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Abstract: Theoretical results and simulations support the idea that deterministic models
provide an acceptable description only for large numbers of molecules. In the context of GRN,
which usually involve a small number of molecules, such arguments might lead to disregard
deterministic models as unsuitable representations.
We found, however, strong evidences that justify their use to model self-regulatory genetic
circuits, even for small number of molecules. In fact, we show that under some conditions, a
stochastic system showing a switching-like behaviour (manifested on a bimodal distribution)
nearly coincides with a deterministic counterpart exhibiting bistability. Moreover, and contrary
to what it might be expected, we find situations involving large numbers of molecules where the
deterministic model results into a poor approximation. The analysis and methods presented are
expected to help selecting the most adequate system’s representation.
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systems, model reduction.

1. INTRODUCTION

Essentially, gene regulatory networks (GRN) (considered
as the software-hardware architecture of the cell) execute
the program written in the genome to adapt the phys-
iological state of the cell in response to environmental
signals. Such networks usually comprise a large num-
ber of biochemical reactions which can be conceptually
described as the assembly of simple biochemical struc-
tures, conceived as efficient abstractions of the central
(transcription-translation) dogma (Sherman and Cohen,
2014). Regulatory functions produced by negative or pos-
itive feedback are among the most common mechanisms
(Paulsson and Ehrenberg, 2000; Friedman et al., 2006;
Shahrezaei and Swain, 2008; Sherman and Cohen, 2014).

The underlying biochemical machinery typically involves
a few number of molecules, what makes its behavior inher-
ently stochastic. In describing GRN dynamics, a number
of microscopic (stochastic) and deterministic modelling
approximations has been attempted with mixed results
(Kepler and Elston, 2001; Gillespie, 2007; Rosenfeld et al.,
2002; Mackey et al., 2011). Microscopic descriptions re-
volve around the chemical master equation (CME), with
different approximations such as moment methods (Eng-
blom, 2006), finite state projection (Munsky and Kham-
mash, 2006), hybrid models (Jahnke, 2011), or direct
stochastic simulation algorithms (SSA) (Gillespie, 2007),
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support from grant BES-2013-063112.

oriented to reduce complexity. Deterministic models, on
the other hand, are based on classical biochemical kinet-
ics and can be formally represented by sets of ordinary
differential equations (ODE). They have been used over
the past recent years to get qualitative insights on GRN
dynamics Mackey et al. (2011).

Theoretical results and simulations (Van Kampen, 2007;
Gillespie, 2009; Wallace et al., 2012) support the idea that
deterministic models provide an acceptable description of
systems with large numbers of molecules, whereas the
quality of the approximation deteriorates as that number
reduces (Shmulevich and Aitchison, 2009). In the context
of GRN, which usually involve small number of molecules,
such arguments might lead to disregard deterministic
models as unsuitable representations.

However, for a general class of self-regulatory genetic
circuits we found out strong evidences that justify their
use even under a small number of molecules condition. The
class comprises those GRN where proteins are produced in
bursts (e.g. Shahrezaei and Swain, 2008; Dar et al., 2012),
what seems to be often the case, both in prokaryotic and
eukaryotic cell types (Dar et al., 2012).

We show that under some conditions, a stochastic system
showing a switching-like behaviour (manifested on a bi-
modal distribution) nearly coincides with a deterministic
counterpart exhibiting bistability, what confirms the va-
lidity of the deterministic approximation for small number
of molecules. Note however that bimodality and bistability
are not completely interchangeable, as one can find many
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other instances in which the bimodal/binary stationary
distribution associated to the stochastic system does cor-
respond with a monostable deterministic counterpart.

In order to identify parameter regions, where determin-
istic approximations capture the essential features of the
stochastic dynamics (average protein levels or coexistence
of multiple stationary states), we adapt the method de-
velop in Pájaro et al. (2015) to cope with bistability. We
show that the quality of the deterministic approximation
is at a large extent conditioned by the average number
of bursts, and it improves as the value of this parameter
increases. On the other hand, and contrary to what it
might be expected, we find situations involving a high
number of molecules where the deterministic model results
into a poor approximation.

Hopefully, the analysis and methods presented can be
of help for selecting the most adequate representation
of system dynamics or to decide which one is preferable
depending on the network structure and parameters.

The article is structured as follows: In Section 2, we de-
scribe the gene regulatory system and its stochastic rep-
resentation together with the deterministic (ODE based)
approximation. A method to characterise the regions in the
parameter space that sustain bimodal or binary response
and bistable behaviour is presented in Section 3. Main
results are discussed in Section 4. We end up with some
conclusions and future work.

2. THE SYSTEM AND ITS REPRESENTATION

The genetic system under study consists of a transcription-
translation network involving a single gene that expresses
a protein X which regulates its own production. The
representative biochemical steps, including protein and
mRNA degradation, are depicted in Fig. 1.

As reported in Huang et al. (2015), RNA transcription may
occur also at the inactive promoter state, a phenomenon
that is known as transcriptional leakage. We assume that
the basal transcription level from the inactive promoter
takes place at a rate constant kε lower than k1, (Friedman
et al., 2006; Ochab-Marcinek and Tabaka, 2015).

Typically, self-regulation is described by a function of the
form (Friedman et al., 2006; Ochab-Marcinek and Tabaka,
2015):

c̄(x) = [1− ρ(x)] + ρ(x)ε , (1)

with x representing protein level, ε = kε

k1
∈ (0, 1) the

transcriptional leakage constant and ρ(x), a Hill-type
function (Alon, 2007) that relates x to the fraction of
DNAoff :

ρ(x) =
xH

xH +KH
. (2)

where K =
koff

kon
is an equilibrium constant, and H a

parameter proportional to the number of protein molecules
bonded to the promoter. Its values can be positive or
negative depending on whether the circuit represses or
promotes protein production, thus resulting into a negative
or positive feedback, respectively.
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Fig. 1. Schematic representation of the transcription-
translation mechanism under study. The promoter as-
sociated with the gene of interest is assumed to switch
between active (DNAon) and inactive (DNAoff)
states, with rate constants kon and koff per unit time,
respectively. In this study, the transition is assumed
to be controlled by a feedback mechanism induced by
the binding/unbinding of a given number ofX-protein
molecules, what makes the network self-regulated.
Transcription of messenger RNA (mRNA) from the
active DNA form, and translation into protein X are
assumed to occur at rates (per unit time) k1 and k2,
respectively. kε is the rate constant associated with
transcriptional leakage. Both mRNA and X-protein
degradation are assumed to occur by first order pro-
cesses with rate constants γ1 and γ2, respectively.

2.1 The microscopic description

In the following we will consider gene regulatory networks
where the rate of mRNA degradation is much faster than
the corresponding to protein so that γ1/γ2 ≫ 1. Under
such condition, protein will be produced in bursts (e.g.
Shahrezaei and Swain, 2008; Dar et al., 2012), what sup-
ports a description of the protein probability distribution
based on the following partial integro-differential equation
firstly proposed by Friedman et al. (2006):

∂p(τ, x)

∂τ
=

∂

∂x
(xp(τ, x))+

a

x
∫

0

w(x − x′)c̄(x′)p(τ, x′)dx′ ,
(3)

where τ = γ2t represents a dimensionless time associated
with the time scale of protein degradation, and a = k1/γ2
is the dimensionless rate constant for transcription that re-
lates to the mean number of bursts produced per cell cycle
(e.g. burst frequency). The first term in the right-hand side
of the equation accounts for protein degradation, whereas
the integral describes protein production in bursts. Since
burst size is assumed to follow an exponential distribution
(Elgart et al., 2011), the conditional probability for protein
level to jump from a state x′ to x after a burst can be
expressed as:

w(x − x′) = (1/b) exp((x′ − x)/b)− δ(x− x′) (4)

where parameter b = k2/γ1, is a dimensionless rate
constant associated with translation which corresponds
with the mean number of proteins produced per burst (i.e.
burst size). Finally, the feedback mechanism is modelled
by incorporating into the integral term the function c̄
previously defined in (1).
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The stationary solution for (3) (identified as that satisfying
∂p/∂τ = 0) that we denote by P can be written as (Pájaro
et al., 2015):

P (x) = C(ρ(x))
a(1−ε)

H x−(1−aε)e
−x
b , (5)

where C is an integration constant that normalizes the
corresponding probability distribution function so that
∫

∞

0
P (x) dx = 1.

The genetic regulatory circuit we have just described
supports two possible phenotypes which correspond with
the following types of stationary distributions:

1 A bimodal distribution having two maxima, which
characterizes transitions between two positive protein
levels.

2 A binary distribution having a (positive) minimum
and a maximum, which characterizes transitions be-
tween a positive and a zero protein level, with the
latter denoting the absence of protein.

In order to identify such distributions, conditions for
extremal points in (5) are studied. The first derivative of
P can be written as:

dP

dx
(x) = π(x)P (x) , (6)

where the function π takes the form:

π(x) =
a(1 − ε)

x
[r(x) − ρ(x)] , (7)

Extremal points are found as those which make zero
expression (6). Since P (x) has to be positive for positive
protein levels, these must coincide with the roots of the
following equation:

r(x) − ρ(x) = 0, (8)

with r being a linear function of the form:

r(x) =
−x

ab(1− ε)
+

(a− 1)

a(1− ε)
. (9)

2.2 A macroscopic approximation

A deterministic (or macroscopic) approximation of the
system depicted in Fig. 1 consists of a mass action law
based kinetic description, which results into the following
ODE set:

dm

dτ
= ac̄(x) −

γ1
γ2

m (10)

dx

dτ
= b

γ1
γ2

m− x (11)

where m and x represent the concentrations of mRNA
and protein, respectively, and τ = γ2t is the dimensionless
time associated with the scale of protein degradation.
From the steady state solution (i.e. that which satisfies
dm/dτ = dx/dτ = 0), we have that:

m(x) = a
γ2
γ1

c̄(x). (12)

Replacing the above expression in (11), using (1) and re-
ordering terms, we finally obtain the equilibrium states

for the system, which correspond with the roots of the
equation:

rd(x)− ρ(x) = 0, (13)

where:

rd(x) :=
−x

ab(1− ε)
+

1

1− ε
. (14)

Bistability will occur whenever the above expression (13)
has exactly three roots, i. e., two stable points and one un-
stable. The stationary level of protein xs can be computed
by replacing (12) in (11), so to get:

xs = abc̄(xs). (15)

Note that, as it can be deduced from the above expression,
stationary protein levels are related to the burst frequency
and size, so the number of protein units increases propor-
tionally to the product ab.

Interestingly rd(x) and r(x) share the same slope, but their
values at zero are different. Since for every x, (a−1)/a < 1,
this results into r(x) < rd(x). We will make use of (9) and
(14) to obtain the reliability of the deterministic model
versus the stochastic one.

3. CHARACTERIZING BISTABILITY AND
BIMODAL OR BINARY RESPONSE

In order to characterize the regions in the a, b parameter
space which sustain bimodality and the corresponding
bistability for the deterministic counterpart, we proceed
to study the roots of (8) and (13), respectively.

We first note that for both cases, the roots coincide with
the number of intersections between (2) and the straight
line (9) or (14). In addition, bimodality or bistability,
require multiple intersections, what as depicted in Fig. 2,
occurs whenever (9) - or equivalently (14)- lie within the
band delimited by the straight lines r1(x) and r2(x). This
fact leads to four possible scenarios to be considered:

1. A bistable but unimodal system, (r(x) < r2(x) <
rd(x) < r1(x)).

2. A bistable and bimodal or binary system, (r2(x) <
r(x) < rd(x) < r1(x)).

3. A monostable but bimodal or binary system, (r2(x) <
r(x) < r1(x) < rd(x)).

4. A monostable and unimodal system, (r(x) < rd(x) <
r2(x) or r1(x) < r(x) < rd(x) ).

In order to construct the regions in the parameter space
that sustain bimodal or binary behaviour we make use of
the algorithm proposed in (Pájaro et al., 2015).

Essentially, the algorithm estimates the boundaries of
the regions which formally can be characterized with the
following set inequalities:

h(x̄2; b) < a < h(x̄1; b) with h(x; b) =
b+ x

bc̄(x)
. (16)

These inequalities come from the necessary and sufficient
condition for binary or bimodal distributions r2(x) <
r(x) < r1(x). Where c̄(x) in the above expression is given
by (1) whereas x̄1, x̄2 are the values which determine the
slope of r(x), which in turn coincide with r1(x) and r2(x).
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Fig. 2. The upper plot depicts function ρ(x) as given in
(2) for H < −1 and two possible functions r1(x)
and r2(x) tangent to ρ(x) at points (x̄1 and x̄2),
respectively (r1(x) = ρ′(x̄1)(x − x̄1) + ρ(x̄1) and
r2(x) = ρ′(x̄2)(x − x̄2) + ρ(x̄2)). The lower plot
represents the first derivative ρ′(x) and a possible
value of r′(x) represented by the horizontal dashed
line.

This is graphically described in the lower plot of Figure 2,
which represents ρ′(x) and the intersection with the slope
of r(x). The set of possible values x̄1, x̄2 associated to the
whole range of derivatives ρ′(x) from its minimum at x∗

is computed by solving the following equation:

ρ′(x)− σρ′(x∗) = 0. (17)

for the parameter σ within the interval (0, 1).

Two types of regions have been identified depending on
the crossing of bounds h(x2; b) and h(x1; b) in (21). The
distance between bounds can be computed as:

△h(σ, b) =
c̄(x̄2)− c̄(x̄1)

c̄(x̄1)c̄(x̄2)

(

1−
b∗(σ)

b

)

, (18)

where b∗(σ) is given by

b∗(σ) =
x̄2c̄(x̄1)− x̄1c̄(x̄2)

c̄(x̄2)− c̄(x̄1)

≡
x̄2 − x̄1 − (1− ε)(ρ(x̄1)x̄2 − ρ(x̄2)x̄1)

(1− ε)(ρ(x̄1)− ρ(x̄2))

(19)

From the above expressions it follows that whenever
b∗(σ) ≤ 0 the bimodal region has a strip-like shape since
then △h(σ, b) > 0. On the other hand, if b∗(σ) > 0 we have
that △h(σ, b) > 0 only for b > b∗(σ), what leads to a horn-
like region. As it has been demonstrated in Pájaro et al.
(2015), such conditions are related to a critical leakage ε∗

that depends on the cooperativity level H as:

ε∗ =

(

H + 1

H − 1

)2

, (20)

and determines whether the region is strip-like (ε ≤ ε∗) or
horn-like (ε > ε∗). One example of each type of region can
be seen in Figure 3.

The algorithm we just have discussed can be employed to
construct the regions in the parameter space associated to
the deterministic approximation, which sustain bistability
(r2(x) < rd(x) < r1(x)). In this case, region boundaries
become:

hd(x̄2; b) < a < hd(x̄1; b) with hd(x; b) =
x

bc̄(x)
, (21)

and the distance between bounds computed as:

△hd(σ, b) =
1

c̄(x̄1)c̄(x̄2)

(

−
b∗d(σ)

b

)

, (22)

with function b∗d(σ) in (22) being of the form:

b∗d(σ) = x̄2c̄(x̄1)− x̄1c̄(x̄2)
≡ x̄2 − x̄1 − (1− ε) (ρ(x̄1)x̄2 − ρ(x̄2)x̄1)

(23)

For b∗d(σ) < 0 we have that △hd(σ, b) > 0 what leads to a
strip-like region of bistability. As in the previous situation
there also exists a critical leakage ε∗ which makes b∗d(σ) =
0. However, because of (22) no crossing of the boundaries
is possible. Thus for any leakage above a critical value (i.e.
ε ≥ ε∗) no bistability is possible. In other words, bistability
never coexists with bimodality above such values.

4. RESULTS AND DISCUSSION

The methods described in the previous section are em-
ployed to depict the regions in the a, b parameter space
sustaining bimodal and bistable behavior. Such regions
are presented in Figure 3 for two leakage rates around
a critical value (20). Below ε∗ (Figure 3 A), the regions
that present bimodality (shaded area) and bistability (area
delimited by dashed lines) show strip-like shapes that
partially overlap. Above ε∗, only a horn-like region that
corresponds with bimodal distributions, remains. Outside
each of those regions, parameter combinations lead to
graded distributions or to monostable systems, if modelled
via the ODE system (10)-(11).

A simulation approach based for instance on SSA, could be
used to identify the different qualitative behavior regions
depicted in Figure 3. However, because it would require a
representative number of simulations for each parameter
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Fig. 3. Regions sustaining bistable, bimodal and binary
behaviour in the parameter space (b, a). Plot A shows
a strip-like region for H = −4,K = 40, and ε = 0.1 <
ε∗ = 0.36. The marked point (b = 1.75 and a = 50)
represents a case where bistable behaviour coincides
with a bimodal distribution. Plot B shows a horn-like
region forH = −4,K = 140, and ε = 0.5 > ε∗ = 0.36.
The marked point (b = 400 and a = 2.1) leads
to a bimodal distribution which has not a bistable
counterpart.

set, the computational cost would be overwhelming even
for simple systems involving small number of parameters.

As it can be seen in the figure, bistability occupies a
smaller area than bimodal or binary response and appears
at lower burst frequency and size (a and b, respectively).
In that range, it almost perfectly overlaps with the region
of binary-bimodal response. At the microscopic level, the
system with parameters in that region, frequently tran-
sits between two protein levels what induces a periodic
switching. Such response parallels the bistable behavior
exhibited by the deterministic counterpart described by
(10)-(11). As an example, Figure 4 (A) presents the re-
sulting stationary distribution as well as the equilibrium
states for the deterministic counterpart. Figure 4 (C)
compares the stochastic response with the corresponding
deterministic states. Note, that despite the low number
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x)

C

8.95 83.57 200

T
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x
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0 799.98 2000

T
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e
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Fig. 4. Bimodal and bistable response for H = −4,
K = 40, ε = 0.1, b = 1.75 and a = 50 (Plots A
and C). Critical leakage ε∗ = 0.36 for this example
is computed from (20). Bimodal and monostable re-
sponse for H = −4, K = 140, ε = 0.5, b = 400 and
a = 2.1 (Plots B and D). A and B show the stationary
distributions computed from the CME (dashed line)
and the analytical distribution (continuous line). C
and D depict the corresponding stochastic dynamics
(SSA). Vertical lines represent the deterministic sta-
ble points. In Plots A and C we can clearly distinguish
a periodic switching between two different protein lev-
els. The scenario depicted in Plots B and C illustrates
a very noisy signal, reflected by the long tail of the
corresponding distribution. Here, the stable point of
the deterministic system is far away of the stochastic
behaviour (two peaks).

of molecules involved, the equilibrium points associated to
the deterministic approximation are close to the maxima of
the distributions, what proves that the deterministic ODE
model is able to capture reasonably well (in the form of
bistability) the intensity of the stochastic fluctuations.

Essentially, the applicability of the deterministic approx-
imation is indicated by the distance between the mode
and the mean of the probability distribution, the latter
being related to the deterministic state. On a bimodal
distribution the closer each hill will approach to a Gaus-
sian, the closer the two most frequent states (modes) will
approach the mean (average) of each hill. This turns out
to be the trend as the number of proteins increases (i.e. as
the system approaches the deterministic limit). One can
show this by noting that according to (15), for any burst
size b, stationary protein levels are function of the burst
frequency a, so that in the limit:

lim
a→∞

r(0) =
a− 1

a(1 − ε)
=

1

1− ε
= rd(0), (24)

and equations (8) and (13) become identical.

Note however, that contrary to what it might be expected,
increases in the number of proteins produced by the
network does not necessary parallel improvements in the
validity of the deterministic approximation. This scenario
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is depicted in Figure 4 (plots B and D). Plot B, represents
the stationary bimodal probability distribution associated
the point marked in Figure 3 (B). Such point belongs
to a horn-like region, characteristic of high transcription
leakages. In fact, as demonstrated in Pájaro et al. (2015),
such regions appear in the range of large burst sizes (and
small burst frequencies), whenever leakage is over a critical
value, that only depends on the level of cooperativity (see
expression (20)).

Plot D in Figure 4 compares a realization of the stochastic
dynamics with the corresponding deterministic stationary
state. In this situation, the (monostable) state, turns out
to be far from the two most frequently visited microscopic
states associated to the bimodal distribution. Thus, the
deterministic approximation does not properly capture
the essential features of the self-regulatory gene network,
(namely bimodality or even average state values) despite
to have a system with a sufficiently large number of
molecules (in the order of 103 molecules).

5. CONCLUSION AND FUTURE WORK

In this contribution we made use of a continuous version of
the Chemical Master Equation to study the applicability
of deterministic approximations to describe the dynamics
of self-regulatory genetic circuits.

We have shown that the quality of the deterministic ap-
proximation is at a large extent conditioned by the average
number of bursts, and it improves as the value of this
parameter increases. Furthermore, and contrary to what it
might be expected, there are circumstances for which the
deterministic approximation does not properly capture the
essential features of self-regulatory gene networks, despite
systems with a sufficiently large number of molecules.

The main results of this parametric analysis, could be
of help in the context of synthetic biology as a tool to
guide the design of artificial engineered genetic circuits
with specific properties.

We plan to extend the present methodology to handle more
complex GRN, such as those including couple cascades of
transcription-translation steps. Hopefully, the analysis and
methods here discussed can be of help for selecting the
most adequate representation of system dynamics or to
decide which one is preferable depending on the network
structure and parameters.
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