market spectrum.

2. Experimental Section
2.1. Image Analysis for Flower Counting in Grapevine Inflorescences

vitisFlower®™ is a newly-developed application for Android devices that allows one to take a photo of
a grapevine inflorescence for its analysis. This analysis, based on the methodology proposed and
validated in [22], implements artificial vision algorithms aimed at counting the number of flowers per
inflorescence in the image.

The methodology for counting grapevine flowers is based on mathematical morphology and statistical
techniques. It has a pre-requisite, which involves taking the photo by placing dark cardboard behind the
inflorescence for allowing its segmentation from the background. Once the image is correctly acquired,
the methodology can be divided into three steps:

— Image pre-processing: this step basically consists of automatically segmenting the inflorescence
from the background using color discrimination criteria (invariant to light conditions) for
computing a region of interest (ROI).

— Image analysis: in this step, the detection of flower candidates is achieved. Flowers are quasi-spherical
in shape, so they produce a point of maximum light reflection. Therefore, flower candidates are
identified in the area of the image delimited by the ROI as those connected components being
regional maxima in the lightness channel of the Lab color space (concretely the Lab space used
was CIE 1976 L*a*b* [24]).

— Image post-processing: this final stage intends to remove those regional maxima not
corresponding to real flowers in the image. It is carried out by sequentially applying these two
statistical filters:

1. Region size filter: removal of those candidates with a size larger than expected, taking into
account the statistical size distribution of the candidates.

2. Shape filter: due to the geometry of a flower, the area of maximum light reflection on its
surface is expected to describe a quasi-circular shape; therefore, this filter eliminates those
candidates describing elongated configurations.

Once flower candidates are filtered, the remaining ones are definitely considered as real flowers and
counted. As an example, Figure 1a shows a photo of a grapevine inflorescence on dark cardboard,
whereas Figure 1b illustrates the result of its analysis by representing detected flowers with blue crosses.
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results, efc. When an image is captured on the “Java side” and its analysis is required, this is requests the
“C++ side”. Nevertheless, the direct communication between both blocks was unfeasible, and the use of
the Java Native Interface (JNI) for allowing this interaction was required. This way, the “Java side”
invokes the desired functionality through JNI, which is really in charge of executing the C++ library and
returning the results.

2.3. Application’s Performance Description

vitisFlower™ was designed to be used by all kinds of smartphone users. It was achieved by means of

the following two decisions:

Implementation of a simple and friendly graphical user interface: the interface shows only the relevant
information to the user, preferably by using symbols or illustrations instead of descriptive text.
Linear execution: the application has a user-independent execution line in which the user is
exempted from making any important decision. It allows the user to utilize the application without
any knowledge about its internal performance.

Figure 3 shows an illustrated flow-chart diagram of the application, in which the different stages can

be described as:

1.

Home: the application shows the vitisFlower® logo along with basic information about the aims
and authorship.

Instructions for image capture: the application briefly informs the user of some basic notions for
appropriately taking a photo.

Image capture: the camera application available in the user’s Android device is invoked to make
a capture. If the camera application is properly configured, it shows the captured image and allows
one to discard it to take a new one in case the previous one was not properly acquired, for example
because of the presence of leaves in the image, or due to the fact that the scene was not correctly
focused, or it was overexposed.

Image analysis: this state is transparent to the user. It is in charge of analyzing the image taken in
the previous state for detecting and counting flowers. For reducing the computational workload,
the image is scaled down to a resolution of 2 Mpx prior to its analysis.

Results display: the results of the image analysis are presented to the user. On the one hand, the
image with the detected flowers marked with red crosses is displayed. It easily allows one to
graphically inspect the obtained results. On the other hand, the number of detected flowers is also
shown. At this point, the user decides to save the results or to discard them if they are
not satisfactory.

Image storage: this stage is reached if the user decided to save the results in the previous step.
The processed image is saved in a folder called “VitisFlowerlmages” created by the application
and located in the root folder of the device’s internal storage. The image is saved and named as
follows [name] [date] [detected number of flowers].jpg, where:

e [name]: a dialog box allowing one to insert an image name. If it is omitted, this field takes the
value “image”.
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2.4. Testing and Validation of the Application
2.4.1. Application’s Performance Evaluation

The application’s performance was evaluated with a double purpose: the assessment of its ability to
accurately detect flowers and the comparison of its performance using the smartphone’s cameras.
To achieve these goals, an experiment using 2 devices of different capabilities was designed.
The vitisFlower™ application was installed on a high-end and a mid-range device; the Sony Xperia Z2
(Sony Corp., Tokyo, Japan) and BQ Aquaris ES (Mundo Reader S.L., Madrid, Spain), respectively (see
Table 1 for the features of both smartphones relevant to this experiment). These devices were separately
used to acquire and analyze 70 images of 7 different grapevine varieties (10 images per variety),
producing a total of 140 analyzed images. The considered varieties were: Airen, Cabernet Sauvignon,
Chardonnay, Grenache, Riesling, Syrah, Tempranillo, Merlot, Chenin Blanc, Sauvignon Blanc and
Semillon. The images were taken at pre-flowering stage denoted as BBCH 55, according to the scale of
Lorenz et al. [25], in a grapevine variety collection located in the experimental vineyards of the “Instituto
de Ciencias de la Vid y el Vino” (Logroiio, Spain). Then, the produced outcomes were evaluated using
the following metrics based on contingency tables for binary classification:

RC = L PC = e 1
" TP+FN'" " " TP +FP @
Table 1. Main relevant features of the 2 devices used for evaluating the performance of the
vitisFlower application.
Feature ) g i
. Price/Rel Date S Model Resolution Lens Size  Aperture I1SO

Device
Sony Xperia Z2 549.0 €/2014 Sony IMX220  20.7 Mpx 1/2:37 /2.0 50-800
BQ Aquaris ES 209.90 €/2014 Sony IMX214 13 Mpx 1/3.2" /2.2 100-1600

Metric RC denotes Recall, which provides the percentage of actual flowers detected by the algorithm,
whereas PC stands for Precision, which calculates the percentage of flowers correctly detected. For
allowing the calculation of these metrics, a gold standard set was created. It was performed by manually
labelling flowers on each of the 140 images acquired with both smartphones, making use of a PC
software specifically developed in MATLAB (MatlabR2010b, MathWorks, Natick, MA, USA) to this
effect. Thus, true positives (7P), false positives (FP) and false negatives (FN) were calculated and
annotated per image as follows:

e TP: the number of flowers automatically detected corresponding to the actual flowers labelled in
the gold standard.

e FP: the number of flowers automatically detected that do not correspond to actual flowers in the
gold standard. Redundant 7Ps (a redundant true positive is when a flower is detected more than
once) were also considered as FPs.

e FN: the number of actual flowers labelled in the gold standard that were not automatically found.
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2.4.2. Application’s Computational Efficiency Study

The usability of the application is highly influenced by the time it takes to analyze an image.
Moreover, its accessibility is strengthened if this computation time does not exceed reasonably values
for a wide range of smartphones. Therefore, to evaluate these attributes, the application was tested from
a computational point of view. This study basically consisted of studying the computation time
consumed by 4 smartphones with different hardware and software configurations for analyzing the same
set of images. The devices were selected to cover a wide range of the market’s spectrum in terms of
price and performance; the selected ones were: the Sony Xperia Z2, Sony Xperia Z2 Tablet, BQ Aquaris
ES5 and Motorola Moto G (2013 version) (Motorola Mobility, IL, USA). Table 2 shows the features
relevant for this study of the 4 selected devices.

To accomplish a rigorous and accurate comparison, all devices analyzed exactly the same images.
Fifty inflorescence images were acquired with the Sony Xperia Z2 using the common Android camera
application. Then, a simplified version of the application excluding the image capture and storage
features was implemented. Basically, this version only included a simple home page with a single button
for running the test. Upon test starting, the application iteratively analyzed the 50 images (stored in the
device’s internal storage), registering the time taken for each one.

Table 2. Main relevant features of the 4 devices used for evaluating the computational
efficiency of the vitisFlower application.

Feature  Price/Release RAM Android
A Chipset CPU GPU .
Device Date Memory Version
Qualcomm
. Quad-core 2.3-GHz 5.0.1 Jelly
Sony Xperia Z2 549.0 €/2014 MSMB974AB . Adreno 330 3GB
Krait 400 bean
Snapdragon 801
. Qualcomm
Sony Xperia Z2 Quad-core 2.3-GHz .
449.0 €/2014 MSM8974AB . Adreno 330 3GB 4.4.4 Kit kat
Tablet Krait 400
Snapdragon 801
MediaTek Quad-core 1.3-GHz Mali-400 .
BQ Aquaris E5 209.90 €/2014 1 GB 4.4 Kit kat
MT6582 ARM Cortex-A7 MP2
Qualcomm
Quad-core 1.2-GHz .
Motorola Moto G 172.0 €/2013 MSM8226 Adreno 305 1 GB 4.4.2 Kit kat

Cortex-A7
Snapdragon 400

The acquired set of 50 images and the benchmarking version of the vitisFlower™ application were
used to compare its computation time running on the devices detailed in Table 2. For standardizing the
state of the smartphones and minimizing the interference of other applications or services installed on
them, the following testing protocol was defined and followed for carrying out the test:

Closing all recent applications in the device.

Selection of the flight mode.

Re-starting the device.

Waiting for 20 s for the operating system to completely load.

vk W=

Starting the benchmarking version of vitisFlower.
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6. Running the tests 5 times.

Once the test was finished, the application generated 5 files, including the measured computation time
for each image in each of the 5 iterations. Finally, the definitive computation time for an image was
calculated as the average time taken for its analysis in the 5 performed iterations.

3. Results and Discussion
3.1. Results of Performance Evaluation

Table 3 shows the results obtained with the 2 smartphones detailed in Table 1 in terms of average
Recall (RC) and Precision (PR) following the testing methodology described in Section 2.4.1. Results
are given in detail per variety. The overall results obtained with both devices (see Figure 4) indicated
that more than 84% of flowers in the images were identified, producing less than 6% of detection errors.
Furthermore, the dispersion of RC and PR values measured per variety and graphically represented in
Figure 4 indicated a good stability of the application’s behavior for all of them. In this respect, only the
RC value obtained by the BQ Aquaris E5 on Chenin Blanc was lower than the values achieved for other
cultivars, which may be explained by non-optimum acquisition conditions and potentially by the huge
degree of compactness of the flower buttons of this cultivar at this phenological stage. In this regard, the
usage of the application in the field and the analysis of the acquired images led to delineating the image
acquisition settings that yielded the best application behavior. These include:

e Analyzing inflorescences facing the Sun. The opposite orientation leads to light reflection and
refraction patterns that can negatively affect the results.

e (asting a shadow on the inflorescence to create a homogeneous scene. If the illumination is poor
due to low natural-light conditions, the use of the camera flash is recommended.

Table 3. Performance evaluation of vitisFlower® using 2 different devices. The average Recall
(RC) and Precision (PR) calculated from the 10 images in each grapevine variety are given.

Sony Xperia 7.2 BQ Aquaris E5

Variety RC PR Variety RC PR
Airen 0.8223 0.9787 Merlot 09173 0.9517
Cabernet Sauvignon 0.8363 0.9615 Cabernet Sauvignon 0.8855 0.9531
Chardonnay 0.8770 0.9339 Chenin Blanc 0.7987 0.9563
Grenache 0.8045 0.9763 Grenache 0.8391 0.9685
Riesling 0.8411 0.9458 Riesling 0.9035 0.9212
Syrah 0.8889 0.9376 Sauvignon Blanc 0.8664 0.9557
Tempranillo 0.8308 0.9851 Semillon 0.8826 0.9158

The Sony Xperia Z2 comprises a camera sensor and a lens, which are technically more advanced than
those of the BQ Aquaris E5. As can be seen in Table 1, the Xperia smartphone offers a sensor with
higher image resolution, as well as a lens with a wider size and aperture. These features allow this device
to produce less noise and better defined images than those captured by the BQ. Nevertheless, comparing
the results obtained with both smartphones, it can be concluded that technical differences between them
did not affect the application’s performance. Furthermore, the results obtained with the BQ device were
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deviation time of around 6.5 and 2.6 s, respectively. Since they were equipped with the same
computational hardware, but different Android versions, this result reveals that the differences between
both versions did not affect the application’s efficiency. On the other hand, the performance of the other
two devices tested was considerably poorer. Despite this, the measured computational time for both
devices (between 10 and 20 s) can be considered acceptable for allowing normal use of the application.
Indeed, the BQ Aquaris E5 and Motorola Moto G (2013 version) took 13.27 and 16.83 s on average for
analyzing the 50 images with a standard deviation of 5.48 and 7.01 s, respectively. Furthermore,
according to the complete outcomes represented in Figure 5b by a box and whisker plot, 75% of the
images were analyzed by the BQ Aquaris E5 in less than 16.24 s and by the Motorola Moto G
(2013 version) in less than 20.64 s.

3.3. Significance of the vitisFlower® Application for the Wine Industry

Flowering and fruit-set are the main determinants of grapevine yield, and fruit-set rates may be
impacted by many viticultural practices, including late pruning [14], shoot tipping [26], topping [15],
early defoliation [16] and spray applications of growth regulators and nutrients [19,27]. Despite its
importance, limited flower counting and fruit-set estimation are currently carried out in commercial
vineyards, as manual flower counting is very laborious and destructive. However, the possibility of doing
it in a fast and non-destructive way, such as with the vitisFlower™ application, may pave the way for the
early estimation of yield by the assessment of the fruit-set rates. The knowledge of this variable can help
to estimate the final yield at harvest prior to bunch closure. This yield forecast can be very valuable for
making decisions on vineyard management to optimize the grapevine balance between vegetative and
reproductive growth and to prepare growers and wineries for the harvest operation, including scheduling
and arrangements of shipping, storing, processing and trading the crop [28].

In the last few years, smart devices’ user penetration has increased exponentially worldwide, and the
development of applications for a wide range of uses has grown in parallel. The user’s penetration
percentage had surpassed 70% by June 2014 in many wine producing countries [29], where grape
growers and farmers have adopted smartphones for their routine duties. For this reason, the development
of agriculture-oriented applications, such as vitisFlower®, to provide fast and in-field, non-invasive
assessment of agronomical and physiological information of the grapevines may become decision
support tools for vineyard management.

4, Conclusions/Outlook

This paper presents an innovative smartphone Android application, called vitisFlower®, that provides
the worldwide wine industry with a powerful tool for easily and automatically assessing flowering in
the vineyard and providing useful information for yield estimation at early stages. The results of the
experimentation developed in this paper demonstrate that even with modest devices, the application can
be efficiently and reliably used at high rates of applicability and performance.

vitisFlower® is currently freely available in Spanish, English and French via Google Play [30], being
one of the first viticulture smartphone applications available worldwide The development of friendly,
non-invasive applications for viticulture and other agricultural fields opens a new and profitable window
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for the implementation of precision agriculture strategies, aimed at optimizing the management
according to the field variability.
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3.1.3 Image based modelling for flower number assessment

Titulo de la publicacion: Image analysis-based modelling for flower
number estimation in grapevine

Autores: MILLAN, B., AQUINO, A., DIAGO, M.P., TARDAGUILA, J.

Publicado en: Journal of the Science of Food and Agriculture 97(3), 784-
792 (2017) DOI: 10.1002/jsfa.7797

Resumen:

El nimero de flores por inflorescencia proporciona informacion que puede
ser usada para la estimacién de la cosecha. En trabajos previos de
investigacion, se ha conseguido desarrollar algoritmos basados en andlisis
de imagen que permiten estimar el nimero de flores por inflorescencia.
Sin embargo, es necesario evaluar la dependencia de los modelos con
respecto a la variedad para que esta herramienta pueda ser usada de
forma fiable. Asimismo, en el presente trabajo también se ha cuantificado
la capacidad predictiva del nimero de flores para la estimacion de la
produccién, y la influencia de informacién adicional como la tasa de
cuajado o el peso medio de baya.

Se capturaron imagenes de 11 variedades de Vitis vinifera L. en el vifiedo,
extrayendo el numero de flores visibles por imagen de forma manual y
automatica (mediante un algoritmo de andlisis de imagen). Los datos
obtenidos se utilizaron para entrenar y evaluar modelos independientes
de la variedad, lineales (de una variable y multivariable) y no lineales. La
herramienta compuesta por el algoritmo de analisis de imagen y el modelo
no lineal proporcioné el mejor resultado (RPD=8,32, RMSE=37,1) en la
estimacion del nimero de flores por inflorescencia. Con respecto a la
estimacion de la produccion, el coeficiente de determinacion (R?) entre el
numero de flores y el peso final del racimo durante la cosecha fue de 0,79
utilizando el valor de la tasa de cuajado y llegando a 0,91 cuando se
combind con el peso medio de baya.

Este estudio demuestra que la estimacidon del nimero de flores por
inflorescencia utilizando analisis de imagen es generalizable a diferentes
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variedades de vid y puede proporcionar una estimacion de la produccion
en fases muy tempranas de desarrollo.

Contribucion del autor de la Tesis:

La aportacion de Borja Millan incluye el disefio experimental, toma de
datos en campo y generacién de los algoritmos de andlisis de imagen.
También redacto el documento final.
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3.2 Yield estimation

There is a high level of demand from the wine industry for tools that can
provide yield forecasting. The principal motivation is the economic benefit
(Wolpert & Vilas, 1992; Martin et al., 2002; Dunn, 2010), but it will also
help optimise wine production and enable the management of the vines
to reach the desired quality and yield goals.

The first study of this section describes an algorithm for yield estimation
from images manually captured on the field. This methodology provided a
good performance (>90%) for the segmentation of different vine organs
(clusters, wood, leaves and gaps) allowing precise yield estimation
(R?=0.73).

The segmentation process of images captured on the field is challenging,
mainly because of the uncontrolled scene characteristics and the lack of
uniformity in the colouration of the berry surface caused by the pruine
(Diago et al., 2015). Also, it must be noted that not all the berries in a
cluster are visible due to occlusions from other berries or vegetal material
from the vine. To improve the results of yield estimation, the second
article included in this section presents the application of Boolean models
as a methodology that can overcome these problems (occlusions and
segmentation errors). When Boolean model were applied on images
captured automatically and on-the-go, the yield was precisely estimated
(R?=0.78) and with low error per vine (RMSE=200g).
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3.2.1 Yield estimation from manually captured images

Titulo de la publicacién: Grapevine yield and leaf area estimation using
supervised classification methodology on RGB images taken under field
conditions

Autores: DIAGO, M.P., CORREA, C., MILLAN, B., BARREIRO, P., VALERO, C.,
TARDAGUILA, J.

Publicado en: Sensors 12, 16988-17006 (2012) DOI: 10.3390/s121216988

Resumen:

Este trabajo tiene como objetivo la caracterizacién de la “canopy”,
estimacion de la superficie foliar y produccion por cepa mediante un
algoritmo de clasificacion supervisada basado en la distancia de
Mahalanobis. El algoritmo propuesto analiza automaticamente conjuntos
de imagenes, calculando el adrea (nimero de pixeles) correspondiente a
siete clases (racimo, madera, porosidad y cuatro tipos de hoja en funcién
de su edad). Cada una de las clases es inicializada por el usuario mediante
la seleccidn de un conjunto representativo de pixeles que se utilizan como
semilla para la clasificacion.

El algoritmo se ha evaluado utilizando 70 imagenes correspondientes a 10
vides (Vitis vinifera L. cv Tempranillo) capturadas en un vifiedo comercial,
situado en La Rioja. Las cepas fueron progresivamente deshojadas y
aclareadas para aumentar la variabilidad de los datos. Los resultados de la
segmentacién mostraron un porcentaje de clasificaciéon correcta del 92%
para las hojas y del 98% para racimos, permitiendo la estimacién precisa
de la superficie foliar (R>=0,81; p<0,001) y la produccién (R?=0,73;
p<0,002).

La metodologia propuesta se basa en un sistema de adquisicién de
imagenes simple y econdmico y proporciona informacién de gran interés
para facilitar la toma de decisiones del viticultor en la gestidn del vifiedo.
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Contribucion del autor de la Tesis:

El autor de la presente Tesis doctoral, participd en todas las fases de este
trabajo de investigacion, incluyendo la implementacidn y ajuste de los
algoritmos de andlisis de imagen que permiten la estimacion de la
produccién y de la superficie foliar. También participé en la redaccidn del
documento final.
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Keywords: clustering; Mahalanobis; Vitis vinifera L.; vineyard; yield assessment

1. Introduction

The great economic, social and environmental importance of the viticulture and wine industry
worldwide encourages the development and application of innovative technologies aimed at objective
monitoring vineyards to improve grape and wine quality.

One of the historical main goals of the wine industry has been the accurate and objective estimation
of the yield [1-3] and of the vineyard’s winegrape quality potential. More specifically, yield forecasting
has been identified in recent years as one of the more profitable topics for scientific research in
viticulture [4] as it could lead to more efficiently managed vineyards producing wines of better
quality [5]. So far, most of the methods employed for yield estimation are destructive, labour and time
demanding [6], or very expensive [7]. Similarly, the assessment of a vineyard’s winegrape quality
potential has often been attempted by the use of vineyard score sheets [8—12] which required visual
evaluation of several grapevine canopy variables, such as vigour, leaf status, exposed leaf area, canopy
porosity and fruit exposure, all of them intrinsically related to final grape and wine composition and
quality [13—-19]. Consequently, there is a need for assessing the vineyard yield and winegrape quality
potential by objective monitoring the grapevine canopy features, but customary methods for obtaining
canopy measurements, such as the Point Quadrate [8] or LIDAR [20-22], though quantitative, are
limited in their precision and practicality, either because they are time-consuming or expensive. Hence,
new methods are required to assess grapevine canopy status, and image capturing and analysis may be
an objective and potentially useful technique to replace time-consuming procedures and to provide
useful information for more efficient grapevine canopy management.

In recent years several studies, based on image processing, have been conducted in order to assess
features of the vineyard canopies, like in [23-25] for general purposes and also for specific
applications like disease detection [26], smart spraying [27,28] and yield estimation [29]. These studies
were carried out in order to quantify features such as leaves, vine shoots, trunks and grapes. However
these investigations required sophisticated equipment and specialized software for analysis and
interpretation. A simpler layout for image capturing and processing for the assessment of grapevine
canopy features was described in the works of Dunn and Martin [1], who estimated the yield, and
of Tardaguila et al. [30,31]. In these works digital image analysis techniques applied to sample
data from a defoliation study revealed quantitative descriptions of canopy biomass distribution,
fruit exposure, cluster compactness, and treatment efficacy, although the image processing was not
completely automated.

Colour classification techniques in the Red Green and Blue (RGB) colour space can be divided into
supervised and unsupervised [32]. In supervised methods, the number of classes is specified and the
supervisor selects the prototype of these classes. Conversely, in unsupervised methods, the
characteristics of the classes are unknown, and the classification algorithm ascribes membership in
such a way that the elements in each class will exhibit similar characteristics and are more similar to
each other, than with respect to elements of other classes. Supervised and unsupervised methods
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have been used outdoors [33] and specifically for vineyard feature extraction aiming at vigour
characterization [34]; grape clusters and foliage [27]; single grapes [35]; count “fruit pixels’ for yield
estimation [1], or segregate grapes, leaves and shoots [36,37].

In unstructured environments, such as an agricultural field, conditions are variable, so robustness of
unsupervised algorithms may be at risk [32]. Therefore supervised classification techniques are of
special interest in this field, since a training set can be prepared by a priori establishing what features
will correspond to the elements of a class [38], which, in turn, reduces uncertainty and leads to the
possible solutions.

Our work aims to develop a fast, robust and inexpensive methodology for straightforward RGB
image processing and interpretation, using images taken in the field, for grapevine canopy feature
extraction that would enable accurate leaf area and yield estimation.

2. Experimental Section

To be able to correlate the estimated leaf area and yield data with real plant measurements, a
detailed experimental setup for the acquisition of images was developed, based on successive
defoliations and cluster thinning steps of individual vines.

2.1. Experimental Site

The experiments were conducted in 2010 in a commercial dry-farmed cv. Tempranillo (Vitis
vinifera L.) vineyard, located in Casas Blancas, Cidamén (lat. 42°29'8.83" N; long. 2°5022.57" W;
181 m asl, La Rioja, Spain). Tempranillo vines were grafted onto 41B rootstock and planted in 2005
following a between-row and within-row spacing of 2.70 m x 1.15 m respectively. The vines were
spur-pruned (12 buds per vine) on a bilateral cordon and trained to a VSP trellis system. The trellis
featured a supporting wire at 0.70 m, two wires at 1.00 m aboveground for protection against wind
damage, and a pair of movable shoot-positioned wires at 1.45 m.

2.2. Defoliation, Cluster Thinning and Assessment of Removed Leaf Area and Fruit

In order to provide a good validation of the images’ classification method, at harvest (30 September
2010), 10 vines were randomly chosen, and each of them was individually and successively defoliated
and cluster thinned in several steps as shown in Table 1. After each step, the leaf area and/or fruit
removed were also recorded. This way, a range of different conditions of leaf area and cluster exposure
were created to provide a better validation of the image analysis methodology.

The whole canopy of each vine was successively defoliated: first by removing the first six main
basal leaves (step 1), then other six (in total 12 leaves) main basal leaves (step 3), and then the
remaining main leaves and laterals (complete defoliation, or step 5). The number of leaves removed at
each step was recorded and measured using a leaf area meter (LI-3100C; Li-Cor, Lincoln, NE, USA).
Similarly, the whole canopy of each vine was successively de-fruited by thinning some clusters: first
by removing every third cluster (step 2), then every second remaining cluster (step 4) and then the
remaining clusters (step 6). The number of clusters removed and their combined weight was recorded
after each cluster thinning event.
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2.3. Image Acquisition

Before any defoliation or cluster thinning, and after each canopy manipulation step, each vine
(10 vines in total) was photographed with a conventional RGB camera (Pentax model K200D, Tokio,
Japan) mounted on a tripod set normal to the canopy 2 m from row axis and 1.05 m aboveground. Note
that, when the defoliation process was performed over highly dense canopies, the distance to the
remnant foliage increased and consequently the objects size seemed to be reduced. In order to correct
this problem, images were scaled to fit the images acquired at 2 m. In this way all images represented
the same area. A white screen was placed behind the canopy to avoid confounding effects from
background vegetation and no artificial illumination was employed. Images were captured at a
resolution 3,504 x 2,336 and reduced to 800 x 600 in order to speed up processing time. For each
individual vine a total number of seven images were taken (Table 1).

2.4. Image Processing (Clustering Algorithm)

Several measurements of similarity between groups in terms of multiple characteristics have been
proposed in the literature [37], but the Mahalanobis distance has been found to be the most suitable in
a majority of applications, and it is widely used for pattern recognition and data analysis [39]. It is now
known that many standard distance measurements such as Kolmogorov’s variational distance, the
Hellinger distance, Rao’s distance, efc. are increasing functions of Mahalanobis distance under
assumptions of normality and homoscedasticity [40].

Mahalanobis measures the similarity between an unknown sample group and a known one; it takes
into account the correlations of the data set, and it is scale-invariant. It also accounts for the fact that
the variances in each direction are different as well as for the covariance between variables.

The Mahalanobis distance between two random vectors (¥,3) with the same distribution, and
covariance matrix S, can be defined as:

d(Z,3) =@ - TS 1FZ - ) (1)

The Mahalanobis colour distance standardizes the influence of the distribution of each feature

considering the correlation between each pair of terms [41].
In the case of RGB colour images S is computed as:

Opr  Org ORrB
S =|%r 0%6c Ogp (2)
Ogr 98¢ OBB

and the elements of S can be calculated as:

1 - — —
ok = 0gr = — ) (Ri=R)(Gi—G) ®

where R;,Gi,B; are the values of the i match (1=1,2,3,..n), and R, G, B are the mean color values for
R, G, and B in the given image, respectively.
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Step 6 Assignation to class membership based on the rule that minimum distance from pixel to
class reference pixels drives the allocation in a given class.

Step 7 Performance of morphological operations over the Grape class. Removal of small
pixels groups and filling “holes” inside the Grape cluster by using erode and dilate
morphological operations, respectively.

Step 8 Allocation of pixels to the Grape class only if they corresponded to the lower half of the
image. e.g., If the image resolution was 800 x 600, the pixels to be considered as valid
for the Grape class must be within the 400 to 800 position of the vertical axis.

Step 9 Computation of the number of pixels for each class.

Step 10 Saving the numerical results on a spreadsheet.

Step 11 Saving the class images in a directory.

Step 12 Displaying the class images on screen.

2.6. Algorithm Validation

A validation process for these specific grapevine canopy images was carried out. This validation
was manually performed, selecting some ROIs on images that showed representative conditions of
illumination and colours. Once the ROI was selected, the number of pixels for each class was manually
counted by an expert, both on the original and the clustered image.

2.7. Correlations. Leaf Area and Yield Estimation

For leaf area and yield estimation, the set of images was divided into two groups: the training
group, in which two thirds of data were used to generate the model, and the validation group, where
the remaining one third of data was allocated for validation purposes. For the training group, linear
correlations were run between the number of pixels of the Leaves and Grape classes in each image,
and the actual leaf area and yield present in the vine at that time, respectively (SPSS v15.0, IBM,
Armonk, NY, USA). Hence, these correlations were used to estimate leaf area and yield in the set of
images of the validation group, and correlations between the estimated and observed (real) values for
leaf arca and yield were run, and the coefficients of determination (R?) and root mean squared error
(RMSE) were computed.

3. Results and Discussion
3.1. Algorithm Validation

Examples of the ROI (30 x 30 pixels) selected for the manual validation process of the algorithm
are depicted on Figure 3. The manual validation showed a 98% of correct classification for the Grape
class and a 92% for the Leaves (Young and Old leaves groups added). Most of the misclassifications in
the Leaves’ groups were due to younger shoots and laterals, which exhibited almost the same green
colour than leaves.

As the Figure 4(a,b) and the manual validation process show, the classifiers performed very well
without any image pre-treatment, such as improvement of contrast, brightness or colour adjustment.
This is an important outcome, which makes the process simpler, compared to previous works where
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After the final defoliation stage, only the vine shoots and remaining clusters were visible on the
grapevine canopy (image 15, Figure 7(a)). Under these conditions, and as the background could not
cover the entire area, the sky could be partially distinguishable, and the sunlight penetrated into the
image scene creating shadows and bright areas over the background. To overcome this situation, two
different classes of background were selected, and identified as Dark and Bright Background classes
(Figure 7(d,e)) and the four classes of leaves described and identified in previous steps, were reduced
to only two clusters: Old and Young leaves (Figure 7(g,h)). The complete classification performance is
shown in Figure 7(b).

Depicted on Figure 7(f), the Wood class included the vine trunk, shoots, and trellis wires. On the
other hand, Figure 7(c) shows the Grape class, with preliminary misclassifications, enclosed in red in
the upper part of the image, due to some pixels of blue colouration corresponding to the sky. This
misclassification was also solved by considering as grape pixels only those located at the lower half of
the image.

3.3. Grape Yield and Leaf Area Estimation

The correlation and validation curves for the estimation of leaf area and grape yield using the
classification methodology and image analysis are shown in Figures 8 and 9, respectively.

Figure 8. (a) Correlation between the actual leaf area (m*vine ') of the grapevine canopy
in the images of the training set, and the number of pixels corresponding to the Leaf class
computed by the classification methodology and image analysis. (b) Comparison between
the actual values of leaf area (m>vine ') of the grapevine canopy in the images of the
validation set, and the predicted leaf area values calculated with the correlation equation in
(a). Dotted line is 1:1 line.
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The actual leaf area on the grapevines’ images and the number of pixels corresponding to the Leaf
class were found to be strongly correlated, following a linear relationship (y = 0.1712x + 0.1863) with
coefficient of determination R* = 0.78 at p < 0.001 (Figure 8(a)). When this function was used to
predict the leaf area of another set of grapevine images (validation set), the correlation between the
observed and predicted leaf areas was very close to the 1:1 line (y = 1.0598x + 0.0117) and the values
of R =0.81 at p < 0.001 and RMSE = 0.745 m’ (Figure 8(b)).
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In dense and very dense canopies, grape clusters are typically covered with leaves, preventing them
from being exposed to the sun and also visible to the human or machine vision. This fact, which
occurred in the images of the initial non-defoliated, non-thinned grapevines (I0) and also in images
corresponding to the first defoliation step (I1 and 12), seems to have impacted the performance of the
yield prediction by the image analysis methodology, as the coefficient of determination values for
yield estimation were smaller than those for leaf area prediction.

Similarly to leaf area, the prediction of the grape yield from the model established by image
analysis was satisfactory, and covered a broad range of grape exposure and visibility conditions,
generated by the successive defoliation and grape thinning steps. When grapes in the canopy are
partially covered by the leaves during maturation, and at harvest (especially in moderate to high vigour
vineyards and in vineyards where defoliation was not performed or was only mildly performed) this
method seems to be more applicative for leaf area estimation than yield. However, basal defoliation is
a canopy management practice, widely conducted worldwide, between fruit-set and veraison, on one or
two sides of the canopy, which is aimed at improving the fruit exposure for grape quality [15,17,44-47]
and health purposes [48]. Since the visibility of the clusters is certainly increased after basal defoliation,
the accuracy of the yield estimation by the classification methodology and image analysis presented in
this work would significantly increase, hence allowing a very accurate yield prediction.

A truthful estimation of the potential grape yield soon after veraison is very valuable information
not only for logistical purposes at harvest (i.e., labour needs, winemaking capacity at the winery...) but
also for economic reasons, especially when a wine producer has to buy grapes from other
grapegrowers and suppliers, as the total grape yield of a given region or appellation area is an
important driving force of the final grape price in a given vintage.

4. Conclusions

The methodology for canopy feature extraction and image analysis described in the present work
has proved to be a useful and reliable tool for leaf area and yield assessment in the vineyard. It seems,
though, more applicative to leaf estimation as grape visibility may be limited across the ripening
period and harvest in non-defoliated, moderate to high vigour canopies. The setup proposed is simple,
inexpensive and non-destructive for image-acquisition as only a commercial RGB camera is needed.
The processing methodology has shown to be highly adaptable and robust to changes in illumination
and in the distance to the targeted grapevine, which are two critical factors in machine vision
applications under field conditions.

The classification methodology allowed discriminating seven different classes, corresponding to
seven types of canopy features in the grapevines’ images, although only the Leaf and Grape classes
were successfully calibrated and validated against real plant measurements. The classifier’s
performance for the identification of leaves and grapes was very high and their effectiveness exceeded
the 90% in both cases.

An accurate estimation of the grapevine leaf area and yield during the growing season by a fast and
non-destructive method, such as the one described in this work, may provide very valuable information
for the grape and wine industry for canopy management decisions, as well as for logistical and
economical purposes, and can be further implemented for on-board analysis.
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Figure 9. (a) Correlation between the yield (kg) of the grapevines in the images of the
training set, and the number of pixels corresponding to the Grape class, computed by the
classification methodology and image analysis. (b) Comparison between the actual values
of yield (g) of the grapevines in the images of the validation set, and the predicted yield
values calculated with the correlation equation in (a). Dotted line represents the 1:1 line.
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The differences in foliar density of the imaged vines, as interpreted as more or less number of leaf
layers, may have impacted the estimation of the grapevine’s leaf area by image analysis. In this way, in
very dense canopies (with several superimposed layers of leaves) the initial defoliation steps (Images
I1 and I3) might not have caused a significant “disappearance” of leaves from the image, as expected,
so that the vine remained fully covered with leaves, and only until the defoliation stage 3 was reached,
the observed grapevine canopy area was drastically reduced. In other words, for very dense canopies,
the removal of leaves in the very early steps did not always mean lower estimated leaf area by
image analysis.

The images used in the present work corresponded to grapevines of medium to very dense canopies,
in general, which seems to be the least favourable scenario for the estimation of leaf area by image
analysis. However, the prediction of the leaf area from the model established by image analysis was
very satisfactory, and it should be expected to perform better for grapevines with less dense canopies,
as it is the case of low to moderate vigour vineyards.

Furthermore, a reliable and accurate estimation of the grapevine leaf area at several timings during
the growing season may be of great usefulness to the grapegrower to monitor the vegetative growth of
the plant, and identify symptoms of several abiotic and biotic stresses, such as water stress and
diseases pressure, respectively, in a dynamic way. Likewise, this information may also help the
grapegrower in taking canopy management decisions to improve the balance between vegetative and
reproductive growth.

Regarding grape yield estimation, the correlation between the actual yield on the grapevines’
images and the number of pixels corresponding to the Grape class followed a linear relationship
(y=0.1787x + 0.611) with coefficient of determination R?=0.78 at p <0.001 (Figure 9(a)).

When this curve was employed to predict the yield of the images of the validation set,
the correlation between the observed and predicted yield values was also close to the 1:1 line
(y = 0.8907x + 0.253), with a R* = 0.73 at p = 0.002, and RMSE = 0.749 kg (Figure 9(b)).
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3.2.2 On-the-go grapevine vyield estimation using image
analysis and Boolean model

Titulo de la publicacién: On-the-go grapevine yield estimation using image
analysis and Boolean model

Autores: MILLAN, B., VELASCO-FORERO, S., AQUINO, A., TARDAGUILA, J.

Publicado en: En proceso de revision

Resumen:

En este trabajo se describe una metodologia para la estimacion de la
produccidn de forma no invasiva utilizando analisis de imagen y modelos
Booleanos.

El andlisis de imagen se ha utilizado para la estimacidn de la produccién de
uva anteriormente, pero el efecto de los errores de segmentacién y las
oclusiones por parte de los racimos u otros érganos de la vid afectan a la
precision obtenida. Con el fin de mejorar la estimacion de la produccién,
se propone el uso del modelo Booleano, como alternativa para la
estimacion del nimero de bayas mediante andlisis de imagen.

Se han utilizado tres conjuntos de datos diferentes para evaluar la
metodologia propuesta: imagenes de racimo, imagenes de cepa e
imagenes de cepa capturadas automadticamente y en movimiento
utilizando un vehiculo agricola. La estimacién del niumero de bayas por
racimo se obtuvo con un error cuadratico medio (RMSE) de 20 y R?=0,80,
mientras que en el caso de las imdgenes de cepa capturadas manualmente
los resultados fueron RMSE=310g y R?=0,81. Finalmente, las imagenes
capturadas en movimiento permitieron la estimacién de la cosecha con
una precision de R?=0,78 y RMSE=610g para segmentos compuestos por
tres cepas (error de 200g por cepa).

La robustez del método frente a las oclusiones y los errores en la
segmentacién lo hacen ideal para la estimacién de la produccion,
mejorando los resultados obtenidos frente a una estimacién basada
Unicamente en el drea del racimo.
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1. Introduction

Sustainable viticulture requires continuous monitoring of the vineyard to assist the decision-
making procedure and to optimize cultural practices like pruning, irrigation and disease
management. The use of non-invasive proximal sensors reduces the time and labour
resources, favouring objective data acquisition. Image analysis technigues allows for fast and
reliable measurements, and recent studies have aimed its use in viticulture. Application
examples include canopy status assessment (Maria Paz Diago, Krasnow, Bubola, Millan, &
Tardaguila, 2016; Gatti et al., 2016) and more recently, pruning mass determination (Kicherer
et al., 2016). As a non-invasive, reliable and low-cost technology, image analysis is also a
candidate for its integration in fully automated systems for vineyard monitoring (Kicherer et
al., 2015). These tools are key devices for the future viticulture, as they will reduce
management costs and will allow the application of more sustainable practices.

Grapevine yield estimation is encouraged by its economical relevance (G.M Dunn, 2010;
Martin et al., 2002; Wolpert & Vilas, 1992), and can help to optimize plant growth and to
improve fruit quality (Gregory M Dunn & Martin, 2003). Early yield estimation can be
generated from the flower number per inflorescence obtained using computer vision (Millan,
Aquino, Diago, & Tardaguila, 2016). Estimations representing final yield variability can be
acquired nearby to harvest time using cluster images (Nuske, Achar, Bates, Narasimhan, &
Singh, 2011). To improve the image quality and ease the segmentation process, some authors
captured the images under controlled conditions, in the laboratory or using a specially
developed chamber (Maria P. Diago et al., 2015; Liu, Whitty, & Cossell, 2015). Due to the
destructive, slow and labour demanding nature of this process, it is hard to scale it to increase
the sample points. Another approach would be the manual acquisition of images on the field
(Maria Paz Diago et al., 2012; Gregory M Dunn & Martin, 2004; Herrero-Huerta, Gonzalez-
Aguilera, Rodriguez-Gonzalvez, & Hernandez-Lopez, 2015), but although this method requires
less workforce, a more automatized approach is desirable for a commercial application. Finally,
modified agricultural vehicles can be used to automate the image capture of large datasets
(Font et al., 2015; Nuske et al., 2014). This approach has to face the limitation introduced by
the lack of supervision during the capturing process that greatly affects to image quality. The
segmentation process of images captured on the field is challenging, because of the
uncontrolled scenario characteristics and the lack of uniformity in the berry surface caused by
the pruine (Maria P. Diago et al., 2015). Also, it must be noted that not all the berriesin a
cluster are visible due to occlusions from other berries or vegetal material from the vine. A
method that has resistance to these problems (occlusions and segmentation errors) will
greatly improve the prediction reliability.

The Boolean model and random set theory was developed by Georges Matheron (1975) and
Jean Serra (1980). From an image processing viewpoint, the practical advantage of this model
relies in its capabilities to estimate the number of particles present in an image, even when
errors in the segmentation or occlusions are present. It has been mainly used for modelling
material structure characteristics (Jeulin, 2000; Matheron, 1975; J. Serra, 1980), for estimating
the spatial distribution of bacterial colonies in cheese (Jeanson et al., 2011) or the number of
cells in a cluster (Jests Angulo, 2010). However, to the best of our knowledge, it has not been
used in agriculture for berry and yield estimation.

This study aims at grapevine vield assessment using image analysis and Boolean model. This
solution was tested under three different scenarios: cluster images, manually acquired vine
images and on-the-go captured vine images using a quad at commercial speed.
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2. Material and Methods
2.1. Image acquisition

The experiments were conducted in September 2014 and 2015 in a commercial vineyard
located in Falces (Latitude 42°27'45.96", Longitude 1°48'13.42", Altitude 325 m; Navarra,
Spain). The vines were growing in a vertical shoot positioning system, with north-south row
orientation at 2 x 1 m disposition. Five different grapevine (vitis vinifera L.) varieties were used.
The choice of a multi-varietal experiment was made to increase the variability in yield
components. The six first basal leaves of the selected vines were manually removed after
berry-set.

Three different sets of images were captured:

Manually acquired cluster images: 45 images of clusters from four different grapevine
varieties (Cabernet Sauvignon, Garnacha, Syrah and Tempranillo) were captured in the
field the 4th of September 2014 and harvested next day. The images were taken using
a Nikon D5300 digital reflex camera (Nikon corp., Tokyo, Japan) equipped with a Sigma
50mm F2.8 macro (Sigma corp., Kanagawa, Japan). RGB images were captured with
uncontrolled illumination using an orange cardboard as background, and saved at a
resolution of 24 Mpx (6000 x 4000 pixels), 8 bits per channel.

Manually acquired vine images: 45 images from four different grapevine varieties
(Cabernet Sauvignon, Garnacha, Syrah and Touriga Nacional) were taken in the field at
the same date as cluster images using a Nikon D5300 digital reflex camera equipped
with a Nikon AF-S DX 10 NIKKOR 18-55mm f/3.5-5.6G VR lens. RGB images were
captured with a tripod and under uncontrolled illumination using a white panel as
background. The distance between the camera and the vine was not pre-established,
but kept around 120 cm. The images were saved at a resolution of 24 Mpx (6000 x
4000 pixels), 8 bits per channel.

On-the-go acquired vine images: 64 images from three different grapevine varieties
(Cabernet Sauvignon, Syrah and Tempranillo) were captured at night time the 9t" of
September of 2015 using an ATV (Trail Boss 330, Polaris Industries, Minnesota, USA) at
a speed around 7 Km h. Clusters were harvested and weighted the next day. The
vehicle was equipped with a Sony alpha 7-11 digital mirrorless camera (Sony Corp.,
Tokyo, Japan). The camera had a Vario-Tessar FE 24-70 mm lens. RGB images were
saved at a resolution of 24 Mpx (6000 x 3376 pixels), 8 bits per channel and manually
combined to obtain 28 sections composed by three vines. A 900 LED Bestlight panel
and two Travor spash 1S-L8 LED lights were used for scene illumination. The ATV was
fitted with an adjustable mechanical structure that allowed for different height and
depth fixation to adapt to the vines configuration (Figure 1A). The structure also
provided protection against branch impact and allowed the attachment of the
illumination equipment. The camera was triggered by a custom-built controller based
on Arduino MEGA (Arduino LLC, Italy). The controller generated the shooting signal
based on the information received from an inductive sensor attached to the rear axle.
This sensor produced 3 pulses per rear-axle revolution, thus allowing to obtain images
with an approximate 40% of superposition rate.
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2.2. Boolean model for berry number estimation

Boolean Random Closed Sets (Matheron, 1975) have been widely used for particle number
estimation in images (J. P. Serra, 1982). The main strength of this model is its robustness
against partly covered objects and errors in segmentation.

The model can be applied if the structure is Boolean (J. Serra, 1980), but not limited to this
case due to the Central Limit Theorem (Jestis Angulo, 2010). To estimate the number of objects
in a region Z, the following formulation can be used:

a
Number of objects = - ;ﬁog q

where a, is the area under study (ROI), a’ is the mean area of the object and g is the ROI
porosity:

#pixels of the ROI - #pixels of the segmented area
- #pixels of the ROI

The Boolean model can be directly used for berry number estimation, but the ROl must be
defined so that the concentration of particles is similar on it. In the case of vine images,
particles (berries) concentration is limited to portions in the image (clusters), so a ROl not
corresponding to all the image area must be selected for proper porosity calculation. The ROI
was obtained by applying a morphological opening (Soille, 2004) (morphological erosion
followed by dilation) for all the segmented clusters using a circular kernel of the same radius of
the mean berry size.

To test the prediction capabilities of the Boolean model, four tests were conducted (each one
composed of 100 simulations). The tests were performed by using Matlab (R2010b,
Mathworks, Natick, MA, USA) to generate synthetic images containing randomly placed
particles. First, the test compared the error of the Boolean model for 50 randomly positioned
particles of a radius equal to 5 in an image composed by 100 x 100 pixels. Next, random
variation on the radius of each particle (up to 30%) was used to generate a new set of
simulations. The same tests were also performed for 500 particles in an identical area for fixed
and variable radius.

For comparison purposes, a naive estimator was also defined as follows:

#pixels segmented as cluster

Nenber af objects = #pixels corresponding to mean object area

This estimator only takes into account the relationship between the area of the particles
(cluster/s) and the mean particle area (berry). This formulation is similar to other approaches
used in the bibliography (Maria Paz Diago et al., 2012; Gregory M Dunn & Martin, 2004).

2.3. Image analysis algorithm for berry number estimation

The three previously described sets of images (cluster, vine manual and vine on-the-go) were
analysed using similar approaches: first the clusters were segmented, then the Boolean model
was applied to estimate berry number.
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The Boolean model used for berry number estimation only requires as inputs an average
radius of the particle (berry) and the area of the segmented regions, or more specifically for
this application, the segmented cluster (the procedure is described in section 2.3.1). To
determine the mean berry radius, different approaches were used depending on the type of
the images to be analysed:

e Cluster images: the berry radius was manually extracted (an operator selected two
points at the equatorial line of a berry). This process was repeated for every image
because of the radius variation depending on the distance hetween the camera and
the cluster.

e Vine images: an average radius was set (manually extracted in one image as in the
cluster dataset) and applied to all images from the same grapevine variety.

The algorithm for image analysis was implemented in MATLAB and processes batches of
images in a fully automated way. The segmentation process was based in the Mahalanobis
distance, afterwards transformed to a membership probability map and is described in
section 2.3.1. For the on-the-go images, an additional filtering step was applied to reduce
misclassification between the pixels corresponding to clusters and the metal wires used for
the vine support. The generation of the filter is described in section 2.3.2.

2.3.1. Cluster segmentation

For every pixel, the Mahalanobis distance (McLachlan, 1999) was calculated using a six
dimensions classifier based on the Red-Green-Blue colour model (RGB) and the Hue-
Saturation-Value (HSV) representation. HSV and RGB are different colour spaces, being RGB
closer to physical image acquisition and HSV having the advantage of separating the colour and
illumination information (croma and luma, respectively), thus making colour information
invariant to non-uniform illumination. Hue component of the HSV transformed image is
angular and defined from 0° to 360°. This represents a problem when an image is stored in an
8 bit-per-band matrix, as there no exists continuity between 0 and 255 (in contrast to 0° and
360° in the HSV representation). To fix this, the converted images were modified to place the
blue colour (close to the average cluster colour) in the centre of the interval (128), so the
Mahalanobis distance can be calculated without discontinuities for this class. Seeds were
manually selected to train the Mahalanobis distance classifier. After the distance was
calculated for every pixel, it was converted to an occurrence probability to obtain a
membership probability map (Jesus Angulo & Velasco-forero, 2010) (MPM) using the
Boltzmann distribution (McQuarrie, 1976). The Boltzmann distribution is a transformation that
gives the probability for a system to be in a certain state as a function of that state's energy
and temperature. For this application, the Mahalanobis distance is used as the energy of the
system. The formula that describes the probability for a given pixel in the coordinates (x,y) for
aclassiis:

("
e

3 [

j=1

MPMcolourx'y'l- =
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where d;(x,y) corresponds to the Mahalanobis distance of the pixel located at the (x,y)
coordinates and its reference value for the class i. kT is a constant that in the original formulation
of the Boltzmann distribution corresponds to the multiplication of the Boltzmann constant and
the thermodynamic temperature; for this application, it was fixed to 10. The denominator
guarantees that all the probabilities are normalized and the sum of the M class probabilities is
equal to 1 for every pixel of the MPM.

2.3.2. Additional filters for cluster segmentation for on-the-go captured
images

The MPMcolour can be combined with other MPMs generated using morphological data to aid
in the segmentation process. Hence, three additional MPMs were defined to improve the
cluster segmentation for the on-the-go images:

e Cluster proximity MPM (MPMcluster_proximity): As a pre-process, a pyramidal
decomposition with step values similar to berry size (5 by 5 pixels) was conducted on
the pixels that had the maximum likelihood to cluster class (from MPMcolour). Next, a
Gaussian filter with a standard deviation set to 3 times the average grape radius was
used to expand the cluster pertinence probabilities. By doing this, pixels in the
neighbourhood of the previously filtered cluster candidates increase their possibility of
pertinence to the cluster class. Also, isolated pixels that were not close to clusters will
decrease its cluster class membership probabilities.

e Shape-Angle MPM (MPMcable): Due to the misclassifications between the cluster
and cable class, and taking advantage of the well-defined shape characteristics of the
cable, a filter was defined. As a first step, all the connected components (CCs)
corresponding to the cable and cluster class (from MPMcolour) were extracted, and all
the CCs whose area were lower than the size of the mean berry were eliminated, what
is to say:

Area(CC)) > rbefry * T
where Area(CC;) corresponds to the number of pixels of ith CC and ..., is the mean
berry radius.

Then, the length and orientation of the major and minor axis for every remaining CC
were determined. The shape relation was calculated as the division of the major by the
minor axis length:

major axis length
minor axis length

Shape relation =

Combining these two descriptors, a new MPM was generated as follows:

MPMcable = (1 - Shape relation) x (1 - abs(Major axis orientation/90))

e Linear occurrence zone (MPMlinear_occurrence_zone): As the cables along the vines
were usually placed at fixed heights, there were horizontal sections in the images were
the probability of a pixel to belong to the cable class was higher. To determine these
zones independently from the camera or cable position in the image, an automatic
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detector was built. The CCs most likely to correspond to the cable class were used. For
this purpose, all the CCs with an orientation between £30° and with a shape relation
lower than 0.5 were chosen to generate a binary image (Cable,). From this, an
accumulator for each row based on the sum of the number of pixels selected as cable
class were generated using the following expression:

number of
columns

Accumulator,, = Z Cabley(x,y)

x=1

. 1if I(x,y) € Filtered CCcable
being Cable,(x,y) ={ 4 yO otherwise

for every column x and row y in the image .

This accumulator holds the number of pixels of the filtered cable candidates for each
row; as an example, the accumulator of Figure 2A is showed in Figure 2B. The next step
is to apply a Gaussian filtering, thus allowing to some flexibility in the angle of the
cables, not limiting it to the horizontal case. The result of the smoothing is presented
in Figure 2C. The final MPM of the Linear occurrence zone is obtained by expanding
the smoothed accumulator to all the rows of the image. Figure 2D shows the MPM (in
grayscale) along with the filtered CCs that were overprinted in red colour for
illustration purposes.

The final MPM used to classify the pixels as clusters for the on-the-go images was obtained by
the elementwise multiplication of the four previously calculated MPMs: MPMcolour,
MPMcluster_proximity, MPMcable and MPMlinear_occurrence_zone.

2.4. Validation

To evaluate the developed algorithms, yield estimation has to be confronted with real data.
Also, due to the especial characteristics of the on-the-go images, the segmentation was ranked
before and after the filtering MPMs were applied.

The ground truth for every data set was obtained as follows:

e Manually acquired cluster images: All the photographed clusters were cut and
introduced into pre-tagged plastic bags to allow their conservation during their
transport to the laboratory. Then, they were destemmed and the berries were
detached, counted and weighted. The number of berries per cluster and their weight
was used to obtain the average berry weight.

e Manually acquired vine images: After the image capturing process, all the vines were
harvested and the clusters were weighted together to obtain the final yield per vine.

e On-the-go acquired vine images: After image acquisition, the sections composed of
three vines were harvested and the clusters weighted together to obtain the final yield
per section.
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To evaluate the segmentation process of the on-the-go images and the improvements of the
multi-MPM filtering, it is necessary to obtain a ground truth. An application allowing to
manually select the berry centres was built to generate a mask representing the area occupied
by the clusters in the image. An example of photograph automatically captured on-the-go is
showed in Figure3A, and the manually selected pixel classification for benchmarking this image
is showed in Figure 3B.

The mask generated using this application was used to obtain the following metrics:

e True positive (TP): a pixel classified as corresponding to a cluster that actually matches
a cluster pixel in the manually selected mask.

e False positive (FP): a pixel classified as corresponding to a cluster that does not match
a cluster pixel in the manually selected mask.

e False negative (FN): A pixel that was automatically classified as not corresponding to
cluster but actually corresponding to a cluster in the mask.

Finally, the Recall and Precision metrics were used for evaluating the quality of each analysed
image as follows:

TP

Recall = TP+ FN

where Recall provides the percentage of actual cluster pixels detected.

TP

Precision = TP+ FP

where Precision indicates the percentage of pixels correctly assessed.

3. Results and discussion
3.1. Evaluation of the occlusion robustness of the Boolean model

As described in section 2.2, four tests were performed to evaluate the occlusion robustness of
the Boolean model and to compare its results to those generated by the naive estimator.
Figure 4A and B show the simulations corresponding to 50 particles of fixed / variable radii,
respectively. As it can be checked in Table 1, the error rates for both estimators were low and
similar, but with slight improvement for the case of the naive estimator. For the third and
fourth experiments, the number of particles was increased 10 times, being particle occlusion
more likely to occur under these conditions (Figure 4C and D). The Boolean model estimates
the number of particles with an error rate similar to the low occlusion case. Contrary, the error
yielded by the naive estimator rose to 25% for fixed and variable radii. These findings are
coincident to the ones obtained by Jesus Angulo (2010) for the number of cell clusters
estimation in fluorescence marked cell images, were the number of nuclei obtained by the
Boolean model is more robust than a simple ratio of surfaces (equivalent to the naive
estimator). Some approaches had been studied for evaluate berry occlusions within a cluster.
Nuske et al. (2014) tested the relation between total berry count, visible berry count and 3D
models from 2D images, but the results showed no improvement on partially occluded berry
assessment. As showed in the simulations, the use of the Boolean model would improve the
berry number estimation robustness.
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of berries (ellipsoid 3D model) and clusters (convex hull 3D model). The results showed that
the proposed correction models did not improved the overall estimation. In contrast to this,
the Boolean estimator, that also compensates for partially occluded berries, generated better
results (R?=0.78).

4. Conclusions

This work presented a new method for accurate, non-destructive and in field grapevine yield
estimation by using computer vision. Yield information is very valuable for viticulturists and
grapegrowers, allowing them to take decisions prior to harvest based on objective
measurements. A novel use of Boolean models has been assessed over three different data
sets: images of isolated clusters, manually captured images of grapevines and on-the-go
captured images of grapevines using a modified ATV at night time.

The use of Boolean models allowed to overcome two of the major difficulties in visual yield
estimation: this technique is robust against segmentation errors and partial occlusions,
situations that are usual in the case of images taken under field conditions. It provided more
precision, using not only a model that is simpler than other previous proposals, but also less
complex image analysis techniques. The capacity to estimate the visible berry number and the
partially hidden ones was confirmed by the comparison between the results obtained with the
Boolean model and the naive estimator.

The simplicity and precision of the Boolean model formulation makes it ideal for its application
on grapevine yield estimation, allowing its implementation in a fully automated system. The
images were captured at a commercial speed, comparable to other agricultural equipment
used in vineyard management, establishing this procedure close to viable application. This
methodology can also be used to generate maps that represents the spatial variability of the
vineyards, allowing for grapevine zoning and thus an increase in quality.
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Figure captions

Figure 1: On-the-go capturing system. (A) Modified ATV with automatic camera triggering, LED
illumination and structure for easy position adjustment. (B) Example image of a vine captured
on-the-go.

Figure 2: Steps for the generation of the MPMlinear_occurrence_zone aimed for reduction of
misclassification between cluster and cable class during segmentation. (A) Objects segmented
as cable candidates from images taken automatically with an ATV. (B) Accumulator of the
number of pixels of cable candidates for each row. (C) Smoothed accumulator. (D) Membership
probability map (MPM) for cable occurrence based on the position of the cable (in grayscale)
with the original candidates over imposed in red.

Figure 3: Ground truth generation for segmentation performance benchmarking. (A) Example
image of a vine captured "on-the-go" of cv. Tempranillo. (B) Ground truth mask of the clusters.
The berries were manually selected using a Matlab custom built aplication.

Figure 4: Simulation example of a random distribution of particles in a 100x100 pixel area. (A)
50 particles of radius= 5, (B) 50 particles with a random variation in the radius of the particle up
to 30%, (C) 500 particles with radius=5 and (D) and 500 particles with a random variation in the
radius of the particle up to 30%. The images were synthetically generated using Matlab.

Figure 5: Segmentation of manually taken cluster images. (A) Example image of a cluster of cv.
Cabernet Sauvignon captured under field conditions with an orange cardboard as background.
(B) Segmented image of the cluster using the Mahalanobis distance on six dimensions (i.e., using
RGB and HSV representations).

Figure 6: Graphic representation of the estimation results for weight estimation using the naive
estimator (red and squares) and the Boolean model (blue and stars) for: (A) berry number per
cluster (naive y=0.25x+8.4; Boolean y=0.93x+8.1), (B) yield per vine using manually captured
images (naive y=0.42x+133.0; Boolean y=0.86x+195.2) and (C) yield per section (composed by
3 vines) using images captured on-the-go without filtering (naive y=0.35x+345.4; Boolean
y=0.89x+151.9) (C) and applyng filters for cable pixels (naive y=0.30x+460.6; Boolean
y=0.80x+552.7) (D). Dashed line represents 1:1 and dotted lines corresponds to 95% prediction
intervals.

Figure 7: Cluster segmentation on manually captured vine images. (A) Image of a vine cv.
Cabernet Sauvignon captured under uncontrolled illumination conditions with a digital camera
fixed on a tripod and using a white panel as background and (B) segmentation result using the
Mahalanobis distance clasifier on six dimensions (i.e. using RGB and HSV representations).
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3.3 Canopy status assessment

The management of the canopy affects grape quality, diseases incidence
and yield. This is why canopy management is such an important part of
vineyard management (Smart & Robinson, 1991).

Automated canopy assessment methodologies are key for precision
viticulture, because the canopy management influences yield and quality
intricately. The first study of this section describes an image analysis-based
algorithm that can provide canopy porosity estimation with high precision
(R*>0.90) for gap assessment from images manually acquired.

The second study analysed images captured automatically and on-the-go
providing high correlations when compared with the reference method for
gap (R?>0.85); exposed leaves (R?>0.71); and exposed cluster (R?=0.65)
assessment. Moreover, the analysis of images captured on-the-go allows
effortless massive sampling and map generation.

Finally, the third study focus on the assessment of pruning weight using
computer vision algorithms. The proposed methodology is simple and
provides a precise estimation (R?>0.85) from images captured
automatically on-the-go.
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3.3.1 Assessment of vineyard canopy porosity from manually
captured images

Titulo de la publicacién: Assessment of vineyard canopy porosity using
machine vision

Autores: DIAGO, M.P., KRASNOW, M., BUBOLA, M., MILLAN, B,
TARDAGUILA, J.

Publicado en: American Journal of Enology and Viticulture 67, 229-238
(2016) DOI: 10.5344/ajev.2015.15037

Resumen:

La porosidad de la “canopy” es un pardmetro de gran interés viticola, ya
gue favorece la exposicién de los racimos y su aireacion, facilitando la
maduracién, sanidad y calidad de la uva. El método estandar para la
evaluacién de la porosidad es el PQA (point quadrat analysis), pero es
laborioso y lento, limitando su aplicabilidad en vifiedos comerciales.

En el presente trabajo se expone una alternativa al PQA mediante analisis
de imagen. Este método es objetivo, rapido, no invasivo y ha sido evaluado
en vifiedos de diferentes variedades y caracteristicas localizados en Nueva
Zelanda, Croacia y Espafia. El coeficiente de determinacién (R?) entre el
PQAy el andlisis de imagen es superior a 0,90 (p<0,05) en cada uno de los
experimentos, siendo el R? obtenido en la regresiéon global 0,93 (p<0,05).
La hora del diay el lado de la “canopy” no fueron factores determinantes
en la precisién del método.

La utilizacién de esta nueva herramienta permite evaluar el estado de la
“canopy” y llevar a cabo las practicas viticolas necesarias para la mejora
de la calidad y sanidad de la uva.
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Contribucion del autor de la Tesis:

Borja Millan participd en el disefio experimental y su labor incluye la
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3.3.2 Assessment and mapping of vineyard canopy porosity
from on-the-go captured images

Titulo de la publicacién: On-the-go assessment and mapping of vineyard
canopy porosity, bunch and leaf exposure by image analysis

Autores: DIAGO, M.P., AQUINO, A., MILLAN, B., TARDAGUILA, J.

Publicado en: En proceso de revision

Resumen:

La evaluacién de la “canopy” es necesaria para una gestion correcta del
vifiedo. En este articulo se presenta un sistema de determinacién de la
porosidad de la “canopy” automatico y no invasivo basado en andlisis de
imagen. La captura de imagenes se realizd de forma automatizada desde
un vehiculo en movimiento a 7 km/h, reduciendo de forma importante el
esfuerzo necesario para la toma de datos.

Los resultados obtenidos se compararon con los generados por el método
de referencia (PQA), obteniéndose altas correlaciones para el porcentaje
de huecos (R?>0,85; p<0,001) y hojas expuestas (R?>0,71; p<0,001) por
ambas caras de la “canopy” (defoliada y no defoliada), mientras que la
exposicién de racimos obtuvo una mejor relacidn para la cara expuesta
(R?=0,65; p<0,001).

Con los datos obtenidos con el algoritmo de analisis de imagen se pudieron
generar mapas que representaban la variabilidad del estado de la
“canopy”. Estos mapas son de gran valor para el viticultor, ya que permiten
delimitar zonas del vifiedo con distintas necesidades y caracteristicas. En
el futuro, estos datos podrian combinarse con maquinaria automatizada
para la defoliacién o la aplicacidn de fito-sanitarios en funcién del vigor.
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Contribucion del autor de la Tesis:

Borja Millan participd en el disefio experimental y su labor incluye la
captura de datos de campo, la generacién y ajuste de los algoritmos de
analisis de imagen que permiten la estimacién de la porosidad de la
“canopy”. También participé en la redaccién del articulo.
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Figure 4. Result of the image processing and analysis: (a) close-up of a vine image; (b) result of the
analysis of image (a) in which pixels are represented in the colour associated to their assigned class; (c)
result of post-processing image (b) in which holes within bunches are filled and isolate bunch pixels are

removed.
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3.3.3 Assessment of vineyard pruning weight from on-the-go
captured images

Titulo de la publicacion: Development of an image-based method to
appraise the grapevine pruning weight on-the-go

Autores: MILLAN, B., DIAGO, M.P., AQUINO, A., TARDAGUILA, J.

Publicado en: En proceso de revision

Resumen:

El peso de la madera de poda es un indicador del crecimiento vegetativo y
el vigor. Tradicionalmente se ha determinado durante la poda, separando
y pesando los sarmientos correspondientes a cada cepa, un proceso lento
y que interrumpe el flujo de trabajo. En el siguiente articulo se presenta el
uso de un algoritmo de analisis de imagen para la determinacién del peso
de madera de poda, como método automatico, no invasivo y de bajo
coste.

El estudio se ha realizado en un vifiedo comercial en tres etapas: en la
primera los sarmientos ya podados se colocaron encima de un fondo
blanco para ser fotografiados en condiciones de luz semi-controladas; en
la segunda, la captura se realizé de forma manual en el vifiedo, utilizando
un fondo de color blanco y con la cdmara situada sobre un tripode;
finalmente, se utilizé un “quad” modificado para la captura automatica de
imagenes a una velocidad de 7 km/h.

Las imdgenes capturadas manualmente se analizaron y evaluaron
mediante validacién cruzada (“leave-one-out”), proporcionando una
estimacion con un coeficiente de determinacion (R?) de 0,91 (p<0,001),
RMSE=87,7g y RPD (“ratio of performance to deviation”) de 3,4. Las
imagenes capturadas de forma automatica generaron resultados
similares, con un coeficiente de determinacion (R?) de 0,85 (p<0,001),
RMSE=115,7g y RPD=2,6. Estos resultados demuestran que la estimacion
del peso de la madera de poda puede realizarse de manera rapida y no
invasiva en el vifiedo, proporcionando una herramienta de gran valor para
el viticultor al permitir la evaluacion del vigor y facilitar la generacién de
mapas.
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Abstract:

Pruning weight is an indicator of vegetative growth and vigor. Traditionally, it is manually determined,
which is time-consuming and labor-demanding. The use of image analysis as a non-invasive and low-
cost method combined with automated and on-the-go image capturing for pruning weight estimation in a
commercial vineyard was evaluated in this study as a fast and reliable alternative. The on-the-go
methodology was developed in a three-step process: at first, the shoots were pruned, placed over a white
screen and photographed in semi-controlled conditions. Next step consisted on manual acquisition of
vine images in-the-field with a white background. Finally, a modified all-terrain vehicle (ATV)
equipped with a digital camera, automatic triggering, supplementary illumination and geo-referencing
system was used to take vine images on-the-go at 7 km hr™! without controlled background. The model
was tested using the “leave-one-out cross-validation” method resulting in a determination coefficient
(R?) equal to 0.91 (p<0.001), root-mean-square error (RMSE) equal to 87.7 g and ratio of performance
to deviation (RPD) equal to 3.4 for the manual in-field acquisition. On the other hand, the images
captured on-the-go provided a more applicable result with slight decrease in the precision as
demonstrated by R>=0.85 (p<0.001), RMSE=115.7 g and RPD=2.6. The results showed that the
developed automated methodology based on the analysis of images acquired on-the-go was capable of
estimating the vine pruning weight in commercial vineyards. This may become a valuable tool for the

wine industry for rapid assessing and mapping of vine vigor and thus improve vineyard management.

Key words: computer vision; precision viticulture; non-invasive sensing technologies; vigor; Vitis

vinifera L.
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Introduction

Precision viticulture, in contrast to traditional management techniques, favors more efficient crop
production, reducing waste and environmental impact (Cook et al. 1998, Bongiovanni and Lowenberg-
Deboer 2004). The term precision viticulture refers to the site-specific management of vineyards, or
more specifically to the concept of “applying the right treatment in the right place at the right time”
(Gebbers and Adamchuk 2010). To achieve this, accurate and precise evaluation of the status of the
vines is required to take informed decisions (Proffitt et al. 2006, Reynolds 2010). Generally speaking,
the implementation of precision agriculture becomes feasible with the development of advanced sensing
technologies in conjunction with procedures to link mapped variables to take appropriate farming

management actions (Dobrowski et al. 2003, Zarco-Tejada et al. 2014).

Proximal and remote sensors, as non-destructive tools have been widely applied in precision viticulture
(Matese and Di Gennaro 2015). Manually operated devices, like fluorescence sensors have been used for
nitrogen content evaluation (Rey-Caramés et al. 2016), while thermal (Pou et al. 2014) and spectral
reflectance sensors (De Bei et al. 2011) were used to estimate the plant water status. On the other hand,
vehicle mounted sensors greatly improved the commercial application and the sampling rate per
vineyard. On-the-go measurements were applied for water status characterization (Sepulveda-Reyes et
al. 2016) or canopy and vegetative status evaluation (Diago et al. 2016b, Gatti et al. 2016, Palleja and
Landers 2017). Image analysis, as a non-invasive, fast and low-cost methodology has been utilized as a
proximal sensing tool, to measure several features of the grapevine. Some applications of manual image
acquisition include the estimation of the number of flowers per inflorescence (Millan et al. 2017) and the

assessment of the canopy architecture (Diago et al. 2016a). Alternatively, image sensors can be mounted
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in agricultural vehicles for yield estimation (Nuske et al. 2011) and to assess the grapevine vegetative

status (Gatti et al. 2016).

Pruning weight is an important indicator used for the appraisal of biomass production, carbon storage
cycle, vigor and vine balance (Smart and Robinson 1991, Keller 2015). The ratio between the vine yield
and its pruning weight is defined as the vine balance (Smart and Robinson 1991). Manual pruning
weight assessment is a laborious and time-consuming process which interferes with the usual pruning
flow, because of the need to recollect the corresponding shoots and to weight them (Taylor and Bates

2012). Consequently, a rapid and precise method for pruning weight estimation is desirable.

Pruning weight has been estimated using different indirect and direct techniques, including remote and
proximal sensing. Indirect estimation has been used to assess the pruning weight from canopy
measurements. This approach was investigated by Grocholsky et al. (2011) to evaluate the canopy status
before harvest using a vehicle mounted Lidar scanner. Although precise, Lidar sensors were expensive
and delicate, hence, their commercial application was limited (Wolcott and Eustice 2014). Airborne
sensors have also been tested for indirect pruning weight estimation from canopy measurements
(Dobrowski et al. 2003). Airborne sensors can be used to monitor entire vineyards but at the cost of
using expensive technologies, weather constraints and costly revisiting operations if multi-temporal
measurements were required (Baluja et al. 2012). Another limitation of the utilization of aerial sensors
to monitor non-continuous crops from zenithal view (like vineyards), is the influence of the soil
reflectance in the calculation of indices (Stamatiadis et al. 2006). Conversely, proximal sensing using
ground sensors does not have this limitation, and can greatly reduce the cost of multi-temporal data

acquisition. Direct pruning wood measurements using a vehicle mounted Lidar was evaluated by
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Tagarakis et al. (2013). These authors recorded the number of impacts with the canopy shoots detected
by the scanner to estimate the pruning weight. Image analysis was also proposed for this application, but
the lack of controlled background and illumination greatly hindered the segmentation of the shoots.
Botterill et al. (2013 and 2016) attempted to overcome these limitations by employing a wheeled
platform designed to completely cover the vines, equipped with controlled lighting. The problem of
uncontrolled lighting conditions and the interference from the vines in the background was also
addressed by Kicherer et al. (2016) with two different approaches: manual segmentation on vine images
using a white screen as background, and the use of a multi-camera system for depth reconstruction. The
development of a fully automated sensor will improve the commercial application of these manual

methodologies in viticultuure, that are time and labor demanding.

In the light of this, the aim of this study was to develop a fully automated image-based system, capable
to operate on-the-go at a commercial speed, to assess the pruning weight of grapevines under field

conditions.

Materials and Methods

Experimental layout

The trials were conducted at a commercial Tempranillo (Vitis vinifera L.) vineyard located in Logroio
(Latitude = 42.434853°, Longitude = 2.513719°, Altitude=477.64m asl; La Rioja, Spain) on December
2015 before winter pruning. The grapevines were trained to a vertically shoot-positioned (VSP) trellis
system, with Northwest-Southeast row orientation at 3.0 x 1.2 meters inter and intra row distances. The
vines were planted in 2010 and grafted on Richter 110 rootstock.

The methodology for pruning weight estimation was developed following three steps:
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1. Semi-indoor shoot images: the images were taken manually and statically without artificial
illumination, but under a roof to avoid direct sunlight. Ten shoots were pruned and placed one at
a time over a white screen laying on the floor. The first image included a single shoot.
Subsequent images were taken after addition of one shoot to the previous scene. By doing this,
ten images containing from one to ten shoots were obtained.

2. In-field manually acquired vine images: 45 vines were manually and statically photographed in
the field, in an uncontrolled illumination scenario and using a white screen as background to
avoid the interference from grapevines in the adjacent rows.

3. On-the-go captured vine images: 45 vines (the same as those photographed manually) were
automatically imaged on-the-go using a modified all-terrain vehicle (ATV) (Figure 1) equipped
with a camera and an automated triggering system. The images were georeferenced using a

global navigation satellite system (GNSS).

To increase the data range and test the methodology under different self-occlusion conditions, the vines
were chosen to cover the widest possible range of pruning weight. Towards this end, some vines of the
45 photographed were subjected to partial manual pruning to decrease their shoot number. The adjacent
vines within the row to the one under study were also manually pruned to prevent their canes to interfere
in the scene of the vine under analysis, and thus affecting to the precision of the ground truthing process.
After the image capturing process, for each vine the shoots were cut and weighted using a hanging scale

(Kern & Sohn GmbH, Balingen-Frommern, Germany) for its use as reference data.

Image acquisition

The manually acquired images (semi-indoor and in-field manually acquired vine images) were obtained

using a Nikon D5300 digital reflex camera (Nikon corp., Tokyo, Japan) equipped with a AF-S DX
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NIKKOR 18-55mm f/3.5-5.6G VR. Images were taken at daytime using a white screen as background,
and saved at a resolution of 24 Mpx (6000 » 4000 pixels), in the RGB color space with eight bits per
channel. The camera was fixed to a tripod positioned at a distance of 3 m in the case of the semi-indoor
shoots, and around of 1.2 m in the case of vine images. No illumination was used apart from natural
sunlight. The camera was configured with a sensitivity of ISO 640, aperture of /4.5 and the exposure

time was automatically selected.

The on-the-go captured vine images were acquired at night-time using an ATV (Trail Boss 330, Polaris
Industries, Minnesota, USA) moving at 7 km hr''. The vehicle was equipped with a Sony alpha 7-11
digital mirrorless camera (Sony Corp., Tokyo, Japan) mounted at 100 cm from the ground and 250 cm
from the canopy, with a Zeiss Vario-Tessar FE 24-70 mm lens with optical stabilization (Figure 1). The
images were saved at a resolution of 24 Mpx (6000 x 3376 pixels), in RGB color space with 8 bits per
channel. The camera has a high sensitivity CCD sensor capable to obtain high quality images at high
shooting speeds despite the vibrations generated by the uneven terrain and the ATV engine vibrations. A
900 LED Bestlight panel and two Travor spash IS-L8 LED lights were used for scene illumination. The
ATV was fitted with an adjustable mechanical structure (Figure 1), that could be fixed to different
heights and depths to adapt to the vines configuration. The structure also provided protection against
canopy impact and allowed the attachment of the illumination equipment. The camera was triggered by
a custom-built controller based on Arduino Mega (Arduino LLC, Ivrea, Italy). The controller generated
the shooting signal based on the information received from an inductive sensor attached to the rear axle,
which was activated three times per wheel revolution. A Leica Zeno 10 GNSS receiver (Heerbrug, St.

Gallen, Switzerland) was used to geo-position the images. The triggering signal along with the actual
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position was processed by the controller, showed in a 4.3 inch tft screen for debugging purposes and

stored in an SD card.

Image analysis algorithm

The three previously described datasets were analyzed using an algorithm developed in Matlab (R2010b,

Mathworks, Natick, MA, USA). The procedure consisted of two steps:

1.

Definition of the region of interest (ROI): The acquired images included not only the shoots of
the vine under consideration but other parts like the trunk, other vines or ground among others. A
ROI was manually selected by an operator using a custom developed Matlab application to
encompass only the region to be segmented.

Segmentation procedure: the images were first converted to grayscale by eliminating the hue and
saturation information while retaining the luminance. Then the Otsu’s method (Otsu, 1979) was
applied over the histogram of pixel values to automatically establish a threshold (7,5, ) for each
grayscale image (/;) thus separating the shoots from the background. For that, the Otsu's method
assumes that the image contains two types of pixels corresponding to different classes
(foreground and background) and that the intensity of these pixels distributes in a bimodal
histogram. Consequently, the threshold was calculated as the value maximizing their between-
class variance. As the manually acquired images were taken with a white background, the shoots

were segmented using the threshold as described:

1if Igmanuat (%, ¥) < Torsy
Is(x,y) = { :
S( y) 0 lf IGmanual (x, y) > Totsu

where the pair of values (x,y) specified the position of a pixel in the image.
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The on-the go images, which had a dark background because of the night-time capture, were

segmented as follows:

1 if l’G on—the—go(xr y) > Totsu
0 if ]G on—the—go < Totsu

Is(x,y) = {
After this procedure, Is consisted on an image of the same dimensions as the original one but with only
two possible pixel values: one (represented as white in the images) for the shoots segmented inside the
RO, and zero (represented as black in the images) for the remaining pixels. After this, the number of

pixels segmented as shoots was obtained from the image as follows:

number of number of

columns rows
Number of pruning wood pixels = Z Is(x,y)
x=1 y=1

Statistical analysis

The data generated using the described image analysis algorithm and their relationship to the reference
values were analyzed using Sigma Plot 12.0 (Systat Software Inc., San José, CA, USA). The regression
lines, with their determination coefficient (R%), 95% confidence intervals of the slope coefficients and p-
values were also calculated. Model validation was performed using Leave-one-out cross-validation
(LOOCYV) in Weka 3.8.0 (University of Waikato, Hamilton, New Zealand). LOOCYV separates the data
into two groups: n-1 samples are used for training and the remaining data point is used for validation.
The process is repeated for the n possible combinations of the training and validation sets, and the error

obtained for every model is averaged to generate the LOOCYV error indices. The models were
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benchmarked using the mean absolute error (MAE), root-mean-square error (RMSE) and the ratio of
performance to deviation (RPD) (Williams and Sobering 1996).
Mathematically MAE and RMSE are described as follows

1o, —
MAE =;Z|Pwi — Pwy|

i=1

RMSE = \/Z?ﬂ(mi — Pwy)?
n

where Pw; and Pw; are the predicted and actual pruning weight values for the ith vine respectively.

Additionally, RPD is defined as
t

RMSE

RPD =

being ot the standard deviation of the actual pruning weight values.

MAE is the average of the absolute errors in the prediction of the model, when RMSE offers an absolute
value of the prediction error. Since neither MAE nor RMSE take into account the distribution of the data,
its sparsity and range of values, they might not be completely descriptive on their own. Therefore, RPD
was also introduced (Williams and Sobering 1996). As stated in the literature (Nicolai et al. 2007), a
model with a RPD value between 2 and 2.5 has a coarse quantitative prediction, a value between 2.5 and
3 is associated to models with good prediction accuracy and values equal to or greater than 3 indicate

that the model has excellent prediction accuracy.

Results

10
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Semi-indoor manually acquired shoot images

The weight, size and shape of the shoots were heterogeneous with great weight variability. Single shoots
varied in weight from 110 to 310 g, while the average weight value of the ten-shoot population was190
g with coefficient of variation of 32%. The shoots were randomly placed over the white background, and
their shape (curve in some instances) and the presence of laterals generated a “3D structure”, with some
shoots being closer to the camera than others (Figure 2A). The ROI selected for the analysis comprised
all the image area (Figure 2A, where ROI boundaries are represented in red). The result of the
segmentation is showed in Figure 2B, where white pixels correspond to wood and the background is

represented in black.

The relationship obtained for the pruning weight of the shoots present in each image against the number
of pixels segmented as corresponding to the pruning wood (equivalent to the area of the shoots in a 2D

representation) was very strong (R?2 1 with p<0.001) as it can be seen in Figure 3.

In-field manually acquired vine images

Figure 4 shows an image of a vine captured manually in the field. The ROI was selected to include all
the shoot laterals of the vine while avoiding the trunk. After that, the images were segmented, and the
results can be observed in Figure 4B, where the pixels corresponding to the shoots are shown in white
and the background in black. The regression plot for the number of pixels segmented as wood and the
pruning weight yielded a R>= 0.92 (Figure 5). The model was externally validated using LOOCV (Table

1) resulting in R*=0.91, root mean square error (RMSE) of 87.7g and RPD=3 4.

On-the-go acquired vine images
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The ROI for the on-the-go acquired vine images was selected similarly to the manually acquired images
(Figure 6A). It must be noted that, in contrast to the other two datasets, which used a white screen as
background, no background was used in this case. In this dataset, the differentiation of the vines under
evaluation from those in the adjacent row was successfully achieved by means of illumination and
camera parametrization. The results of the segmentation of the images can be observed in Figure 6B
where the pixels segmented as pruning wood are shown in white and the rest in black. The regression
plot for the number of pixels segmented as shoots and the pruning weight are displayed in Figure 7,
along with the 95% confidence interval. This correlation yielded a R*=0.87. The LOOCYV for external

validation of the linear model (Table 1) resulted in R*=0.85, RMSE of 115.7g. and RPD=2.6.

Discussion

The results obtained in the present study confirm the capability of the presented method for pruning
weight estimation from in-field captured vine images. The possibility to work on-the-go at commercial
speed greatly improves the applicability of this new method for grapevine pruning weight estimation as

indicator of vegetative growth and vigor.

The semi-indoor shoot images were taken with the aim of simulating the outdoor capturing conditions,
but at the same time, reducing the influence of external objects (such as metal wires, parts of trunk,
posts, etc.) in the segmentation process. The results yielded a very strong correlation between the
number of pruning wood pixels and the shoots” weight. Based on this outcome, the next step was to test
the image-analysis algorithm with the in-field manually acquired vine images. In this dataset, the
illumination was less homogeneous, generating variations in the background (white screen) and

foreground (shoots and other objects). The presence of the metal wires and posts from the VSP trellis
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system, which also had lignified tendrils from previous seasons, the trunk of the vine, and other objects
influenced the relationship between the segmented area corresponding to the wood class and the pruning
weight. The determination coefficient for these images was slightly lower than for the semi-indoor
images, but proved excellent prediction capabilities as demonstrated by its RPD. Comparing to other
studies, Kicherer et al. (2016) also estimated the pruning weight from a depth map obtained with a
manually operated image-based dispositive composed by three cameras. This setup provided a
determination coefficient of R>=0.44 when the images were automatically evaluated. They also tested a
manual image analysis based on color information which required the use of a white background to

avoid the influence of the vines behind resulting in R?=0.84 and RMSE=120g.

The lack of a controlled background and the motion during the capture for the on-the-go dataset was a
challenge in the image capturing process. The captured images were not blurry and the influence of the
background was greatly limited due to the correct calibration of the illumination, which obscured the
vines that were not in the foreground. The results obtained for this dataset exhibited a strong correlation
also for the LOOCV model testing. These outcomes were similar to the ones obtained for the in-field
manually acquired images despite of the harder capturing conditions, and also agreed with those
obtained in previous works (Kicherer et al. 2016) for manual and automated analysis. It is worth
highlighting that the images in the present study were taken on-the-go without any control of the
background. Furthermore, the model for the on-the-go approach was robust as demonstrated by its RPD

which corresponded to “good prediction accuracy” (Nicolai et al. 2007).

Our results showed that the new computer vision based method is rapid and reliable. Moreover, laser

based sensors have also been tested for pruning weight estimation with similar performances. Tagarakis
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et al. (2013) conducted an experiment consisting on winter shoot scanning using a laser sensor, while
Grocholsky et al. (2011) measured the canopy shape and volume using a laser sensor during the pre-
harvest period, obtaining an indirect estimation of the pruning weight. A similar approach with airborne
multispectral imaging sensors were also used to provide indirect correlations between spectral
reflectance indices such as NDVI and PCD with the pruning weight (Baluja et al. 2012). It must be
noted that these indirect measurements did not directly quantify the vine wood, but used the size of the
canopy to assess pruning weight. Moreover, these estimations are subjected to variations from season to
season and to other factors that affect the canopy and do not reflect as variations in the pruning wood.
Also, the remote measurements obtained using spectral sensors mounted in unmanned aerial vehicles
may suffer from the inability to distinguish between canopy and vegetation situated in the intra row
space (Gatti et al. 2016). All these pitfalls were overcome by this new developed image analysis method,

once the influence of the adjacent rows and other lighting issues are solved.

An image-based methodology for grapevine pruning weight estimation has been developed, presented
and validated with images acquired under different illumination (semi-indoor and outdoor), and capture
(manual static capture vs automated on-the-go acquisition) conditions. For the on-the-go mode, images
were taken at commercial speed (7 km hr'!), confirming that the described methodology is adaptable to
other agriculture vehicles like tractors. Moreover, the flexibility of the system makes it also adaptable to
be installed in agricultural robots (Diago et al. 2016c, Rose et al. 2016), allowing continuous and
effortless vineyard monitoring. The obtained results proof that the developed methodology is robust and
reliable. The possibility to assess the pruning weight from geo-referenced images enables for the

mapping of large vineyards in a precise and effortless way. These maps can be used to adapt the pruning
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severity, or the number of spurs per cordon among other cultural practices applied to grapevines to

optimize the vine balance.

Conclusion

A new methodology based on image analysis was developed and validated for grapevine pruning weight
estimation under different illumination and image acquisition conditions, from manual static capture to
automated on-the-go imaging. Our results proved that the grapevine pruning weight can be accurately

estimated from images captured directly under field conditions.

The possibility of automated and on-the-go image acquisition greatly increases the commercial
application of the developed machine-vision methodology. Moreover, image geo-referencing enables the
generation of pruning weight maps that will represent the grapevine vigor spatial variability within the
vineyard. The inexpensive, non-destructive, and time-saving presented procedure will support informed

decisions of viticultural operations to improve yield and grape quality.
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Conclusions

4 Conclusions

This PhD Thesis has established the usefulness of computer vision to
assess vineyard status in the scope of precision viticulture.

The research presented here in provided the following main findings:

4.1 Assessment of flower number per inflorescence

1.

The analysis of digital images captured under field conditions provides
a useful estimation of the number of flowers per inflorescence at early
stages of flowering.

The development of an innovative smartphone Android application,
called vitisFlower is a powerful tool for easy and automatic flowering
assessment in the vineyard.

The flower number per inflorescence estimation using image analysis
and a non-linear model was generally applied to different grapevine
varieties.

4.2 Yield components estimation

4.

Image analysis methodology has proved to be a useful and reliable tool
for yield assessment in the vineyard. The proposed setup for manual
image acquisition is simple, inexpensive and non-destructive requiring
only a commercial RGB camera.

Yield assessment can be performed by computer vision using images
captured automatically on-the-go at a speed comparable to other
agricultural equipment.

The use of Boolean models allowed overcoming two of the major
difficulties in visual yield estimation: this technique is robust against
segmentation errors and partial occlusions, situations that are normal
in the case of cluster images taken under natural field conditions.
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4.3 Canopy status assessment

7.

The grapevine canopy status including cluster exposure, canopy
porosity and exposed leaves within a vineyard was successfully
assessed using manually captured images.

Canopy status assessment can be obtained from images captured on-
the-go, reducing the effort necessary to carry out dense vineyard
sampling.

The grapevine pruning weight can be accurately estimated using
image analysis. The methodology was developed and validated under
different illumination and image acquisition conditions ranging from
manual static capture to automated on-the-go imaging.

4.4 On-the-go vineyard assessment and mapping

10.

11.

The development of an autonomous capture platform including a
system for automatic camera triggering, geo-positioning information
capturing from GNSS receiver and illumination system greatly reduces
the man power necessary for infield image acquisition.

Allthe viticultural parameters determined by image analysis were geo-
referenced, allowing map generation. These maps can be used to
delineate zones of homogeneous management in the context of
precision viticulture.

4.5 Global conclusion

Computer vision has been found to be a promising alternative to the
traditional methods for vineyard monitoring. Flower number assessment,
yield estimation and canopy status are key viticultural parameters. This
information can be used by the vineyard manager in the scope of precision
viticulture to reduce costs and environmental impacts, and increase fruit
quality.
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