Extraction of bioactive compounds against cardiovascular diseases from *Lentinula edodes* using a sequential extraction method

Diego Morales*, Adriana J. Piris, Alejandro Ruiz-Rodriguez, Marin Prodanov and Cristina Soler-Rivas

Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain.

* Corresponding author: diego.morales@uam.es
Abstract

Three extraction methods were sequentially combined to obtain fractions from *Lentinula edodes* (shiitake mushrooms) containing bioactive compounds against cardiovascular diseases (CVDs). Fruiting bodies were first extracted with plain water, obtained residue was then submitted to supercritical fluid extraction (SFE) and remaining residue submitted to hot water extraction. Sequential design allowed re-utilization of the non-extracted material as raw material for the successive extractions increasing extraction yields and separating interesting compounds. Obtained fractions contained different amounts of β-glucans, chitins, eritadenine, lenthionine, ergosterol, proteins/peptides and phenolic compounds conferring them different bioactivities. Water soluble fractions showed high antioxidant activities (ABTS•⁺ and DPPH• scavenging capacity and reducing power), they were also able to inhibit one of the main enzymes involved in hypertension (angiotensin-I converting enzyme) and the key enzyme of cholesterol metabolism (3-hydroxy-3-methylglutaryl coenzyme A reductase). The latter inhibitory activity was also noticed in SFE extracts although ergosterol and other lipid-like molecules were isolated. Dietary fibers were separated in the third extraction. Therefore, with this sequential extraction procedure bioactive compounds against CVDs can be selectively separated from a single batch of shiitake powder.

Keywords: Supercritical CO₂ extraction; Shiitake mushrooms; Cholesterol; Antioxidant activity, HMGCR inhibition.
Introduction

Cardiovascular diseases (CVDs) are still one of the leading causes of mortality in developed countries. CVDs are associated with multiple factors such as high triglycerides and low density lipoprotein cholesterol (LDLc) levels, LDL oxidation, increased platelet aggregation, hypertension and smoking.1,2

Nowadays, functional foods containing phytosterols or β-glucans are being commercialized to reduce low to moderate hypercholesterolemia because these compounds showed the ability of impairing exogenous cholesterol absorption. Hypotensive foods are also marketed containing specific peptides able to inhibit the angiotensin I converting enzyme (ACE)3 and many juices and functional drinks indicate that they contain many compounds with high antioxidant properties. These compounds might inhibit LDL oxidation, prevent atheroma plaque formation etc. contributing to reduce the risk of CVDs. However, a more effective novel food may be designed if all compounds are combined and, besides those inhibiting cholesterol absorption, other compounds are incorporated such as those reducing the risk of CVDs by different mechanisms of action.4

Edible mushrooms are natural sources of hypocholesterolemic compounds, such as fungal sterols (ergosterol and derivatives) and polysaccharides (β-glucans, chitins, etc.) that according to \textit{in vitro} experiments might inhibit cholesterol absorption and biosynthesis.4-7 Eritadenine (\textit{2(R),3(R)-dihydroxy-4-(9-adenyl) butanoic acid}) from \textit{Lentinula edodes} (shiitake mushrooms) was also able to lower cholesterol levels by acting as an inhibitor of the S-adenosyl-L-homocysteine hydrolase involved in the hepatic phospholipid metabolism.8,9 When lard was supplemented with extracts containing these compounds and fed to mice, they succeeded to avoid the increasing of cholesterol levels noticed in control mice fed only with lard.10
Moreover, water extracts obtained from edible mushrooms such as *Hypsizygus marmoreus* and *Lactarius camphorates* were also able to inhibit ACE because of their hypotensive peptides\(^{11,12}\) and lenthionine (1,2,3,5,6-pentahiepane), an organosulfur compound responsible for the characteristic flavor of shiitake mushrooms, inhibited platelet aggregation\(^{13}\). Water and hot water extracts from other mushroom species also showed interesting antioxidant activities that correlated to their levels of ergothioneine and phenolic compounds.\(^{14-16}\)

Several methods to isolate or extract each type of those previously mentioned compounds have been already reported. Different β-glucans types are usually isolated by alkali/acid treatments, hot water (120 °C, 20 min), microwave, pressurized solvent or ultrasound assisted extractions,\(^{17-19}\) chitins needed more drastic treatments\(^{20}\) and sterols were isolated by using mixtures of organic solvents or supercritical CO\(_2\) extractions.\(^{21}\) However, all these methods were optimized to use mushrooms as raw material and for each extraction, a new batch of powdered mushrooms should be used. In the present work, a sequential extraction method was designed to extract from the same batch of mushroom powder a few fractions enriched in different bioactive compounds against CVDs. The residue remaining after one extraction was used to extract other compounds at the following extraction step instead of using different batches of mushroom powder for each type of compound.

Materials and Methods

Biological material

Dry *Lentinula edodes* S. (Berkeley) mushrooms were obtained in a local market (Madrid, Spain). Fruiting bodies were ground as a whole or divided into caps and stipes until a fine powder was obtained and stored at -20 °C as indicated by Ramirez-Anguiano *et al.*, 2007\(^{16}\) (they were used to analyze separated tissues). Larger amounts of powdered shiitake
mushrooms were also purchased from Glucanfeed S.L. (La Rioja, Spain). Obtained powder showed a particle size lower than 0.5 mm, and moisture content lower than 5% and it was stored in darkness at -20 °C until further use.

Reagents

Solvents as hexane (95%), chloroform (HPLC grade), methanol (HLPC grade), acetonitrile (HPLC grade) were obtained from LAB-SCAN (Gliwice, Poland) and absolute ethanol, sodium carbonate (Na2CO3) and sulfuric acid (H2SO4) from Panreac (Barcelona, Spain). Potassium hydroxide (KOH), ascorbic acid, 2,6-Di-tert-butyl-p-cresol (BHT), bovine serum albumin (BSA), acetylacetone, p-dimethylaminebenzaldehyde, Trizma base, HCl (37%), trifluoroacetic acid (99%), phenol, Folin Ciocalteu’s phenol reagent, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), potassium persulfate, Angiotensin-I Converting Enzyme (ACE) (5 UN/mL), zinc chloride (ZnCl2) solution (0.1 M) as well as hexadecane, ergosterol (95%), D-glucose, D-glucosamine hydrochloride, gallic acid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), sodium phosphate dibasis dihydrate (NaH2PO4 · 2H2O), sodium phosphate monobasic sodium phosphate dibasic anhydre (Na2HPO4), potassium ferrycianide (K3[Fe(CN)6]), ferric chloride (FeCl3) and Trolox were purchased from Sigma-Aldrich Quimica (Madrid, Spain). CO2 was supplied by Air-Liquid, S.A. (Madrid, Spain). D-Eritadenine (90%) was acquired from Sy Synchem UG & Co. KG (Felsberg, Germany), lenthionine (80%) from Cymit (Barcelona, Spain) and N-(2-aminobenzoyl)glycil-4-nitro-l-phenylanalyl-l-proline (Abz-Gly-Phe(NO2)-Pro) from Bachem Feinchemikalien (Bubendorf, Switzerland). All other reagents and solvents were used of analytical grade.

Sequential extractions

A method to obtain different bioactive fractions from powdered shiitake mushrooms was optimized based on three successive extractions (Figure 1). Firstly (Step A), mushroom
powder was mixed with water (50 g/L) at room temperature (RT) and vigorously stirred during 1 minute. Afterwards, the mixture was centrifuged (7 min, 7000 rpm, 10°C) in a Heraus Multifuge 3SR+ centrifuge (Thermo Fisher Scientific, Madrid, Spain). Obtained supernatant (considered extract ExA) was separated from the residue (ReA) and both fractions were freeze dried in a LyoBeta 15 lyophilizer (Telstar, Madrid, Spain).

Secondly (Step B), freeze-dried ReA (253 g) was ground, sieved until particles size < 0.5 mm and submitted to supercritical fluid extraction (SFE). ReA was mixed with 1.9 kg of 5 mm diameter stainless steel spheres (a ratio 1:1 (v/v) extract:spheres) in a 2L extraction cell connected to a SFE pilot-scale plant (model SF2000, TharTechnology, Pittsburgh, PA, USA). Pressurized CO$_2$ was forced to reach supercritical state and injected in the loaded extraction cell. Extracted material was collected in two different separators (S1 and S2) each of 0.5 L capacity with independent control of temperature and pressure. The extraction vessel had a ratio of 5.5 height/diameter (a detailed explanation of the experimental device can be found at Garcia-Risco et al., 201122). Extraction was carried out at 35 MPa and 40 °C. Pressure of S1 and S2 was maintained at 10 and 6 MPa respectively and temperature in both of them was 40 °C. The CO$_2$ flow was set at 3.6 kg/h and during the total extraction time (3 h) and it was recirculated. Extracted compounds were precipitated in both separators and at the end of the extraction process, the fractions were dragged with ethanol and immediately submitted to concentration until dryness on a rotary vacuum evaporator. Dried extract (ExB) was stored at -20°C until further analysis and non-extracted residual material (ReB) was separated from steel spheres by sieving.

Finally (Step C), ReB (100 g/L) was submitted to hot water extraction (98 °C) in a 0.5 L flask during 1 hour under vigorous stirring and reflux using a glass steam condenser. The soluble (ExC) and non-soluble (ReC) fractions were separated by centrifugation (7 min, 7000 rpm, 10 °C) and freeze dried.
Carbohydrates determinations

The total carbohydrate content of shiitake mushroom samples or obtained extracts was determined by the phenol-sulphuric acid method adapted from Dubois et al. (1956). Briefly, samples (1 mg) were mixed with 1 mL of MilliQ water and stirred during 2 min. The mixtures (25 µL) were added to a 96-well plate, plus 25 µL of 5% phenol solution (w/v) and 125 µL of concentrated H₂SO₄. Afterwards, the plate was sealed and incubated in a water bath at 80 °C for 30 min. Samples absorbance was read using a M200 Plate Reader (Tecan, Mannedorf, Switzerland) at 595 nm. A standard curve of D-glucose (0.032 to 0.8 mg/mL) was used for quantification.

Chitin content was determined according to Smiderle et al. (2017). Firstly, samples were hydrolyzed with 6 M HCl at 100 °C for 2 h and adjusted to pH 10.0 after cooling down. Then, hydrolyzed samples (250 µL) were treated as described by Rementeria et al. (1991). Samples absorbance was measured at 530 nm using an Evolution 600 UV-vis (Thermo Fisher Scientific, Spain) spectrophotometer. A glucosamine hydrochloride standard curve was used for quantification.

The β-glucan content of the obtained mushroom samples and extracts (50 mg) was evaluated by a β-glucan determination kit specific for mushrooms and yeasts (Megazyme®, Biocom, Barcelona, Spain) following the instructions of the user’s manual.

Total phenol content and proteins or peptides determination

The total phenol concentration of samples (10 mg) was determined by the Folin-Ciocalteu method according to the procedure of Ramirez-Anguiano et al. (2007). Gallic acid was used as standard for quantification.
The total protein concentration of the samples (10 mg/mL) was determined using the Bradford method reagents (Sigma-Aldrich, Madrid, Spain) according to the Instruction Manual. To determine the amount of peptides, extracts were solubilized in water (100 mg/mL) and submitted to centrifugation (14000 rpm, 30 min) using Amicon Ultra filter devices with Ultracel 3K membrane (Millipore, Billerica, USA) obtaining a filtrate (< 3 kDa) and a concentrate (> 3 kDa). The latter fraction was submitted to a second centrifugation (14000 rpm, 20 min) using Nanosep centrifugal devices with Omega 10K membrane (Pall Life Sciences, New York, USA), obtaining a filtrate (fraction with MW between 3 and 10 kDa) and a concentrate (> 10 kDa). The obtained fractions were freeze dried and mixed with the Bradford reagent as described above. BSA was used as standard (0.0125 to 0.5 mg/mL) for protein quantification.

Eritadenine and lenthionine determination by HPLC-DAD

Eritadenine was extracted from the samples and analyzed following the procedure of Afrin et al. (2016)\(^2\) with modifications. Briefly, samples (1 g) were mixed with 10 mL of 60% ethanol (v/v) and stirred for 2 min. The mixture was centrifugated (15 min, 7000 rpm, 10 °C) and the supernatant was collected. Afterwards, 10 mL of 60% ethanol (v/v) was added for a second extraction and both supernatants were pooled together and submitted to vacuum filtration. The filtrate was concentrated on a rotary vacuum extractor at 60 °C until dryness. Identification and quantification of eritadenine were carried out using a C18 Spherisorb ODS2 4 x 250 mm analytical column with a 5 µm particle size (Waters, Missisagua, Ontario, Canada) coupled to an HPLC system (Pro-Star 330, Varian, Madrid, Spain) with PDA detector (Pro-Star 363 module, Varian, Madrid, Spain). Samples were dissolved in mobile phase (5 mg/mL) and they were injected (10 µL) and developed under a constant flow (0.5 mL/min) and an isocratic mobile phase of water:acetonitrile (98:2, v/v 1% TFA). Eritadenine
was quantified at 260 nm using a commercial standard. The compound eluted at 11.6 min and showed the characteristic eritadenine UV-spectrum.

Lenthionine determination was carried out according to the procedure of Hiraide et al. (2010) with slight modifications. Basically, samples (50 mg) were mixed with 1 mL of 0.2 M Tris-HCl buffer (pH 8.0) and stirred for 1 h. Afterwards, methanol (0.5 mL) was added, stirred for 2 min and centrifuged (14000 rpm 5 min). The obtained supernatant was collected and the residue submitted to extraction twice. Supernatants were pooled together, diluted with 2.5 mL MilliQ water and filtered using a syringe through a 0.45 µm pore size filter. The filtrate was applied to an ODS cartridge (Waters, Missisagua, Ontario, Canada) preactivated with methanol following manufacturer’s instructions. The cartridge was washed with 1 mL 30% methanol (v/v) and lenthionine was eluted with 1 mL 65% methanol (v/v). Obtained eluate (50 µL) was injected into an HPLC-DAD system (the same column and equipment than above described) and developed using an isocratic mobile phase (65% methanol v/v), a constant flow (0.7 mL/min) and temperature (45 °C). Lenthionine (retention time 10.4 min) was quantified at 230 nm and identified using a lenthionine commercial standard.

Ergosterol determination by GC-MS-FID

Fungal sterols from samples were evaluated following the procedure described by Gil-Ramirez et al. (2013). The unsaponified fractions obtained (6 mg/mL) were injected into an Agilent HP-5ms capillary column (30 m x 0.25 mm i.d. and 0.25 µm phase thickness). The column was connected to a 7890A System gas chromatograph (Agilent Technologies, Santa Clara, CA, USA), comprising a split/splitless injector, an electronic pressure control, a G4513A autoinjector, a 5975C triple-axis mass spectrometer detector and a GC-MS Solution software. The injector and detector conditions as well as the column temperature program
were those described by Gil-Ramirez et al. (2013). Ergosterol was used as standard and hexadecane (10% v/v) as internal standard for quantification.

Antioxidant activities

Mushroom powder and obtained extracts were dissolved in water (0.02 to 0.5 mg/mL) and assayed for their ABTS•⁺ scavenging activity assay. ABTS radical was chemically generated using potassium persulfate and ABTS•⁺ scavenging activity was analyzed spectrophotometrically according to Re et al. (1999), measuring changes in absorbance (734 nm) at several concentrations after 15 minutes of incubation at room temperature in darkness. Similarly, samples were also dissolved in methanol (0.02 to 0.5 mg/mL) and mixed with DPPH• (76 µM) to determine their scavenging capacity according to Mau et al. (2001). Absorbance at 517 nm was recorded at several concentrations after 15 min incubation at room temperature in darkness. For both radicals the IC₅₀ was established using the linear correlation obtained with increasing sample concentrations and compared with Trolox to express the results as their TEAC values (trolox equivalent antioxidant capacity).

The ferric ion reducing power of the extracts was evaluated according to the method of Oyaizu (1986). Samples were dissolved in 200 mM sodium phosphate buffer (0.1 to 10 mg/mL) and treated as described by Mau et al. (2005). Absorbance increase was recorded at 700 nm using several concentrations to estimate their EC₅₀. Afterwards, it was expressed as TEAC values to be able to compare with the other antioxidant activities.

HMGCR inhibitory activity

The obtained extracts were solubilized in water, ethanol:water (1:4) or assay buffer (50 mg/mL) and applied (20 µL) into a 96-wells plate. Their inhibitory activity was measured using the commercial HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) activity
assay (Sigma-Aldrich, Madrid, Spain) according to the manufacturer’s instructions by monitoring their absorbance change (340 nm) at 37 °C using a 96-wells microplate reader BioTek Sinergy HT (BioTek, Winooski, USA). Pravastatin was utilized as a control for positive inhibition.

ACE inhibitory activity

The Angiotensin-I Converting Enzyme (ACE) inhibitory activity of the obtained extracts was evaluated using the fluorimetric method described by Sentandreu & Toldra (2006) with slight modifications. Basically, 40 µL of different samples dilutions were added to a 96-wells plate, followed by addition of 160 µL of Abz-Gly-Phe(NO2)-Pro (0.45 mM) and 40 µL of ACE working solution (0.04 U/mL). The plate was incubated during 1 h at 37 °C measuring the generated fluorescence with excitation and emission wavelengths respectively 355 and 405 nm. Milli Q water was utilized as a control for negative inhibition.

Statistical analysis

Differences were evaluated at a 95 % confidence level (p ≤ 0.05) using a one-way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison test. Statistical analysis was performed using GraphPad Prism version 5.01 (GraphPad Software, San Diego, CA, USA). Correlation between different variables was evaluated by computing Pearson correlation coefficient and determination coefficient (p ≤ 0.05).

Results and discussion

Selection of the starting material

The distribution of compounds with beneficial activities against CVDs within the Lentinula edodes fruiting body was investigated as a preliminary study to elucidate whether it was more convenient to use the complete mushroom or perhaps only caps or stipes as raw
material for the extractions. However, when the amount of the main bioactive compounds was determined (Table 1), no significant differences were noticed between tissues. They contained approx. 40% (w/w) carbohydrates and most of them were β-glucans since chitins were found in lower concentrations. Ergosterol and the other bioactive compounds showed levels similar to previous studies16,25,32 being lenthionine the compound found in the lowest concentration (0.15 mg/g) but also similar to other publications13,26.

The lower part of \textit{L. edodes} stipes (the one is in contact with the cultivation substrate) is considered as a by-product and it is usually discarded during harvesting and not commercialized. However, the stipes showed similar concentrations than the complete fruiting body not only of the bioactive molecules but also of other nutrients such as proteins or carbohydrates. This observation indicated that the wasted stipes could be used as source of bioactive compounds as well as the complete fruiting bodies being an alternative for valorization of these wastes. Nevertheless, since the fruiting bodies were more easily available in larger concentrations the following experiments were carried out using the complete mushrooms.

\textit{Sequential extraction yields}

The sequential extraction method was designed to optimize the use of shiitake mushrooms or their by-products (as they showed similar composition) as material to extract bioactive compounds. The idea was to consecutively use the residue of one extraction to carry out the next one in order to maximize the number of compounds that could be selectively isolated in each step avoiding the use of larger amounts of mushroom powder for independent extractions.

Water extraction (at room temperature) was selected as first extraction step because some of the bioactive compounds that could be solubilized in this medium were not
thermostable (see later for details). Then, the lipid fraction could be extracted with SFE using moderate temperatures (as second step) and in the third step hot water could be used to extract heat resistant molecules such as dietary fibers improving the intestinal bioavailability (for specific β-glucans) and making them more accessible for colonic microbiota.

With the first extraction, water extracted 37 g from 100 g (w/w) of the mushroom powder (Figure 2). This method was previously used to obtain water-soluble polysaccharides and other compounds of lower molecular weight. The lowest yield (1.1%) was obtained with supercritical CO$_2$ extraction of the generated residue (1.7% of ReA) since it mostly extracted lipophilic compounds (ExB) and mushrooms have a low lipid content. Moreover, supercritical CO$_2$ exhibit a high selectivity enabling high recoveries of specific fatty acids, sterols and derivatives from fungal or other matrices. Nevertheless, the obtained yield was similar to those described in previous publications where SFE extractions were carried out directly from fruiting bodies, indicating that SFE extractions could be also carried out using the residues obtained after the first extraction step. The last step, a hot water extraction (98 °C), generated a fraction (ExC) containing 20 % (w/w) of ReB (12 % of the initial mushroom powder) leaving still a large insoluble fraction (ReC) encompassing 49.5% of the starting material. This procedure is usually utilized to extract certain polysaccharides from the rest of non-soluble dietary fibres that remain in the residual fraction.

Distribution of bioactive compounds within the obtained fractions

The levels of the different fungal polysaccharides were evaluated in all the obtained fractions. Results indicated that the water insoluble fractions contained higher levels of total carbohydrates, β-glucans and chitins than water-soluble or SFE fractions (Figure 3a). The mushroom powder contained 40.7 % (w/w) total carbohydrates where 29.3 % of them were
β-glucans and 6.0 % chitins suggesting that the remaining low percentage (approx. 5 %) should include oligosaccharides, sugars and perhaps small amounts of α-glucans or other heterosaccharides. Total carbohydrates values were in concordance with the literature. β-glucans and chitins were slightly higher than some reports but in the same range than others. Differences might be due to the different methodologies utilized for their determination.

The water extract (ExA) contained a lower content of total carbohydrates and more than half of them were probably sugars and oligomers since they are easily solubilized in water and their β-glucan content was also lower than in the mushroom powder (10.8 %). Although in low amounts, chitins were also detected but they might be degradation products or low molecular weight derivatives from chitins since the latter compounds are completely insoluble in water. These derivatives were also noticed in other reports and they might be involved, together with the water soluble β-glucans, in the interesting biological activities noticed in mushroom water extracts. Water soluble β-glucans, α-glucans and fucomannogalactans were pointed as compounds potentially involved in the HMG-CoA reductase inhibitory activity noticed in vitro for water soluble extracts. Moreover, chitin oligomers (water-soluble low molecular weight chitin (LMWC) and chitooligosaccharides (COs) derivatives) could be involved in the hypocholesterolemic properties noticed for these extracts.

ReA and ReB showed a very similar carbohydrates profile including approx. 39-40% β-glucans and 7-8% chitins indicating that the supercritical CO$_2$ extraction did not significantly influenced the polysaccharide composition of the residue obtained after water extraction and none of them was extracted.

Alkaline/acid or hot water extractions are usually required to achieve fractions with high polysaccharides yields. The hot water extraction did not succeed to separate β-glucans
from chitins. The β-glucans extracted with hot water accounted for approx. less than half of the total carbohydrates noticed in ExC. As probably most of the oligosaccharides and monosaccharides were previously extracted in the ExA, the rest of carbohydrate content could be due to α-glucans or other heteropolysaccharides characteristic from *L. edodes* that were also extracted. Shiitake β-glucans such as lentinan, are usually isolated using hot water extractions although their yields could be enhanced if alkaline media are used. However, alkalis were not recommended since they interfere with the lentinan 3D structure, essential for its biological activities.\(^{49}\) Hot water soluble polysaccharides were suggested to decrease the oxidative damage related to hypercholesterolemia and modulating immune system.\(^{50-52}\)

Furthermore, approx. 2/3 of the carbohydrates present in the residue ReC were β-glucans, and chitins (10.2 % w/w) that remained being part of the insoluble fractions. They were not extracted neither with cold/hot water or supercritical CO\(_2\) since their concentrations in all the analyzed residues were almost the same. Their complex-forming capacity and polymeric structure are responsible for their extremely low solubility in many simple solvents.\(^{53}\) However, this characteristic confers them the ability to act as dietary fibres remaining undigested in the intestine and acting on the colonic flora as prebiotic or as hypocholesterolemic fibers.\(^{48,54}\)

The total protein content measured in shiitake mushroom was in the range of previously reported studies since they might change from approx. 13 to 23 % depending on the cultivation conditions, developmental stage or commercial strain.\(^{55-57}\) The highest protein content (Figure 3a) was obtained in ExA, indicating that a considerable amount of Shiitake proteins might be easily extracted with cold water, probably because free proteins, peptides and amino acid derivatives are included in this fraction. Indeed, in this fraction higher amounts of small proteins and peptides (8.57 mg/g) (with molecular weight (MW) between 10 and 3 kDa) than larger proteins (5.88 mg/g) (MW > 10 kDa) were noticed. It also
contained a low amount of peptides and N-containing compounds with MW < 3kDa (0.83 mg/g). But, proteins might be also bound to polysaccharides as glycoproteins or proteoglycans impairing their extraction therefore, other proteins were found in the residues. The high pressure (and/or mild temperature) utilized during SFE extraction seemed to partially denature proteins since ReB protein levels were not the sum of those noticed in the fractions from the following extraction step (Table 2). Nevertheless, the ExC obtained still contained high protein levels and only low amounts remained in ReC (Figure 3a) suggesting that hot water enhanced extraction of many more proteins or different ones from those found in ExA. Nevertheless, the temperature selected might have also influenced proteins structure generating breaking down products from large (5.4 mg/g MW>10 kDa) and smaller proteins particularly those with MW between 10 to 3 kDa since the ExC contained lower content (1.84 mg/g) than ExA and the fraction with lower MW contained more peptides (1.74 mg/g MW <3 kDa).

Eritadenine is a water-soluble alkaloid therefore it was mainly extracted with cold water when compared with the amount noticed in the mushroom powder (Table 2). The minimal amount that remained in the residues was then almost completely extracted with hot water. These results also suggested that eritadenine was resistant to high temperatures and its extraction yield could be enhanced by increasing the extraction temperature. Eritadenine was 2.2 folds more concentrated in the ExA than in the shiitake powder (Figure 3b), amounts that were only slightly lower than those described in other studies obtained with more complex extraction procedures.25,58

Lenthionine was detected in shiitake powder at similar levels than previously reported.13,26 It was also noticed in higher concentrations in the ExA extracts (Figure 3b). Afterwards, only traces remained in ReA but probably the slight increase of temperature together with the high pressure utilized for SFE extraction was sufficient to degrade it being undetected in
the following extracted fractions. Lenthionine levels were drastically reduced when extraction temperature was higher than 80 °C.59,60 Thus, apparently pressurized extractions made the compound more susceptible to degradation.

Ergosterol was mainly extracted with SFE (Table 2) obtaining a highly concentrated ExB extract (88.7 mg/g) (Figure 3c). This result was not surprising since previous works indicated that this lipophilic constituent that can be easily extracted with supercritical CO\textsubscript{2}.21,61,62 Ergosterol in ExB represented 72 % of total sterols since the extract also included other derivatives such as ergosta-7,22-dienol (18.5 mg/g), fungisterol (15.3 mg/g) and ergosta-5,7-dienol (1.5 mg/g). The supercritical extraction was carried out using steel spheres instead of sand as carrier material to facilitate the subsequent ReB separation for further processing however, ergosterol yields were only slightly lower than usually obtained in similar extractions using sea sand (8.9 and 11.8 % repectively).

Total phenolic compounds were mostly found in the water extracts. Obtained fractions (ExA and ExC) contained respect. 3.0 and 2.5 fold more phenols than initially detected in the mushroom powder. The second water extraction complemented the first one leaving in the last residue a very low amount of these compounds (Figure 3c). These results were in concordance with previous studies reporting that water achieved higher recoveries of total phenolic compounds in comparison with organic solvents such as methanol.16

\textit{Biological activities of the obtained fractions}

The antioxidant activity of the obtained fractions was evaluated as their ABTS** and DPPH* scavenging capacities and as their ferric ion reducing power. Results indicated that those fractions containing high concentrations of proteins, eritadenine and phenolic compounds showed high antioxidant activities (Figure 4). Their levels were more than double of the initial mushroom powder. ExA and ExC were the fractions with the lowest IC\textsubscript{50} values.
respectively 0.05 and 0.06 mg/mL when using ABTS’• and 0.15 and 0.17 mg/mL when using DPPH’). The use of different solvents might also influence the obtained results since less polar compounds were extracted when methanol was used to carry out the DPPH’ assay. The shiitake and ExA antioxidant activities were in concordance with previous studies16, 63 where it was indicated that their antioxidant activities as radical scavengers were mainly due to the phenolic content and ergothioneine14. Similarly, the antioxidant activities noticed in the extracts also showed high correlations with their phenolic concentration (with $R^2 = 0.99$ for ABTS’• and reducing power assays and 0.97 for DPPH’ assays).

Cholesterol lowering in serum can be achieved via several mechanisms but mainly by impairing of exogenous cholesterol absorption or inhibiting endogenous cholesterol biosynthesis. The hypocholesterolemic activity of the obtained fractions was evaluated as their ability to inhibit the key enzyme of the cholesterol biosynthetic pathway (HMGCR) since the capacity to impair cholesterol absorption was already evaluated elsewhere for similar extracts containing high ergosterol levels (as ExB) and high β-glucans and dietary fibers contents (as respect. ExC and ReC).7,17 The initial shiitake powder showed a remarkable HMGCR inhibitory activity acting as pravastatin used as control (Figure 5). ExA showed similar inhibitory activity (98 %) than the mushroom indicating that the responsible compounds might be water soluble. However, the inhibitors were not completely separated with a single cold water extraction since ReA and ReB were still able to lower HMGCR activity (respectively 86 and 80 %). Perhaps, to further improve the extraction yield of HMGCR inhibitors serial extractions with cold water could be carried out although this might involve dilution of the other bioactive compounds. Increase of the water temperature for
extraction is not encouraged because after heat application, the inhibitory activity of the obtained fractions was drastically reduced to 31 and 24 % for respect. ExC and ReC, suggesting that the compounds responsible for the inhibition were thermolabile. This indication was also noticed in previous studies. The ExB extract was also able to inhibit 59 % of the enzyme activity indicating that perhaps other compounds soluble in supercritical CO₂ (more lipophilic molecules) were also interfering with the HMGCR activity as was also previously noticed by Gil-Ramirez et al. (2013) for SFE extracts obtained from *Agaricus bisporus*.

The hypotensive activity of the obtained fractions was evaluated as their capacity to inhibit the angiotensin converting enzyme. However, since it was previously reported that certain peptides were responsible compounds a more detailed study was carried out on the two extracts including larger amounts of proteins (ExA and ExC) by dividing them in 3 fractions of different molecular weights. The protein contents of fractions obtained from ExA were higher than those from ExC and within the fractions, lower molecular weight fractions contained less proteins, peptides and other N-containing compounds (Table 3). Fractions <10 kDa showed higher IC₅₀ than higher MW fractions ranging from 0.45 mg/mL for the MW>10 kDa fraction from ExA up to 1.63 mg/mL for the MW<3 kDa fraction from ExC. These values were lower than those reported in similar studies where other mushrooms such as *Hypsyzigus marmoreus* (6.4 mg/mL) or mycelia extracts from *Lactarius camphorates* (1.6 mg/mL) were analyzed. A significant correlation between protein content and ACE inhibitory activity was found however, when IC₅₀ values were expressed taking into account the amount of proteins detected, fractions with lower molecular weight displayed the largest inhibitory capacity. Therefore, these results were in concordance with previous studies carried out on close related species such as *Lentinula polychrous* where small peptides were pointed as responsible compounds of their hypotensive properties.
Conclusions

The present study showed that bioactive compounds can be differentially extracted from *Lentinula edodes* fruiting bodies or by-products using a sequential extraction method. Extracts obtained with cold water (ExA) contained high levels of water soluble β-glucans, chitooligosaccharides and other carbohydrates that were pointed as potential responsible for the high HMGCR inhibitory activity showed in this extract. It also contained eritadenine with cholesterol lowering properties, lenthionine that can inhibit platelet aggregation, peptides with ACE inhibitory capacity and antioxidant phenols. Then, the residue after this extraction can be submitted to supercritical CO$_2$ extraction to obtain a fungal sterol-enriched fraction (ExB) with the ability of displacing cholesterol from dietary mixed micelles formed after digestion impairing its absorption. Afterwards, the remaining material can be submitted to hot water extraction yielding an extract (ExC) containing β-glucans with bile acid-binding capacities (able to interfere cholesterol absorption) and similar solubility than lentinan and a residue (ReC) including dietary fibres such as β-glucans and chitins that apparently, according to previous studies, modulate human microbiota reducing the risk of CVDs. Therefore, many biologically active compounds can be separated within different fractions from the same batch of shiitake mushrooms if the described methods are sequentially applied. Then, the obtained fractions will contain higher concentrations of the bioactive compounds than the mushroom itself and they will be transformed into more bioaccessible forms (*i.e.* dietary fibers will be more easily fermented by colonic microbiota activating hypocholesterolemic mechanisms or absorbed by M cells in the intestine).

Acknowledgements
The research was supported by AGL2014-56211 national R+D program from the Spanish Ministry of Science and Innovation and S2013/ABI-2728 regional program from the Community of Madrid (Spain).

Conflict of interest: None.

Notation

ACE = Angiotensin-I Converting Enzyme
CVD = Cardiovascular disease
HMGCR = 3-hydroxy-3-methylglutaryl coenzyme A reductase
SFE = Supercritical fluid extraction
TEAC = Trolox equivalent antioxidant capacity

Literature cited

Table 1. Total carbohydrates (TC), β-glucans (βG), chitins (CH), total proteins (PR), eritadenine (EA), lenthionine (LT), ergosterol (ER) and total phenolic compounds (PH) levels of shiitake fruiting bodies and two separated tissues (indicated values are w/w).

<table>
<thead>
<tr>
<th></th>
<th>TC (g/100g)</th>
<th>βG (g/100g)</th>
<th>CH (g/100g)</th>
<th>PR (g/100g)</th>
<th>EA (mg/g)</th>
<th>LT (mg/g)</th>
<th>ER (mg/g)</th>
<th>PH (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>40.67±0.65</td>
<td>29.32±1.04</td>
<td>6.03±0.29</td>
<td>13.42±0.22</td>
<td>1.43±0.13</td>
<td>0.15±0.01</td>
<td>2.40±0.02</td>
<td>9.27±0.05</td>
</tr>
<tr>
<td>Cap</td>
<td>39.72±2.42</td>
<td>29.89±1.55</td>
<td>5.96±0.87</td>
<td>13.81±0.12</td>
<td>1.13±0.01</td>
<td>0.13±0.01</td>
<td>2.24±0.04</td>
<td>9.68±0.50</td>
</tr>
<tr>
<td>Stipe</td>
<td>42.37±1.42</td>
<td>32.01±1.72</td>
<td>6.28±1.09</td>
<td>12.90±0.08</td>
<td>1.12±0.11</td>
<td>0.11±0.01</td>
<td>2.32±0.05</td>
<td>8.95±0.43</td>
</tr>
</tbody>
</table>

No significant differences (*P* ≤ 0.05) were found between different samples for the same component.
Table 2: Distribution of bioactive compounds within the obtained fractions expressed as percentage of initial dry mushroom powder (taking into consideration the obtained yields).

<table>
<thead>
<tr>
<th></th>
<th>TC (g/100 g)</th>
<th>βG (g/100 g)</th>
<th>CH (g/100 g)</th>
<th>PR (g/100g SP)</th>
<th>EA (mg/g)</th>
<th>LT (mg/g)</th>
<th>ER (mg/g)</th>
<th>PH (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>40.67±0.34<sup>a</sup></td>
<td>29.32±1.04<sup>a</sup></td>
<td>6.03±0.29<sup>a</sup></td>
<td>13.42±0.22<sup>a</sup></td>
<td>1.43±0.13<sup>a</sup></td>
<td>0.15±0.01<sup>a</sup></td>
<td>2.40±0.02<sup>a</sup></td>
<td>9.27±0.05<sup>b</sup></td>
</tr>
<tr>
<td>ExA</td>
<td>11.46±0.37<sup>d</sup></td>
<td>5.10±0.09<sup>d</sup></td>
<td>1.58±0.08<sup>d</sup></td>
<td>5.86±0.49<sup>b</sup></td>
<td>1.46±0.14<sup>a</sup></td>
<td>0.09±0.01<sup>b</sup></td>
<td>0.03±0.01<sup>c</sup></td>
<td>10.35±0.01<sup>a</sup></td>
</tr>
<tr>
<td>ReA</td>
<td>33.84±1.80<sup>b</sup></td>
<td>20.32±0.73<sup>b</sup></td>
<td>4.11±0.26<sup>b</sup></td>
<td>4.53±0.01<sup>c</sup></td>
<td>0.32±0.01<sup>bc</sup></td>
<td>0.01±0.01<sup>c</sup></td>
<td>2.12±0.11<sup>b</sup></td>
<td>4.84±0.20<sup>c</sup></td>
</tr>
<tr>
<td>ExB</td>
<td>n.d.<sup>e</sup></td>
<td>n.d.<sup>f</sup></td>
<td>n.d.<sup>f</sup></td>
<td>n.d.<sup>e</sup></td>
<td>n.d.<sup>c</sup></td>
<td>n.d.<sup>c</sup></td>
<td>0.79±0.01<sup>d</sup></td>
<td>0.04±0.00<sup>e</sup></td>
</tr>
<tr>
<td>ReB</td>
<td>34.07±0.94<sup>b</sup></td>
<td>21.17±0.24<sup>b</sup></td>
<td>3.66±0.10<sup>b</sup></td>
<td>4.36±0.04<sup>c</sup></td>
<td>0.41±0.03<sup>bc</sup></td>
<td>n.d.<sup>c</sup></td>
<td>1.08±0.01<sup>c</sup></td>
<td>4.33±0.10<sup>c</sup></td>
</tr>
<tr>
<td>ExC</td>
<td>9.06±0.31<sup>d</sup></td>
<td>3.53±0.65<sup>e</sup></td>
<td>0.86±0.03<sup>e</sup></td>
<td>1.63±0.01<sup>d</sup></td>
<td>0.57±0.03<sup>b</sup></td>
<td>n.d.<sup>c</sup></td>
<td>0.06±0.01<sup>e</sup></td>
<td>2.91±0.01<sup>d</sup></td>
</tr>
<tr>
<td>ReC</td>
<td>22.14±1.05<sup>c</sup></td>
<td>14.38±0.15<sup>c</sup></td>
<td>2.29±0.06<sup>c</sup></td>
<td>2.00±0.04<sup>d</sup></td>
<td>0.17±0.00<sup>c</sup></td>
<td>n.d.<sup>c</sup></td>
<td>1.01±0.11<sup>cd</sup></td>
<td>2.85±0.33<sup>d</sup></td>
</tr>
</tbody>
</table>

n.d. = not detected

^{a-f}Different letters denote significant differences (P ≤ 0.05) between different samples for the same component.
Table 3: Total protein content (PR) and ACE inhibitory activity (IC$_{50}$) of the different molecular weight fractions obtained from ExA and ExC.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Fraction</th>
<th>PR (mg/g fraction)</th>
<th>IC$_{50}$ (mg fraction/mL)</th>
<th>IC$_{50}$/PR (mg protein/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExA</td>
<td>MW >10 kDa</td>
<td>391.93±2.28a</td>
<td>0.45±0.01c</td>
<td>0.18±0.03ab</td>
</tr>
<tr>
<td></td>
<td>10 > MW > 3 kDa</td>
<td>237.97±3.34b</td>
<td>0.91±0.08bc</td>
<td>0.22±0.02a</td>
</tr>
<tr>
<td></td>
<td>MW < 3 kDa</td>
<td>18.10±1.28cf</td>
<td>1.06±0.09bc</td>
<td>0.02±0.00c</td>
</tr>
<tr>
<td>ExC</td>
<td>MW >10 kDa</td>
<td>192.81±3.28c</td>
<td>0.74±0.07c</td>
<td>0.14±0.00b</td>
</tr>
<tr>
<td></td>
<td>10 > MW > 3 kDa</td>
<td>87.77±2.28d</td>
<td>1.21±0.09b</td>
<td>0.11±0.01c</td>
</tr>
<tr>
<td></td>
<td>MW < 3 kDa</td>
<td>35.49±1.09e</td>
<td>1.63±0.15a</td>
<td>0.06±0.00c</td>
</tr>
</tbody>
</table>

$^{a-f}$Different letters denote significant differences ($P \leq 0.05$) between different samples for the same column.
Figure 1. Outline of the sequential extraction method utilized to obtain different extracts from shiitake mushrooms.

Figure 2. Extraction yields obtained after each step of the sequential extraction method expressed as percentage (w/w) referred to the initial amount of shiitake powder (SP). Different letters (a-f) showed statistical significance ($P \leq 0.05$) between different extractions.

Figure 3. Distribution of bioactive compounds within the extracts obtained from shiitake powder expressed as concentrations within each fraction. Levels of a) total carbohydrates, β-glucans, chitins and proteins, b) eritadenine and lenthionine and c) ergosterol and total phenolic compounds. Different letters (a-f) showed statistical significance ($P \leq 0.05$) between different samples for the same compound.

Figure 4: ABTS$^{•-}$ and DPPH$^{•}$ scavenging capacity and ferric ion reducing power of shiitake powder and the fractions obtained after the sequential extraction method expressed as their TEAC value. Different letters (a-f) showed statistical significance ($P \leq 0.05$) between different samples.

Figure 5: HMGCR inhibitory activity of shiitake powder and the fractions obtained after the sequential extraction method. Different letters (a-d) showed statistical significance ($P \leq 0.05$) between different samples.
Lentinula edodes

Dried powder

- Water extraction
 - Stirring 1 min
 - + centrifugation 7 min 7000 rpm 10 °C

ExA

+ lyophilization

ReA

+ lyophilization

- Supercritical CO₂ extraction
 - 35 MPa 40 °C 3 h

ExB

ReB

- Hot water extraction
 - Stirring under reflux 1 h
 - + centrifugation 7 min 7000 rpm 10 °C

ExC

+ lyophilization

ReC

+ lyophilization
Figure 2: Extraction yield (% w/w) for different samples.
Figure 3:

a)

b)
Figure 4:

- ABTS⁺⁺ assay
- DPPH⁻⁻ assay
- Reducing power assay

TEAC value (µmol Trolox/g)

SP ExA ReA ExB ReB ExC ReC

c a d f d e a d d b e
Figure 5:

![HMGCR inhibitory activity (%) graph](image-url)