The Azimuth Cut-Off Method to Estimate Wind Speed under Extreme Weather Conditions

V. Corcione; F. Nunziata; M. Portabella; G. Grieco; M. Migliaccio

→ SEASAR 2018

Advances in SAR Oceanography

7–10 May 2018 | ESA–ESRIN | Frascati (Rome), Italy

ESA UNCLASSIFIED - For Official Use

Summary

- Motivations
- Azimuth cut-off method
- Tropical cyclone application
- Conclusions

Motivations

HURRICANE HUNTERS

REMOTE SENSING

| Slide 3

Motivations

- Microwave radars
- Resolution in the order of tens kilometers
- Designed for wind retrieval in moderate wind conditions
- However, they can be exploited to study tropical cyclone

- Finer spatial resolution
- Wind retrieval through the use of the same Geophysical Model Function (GMF)
- SAR data to monitor tropical cyclone

| Slide 5

| Slide 6

÷ 1

Typhoon Megi

DATASET: TerraSAR-X ScanSAR mode

Date: October 21, 2010 Time UTC: 22:05:16

Resolution: 8.25 m

| Slide 8

+

Acf fits at different resolutions and fixed Acf f median filter window Va

Acf fits at different resolutions and variable median filter window

- The width of the Gaussian fit does not change significantly
 - Long tails for all the ACF except 64 x 64

 λ_c estimated using fixed median filter window and varying the box's size.

Box size (pixels)	λ_c (m)
64×64	491.66
128×128	404.58
256×256	458.22
512×512	441.23
1024×1024	414.15
2048×2048	407.9
4096×4096	410.49

 $\lambda_c \sim F(Pixel spacing, Box size, Homogeneity)$

Choice of the smallest box size

Sentinel-1A Dataset 1

Sentinel-1A Dataset 2

Chi2=chisquare(acf-acffit)

Slide 13

European Space Agency

+

 $\lambda_c = a + bU_{10}$

Validation with ECMWF

Slide 14

Validation with ECMWF

Slide 15

+

esa

Validation with HY-2A

+

Slide 16

Tropical cyclone application

Courtesy of A. Mouche, Laboratoire d'Oceanographie Spatiale, Ifremer

Slide 17

+

Tropical cyclone application

Tropical cyclone application

Slide 19

😑 🔜 💿 📕 🚍 🕂 💥 🔤 🔶 European Space Agency

20

Tropical cyclone application

Slide 20

European Space Agency

1+1

Tropical cyclone application

Slide 21

European Space Agency

+

Inverse wave age = $\Omega = U_{10}\cos\theta/Cp$

 U_{10} wind speed θ angle between wind direction and peak wave direction Cp peak phase speed

•0.15<Ω<0.83 mixed wind sea state (both wind sea and swell waves)
•Ω>0.83 wind driven sea state (dominated by wind sea)
•0<Ω<0.15 wave driven sea state (swell dominated)
•Ω<0 counter-swell conditions (wind direction opposite to wave direction)

Tropical cyclone application

Slide 23

Tropical cyclone application

Conclusions

SAR data have been exploited to retrieve wind speed under extreme wind conditions using a re-tuned azimuth cut off method.

- We found an objective way to estimate lambda cut-off parameters.
- Misfit analysis to exclude non reliable azimuth cutoff values.
- Lambda cut-off vs developing sea condition
- Lambda cut-off vs Tropical cyclone case

Thank you for attention

→ SEASAR 2018

Advances in SAR Oceanography

7–10 May 2018 | ESA–ESRIN | Frascati (Rome), Italy

ESA UNCLASSIFIED - For Official Use