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Summary 

1. Traditional biodiversity assessment is costly in time, money, and taxonomic expertise. 

Moreover, data are frequently collected in ways (e.g. visual bird lists) that are unsuitable for 25 

auditing by neutral parties, which is necessary for dispute resolution.  

2. We present protocols for the extraction of ecological, taxonomic and phylogenetic information 

from bulk samples of arthropods. The protocols combine mass trapping of arthropods, mass-

PCR amplification of the COI barcode gene, pyrosequencing, and bioinformatic analysis, which 

together we call ‘metabarcoding.’  30 

3. We construct seven communities of arthropods (mostly insects) and show that it is possible to 

recover a substantial proportion of the original taxonomic information. We further demonstrate, 

for the first time, that metabarcoding allows for the precise estimation of pairwise community 

dissimilarity (beta diversity) and within-community phylogenetic diversity (alpha diversity), 

despite the inevitable loss of taxonomic information and resolution inherent to metabarcoding. 35 

4. Alpha and beta diversity metrics are the raw materials of ecology and the environmental 

sciences, facilitating assessment of the state of the environment with a broad and efficient 

measure of biodiversity.   

Keywords:  454 Genome Sequencer FLX System, DNA barcoding, high-throughput sequencing, 

metagenetics, metagenomics, phylogenetic diversity, OTU picking 40 
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Introduction 

To manage the forces that affect the levels and distribution of biodiversity, we require the ability to 

measure biodiversity comprehensively, reliably, repeatedly, and over large scales. Efforts in this 

direction to date by ecologists and environmental biologists have been impeded by standard survey 

methodologies that consume large amounts of time, money, and taxonomic expertise, and we are 45 

therefore impeded from addressing biodiversity loss as a normal management problem that can be 

dealt with wherever and whenever it arises. Instead, most biodiversity research remains in the realm 

of basic science, and even then, scientists typically are forced to rely on proxies (Favreau et al. 

2006; Lewandowski, Noss & Parsons 2010). One longstanding proxy has been to designate a subset 

of taxa as indicators, some popular ones being butterflies, dung beetles, birds, and parasitoid wasps 50 

(e.g. Gardner et al. 2008; Anderson et al. 2010).  

Proxies might be efficient, but it is a truism in management that we only get what we measure. 

Schoolteachers evaluated on exam scores have an incentive to ‘teach to the test,’ and biological 

proxies are subject to the same narrowing of perspective. As one example, nineteen species of 

farmland birds have been designated as a biodiversity indicator on UK farmlands (JNCC 2011), the 55 

aim being to use birds to indicate overall farmland biodiversity. However, an understandable 

response has been to ‘teach to the test’ via supplemental winter feeding of farmland birds 

(Siriwardena et al. 2007; see also Newton 2011). Thus, in addition to proxies, we should tackle the 

lack of biodiversity information directly.  

Here we describe a way to measure arthropod biodiversity rapidly, reliably, cheaply, 60 

comprehensively, over large spatial scales, and in ways that can be audited by third-parties, which 

is a requirement for dispute resolution. The first element is DNA barcoding, in which short gene 

sequences are used to identify species. The most commonly used barcode for animals is a 658bp 

section of the mitochondrial Cytochrome c Oxidase Subunit I gene (mtDNA COI) (Hebert et al. 

2003). Other barcode genes are proposed for plants, protists, and meiofauna (Hollingsworth et al. 65 

2009; Creer et al. 2010; Medinger et al. 2010; Yao et al. 2010). Because sequencing is fast and 

cheap, the barcode approach potentially provides large amounts of species-level inventory data, 

making it possible to track and measure biodiversity over space and time (e.g. Janzen et al. 2005; 

Waugh 2007; Borisenko et al. 2008). However, generating barcodes with Sanger sequencing is 

inefficient if we want to assign taxonomies to hundreds of thousands of samples, a requirement if 70 

we want to measure biodiversity repeatedly and over large spatial scales.  

Our protocol therefore includes large-scale trapping for sample acquisition, high-throughput 

sequencing, and bioinformatic analysis. In short, mass-collected specimens are homogenised 
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(‘souped’), and the genomic DNA is extracted, mass-PCR-amplified for the barcode gene of 

interest, and sequenced on machines that can separate out individual DNA molecules. 75 

Bioinformatic tools then process the resulting huge number of sequences down to a dataset of 

manageable size and high-enough quality that is practical for subsequent analysis.  

Altogether, we call this technique metabarcoding to distinguish it from the broader term 

metagenetics, which encompasses microbial communities, and from metagenomics, which, in 

addition, refers to the reconstruction of whole genomes. Finally, environmental barcoding or eDNA 80 

is probably best used to refer to the amplification and sequencing of free DNA from soil or water. 

We note, however, that the terminology is in flux.  

Metabarcoding is transforming ecology (Creer 2010; Creer et al. 2010), especially of cryptic 

biodiversity. Recently, Fonseca et al. (2010) compared marine meiofauna (metazoans between 45 

and 500 µm long) across beaches in the UK, Porazinska et al. (2010) compared nematode diversity 85 

in different rainforest microhabitats in Costa Rica, and Nolte et al. (2010) compared protist 

diversity across seasons in a lake in Austria. Nolte et al. further showed that for one genus, 

Spumella, species from the clade that is typically found in cold habitats are more abundant in cold 

months, whereas species belonging to warm-climate clades are more abundant in the summer. In 

these systems, previous studies had been impeded by the difficulty of measuring very high levels of 90 

diversity of very small taxa, and metabarcoding technology has unlocked this diversity, in the same 

way that microbiome biology has been unlocked by next-generation sequencing (Committee on 

Metagenomics 2007).  

However, precisely because meiofauna and protists were so difficult to study before metabarcoding, 

independent validation of results has so far been forced to depend on small datasets based on 95 

morphospecies (Medinger et al. 2010), on laboratory tests (Porazinska et al. 2009a; Porazinska et 

al. 2009b), or on BLASTing reads against Genbank (Fonseca et al. 2010). These checks have been 

crucial, but by their nature, they do not fully validate metabarcoding as a method for making 

general measures of biodiversity.  

The field requires further validation because metabarcoding promises important management 100 

advantages in addition to increased efficiency. Traditional biodiversity data relies on expertise that 

is difficult to standardise across multiple individuals, and errors (or even fraud) in direct 

observational data, such as bird lists, cannot subsequently be corrected or audited. In contrast, 

metabarcoding requires only that staff be able to carry out protocols using standard collection (e.g. 

pitfall, malaise, Winkler, and light traps) and laboratory techniques, and the raw sequence data 105 

remain available for future analyses. It is also possible to partition aliquots of the original 
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collections, or the extracted DNA, for auditing. Another advantage is that metabarcoding can 

hitchhike on advances in software and laboratory practises that are being developed for bacterial 

metagenetics (Kosakovsky Pond et al. 2009; Caporaso et al. 2010b).  

To further the process of turning metabarcoding into a standard management method, we apply the 110 

technique to the Arthropoda, especially the Insecta within it, for which it is easier to validate results 

against independent sampling, as well as other biodiversity proxies, such as vegetation (e.g. Gaspar, 

Gaston & Borges 2010). Arthropods are also a deserving focal group for direct study, as they form a 

major component of terrestrial biodiversity, provide important ecosystem services such as 

pollination, decomposition, and pest control, can themselves be pests and disease vectors, and are 115 

potentially indicative of plant diversity, since arthropods are mostly herbivores. Finally, with 

arthropods, it is easier to use the COI barcode gene, which holds some advantages over 18S and 

other nuclear rRNA genes (Emerson et al. 2011). COI is single copy, present in all taxa of interest, 

with the exception of a few protozoa, capable of being amplified across a wide range of taxa with a 

small set of primers (Folmer et al. 1994), especially with degenerate primer pairs (Rose, Henikoff 120 

& Henikoff 2003; Boyce, Chilana & Rose 2009), and has a faster substitution rate, compared to 

nuclear rRNA genes, which increases taxonomic resolution. Mitochondrial 12S and 16S genes 

satisfy these criteria, but COI has additional advantages. There exists a fast-growing taxonomic 

reference database (www.boldsystems.org, accessed 10 Sep 2011) with over 1.3 million specimen-

vouchered records so far (Ratnasingham & Hebert 2007), and finally, the mutational properties of 125 

COI offer the opportunity to eliminate most pyrosequencing error (Emerson et al. 2011; Ranwez et 

al. 2011), a phenomenon that, if uncorrected, results in overestimates of diversity (Quince et al. 

2009; Reeder & Knight 2010).  

In light of this, a useful step forward was provided by Hajibabaei et al. (2011), who pyrosequenced 

the mini-barcode gene (the first 130 bp of COI) in test pools of Trichoptera and Ephemeroptera and 130 

BLASTed against reference sequences to recover 17 of 23 input species. They also showed that 

larval collections, which cannot be identified using morphology, could be identified using 

metabarcoding and that the collections matched known adult species assemblages from the same 

locations.  

Following Fonseca et al.’s (2010) pioneering work with meiofaunal samples, the next step is to go 135 

beyond the recovery of species lists and to devise an efficient and adaptable pipeline that can 

independently turn huge lists of COI sequences into usable and high-quality taxonomic and 

ecological information. In particular, we wish to show that, even when some taxonomic information 

is lost, which is currently unavoidable in metabarcoding, it is still possible to recover precise 

estimates of alpha diversity and beta diversity.  140 
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We provide the research community with model laboratory protocols and bioinformatic scripts that 

can be adapted to incorporate new technologies and software as they arise. We also provide the 

original sequence data for software developers to use as test datasets [note to reviewers:  to be 

uploaded to dryad.org, which seems to require source papers to be in press or published]. Our 

main contributions are: (1) new degenerate PCR primers to minimise allelic dropout of terrestrial 145 

arthropods (mostly but not only insects), (2) validation of several new software packages for 

denoising, de novo OTU picking, and taxonomic assignment (Table 1) within the QIIME pipeline 

(Caporaso et al. 2010b), which has active developer and user communities, (3) detailed scripts, 

methods, and datasets for users to learn with, (4) experimental demonstration that beta diversity can 

be recovered, and (5) experimental demonstration that rarefaction of phylogenetic diversity can 150 

recover alpha diversity (Nipperess 2011a; Nipperess 2011b).  

Methods 

Laboratory protocol 

Sample collection. - Arthropods, mostly flying insects, and some small annelids were collected with 

malaise traps from three prefectures in Yunnan province China, Hong He (HONGHE), 155 

Xishuangbanna (XSBN) and Kunming (KMG), and preserved in 100% ethanol.  

Sanger dataset. - 318, 795 and 316 individuals were hand-picked from HONGHE, XSBN and 

KMG. Each individual was extracted for genomic DNA using the HotSHOT method (Truett et al. 

2000), the Qiagen DNEasy Blood and Tissue Kit, or the Bokun Insect DNA Extraction Magnetic 

Bead Kit  (Changchun Bokun Biotech Co., www.bokunbio.com, Changchun, Jilin, accessed 14 Sep 160 

2011) according to manufacturer’s instructions. Individuals were then PCR amplified and Sanger 

sequenced for the 658bp region near the 5’ terminus of the COI gene with Folmer’s primers 

LCO1490 and HCO2198 (Folmer et al. 1994) (Table 2). PCR was carried out in 30 µl reaction 

volumes containing 3 µl of 10× buffer, 1.5mM MgCl2, 0.2mM dNTPs, 0.2 µM each primer, 1U 

Taq DNA polymerase (TaKaRa Biosystems), and approximately 100ng genomic DNA using a 165 

thermocycling profile of 95 °C for 2 min, 35 cycles of 95 °C for 15 s; 49 °C for 30 s; 72 °C for 1 

min; and finally 72 °C for 7 min. Products were visualized on 2% agarose gels and were 

bidirectionally sequenced using BigDye version 3.1 on an ABI 3730xl DNA Analyser (Applied 

Biosystems). We obtained a total of 673 unique Arthropod and Annelid haplotypes (GENBANK 

accession numbers XXX - XXX). Sequences were truncated to 615 bp from the 5’ end.   170 

‘454’ dataset. - Genomic DNA sampled from individuals corresponding to the 673 unique 

haplotypes were pooled into seven mixtures, mimicking different ecological communities:  

HONGHE (n=197 unique haplotypes), XSBN (n=292), KMG (n=184), 2H1K (n=149), 1H1X 
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(n=198), 2K1X (n=150), 5K1X (n=121) (Figure 1). HONGHE, XSBN, and KMG share no 

haplotypes, and the latter four are mixtures of the first three, with the numbers indicating 175 

(approximate) ratios and letters indicating sources. Thus, 2H1K contains 99 haplotypes from 

HONGHE and 50 from KMG. For this test, extracting DNA individually and then combining 

increases our confidence in the composition of the mixtures. The implicit assumption is one that 

underlies all metagenetic and metagenomic biology: that the efficacy of DNA extraction kits is not 

affected by the number of species being extracted. We refer to the mixtures as ‘MIDs’ (Multiplex 180 

IDentifiers), following the terminology of the Genome Sequencer FLX System (454 Life Sciences, 

Roche Applied Science). Throughout, we use ‘454’ to refer to this sequencing technology.  

PCR amplification and pyrosequencing. - To maximize amplification of a diverse set of target 

sequences, we designed the degenerate primers, Fol-degen-for and Fol-degen-rev, to which we 

attached the standard A and B Roche adaptors and a MID tag for each community (Table 2). The 185 

primers are modifications of Folmer's (1994) primers and were created from an alignment of all 215 

complete mtDNA COI gene sequences for Insecta that were present in Genbank (Supplementary 

Information). Across the 215 sequences, amino acid residues coded for by LCO1490 are conserved, 

with only a few exceptions involving species with no more than two divergent nucleotide positions. 

Based on the alignment, we designed Fol-degen-for to be fully degenerate to accommodate all 190 

possible codon variation for amino acid residues coded for by LCO1490. Amino acid residues 

coded for by HCO2198 were all conserved across the 215 sequences, so we designed Fol-degen-rev 

to be fully degenerate to accommodate all possible codon variation for amino acid residues coded 

for by HCO2198. 

Each MID was amplified in five independent reactions and pooled. PCRs were performed in 20 µl 195 

reaction volumes containing 2 µl of 10× buffer, 1.5mM MgCl2, 0.2mM dNTPs, 0.4 µM each 

primer, 0.6U Taq DNA polymerase (TaKaRa Biosystems), and approximately 60ng of pooled 

genomic DNA. We used a touchdown thermocycling profile of 95°C for 2 min; 11 cycles of 95°C 

for 15 s; 51°C for 30 s; 72°C for 3 min, decreasing the annealing temperature by 1 degree every 

cycle; then 17 cycles of 95°C for 15 s, 41°C for 30 s, 72°C for 3 min, and a final extension of 72°C 200 

for 10 min. We used non-proofreading Taq and fewer, longer cycles to reduce chimera production 

(following Lenz & Becker 2008). For pyrosequencing, all PCR products of all seven MIDs were gel 

purified by using a QIAquick PCR purification kit (QIAgen, Hilden, Germany), quantified by using 

the Quant-iT PicoGreen dsDNA Assay kit (Invitrogen), pooled and A-amplicon-sequenced twice on 

a 454, using two separate 1/8 regions of a plate.  205 
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Bioinformatics protocol:  Recovery of input sequences 

Sequence files from the two 1/8 plate regions were pooled to maximise coverage. Rather than 

produce a new analysis pipeline, we augment the QIIME pipeline (Caporaso et al. 2010b), which 

was designed for microbial metagenetics, with a number of new software packages (Table 1). 

Pyrosequencing data contain PCR chimeras (Lenz & Becker 2008), contaminant sequences, nuclear 210 

mitochondrial pseudogenes (Numts), PCR error and sequencing noise. The challenges for 

processing pyrosequencing data are to ‘denoise’ the sequences, remove chimeras, contaminants, 

and Numts, and quantify operational taxonomic units (OTUs). The latter phrase means to cluster the 

large number of sequences down to, ideally, the same number of unique sequences as there were 

species in the original samples. Thus, in this field, species are defined operationally as a cluster of 215 

similar sequences, and the clustering step is known as ‘OTU picking.’  

The seven major steps of our pipeline for denoising and quantifying OTUs, plus associated 

software, are summarised in Figure 2. Example scripts used to transform the output of a given step 

into the input for the subsequent step are provided as Supplementary Information. Most are from 

the QIIME pipeline, with some custom scripts that we have written. 220 

Step 1. - Library splitting by MID and quality control.  Primer and MID sequences are removed 

from the raw 454 reads, and the MID information is placed in the header line of each sequence 

(Table 2). Reads are also passed through a quality control filter that removes sequences with 

ambiguous nucleotides, with low quality scores (provided by the sequencer), with long repeats that 

are indicative of ‘homopolymer’ errors, and/or sequences that are too short or too long. 225 

Homopolymer errors occur because the 454 counts nucleotide additions via light bursts, and adding 

multiple nucleotides at once, e.g. AAA, in theory produces a three-times brighter burst, but in 

practise, often results in over- or under-estimates.  

Step 2. - Initial denoising and de novo chimera removal. We first use PyNAST (Caporaso et al. 

2010a) to align the post-quality-control sequences against a high-quality, aligned dataset of 17,087 230 

Arthropod sequences (Supplementary Information) at a minimum similarity of 60%. Sequences that 

fail to align are discarded. The remaining sequences are clustered at 99% similarity with 

USEARCH (Edgar et al. 2011), and a consensus sequence is chosen for each cluster. The clustering 

step runs very quickly and more than halves the number of sequences (Table 3), speeding up 

downstream processing. We then apply the de novo chimera detection function UCHIME in 235 

USEARCH (Edgar et al. 2011), which exploits the prediction that small-size clusters are more 

likely to be chimeras. 

Step 3. - Denoising.  Sequences are denoised using MACSE (Ranwez et al. 2011), which takes 

advantage of the fact that COI is a coding gene by using the presence of stop codons to infer 
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frameshift mutations caused by homopolymer errors and aligning at the amino-acid level to high-240 

quality reference sequences. MACSE runs at a rate of ~1000 sequences per CPU-hour (on a 2010 

iMac) so sequence files should be split into subfiles and run in parallel. An alternative to MACSE is 

PyroClean (Ramirez-Gonzalez et al. in manuscript), which produces similar results (results not 

shown). We remove sequences < 100bp, the length below which taxonomic information degrades 

rapidly (Meusnier et al. 2008).  245 

Step 4. - OTU picking at 99% similarity.  DNACLUST (Ghodsi, Liu & Pop 2011) is used because it 

ensures that no pairwise sequence comparison within an OTU differs by more than the user-chosen 

amount. This step reduces the workload for the next step. 

Step 5. - OTU picking at 97% similarity.  CROP (Hao, Jiang & Chen 2011) is a Bayesian clustering 

program that finds clusters “based on the natural organization of data without setting a hard cut-off 250 

threshold.” CROP produces clusters within which ≥95% of sequences are more similar to the centre 

sequence than the desired cutoff (here, 97%). The bioinformatic challenge is to choose the sequence 

‘seeds’ (cluster ‘centres’) that minimise cluster number. Note that sequence pairs within a cluster 

can differ by more than the cutoff. CROP is slow, requiring ~15-30 hours and 12 CPU cores to 

process a 30,000 sequence dataset, but we have found that CROP produces five to ten times fewer 255 

OTUs at the same similarity cutoff than do better-known programs like Cd-hit (Li & Godzik 2006) 

and UCLUST (Edgar 2010) (results not shown).  

Step 6. - Taxonomic assignment of OTUs.  The program SAP (Munch et al. 2008) assigns 

taxonomies by MCMC-sampling ten thousand unrooted phylogenetic trees constructed with a query 

sequence and its GENBANK homologues. The percentage of times that the query sequence is 260 

grouped with a given taxonomic level is the posterior probability that the query belongs to that 

taxonomic level. SAP runs at ~3 sequences/CPU-hour, so we split the OTU file and run in parallel. 

We then use a perl script (Supplementary Information) to extract the taxonomic information from 

SAP output and add it to the OTU table. This is the stage where real but contaminant sequences 

(e.g. Homo sapiens) are detected and removed, and we use the taxonomic data to identify the subset 265 

of OTUs assigned to the Arthropoda and Annelida (n = 973).  

Step 7. - Final clean-up. Finally, we merge the sequence abundance data from the three OTU 

picking steps (USEARCH, DNACLUST, and CROP) to build an OTU table with sequence 

abundances (Table 4), and we delete singleton OTUs, reasoning that single reads are likely to be 

non-informative, since successfully amplified COI templates should be found in multiple copies.  270 

We show in results that this step does not affect the recovery of ecological information. We then 

use the Arthropoda-only OTUs (n = 598) to build a rooted, Tamura-Nei, gamma distance 

neighbour-joining tree (using an Onychophora sequence as the root). We suggest examining (and 
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possibly deleting) any OTUs that result in (subjectively judged) very long branches, which are 

probably either local misalignments due to homopolymer errors or remaining chimeras, and to 275 

rebuild the tree. In this dataset, we did not observe any such long branches.  

At the end of Step 7, we have OTUs assigned to MID and taxonomy (Table 4), which we call the 

‘454-OTU’ dataset, and a neighbour-joining tree of the Arthropoda OTU sequences, which is used 

to estimate phylogenetic diversity and dissimilarities. To test whether the 454-OTU dataset contains 

reliable information, we cluster the original 673 Sanger haplotypes into 547 ‘Sanger-OTUs’ at 98% 280 

similarity and assign to MID and taxonomy (using SAP), and build a rooted NJ-tree.   

Recovery of ecological information 

Allelic dropout. - We BLASTed each of the 454-OTUs against the Sanger-OTU dataset at a 

stringency of 1e-10 and 97% minimum similarity to estimate the percentage of input species that 

did not amplify or survive the above pipeline. We also built a neighbour-joining tree combining the 285 

454- and Sanger-OTUs to look for lone Sanger-OTUs (dropouts) and/or lone 454-OTU clusters 

(remaining chimeras, contaminants, Numts or noisy sequences).  

Abundance versus presence-absence. - Beta diversity can be estimated using traditional 

dissimilarity indices that require only a Site X Species table (Table 4) or dissimilarity measures that 

take phylogeny into account (Faith & Baker 2006; Hamady, Lozupone & Knight 2010). Similarly, 290 

alpha diversity estimates range from simple counts of species richness to measures that incorporate 

evenness and/or phylogenetic diversity (PD). In both cases, we must ask whether it is valid to use 

sequence abundance (number of sequences per OTU) as a proxy of species abundance or biomass. 

Our opinion is that PCR amplification bias, although to some extent normalised by degenerate 

primer design, plus reaction stochasticity, corrupts correlations of sequence abundance with sample 295 

abundance in highly diverse datasets, which we support with a preliminary experiment in 

Supplementary Information (see Amend, Seifert & Bruns 2010). We therefore use presence-absence 

(unweighted) beta and alpha diversity indices (but see Porazinska et al. 2009b, who found that 18S 

rRNA read numbers did correlate with nematode frequencies). 

Beta diversity. - We rarefy the 454-OTU table to equalise the number of reads per MID and then 300 

estimate pairwise compositional dissimilarities using the 1-Sørensen-Dice similarity index (an 

option in QIIME) and the unweighted Unifrac index (Hamady, Lozupone & Knight 2010). The 

latter incorporates phylogenetic distance. To test if the 454-OTU dataset preserves beta diversity 

information, we use a Mantel test to correlate the 454-dissimilarity matrix against the dissimilarity 

matrix produced from the Sanger dataset. We also visualise the dissimilarity matrices with a 305 
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Principal Coordinates Analysis (PCoA) and use a Procrustes test to test for correlation between the 

454 and Sanger ordinations.  

Alpha diversity. - Species diversity naturally increases with sample size (numbers of individuals 

captured), and sample sizes vary across MIDs. Rarefaction must therefore be used to control for the 

effects of sample size (Gotelli & Colwell 2001). One concern is that read abundance cannot be used 310 

to estimate the number of individuals per OTU. Fortunately, Nipperess (2011a; 2011b) has released 

R functions, phylocurve.R and phylocurve.perm.R, that can rarefy phylogenetic diversity over 

multiple numbers of species as a measure of sampling effort. In other words, the total PD of a 

sample is the sum of the branch lengths of all the OTUs in the sample, and rarefaction subsamples 

the phylogeny to allow comparisons across MIDs to be made at equal numbers of OTUs. We use 315 

phylocurve.R to rarefy the PD of each MID in both the 454 and Sanger datasets, and we compare at 

a common sampling effort of 101 OTUs (which allows all MIDs to be included). For this purpose, 

we rooted the NJ tree with an Onychophora sequence.  

Results 

Recovery of input sequences 320 

Pyrosequencing reads were reduced 222-fold from 133,057 sequences to 598 OTUs at Step 7 (Table 

3). There were few de-novo detected (and removed) chimeras, making up only 707 of 92,864 post-

quality-control/PyNAST reads (0.8%). After the entire pipeline, the more-powerful refdb option of 

UCHIME, which used the input Sanger sequences as references (not possible under normal 

circumstances), detected only 20 chimeras out of 598 454-OTUs, although this does represent an 325 

increase in the ratio of chimera to non-chimera sequences (3.3%). The final numbers of 454-OTUs 

per MID are significantly predicted by the numbers of Sanger-OTUs per MID (Table 3), which 

argues that the pipeline has successfully reduced the dataset to mainly represent the input 

sequences.  

Still, there are more 454-OTUs (598) than input OTUs (547), and not all of the former correspond 330 

to the latter (see Allelic dropout below). Hajibabaei et al. (2011) also report novel OTUs. Because 

arthropods were collected with malaise traps, some OTUs might represent tissue from species that 

had been in the same collecting bottles but not Sanger-sequenced and/or from food items and 

parasites, and it is also possible that some of the extra OTUs are laboratory contaminants, which 

suggests, unfortunately, that ancient-DNA protocols will be necessary for legally-sensitive work.  335 

Allelic dropout. - Of the 547 Sanger-OTUs, 76% were BLAST-matched by one or more 454-OTUs, 

with most of the dropout in the Hymenoptera (only 57% matched) (Table 5). Allelic dropout 
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subdivided by MID shows higher dropout percentages, as sequencing coverage per MID is 

necessarily lower (Supplementary Information).  These results are achieved after omitting singleton 

OTUs (Table 1, Step 7). If singleton OTUs are included, overall dropout is reduced slightly to 19% 340 

(with ≥1-read OTUs), but many more 454-OTUs fail to BLAST-match to a Sanger-OTU (without 

singletons:  153/602=25.4% OTUs failed to match; with:  416/973 = 42.8% failed).  

The important question is whether this perceived level of dropout causes loss of ecological 

information. First, we note that with any hard cutoff, we lose power. Thus, some Sanger-OTUs 

might indeed be represented by 454-OTUs, but so noisily as to fail to be BLAST-matched. In 345 

Supplementary information (FigTree datasets), inspection of the combined tree finds that many of 

the Sanger sequences that received no 454 BLAST-matches (putative dropouts) nonetheless cluster 

with one or more 454-OTUs. Nonetheless, there again are clearly more dropouts in the 

Hymenoptera.  Similarly, all but a few of the 454-OTUs cluster close to a Sanger sequence, 

suggesting that there are few chimeras, Numts, or excessively noisy sequences in our dataset. In 350 

short, the 454-OTU dataset contains much the same phylogenetic structure as the input dataset, but 

with more branching near the tips. Below, we find that the 454-dataset allows us to recover most 

ecological information.  

Recovery of ecological information 

Taxonomy. - Despite being on average half the length of the Sanger-OTUs, 969/973 (99.6%) 454-355 

OTUs at Step 6 could be identified to class, and 96% could be identified to order, which are only 

slightly lower than the success rates of Sanger-OTUs. However, at the family, genus, and species 

levels, taxonomic assignment of 454-OTUs is less than half that of Sanger-OTUs (Table 6). As 

barcode databases grow (www.boldsystems.org) and read lengths increase, we expect that 

assignment success at lower taxonomic levels will increase.  360 

Beta diversity. - Unifrac dissimilarity matrices of the Sanger- and 454-OTUs are highly 

significantly correlated (Table 7). We can visualise this correlation by using a Procrustes analysis to 

overlay PCoA ordination diagrams constructed from the dissimilarity matrices, and we find that the 

first three axes of the two ordinations are also highly significantly correlated (Figure 3). These 

results appear to be robust, as dissimilarity matrices calculated using the non-phylogenetically-365 

informed 1-Sørensen-Dice index are also highly correlated (Mantel, 9999 permutations, p < 0.001). 

(PCoA ordinations of the Sørensen-Dice dissimilarity matrices are in Supplementary Information). 

In short, community differences between sampling locations appear to be well preserved in 

pyrosequencing data.   
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Alpha diversity. - After rarefaction to control for sampling effort, we find that the phylogenetic 370 

diversity of each MID calculated from the 454-dataset highly significantly predicts PD in the 

corresponding Sanger MID (Figure 4).  

Discussion 

After mass-PCR amplification and high-throughput sequencing of arthropod DNA, we demonstrate 

how a denoising and de novo OTU-picking pipeline makes it possible to recover taxonomic 375 

information from a wider range of taxa than tested in Hajibabaei et al. (2011) and, for the first time, 

to recover alpha and beta diversity information. This information is the raw material of basic and 

applied research in ecology and the environmental sciences. As examples, we are now using this 

protocol for the following applications:  (1) projecting the effects of climate change on insect 

species compositions with light-trap collections along an altitudinal transect (beta diversity); (2) 380 

measuring the conservation value of shade-tea versus natural subtropical forests, of once- and 

twice-logged versus unlogged rainforests, and of Buddhist sacred mountains versus control sites in 

an alpine habitat (alpha diversity); and (3) determining the management treatments that are most 

successful in restoring endangered heathland habitat and maintaining insect biodiversity in a 

temperate forest (alpha and beta diversity). A typical dataset has required one to two months to 385 

process, from DNA extraction to bioinformatic analysis, and the bioinformatic analyses for multiple 

studies can be conducted in parallel. We are also using these studies as ‘field-validation,’ which is 

to match our estimates of alpha and beta diversity against independent biodiversity measures 

collected with standard census techniques.  

While we have great optimism for the approach we have outlined, we do caution that a number of 390 

drawbacks remain. Transport of samples can be legally complicated and expensive, especially if 

preserved in alcohol and moved across borders.  Additionally, the extraction protocol requires 

sample destruction (although with additional effort, one can use a leg for all but the smallest of 

samples and retain the rest of the sample as a voucher). Sequencing is costly (although this is 

balanced against the time and effort of taxonomic experts, and costs should plummet in the next few 395 

years). Few OTUs are identified to species (but this will improve as a function of the growth of the 

BOLD database). Care needs to be taken in the field and in the lab to reduce sample contamination. 

Abundance data are not available (but subsampling sites, at extra cost, provides an abundance index 

(Jerde et al. 2011)). Finally, the bioinformatics stage is time-consuming, and as yet there is no best-

practise pipeline. A consequence is that it remains unclear to what extent metagenetic data will be 400 

robust to legal challenges, if used for environmental monitoring and planning.  
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Another consequence is that there are alternative pipelines, and we have only presented one (see 

also Fonseca et al. 2010). For instance, Hao et al. (2011) report that CROP is robust to non-

denoised datasets, which is a time-saving option, as is using a lower similarity threshold such as 

95%. Our purpose here is not to define a specific pipeline but to give the community a validated 405 

starting point and added confidence that degenerate primers plus already existing hardware and 

software can recover useful ecological information from bulk samples of arthropods.  

Because this is a fast-moving field, we end by listing anticipated and desired future improvements. 

1) Better PCR primers required. This is most necessary for Hymenoptera and for soil fauna (e.g. 

Protura, Collembola, Annelida, Arachnida). One possibility is a divide and conquer approach using 410 

different sets of primers for the amplification of major faunal groups, and then combining the result 

pcr products for sequencing. We note that despite designing the primers (Table 2) with only Insecta 

sequences, we have been finding that they amplify many OTUs subsequently assigned to non-

Insecta arthropods, including Collembola, Protura, and Arachnida (authors’ unpublished results). 

Careful consideration of existing COI sequence data that spans COI priming sites will dictate the 415 

best approach for a given set of taxa. 

2) Avoid PCR. In bacterial metagenetics, it is feasible to sequence genomic DNA directly and 

search for barcode sequences bioinformatically (Sharpton et al. 2011), which avoids dropout and 

might even provide reliable abundance information. With animals, the presence of very large 

nuclear genomes probably needs a protocol to concentrate mitochondria before DNA extraction and 420 

sequencing.  

3) Targeted species detection. In a remarkable study, Ficetola et al. (2008) used custom PCR 

primers and Sanger sequencing to detect invasive American bullfrogs in samples of pond water 

alone. Jerde et al. (2011), Goldberg et al. (2011) and Thomsen et al. (2011) have further validated 

the use of environmental DNA in water bodies, even in fast-moving streams, for detecting a variety 425 

of vertebrate and invertebrate species, including a mammal species. In our own work, we have 

detected several vertebrate species in our insect malaise trap samples (bats, frogs, birds, and 

ungulates) that are known to exist in the trapping area (authors’ unpublished data). We suspect that 

we are amplifying blood borne by mosquitoes, and this suggests that terrestrial vertebrate diversity 

might be measurable with mass mosquito trapping. It will be necessary to validate laboratory and 430 

statistical protocols for assigning probabilities of assignment of reads to target templates and to 

design standard controls.  

4) New software packages arise constantly. For instance, a new pipeline, otupipe.pl, uses only 

USEARCH to denoise, remove chimeras, and pick OTUs (drive5.com/otupipe, accessed 10 Sep 
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2011). The pipeline is very fast (minutes versus days with our bioinformatic protocol) but cannot 435 

yet handle multiple MIDs, nor has it been validated.  

5) Hardware improves rapidly. Illumina and Ion Torrent sequencers produce orders of magnitude 

more sequences per run (and/or dollar) but currently are limited to shorter read lengths or accept 

only short amplicons. However, these sequencers are advancing so quickly that they will probably 

be competitive with 454 sequencers for many uses in just a few years. 440 

6) Better databases required. Bacterial metagenomics enjoys large, curated databases for taxonomic 

assignment (DeSantis et al. 2006), and while a similar database exists for COI (Ratnasingham & 

Hebert 2007), it is not yet integrated with taxonomic assignment programs (e.g. SAP Munch et al. 

2008), nor downloadable to local computers.  

7) Coverage estimates required. We do not currently have a good handle on how much sequencing 445 

depth (number of reads) is required for sequencing a given number of individuals at given 

probabilities (a separate problem from PCR bias).  
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Supplementary Information 

1. Table S1.  Allelic dropout by MID and taxon.   
2. Figure S1.  Principal coordinates ordination of the 454 OTUs.   
3. Figure S2.  Principal coordinates ordination of the Sanger OTUs.   600 
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Other Supplementary information. 
 
4. Read vs sample abundances analysis (XSBN_abundance_analysis-20111228.xlsx, see script 

commands in “Example script commands.txt,” subheading: Read abundances vs sample 605 
abundances, using XSBN) 

5. figtree datasets (CombinedTreeWithColour_mutual_BLAST.figtree and 
CombinedTreeWithColour_Sanger.figtree, figtree_file_descriptions.txt) 

6. Example script commands.txt   
 610 
The following perl scripts and datasets are used in the script commands and are provided as inputs 
and examples.  
 
7. perl script:  OTU_filter_trans.pl 
8. perl script:  Otu_table_withtax_from_sap_modified2.pl 615 
9. perl script:  Pick_cluster_num_V1.pl 
10. perl script:  Replace_Seq_name_V2.pl 
11. perl script:  Sequence_filter_V2.pl 
12. perl script:  Split_seq.pl 
13. dataset:  454_Map.txt 620 
14. dataset:  Reference sequences:  Arthropoda_ref.fasta 
15. dataset:  Reference sequences:  Priming site only alignment.txt 
16. dataset:  Reference sequences:  Sanger_orig.fasta 
17. dataset:  454 OTU table:  454_CROP97_withtax.txt 
18. dataset:  Sanger OTU table:  otu_table_withtax.txt 625 
19. dataset:  454-OTUs:  97Arthropoda_Annelida_seqs_80_noSingletons.fas 
20. dataset:  Sanger-OTUs:  Sanger_reprset.fas 

Raw sequence data to be archived at http://datadryad.org, not included in 
submission 

1. Sequence_files/original_454_files/split_library_output_1/seqs.fna 630 
2. Sequence_files/original_454_files/split_library_output_2/seqs.fna 
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Table 1. Software packages and pipelines used. Software dependencies not listed. (OTU = operational taxonomic unit).  

Package name Reference Used here for URLs 

QIIME v. 1.3.0 
 

 
 

Caporaso et al. (2010b) Main pipeline:  library splitting and quality 
control, PyNAST sequence alignment, OTU 
picking, OTU table creation and rarefaction, beta 
diversity analyses (Procrustes, Mantel), network 
visualisation 

qiime.sourceforge.net,  
Mac OSX implementation available at 
www.wernerlab.org/software/macqiime 

FastUnifrac v. 1.5.1 Hamady et al. (2010) Phylogenetic beta diversity estimation included in QIIME 

PyNAST v. 1.1 Caporaso et al. (2010a) Fast sequence alignment to template alignment included in QIIME 

USEARCH v. 4.2.66 Edgar (2010); Edgar et 
al. (2011) 

Denoising, chimera removal, sequence sorting and 
initial OTU picking 

drive5.com/usearch/usearch4.0.html 

MACSE 0.8b Ranwez et al. (2011) Denoising mbb.univ-montp2.fr/macse 

PyroClean v. 0.1 Ramirez-Gonzalez et al., 
in manuscript 

Denoising  not yet available 

DNACLUST v. 1 Ghodsi et al. (2011) OTU picking  dnaclust.sourceforge.net 

CROP v. 1.31 Hao et al. (2011) OTU picking  code.google.com/p/crop-tingchenlab 

SAP v. 1.0.12.  Munch et al. (2008) Taxonomic assignment  www.daimi.au.dk/~kmt/StatisticalAssign
mentPackage.html 

phylocurve.R & 
phylocurve.perm.R  

D. Nipperess, 
unpublished 

Rarefaction of phylogenetic diversity homepage.mac.com/davidnipperess/page
2/page2.html 
 

Geneious v. 5.4.6 Drummond et al. (2011) Neighbour-joining tree construction, sequence file 
and tree visualisation 

www.geneious.com 
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Table 2.  Primers and MIDs used in this study. LCO1490 and HCO2198 are the Sanger primers. Fol-degen-for/rev are the degenerate primers for mass 

amplification. Adaptors A and B are used by the ‘454’ sequencer to attach individual DNA molecules to microscopic beads, for subsequent 635 

sequencing. MIDs (Multiplex Identifiers) are 10 bp sequences that allow different samples to be sequenced together on a single ‘454’ plate and then 

separated bioinformatically for downstream analysis. There is no need to add MIDs to Fol-degen-rev, because we only pyrosequenced from the 

forward direction. The last two rows contain an example of a 454 read, with the MID underlined and the forward primer dotted underlined. Both are 

removed in the split_libraries.py step, and the corresponding MID info is added to the header line (i.e. ACGCTCGACA = HONGHE, see the 

454_Map.txt file in Supplementary Information), plus a unique number for that read, together making the sequence_ID. The reverse primer was never 640 

in the read because it was too short; 454 reads rarely exceed 600 bp. 

 

Primer Sequence (5’ → 3’) 

LCO1490 GGTCAACAAATCATAAAGATATTGG 

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA 

Fol-degen-for Adaptor A + MID + TCNACNAAYCAYAARRAYATYGG 

Fol-degen-rev Adaptor B + TANACYTCNGGRTGNCCRAARAAYCA 

Raw 454 sequence 

(adaptor sequence 

omitted) 

>GWL4WKW01A3F7T rank=0000061 x=332.5 y=839.0 length=101 
ACGCTCGACATCAACCAACCATAAGGATATTGGTTGTGGTAATACATCAAGGGGTCACACATTTAGTGATTTT
TGGACACCCGGAAGTATACTGAGCGGCT 

Post split_libraries.py 

sequence 

>HONGHE_1 GWL4WKW01A3F7T orig_bc=ACGCTCGACA new_bc=ACGCTCGACA bc_diffs=0 
TTGTGGTAATACATCAAGGGGTCACACATTTAGTGATTTTTGGACACCCGGAAGTATACTGAGCGGCT 
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Table 3.  Basic statistics and OTU picking progression.  A. Numbers of raw pyrosequencing reads before and after quality control (Step 1, Fig. 

BIOINFORMATICS), subdivided by MID (Multiplex Identifier) and sequencing region. Each region is 1/8 of a 454 plate. The name of each mixture 645 

MID (e.g. 2H1K) indicates the ratio of haplotypes from the source MIDs (HONGHE, KMG, XSBN, Figure 1).  B. Numbers of OTUs (operational 

taxonomic units) after each major bioinformatic step (Figure 2). Starting with Step 4, OTU-picking is performed on the combined dataset, so the sum 

of OTUs per MID is greater than the number of unique OTUs, indicating that OTUs are shared amongst MIDs, as designed.  C. Numbers of unique 

haplotypes and 98% similarity OTUs, subdivided by MID, in the Sanger (input) dataset.  Across the 7 MIDs, the number of Sanger-OTUs predicts the 

final number of 454-OTUs (linear regression, F1,5=6.6, p=0.039, R2=0.61). Software package details in Table 1.  650 
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A.  454 raw data  Post-quality-control sequences (number of reads) 

454 plate 
Raw 
reads LengthMax LengthAvg All MIDs HONGHE KMG XSBN 1H1X 2H1K 2K1X 5K1X 

Region 1  65,554  617 bp 350.3 bp  48,531   5,239   8,898   5,464   5,147   9,560   5,987   8,236  

Region 2  67,503  604 bp 333.8 bp  48,128   5,126   8,724   5,444   5,155   9,471   5,950   8,258  

Total 133,057  ¾¾¾¾¾¾¾®   96,659   10,365   17,622   10,908   10,302   19,031   11,937   16,494  

 Step 1 (convert raw to post-quality-control sequences, QIIME)       

B.  454 dataset   454-OTUs (operational taxonomic units, total and per MID) 

    Unique OTUs HONGHE KMG XSBN 1H1X 2H1K 2K1X 5K1X 

 Step 2 (PyNAST, 60%)  92,864   9,906   16,872   10,686   9,798   18,189   11,547   15,866  

 Step 2 (USEARCH) 1  41,087 [707]   4,930 [33]   7,568 [23]   4,903 [105]   4,369 [181]  8,321 [29]   4,949 [125]  6,047 [211]  

 Step 3 (MACSE)  41,057   4,925   7,561   4,900   4,366   8,318   4,945   6,042  

 Step 4 (DNACLUST, 99%)  34,905   4,540   6,735   4,348   3,934   7,261   4,313   5,140  

 Step 5 (CROP, 97%) 1,047   278   277   231   236   240   171   144  

 Step 6 (SAP)  973   258   254   223   224   218   157   133  

 Step 7 (Final clean-up) 2  598 [20]   192 [2]   174 [3]   183 [2]   162 [3]   153 [1]   128 [5]   98 [4]  

C.  Sanger dataset   Sanger-OTUs (total and per MID) 

 Total haplotypes  673   197   184   292   198   149   150   121  

 OTUs (UCLUST, 98%)  547   167   153   230   159   140   134   106  

1 Numbers in brackets indicate deleted de novo chimeras (detected using the USEARCH --uchime de novo function]. 
2 Numbers in brackets indicate chimeras remaining (detected using the USEARCH --uchime --refdb function with the Sanger dataset).  
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Table 4.  Example rows from an OTU table, with assigned taxonomy, edited for clarity. Full tables are in Supplementary Information.  

#OTU ID 1H1X 2H1K 2K1X 5K1X HONGHE KMG XSBN   Taxonomy assigned at probability ≥ 80% by SAP 

34278 0 1 0 0 1 0 0   Eukaryota;Metazoa;Arthropoda;Hexapoda;Insecta;Neoptera;Hymenoptera 

29894 1 0 0 0 0 0 5   Eukaryota;Metazoa;Arthropoda;Hexapoda;Insecta;Neoptera;Hemiptera 

 655 



1 Jan 2012  Biodiversity soup 

Page 23  Yu et al. 

Table 5.  Allelic dropout.  Figures indicate the number of Sanger-OTUs that were successfully BLAST-matched by at least one of the 598 454-OTUs 

(at 1e-10 and ≥97% similarity, Step 7, Table 3). ≥2-read and ≥5-read OTUs indicate the number of OTUs with that minimum cluster size. Note that 

singleton-OTUs (1-read OTUs) were removed in Step 7. Across all taxa, 76% of Sanger-OTUs were matched by ≥1 454-OTU (i.e. 24% dropout), with 

the greatest dropout in the Hymenoptera. Tables of allelic dropout subdivided by taxon and MID are provided in supplementary information.  

 660 

    

Number of 454-OTUs (after Step 7) 
successfully BLAST-matched to Sanger-

OTUs at 1e-10, 97% similarity 

Taxa Sanger-OTUs ≥ 2-read OTUs ≥ 5-read OTUs 

Lepidoptera 172 127 74% 112 65% 
Diptera 169 144 85% 126 75% 

Hymenoptera 108 58 54% 39 36% 
Coleoptera 39 31 79% 28 72% 

Hemiptera 38 33 87% 29 76% 
Psocoptera 7 7 100% 7 100% 

Arachnida 5 4 80% 2 40% 
Blattaria  2 2 100% 2 100% 

Plecoptera 2 2 100% 2 100% 
Trichoptera 2 2 100% 2 100% 

Ephemeroptera 1 1 100% 1 100% 
Odonata 1 1 100% 1 100% 

Annelida 1 1 100% 1 100% 

All Taxa 547 413 76% 352 64% 
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Table 6. Taxonomic assignment of Arthropoda and Annelida OTUs to four lower taxonomic levels. Class- and ordinal-level assignment success is 

similar between the two datasets. Somewhat more than twice as many Sanger-OTUs as 454-OTUs are assigned with posterior probability ≥ 80% to 

family, genus, and species. Two of the 973 454-OTUs at Step 6 (Table 3) were assigned only to the level of Arthropoda, one was assigned to 

Collembola, and one was assigned to Amphipoda.  

 665 

SAP 80% posterior probability 
  % Identified to 

Class OTU count Order Family Genus Species 

Insecta           

Sanger 541 99% 37% 36% 35% 
454 951 96% 17% 16% 16% 

Arachnida           
Sanger 5 100% 80% 80% 80% 

454 12 92% 33% 33% 33% 
Clitellata (Annelida)           

Sanger 1 100% 0% 0% 0% 
454 6 100% 0% 0% 0% 

Total           
Sanger 547 98% 36% 35% 35% 

454 969 96% 17% 16% 16% 
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Table 7. Estimation of beta diversity. Unweighted, Unifrac dissimilarity matrices from the Sanger (lower) and 454 (upper) datasets. A pair of 

corresponding cells is indicated by the two boxes. The two matrices are highly significantly correlated (Mantel, 9999 permutations, p < 0.001).  

 

  Unweighted, Unifrac distance matrix from 454 

  1H1X 2H1K 2K1X 5K1X HONGHE KMG XSBN 
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1H1X  0.939 0.860 0.862 0.707 0.928 0.746 

2H1K 0.959  0.896 0.898 0.603 0.743 0.941 

2K1X 0.895 0.906  0.395 0.939 0.626 0.812 

5K1X 0.896 0.899 0.181  0.935 0.615 0.887 

HONGHE 0.690 0.505 0.944 0.941  0.920 0.947 

KMG 0.952 0.756 0.500 0.431 0.937  0.946 

XSBN 0.690 0.958 0.798 0.893 0.961 0.946  

 670 
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Figure 1.  Schematic relationship of the four mixture communities and the three source communities (bold outline). For brevity, the communities are 

referred to as MIDs in the text (Multiplex IDentifiers). OTUs represent 98%-similarity clusters of haplotypes.
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Figure 2.  Schematic of the major bioinformatic steps (numbering corresponds to Table 3), with 

associated software packages and pipelines.  675 

2.  Initial denoising at 99% similarity, de novo 
chimera detection and removal

3.  Denoise against high-quality Arthropoda COI 
sequences.

4, 5.  Initial clustering at 99% similarity, followed by 
OTU picking at 97% minimum similarity.

6.  Assign taxonomy. Subset out OTUs assigned to 
Arthropoda or Annelida at probability ≥ 80%.

7.  Final clean-up.

Merge OTU tables from the three OTU picking 
steps (USEARCH, DNACLUST, and CROP) 
and remove singleton OTUs. 

Construct neighbor-joining tree and remove 
sequences from any (subjectively-judged) very 
long branches, re-construct tree.

1.  Split Library:  Removal of primer and MID 
sequences. Basic quality-control and removal 
of sequences that fail to align to high-quality 
Arthropoda COI sequences at 60% similarity.

QIIME, 
PyNAST

USEARCH, 
UCHIME

MACSE

DNACLUST, 
CROP

SAP,
OTU_table_withtax_from_sap.pl

Geneious

Major bioinformatic steps and associated software
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Figure 3.  Estimation of beta diversity. Highly significant correspondence between Principal 

Coordinates ordinations of the two unweighted Unifrac dissimilarity matrices in Table 7 

(Procrustes, 9999 permutations, p < 0.001).  “0” indicates the 454 dataset, and “1” indicates the 

Sanger dataset. The Procrustes analysis was run on the first three PCs, but we show the first two 680 

PCs for clarity.  Note that the mixture MIDs (e.g. 1H1X) lie between the corresponding source 

MIDs (HONGHE and XSBN), as expected (Fig. 1).  
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Figure 4. Estimation of alpha diversity. Local phylogenetic diversity (PD) is estimated using 

Phylocurve.R rarefaction (Nipperess 2011a) for each of the seven MIDs in both the 454 and Sanger 685 

datasets.  Sanger PD is significantly predicted by 454 PD (linear regression, F1,4=76.2, p<0.001, 

R2=0.95). PD is estimated at a sample size of 101 OTUs because the 5K1X MID has only 106 

Sanger-OTUs (Figure 1);  the relationship holds for higher numbers of OTUs if 5K1X is omitted 

(data not shown). 

 690 
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Table S1. Allelic dropout, subdivided by MID and taxon. 
 

  HongHe 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Odonata Plecoptera Psocoptera Trichoptera Arachnida Annelida Total 

Total input 
haplotypes 15 86 9 28 19 1 2 3 2 1 1 167 

≥1-read OTUs 13 76 7 13 14 1 2 3 2 1 1 133 
≥2-read OTUs 12 74 6 7 14 1 2 3 1 1 1 122 

≥5-read OTUs 9 61 5 7 9 1 2 3 1 1 1 100 
% Total input 

haplotypes             

≥1-read OTUs 87% 88% 78% 46% 74% 100% 100% 100% 100% 100% 100% 80% 
≥2-read OTUs 80% 86% 67% 25% 74% 100% 100% 100% 50% 100% 100% 73% 

≥5-read OTUs 60% 71% 56% 25% 47% 100% 100% 100% 50% 100% 100% 60% 
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  KMG 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Psocoptera Arachnida Ephemeroptera Total 

Total input 
haplotypes 12 57 24 26 25 4 4 1 152 

≥1-read OTUs 11 50 23 14 22 4 3 1 127 

≥2-read OTUs 9 46 23 10 20 4 2 1 114 
≥5-read OTUs 9 40 21 5 17 4 1 1 97 

% Total input 
haplotypes          

≥1-read OTUs 92% 88% 96% 54% 88% 100% 75% 100% 84% 

≥2-read OTUs 75% 81% 96% 38% 80% 100% 50% 100% 75% 
≥5-read OTUs 75% 70% 88% 19% 68% 100% 25% 100% 64% 
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  XSBN 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Blattaria  Total 

Total input 
haplotypes 12 28 5 54 129 2 230 

≥1-read OTUs 10 22 2 31 89 2 156 
≥2-read OTUs 8 20 2 26 85 2 143 

≥5-read OTUs 4 13 1 11 65 2 96 
% Total input 

haplotypes        
≥1-read OTUs 83% 79% 40% 57% 69% 100% 68% 
≥2-read OTUs 67% 71% 40% 48% 66% 100% 62% 

≥5-read OTUs 33% 46% 20% 20% 50% 100% 42% 
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  1H1X 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Blattaria  Odonata Plecoptera Trichoptera Total 

Total input 
haplotypes 3 67 3 22 59 1 1 2 1 159 

≥1-read OTUs 3 49 3 13 34 1 1 2 1 107 
≥2-read OTUs 3 43 3 13 31 1 1 2 1 98 

≥5-read OTUs 3 34 3 11 29 1 1 1 1 84 
% Total input 

haplotypes           
≥1-read OTUs 100% 73% 100% 59% 58% 100% 100% 100% 100% 67% 
≥2-read OTUs 100% 64% 100% 59% 53% 100% 100% 100% 100% 62% 

≥5-read OTUs 100% 51% 100% 50% 49% 100% 100% 50% 100% 53% 
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  2H1K   

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Psocoptera Trichoptera Arachnida Annelida Total 

Total input 
haplotypes 18 43 16 35 21 4 1 1 1 140 

≥1-read OTUs 16 41 14 20 19 4 1 1 1 117 
≥2-read OTUs 15 36 12 16 18 4 1 1 1 104 

≥5-read OTUs 14 31 11 11 17 4 1 1 1 91 
% Total input 

haplotypes           
≥1-read OTUs 89% 95% 88% 57% 90% 100% 100% 100% 100% 84% 
≥2-read OTUs 83% 84% 75% 46% 86% 100% 100% 100% 100% 74% 

≥5-read OTUs 78% 72% 69% 31% 81% 100% 100% 100% 100% 65% 
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  2K1X 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Blattaria  Ephemeroptera Arachnida Total 

Total input 
haplotypes 11 24 16 29 48 1 1 4 134 

≥1-read OTUs 8 16 15 11 37 1 1 1 90 

≥2-read OTUs 8 15 14 9 35 1 1 1 84 
≥5-read OTUs 8 11 7 8 30 1 1 0 66 

% Total input 
haplotypes          

≥1-read OTUs 73% 67% 94% 38% 77% 100% 100% 25% 67% 
≥2-read OTUs 73% 63% 88% 31% 73% 100% 100% 25% 63% 

≥5-read OTUs 73% 46% 44% 28% 63% 100% 100% 0% 49% 
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  5K1X 

Taxa Coleoptera Diptera Hemiptera Hymenoptera Lepidoptera Ephemeroptera Arachnida Total 

Total input 
haplotypes 8 22 15 21 35 1 4 106 

≥1-read OTUs 5 16 13 6 25 1 1 67 

≥2-read OTUs 5 12 12 5 22 1 0 57 
≥5-read OTUs 3 10 7 2 21 1 0 44 

% Total input 
haplotypes         

≥1-read OTUs 63% 73% 87% 29% 71% 100% 25% 63% 
≥2-read OTUs 63% 55% 80% 24% 63% 100% 0% 54% 

≥5-read OTUs 38% 45% 47% 10% 60% 100% 0% 42% 
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Figure S1.  Principal coordinates ordination of the 454 dataset, using the 1-Sørensen-DICE (presence-

absence) measure of compositional dissimilarity. MID names indicate source communities (HONGHE, 

KMG, XSBN) and mixture communities (1H1X, 2H1K, 2K1X, 5K1X).   
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Figure S2.  Principal coordinates ordination of the Sanger dataset, using the Sørensen-DICE (presence-

absence) measure of compositional dissimilarity. MID names indicate source communities (HONGHE, 

KMG, XSBN) and mixture communities (1H1X, 2H1K, 2K1X, 5K1X).  Note that the mixture 

communities lie between the respective source communities and that Figures S2 and S3 are very similar, 

after rotation (Use the labels, not the symbols to match MIDs).  

 
 


