
Exploring Design Principles of Gene
Regulatory Networks via Pareto

Optimality ⋆

Irene Otero-Muras ∗ Julio R. Banga ∗

∗ BioProcess Engineering Group, IIM-CSIC, Spanish Council for
Scientific Research, Eduardo Cabello 6, 36208 Vigo, Spain (e-mail:

ireneotero@iim.csic.es, julio@iim.csic.es).

Abstract: One central problem in systems and synthetic biology is to characterize the biological
functions of regulatory network motifs. Here we consider recent model-based exploration
approaches used to identify motifs capable of performing a specific biological task. In this work,
we propose an optimization based strategy where the motivation is twofold: on the one hand,
to introduce efficiency and optimality in the search, by using global mixed integer nonlinear
optimization methods. On the other hand, to incorporate multiple design objectives (Pareto
optimality), in order to cope with realistic trade-offs observed in nature. The potential of this
approach is illustrated through an example where we explore the design principles underlying
stripe-forming motifs.
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1. INTRODUCTION

A gene regulatory (or transcriptional) network consists
of a collection of DNA segments and their interactions
which together regulate biological functions by controlling
the expression levels and temporal patterns in which gene
products appear (Karlebach and Shamir, 2008). Transcrip-
tional networks in living cells are complex, and one of the
challenges of systems biology is to uncover their structural
design principles.

A gene regulatory network can be described by a graph,
where nodes correspond to genes, and edges indicate the
transcriptional regulation of one gene by the protein prod-
uct of another gene. Milo et al. (2002) developed an algo-
rithm to detect patterns of interconnections occurring in
real networks more often than in randomized ones, identi-
fying a first set of network motifs or basic building blocks.
To understand how specific functional outcomes or cellular
behaviours emerge from particular interactions of genes
and proteins, increasing effort is devoted to analyze the
functionalities of these motifs and their interconnections
(Ingram et al., 2006).

Different analytic and numeric approaches make use of dy-
namic models of biochemical networks to explore the map-
pings between the spaces of topologies and parameters and
the space of model behaviour (Otero-Muras et al., 2014).
The goal is to find patterns, structural and/or parametric
features associated to biological functions, like the capacity
for bistability and oscillations (Mincheva and Craciun,
2008; Otero-Muras et al., 2012), adaptive responses (Ma
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et al., 2009) or the formation of stripes (Munteanu et al.,
2014; Rodrigo and Elena, 2011). Numerical approaches
are usually based on the exhaustive exploration of the
topology spaces. Cotterell and Sharpe (2010) proposed to
link topologies together into a non-directed graph based
on topological similarity, and then analyze the shape of a
resultant complexity atlas to determine the core topologies
for a given function.

In this work, we propose an optimization based approach
to find patterns capable of specific biological tasks. In con-
trast to exhaustive exploration, which is computationally
expensive and becomes practically unfeasible for increas-
ing levels of complexity, our method aims to introduce
efficiency in the search, exploiting the potential of Global
Mixed Integer Programming solvers (Otero-Muras and
Banga, 2014).

Moreover, our approach is multiobjective, allowing not
only to find circuits with a specific functionality, but
optimally performing with respect to a set of predefined
criteria. This is motivated by the fact that the levels of
complexity found in biological circuits cannot be explained
by the accomplishment of a given function alone, sug-
gesting multiple simultaneous (and potentially conflicting)
goals. For example, even if a simple negative feedback is
enough to generate oscillations, many oscillators found in
nature contain both negative and positive feedback loops.
Tsai et al. (2008) demonstrated through a computational
study a number of advantages conferred by the presence of
positive feedback in oscillators, namely period tunability,
improved robustness and reliability.

Here we will also illustrate how the usefulness of multicri-
teria optimization in synthetic biology design goes beyond
obtaining a set of optimal trade-offs (Pareto front). We
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will show how the analysis of those Pareto solutions can
lead to a more systematic inference and understanding of
the underlying design principles. This concept is somewhat
similar to the automated innovization approach recently
used in engineering design (Deb et al., 2014). Innovization
attempts to extract innovative design principles through
analysis of optimization results.

As a proof of concept for our method we consider the
problem of finding stripe forming motifs in 3-gene con-
figurations, and compare our results with previously pub-
lished studies based on exhaustive search (Munteanu et al.,
2014).

2. METHODS

2.1 Modeling framework

Gene regulatory networks are represented as directed
graphs, with nodes corresponding to genes, and edges
indicating their interactions. One arrow from gene A to
gene B indicates the transcriptional regulation of B by
the transcription factor encoded by A.

The dynamics of a gene regulatory network can be de-
scribed through a system of Ordinary Differential Equa-
tions representing the mass balances of the species in-
volved. Detailed models might include promoters, RNA
polymerase, mRNA, proteins and complexes among species.
Simpler models take into account time scale separation,
lump transcription and translation into a single step (Ke-
pler and Elston, 2001) and consider only the levels of
the transcription factor proteins encoded by the network
genes. In this way, for a n-gene network, the state vector
of the ODE model, z(t) ∈ Rn contains the levels of the n
proteins at time t.

In this work we use a connectionist model (Mjolsness
et al., 1991) to describe gene regulation. This model is
biologically-verified and extensively employed in the study
of developmental gene networks (Munteanu et al., 2014).
Within this framework the regulation from gene Gi to
gene Gj is characterised by two numbers: an integer yij ∈
{−1, 0, 1}, coding for inhibition (−1), no action (0), and
activation (1), and a strictly positive weight wij ∈ R>0.
We can construct two matrices Y ∈ Zn×n and W ∈ Rn×n

>0
containing respectively the gene-gene interaction indices
and the weights.

The effective regulating input to a gene Gi is given by:

χi =
n∑

j=1

ωjizj + αiI

where ωji = yjiwji, and the term αiI reflects the effect
of external inputs (in case the gene Gi is only affected
by internal gene-gene interactions, the coefficient αi = 0).
The transcription rate is proportional to the sigmoidal-
filtering of the total contribution, such that the balance
for the protein zi encoded by Gi reads:

żi =
1

1 + exp(a− b(χi))
− δzi (1)

where parameters a and b control the steepness and
location of the threshold value of the regulation function,
and δ is the protein degradation rate constant.

As an example, we consider the three gene network in Fig.
1 with genes A,B and C, where the net internal interaction
matrix is given by:

Ω =

(
0 0 0

ωAB ωBB ωCB

ωAC ωBC ωCC

)
and the gene A is induced by an external input I. The ODE
system describing the dynamics of the network reads:

Ȧ =
1

1 + exp(a− b(I))
− δA

Ḃ =
1

1 + exp (a− b(ωABA+ ωBBB + ωCBC))
− δB

Ċ =
1

1 + exp (a− b(ωACA+ ωBCB + ωCCC))
− δC (2)

Configurations with ωABωCBωBC < 0 give rise to inco-
herent feedforward loops. In Fig. 1, the incoherent feed-
forward loop of type one IFF1 (ωAB > 0, ωAC > 0 and
ωBC < 0) and the incoherent feedforward loop IFF3
(ωAB < 0, ωAC > 0 and ωBC > 0) are depicted.

Starting from this model (Fig. 1) Munteanu et al. (2014)
investigated in a recent work 3-gene configurations capable
of translating a morphogen gradient into a single stripe
pattern. They considered a monotonically increasing input
along a one-dimensional tissue of N isogenic cells, i.e., N
circuits with the same values of Y , W and the parameters
a and b, and only varying the input I.

They found two incoherent feedforward motifs (IFF1 and
IFF3) as core topologies for stripe formation.
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Fig. 1. Graph of the connectionist 3-gene model with gene
A induced by an external input. The middle and right
circuits correspond to incoherent feedforward loops of
type 1 and 3 respectively.

2.2 Mixed Integer Non Linear Programming formulation

The search of a circuit performing a specific behaviour
through the space of n-gene circuits can be formulated as
an optimization problem.

Within the modeling framework previously described, a
circuit (structure and parameters) can be characterized by
two vectors: w ∈ Rr

>0 containing the weights (its elements
are taken columwise from W ), and a vector of integer
variables y ∈ Zr determining the interactions (its elements
are taken columwise from Y ). Parameters that are fixed
in the ODE model describing the network dynamics are
included in a vector k ∈ Rk.

We can encode the specific desired performance of the
circuit by a suitable function J1(ż, z, w, y, k), such that
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it reaches a minimum when the desired functionality is
achieved (importantly, the solution does not need to be
unique). As we said in the introduction, we are inter-
ested in circuits which, in addition to a given predefined
behaviour (oscillations, switch-like behaviour, pulse gen-
eration...) perform optimally with respect to additional
criteria such as protein production cost and/or robustness
against perturbations.

Once we define the set of objectives Ji(ż, z, w, y, k) for i =
1, . . . , s, a multiobjective MINLP optimization problem
is formulated as finding a vector w ∈ Rr of continuous
variables and a vector y ∈ Zr of integer variables which
minimize the vector J of s objective functions:

min
w,y

J1(ż, z, w, y, k), J2(ż, z, w, y, p), . . . , Js(ż, z, w, y, k)

(3a)
subject to:

i) the circuit dynamics in the form of ODEs with the
state variables z and additional parameters k:

f(ż, z, w, y, k) = 0, z(t0) = z0, (3b)

in case of a tissue of N isogenic cells, we consider

fi(żi, zi, w, y, k) = 0, zi(t0) = zi0 , for i = 1, . . . , N
(3c)

ii) additional requirements in the form of equality and
inequality constraints:

h(z, w, y, k) = 0, (3d)

g(z, w, y, k) ≤ 0, (3e)

iii) upper and lower bounds for the real and integer
decision variables:

wL ≤ w ≤ wU , (3f)

yL ≤ y ≤ yU . (3g)

In order to evaluate the solutions of the multiobjective
optimization problem, we need to introduce the notion of
Pareto optimality (Miettinen, 2012; Sendin et al., 2010).
Given two pairs (w∗, y∗), (w∗∗, y∗∗), we say that the vector
J(w∗, y∗) dominates J(w∗∗, y∗∗) if J(w∗, y∗) ≤ J(w∗∗, y∗∗)
for all i = 1, . . . , s with at least one strict inequality. A
feasible circuit defined by (w∗, y∗) is a Pareto optimal
solution of the multiobjective optimization problem if it
is not dominated by other feasible circuits. The set of all
Pareto optimal solutions is known as the Pareto front.

Here, we formulate the search for stripe forming motifs a
Multiobjective MINLP optimization problem.

First, we define an objective function which captures
appropriately the target functionality, in this case, the
formation of a stripe in response to a monotonically
increasing/decreasing input along the tissue. In Fig. 2 the
desired response (a pulse in the level of protein B) is
depicted. In order to quantify the quality of the pulse we
compute the area between the B level curve and the x-
axis (cell index) in three different regions with areas R1,
R2 and R3, with maximum value denoted by R1, R2 and
R3 respectively. We consider as a perfect stripe the pulse
depicted in Fig. 2, for which the function:

J1(w, y) = −((R1−R1)/R1+R2/R2+ (R3−R3)/R3)/3
(4)

reaches its minimum value, J1 = −1.

As a second optimization goal, we consider the protein
production cost, which we assume proportional to the
steady state levels of C over the one dimensional tissue:

J2(w, y) = −
N∑
i=1

Css(i) (5)

Economy in the production of proteins has been considered
to be relevant in regulatory systems (Zaslaver et al., 2004).

The topology and parameters of 3-gene circuit configura-
tions according to Fig. 1, are determined by:

i) 6 continuous variables: wAB, wBB , wCB , wAC , wBC

and wCC ;
ii) 6 integer variables: yAB , yBB , yCB , yAC , yBC and yCC

in ∈ {−1, 0, 1}.
which are the decision variables of the optimization prob-
lem.
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Protein A Protein B Protein C

Fig. 2. Stripe in the level of B protein as a response to a
monotonically decreasing input. For a perfect stripe,
the area R2 reaches its maximum value, while the
areas R1 and R3 are zero.

2.3 Solution of the MO-MINLP problem

The dynamics of gene regulatory networks are highly non-
linear, and this leads to an optimization problem that is
non convex and multi-modal. Therefore, global optimiza-
tion methods are required. Moreover, the search spaces can
very large, and combine real and integer (and/or binary)
variables.

Deterministic optimization approaches ensure convergence
to the global optimum within a desired tolerance, but the
computational burden is in general very high. Stochastic
methods, by the contrary, offer no guarantee of conver-
gence to the global minimum in a finite number of itera-
tions but can provide good solutions in reasonable com-
putational times. In this context, hybrid global MINLP
solvers have been shown to be efficient for the design of
gene regulatory networks (Otero-Muras and Banga, 2014).

In particular, three hybrid methods combining stochas-
tic global search with the local mixed-integer sequen-
tial quadratic programming (MISQP) by Exler and Schit-
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tkowski (2007) were successfully used for biocircuit de-
sign: enhanced scatter search eSS by Egea et al. (2010),
mixed-integer tabu search (MITS) by Exler et al. (2008)
and mixed-integer ant colony optimization (ACOmi) by
Schlueter et al. (2009).

Due to the high nolinearity of the transcription network
models, and the existence of integer decision variables, the
expected Pareto front can be discrete and possibly non-
convex.

In this work we use the ε-constraint strategy (Miettinen,
2012; Sendin et al., 2010), where the MOP is reduced to
a a number of MINLP, and each MINLP is obtained by
minimising one of the objectives and converting the rest of
criteria to inequality constraints. Different solutions can be
obtained by changing the upper bounds on the objectives
not minimised.

This methodology has two important advantages in the
context of gene regulatory networks: the methodology
works well for discrete and non-convex Pareto fronts
and, in addition, it allows exploiting the MINLP solvers
introduced above. The proposed optimization process is
composed of the following steps, considering two objective
functions J1 and J2:

1. Search for the optima of each of the individual objec-
tives:

(w∗
1 , y

∗
1), (w∗

2 , y
∗
2).

2. Compute the individual objective bounds as:

J1 = J1(w
∗
1 , y

∗
1), J1 = J1(w

∗
2 , y

∗
2),

J2 = J2(w
∗
2 , y

∗
2), J2 = J2(w

∗
1 , y

∗
1).

3. Select the objective function to be minimized, de-
noted in what follows as the primary objective (with-
out loss of generality let us take J1 as the primary
objective).

4. For the non-minimized objective J2, generate a vector

ε = [ε1, . . . , εi, . . . , εm]

such that ε1 ≤ J2, εm ≥ J2 and ε1 < ε2 < . . . <
εm.

5. Solve the MINLP:

min
w,y

J1(ż, z, w, y, k)

subject to:

εk ≤ J2(ż, z, w, y, k) < εk+1

for k = 1, . . . ,m− 1 by means of a MINLP solver.

6. Evaluate the solutions obtained and construct the
Pareto front with the non dominated optimal ones.

For the stripe forming motifs case study we consider the
score of the pulse as the primary objective (J1), and the
protein production cost as the secondary objective (J2).

First, we solve the MINLP for the objective function J1 as
defined in Eq. (4), in order to obtain the optimum (w∗

1 , y
∗
1).

Then, we take into account the second objective J2 in Eq.
(5) and search for the circuit which produces a stripe at a
minimum cost, in order to get (w∗

2 , y
∗
2).

J2

J1

J2

J2

J1

(w* , y*)

(w* , y*)

ε 1

εm

1 1

2 2

J1

Fig. 3. Scheme of the ε-constraint strategy for a biobjective
problem with primary objective J1.

In second place, we compute the values of the protein
cost at the two optima, obtaining the individual objective
bounds J2 = J2(w

∗
2 , y

∗
2) and J2 = J2(w

∗
1 , y

∗
1).

Finally, we define a grid for the objective J2, and minimize
the stripe score J1 in each interval, solving the correspond-
ing constrained MINLP.

2.4 Innovization

Once the set of optimal trade-offs is obtained, we analyze
the Pareto front of non-dominated solutions for a sys-
tematic inference of design principles, in the same vein
of automated innovization approaches recently used in
engineering design (Deb et al., 2014).

3. RESULTS AND DISCUSSION

Here we present the results of our approach applied to
search for stripe forming motifs. The goal is to explore
design patterns in 3-gene regulatory networks conferring
to a tissue ofN isogenic cells the capability to form a stripe
of gene expression in response to a morphogen gradient.
As in (Munteanu et al., 2014), the morphogen gradient is
simulated by an input into gene A, which takes the form
I = Mdc, with M being the morphogen concentration
at the left boundary of the tissue, d is the reduction of
morphogen concentration in each subsequent cell of the
morphogen gradient and c is the increasing cell index c =
1, 2, . . . , N (we consider M = 5, d = 0.982, and N = 30).
In order to obtain the system response to the morphogen
gradient, we compute the steady state levels of the proteins
in every cell starting by Eq. 2 with the corresponding value
of c and initial condition A(0) = B(0) = C(0) = 0.1. The
profiles of the proteins A, B and C are obtained by plotting
the corresponding steady state levels as a function of the
cell index c as depicted in Fig. 2.

Here we assume for simplicity no autoregulation of B
and C. The topology of the network is determined by 4
real variables wAB, wCB , wAC and wBC , and 4 integer
variables yAB , yCB , yAC and yBC ∈ {−1, 0, 1}.
Solving the MO-MINLP problem. Taking these vari-
ables as decision variables for our optimization problem,
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Fig. 4. Pareto Front obtained as a solution of the multiobjective MINLP problem (P1-P8). The corresponding circuit
(topology and parameters) and output signal (stripe) is indicated. Circuits NP1-NP4 (Munteanu et al., 2014)
correspond to dominated points.

we solve first a single objective MINLP minimizing the
stripe score J1 as defined in Eq. (4). The bounds for the
real variables are set to wL = 1−3, wU = 50. Then, we
search for the circuit topology and parameters providing a
pulse at the minimum cost. In this way we found respec-
tively the points P1 and P8 in Fig. 4.

Following the ε-constraint strategy introduced in the pre-
vious section, we take the stripe score (J1) as the pri-
mary objective and set a step size of 50 in the secondary
objective (protein cost). We solve a constrained MINLP
for every interval by means of a global MINLP solver
introduced in the previous section (here we have used eSS
by Egea et al. (2010)), obtaining a set of non-dominated
points P2, . . . , P7 in Fig. 4.

The complete Pareto front is illustrated in Fig. 4, where
the topology and parameters for each circuit P1, . . . , P8 is
depicted together with the associated system’s response.
For comparison purposes, we also depict four circuits
from (Munteanu et al., 2014) corresponding to dominated
points NP1, . . . , NP4.

Design principles through innovization approach.
By analyzing the set of trade-off optimal solutions, a
number of observations arise.

First, we can conclude that there is a trade-off between
quality of the stripe and protein production cost defined
respectively by Eqs. (4) and (5).

Second, all the circuits in the Pareto front are incoher-
ent feedforward loops. As reported by Munteanu et al.
(2014), in existing studies consisting of computational ex-
ploration and experimental explorations, incoherent feed-
forward motifs appear as the minimal structures for single-
stripe formation under a morphogen gradient.

Third, IFF3 and IFF1 feedforward structures appear
among the non-dominated solutions. This result is in
agreement with the results reported by Munteanu et al.
(2014), where both analytic and computational approaches
were used to establish IFF1 and IFF3 as core topologies
for stripe formation.

Finally, the topology of the optimal circuits change fol-
lowing a structured logic as we move along the Pareto
front: for high values of protein cost we obtain a IFF3, for
medium values of protein cost we obtain IFF1 structures
reinforced with negative regulation from B to C, and for
low values of protein cost we obtain IFF1 structures with
very low regulation from B to C.

4. CONCLUSIONS

In this work we propose an optimization based approach
to explore design principles of gene regulatory networks.
The approach is multiobjective, exploits the efficiency of
global MINLP solvers, and applies the fundamentals of
innovization (Deb et al., 2014) for a systematic inference
and understanding of design principles from trade-off
solutions. As a proof of concept, we have applied our
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method to the problem of finding stripe forming motifs in
3-gene structures. On the one hand, the results obtained
are coherent with previously published studies (Munteanu
et al., 2014) reporting two incoherent feedforward motifs,
IFF1 and IFF3, as stripe forming structures. On the
other hand, our results elucidate new aspects of stripe
forming patterns, revealing how different connectivities
affect the trade-off between quality of the stripe and
protein production cost. Among ongoing and future work
directions, we outline the following:

To consider positive feedbacks (autoregulation of B and
C) in the analysis of 3-gene stripe forming motifs (the role
of positive feedback in stripe forming motifs has been also
studied by Munteanu et al. (2014)), and evaluate their
effect in the trade-off optimal set of solutions.

To introduce the effect of stochastic noise, by combining
our approach with stochastic simulation of the gene reg-
ulatory network dynamics. Munteanu et al. (2014) have
shown a preliminary study where autoregulation affected
to the border of the stripe as noise increase.

To explore stripe forming motifs in 4-gene and higher order
configurations, exploiting the capability of the multiobjec-
tive MINLP approach for increasing levels of complexity
(Otero-Muras and Banga, 2014). Here it is important to
remark that, in contrast to exhaustive exploration, our
method can efficiently handle medium-large order systems
(Otero-Muras and Banga, 2014). Other functionalities of
interest in systems and synthetic biology including oscil-
lators, switches and capacity for adaptation, will also be
considered.

To incorporate dominated solutions to provide additional
useful information in the innovization process (Chichakly
and Eppstein, 2013).

ACKNOWLEDGEMENTS

We acknowledge funding from the Spanish MINECO (and
the European Regional Development Fund) project SYN-
BIOFACTORY (grant number DPI2014-55276-C5-2-R)

REFERENCES

Chichakly, K. and Eppstein, M.J. (2013). Discovering de-
sign principles from dominated solutions. IEEE Access,
1, 275–289.

Cotterell, J. and Sharpe, J. (2010). An atlas of gene regu-
latory networks reveals multiple three-gene mechanisms
for interpreting morphogen gradients. Mol Syst Biol, 6,
425.

Deb, K., Bandaru, S., Greiner, D., Gaspar-Cunha, A.,
and Tutum, C.C. (2014). An integrated approach to
automated innovization for discovering useful design
principles: Case studies from engineering. Applied Soft
Computing, 15, 42–56.

Egea, J.A., Marti, R., and Banga, J.R. (2010). An
evolutionary method for complex-process optimization.
Comput Oper Res, 37, 315–324.

Exler, O., Antelo, L.T., Egea, J.A., Alonso, A.A., and
Banga, J.R. (2008). A tabu search-based algorithm for
mixed-integer nonlinear problems and its application to
integrated process and control system design. Comput
Chem Eng, 32, 1877–1891.

Exler, O. and Schittkowski, K. (2007). A trust region
sqp algorithm for mixed integer nonlinear programming.
Optim Lett, 1, 269–280.

Ingram, P.J., Stumpf, M.P., and Stark, J. (2006). Network
motifs: structure does not determine function. BMC
Genomics, 7, 108.

Karlebach, G. and Shamir, R. (2008). Modelling and
analysis of gene regulatory networks. Nat Rev Mol Cell
Biol, 9, 770–780.

Kepler, G.K. and Elston, T.C. (2001). Stochasticity in
transcriptional regulation: Origins, consequences and
mathematical representations. Biophys J, 81, 3116–
3136.

Ma, W., Trusina, A., El-Samad, H., Lim, W., and Tang,
C. (2009). Defining network topologies that can achieve
biochemical adaptation. Cell, 138, 760–773.

Miettinen, K. (2012). Nonlinear multiobjective optimiza-
tion, volume 12. Springer Science & Business Media.

Milo, R., Shen-Orr, S., Itkovitz, S., Kashtan, K.,
Chklovskii, D., and Alon, U. (2002). Network motifs:
Simple building blocks of complex networks. Science,
298, 824–827.

Mincheva, M. and Craciun, G. (2008). Multigraph condi-
tions for multistability, oscillations and pattern forma-
tion in biochemical reaction networks. Proceedings of
the IEEE, 1281–1291.

Mjolsness, E., Sharp, D., and Reinitz, J. (1991). A
connectionist model of development. J Theor Biol, 152,
429–453.

Munteanu, A., Cotterell, J., Sole, R., and Sharpe, J.
(2014). Design principles of stripe-forming motifs:the
role of positive feedback. Sci Rep, 4, 5003.

Otero-Muras, I. and Banga, J.R. (2014). Multicriteria
global optimization for biocircuit design. BMC Syst
Biol, 8, 113.

Otero-Muras, I., Banga, J., and Alonso, A. (2012).
Characterizing multistationarity regimes in biochem-
ical reaction networks. PLoS ONE, 7(7), e39194.
doi:10.1371/journal.pone.0039194.

Otero-Muras, I., Yordanov, P., and Stelling, J. (2014). A
method for inverse bifurcation of biochemical switches:
inferring parameters from dose response curves. BMC
Syst Biol, 8, 114.

Rodrigo, G. and Elena, S.F. (2011). Structural discrimina-
tion of robustness in transcriptional feedforward loops
for pattern formation. PLoS ONE, 6, e16904.

Schlueter, M., Egea, J.A., and Banga, J.R. (2009). Ex-
tended ant colony optimization for non-convex mixed
integer nonlinear programming. Comput Oper Res, 36,
2217–2229.

Sendin, J.O.H., Exler, O., and Banga, J.R. (2010). Multi-
objective mixed integer strategy for the optimisation of
biological networks. IET Syst Biol, 236–248.

Tsai, T.Y.C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang,
C., and Ferrell, .J.E. (2008). Robust, tunable biological
oscillators from interlinked positive and negative feed-
back loops. Science, 321, 126–129.

Zaslaver, A., Mayo, A., Rosenberg, R., Bashkin, P., Sberro,
H., Tsalyuk, M., MG, S., and Alon, U. (2004). Just-in-
time transcription program in metabolic pathways. Nat
Genet, 36, 486–491.

IFAC DYCOPS-CAB, 2016
June 6-8, 2016. NTNU, Trondheim, Norway

814


