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Abstract 33	
Studies have described the presence of different population units of blue jack mackerel, 34	
Trachurus picturatus, in the NE Atlantic region. However, the hypothesis of several 35	
populations has been subtly questioned due to the high similarity in the otolith shape among 36	
some regions. It suggests the possibility of migrations processes connecting them, especially 37	
between Madeira, the Canary Islands and the African coast, being the Canary Islands the region 38	
with higher potential of mixing due to the oceanographic conditions. In order to explore this 39	
hypothesis, we quantified the phenotypic variability in the otolith contour of the blue jack 40	
mackerel from Canary Islands using wavelets as mathematical descriptor. Our findings revealed 41	
the presence of three otolith phenotypes (M1, M2 and M3) in similar proportions. They were 42	
not linked to sex, age and size, but showed temporal variations associated with spawning, 43	
recruitment and feeding seasons. The best model to explain the population structure of T. 44	
picturatus in the Canary waters was based on local migration triangles and the ‘contingent 45	
theory’, where migrants and residents compose the population. In addition, we estimated 46	
different somatic growth parameters linked to these phenotypes. These results suggest a 47	
complex population structure in the region with possibility of connectivity with the closest 48	
populations inhabiting the Madeira archipelago and the African coast. However, future studies 49	
are necessary including the whole Atlantic distribution of the species, with special attention to 50	
the seasonal variations in the frequency of these phenotypes to clarify the intraspecific 51	
polymorphism and the migratory processes. 52	
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1. Introduction 64	
The stock identification has become a crucial topic for fishery science and management 65	

programs (Cadrin et al., 2014). A broad spectrum of techniques has been used for this purpose, 66	
tending to a holistic approach for increasing the likelihood of success (Begg and Waldman, 67	
1999; Higgins et al., 2010; Marengo et al., 2017). These techniques have included the 68	
estimation of life-history parameters (e.g., growth, mortality, spawning) (Begg et al., 1999; 69	
Barrios et al., 2017), the identification and analysis of natural tags (e.g., body and otolith 70	
morphometrics, genetics, parasites, otolith chemical composition) (Thorrold et al., 1997; 71	
Campana et al., 2000; Sturrock et al., 2012; Tanner et al., 2015), and the use of internal and 72	
external markers (i.e., electronic tags, chemical marking) (Nielsen, 1992; Jacobsen and Hansen, 73	
2004; Jepsen et al., 2015). The combination of genetic and biological characteristics is currently 74	
the most recommended approach (Cadrin et al., 2014), although the identification of 75	
morphological phenotypes is the most used (Campana and Casselman, 1993; Cardinale et al., 76	
2004; Turan, 2006; Stransky et al., 2008; Bacha et al., 2014), likely because it is relatively easy, 77	
inexpensive and time-efficient tool.  78	

In general, phenotypic analyses are often performed comparing the otolith (Campana and 79	
Casselman, 1993; Cardinale et al., 2004; Stransky et al., 2008) and body shapes (Turan, 2006; 80	
Vasconcelos et al., 2017; Pérez-Quiñonez et al., 2018). The great advantage of otolith is the 81	
continuous incorporation of material and no reabsorption (Gauldie and Nelson, 1990), whereas 82	
the plasticity of fish body shape can be reversible through life (Meyer, 1987; Allendorf and 83	
Hard, 2009). In both cases, the phenotypic variability reflects an individual/population response 84	
to different environmental conditions (e.g., temperature, salinity, food availability, substrate 85	
type, depth) (Cardinale et al., 2004; Mérigot et al., 2007; Vignon and Morat, 2010) providing 86	
insight into events that influence life history of fishes (Campana, 2005; Thorrold et al., 2007; 87	
Vignon, 2015). Nevertheless, phenotypic variability has a strong genetic component very 88	
dependent on the connectivity among populations (Swain and Foote, 1999; Hüssy, 2008; 89	
Reichenbacher et al., 2009; Vignon and Morat, 2010; Mahé et al., 2016). The most studies have 90	
been mainly focused on the quantitative analysis of populations defined at a priori spatial scale 91	
(local or regional), and the description of the average phenotype (Tuset et al., 2003; Javor et 92	
al., 2011; Ider et al., 2017; Vasconcelos et al., 2018). This approach assumes that genetic 93	
expression of continuous traits (as the morphometry and shape of otolith and fish body) results 94	
in phenotypes following a unimodal distribution in each locality (Naish and Hard, 2008). 95	
However, a polymorphism may exist induced by fishing pressure (Kuparinen and Merilä, 2007; 96	
Allendorf and Hard, 2009; Enberg et al., 2009, 2010; Hidalgo et al., 2014; Ward et al., 2016), 97	
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environmental influences (Pigliucci, 2005; Ramler et al., 2014; Réveillac et al., 2015), simply 98	
due to a natural process as feeding efficiency (Skulason et al., 1989; Schluter, 1995; Chavarie 99	
et al., 2016), or different somatic growth rates within population (Rodgveller et al., 2017). 100	

The blue jack mackerel, Trachurus picturatus (Bowdich, 1825), is a medium pelagic species 101	
with high economic value reaching depths beyond 500 m (Denda et al., 2017) and inhabiting 102	
the central-eastern Atlantic waters, from the Bay of Biscay (France) southward to Mauritania 103	
(Jurado-Ruzafa et al., 2011, 2019) including Azores, Madeira and the Canary Islands 104	
(Macaronesian archipelagos), and eastward into the Mediterranean Sea (Smith-Vaniz and 105	
Berry, 1981). Previous studies based on genetic (Zenkin and Ryazantseva, 1987), parasitology 106	
(Costa et al., 2012, 2013; ICES, 2013, Vasconcelos et al., 2017), otolith microchemistry 107	
(Moreira et al., 2018), and otolith and fish-body shape analysis (Shaboneyev and Ryazantseva, 108	
1977; Vasconcelos et al., 2018; Moreira et al., 2019a) had concluded that the insular and 109	
continental populations were different. However, a recent study has revealed the lack of genetic 110	
differentiation between the whole Atlantic and Mediterranean populations (Moreira et al., 111	
2019b). In fact, some authors had already suggested the possibility of mixed stocks (Moreira et 112	
al., 2018, 2019a; Vasconcelos et al., 2018). The European Commission is requiring establishing 113	
separate quotas in the Macaronesian Atlantic archipelagos (Council Regulation (EU) 2018/120) 114	
and, therefore,  defining the structure of the entire population in the CE Atlantic is mandatory. 115	
In general, Trachurus spp. are characterized by a migratory behaviour related to the life cycle 116	
(Abaunza, et al., 2003, 2008; Ruas and Vaz-dos-Santos, 2017). To understand their populations 117	
structures two population models have been proposed: the ‘migration triangle’ of Harden Jones 118	
(1968) ¾which illustrates migration circuits throughout the life cycle (Arcos et al., 2001; 119	
Abaunza et al., 2008)¾ and the metapopulation concept (Levins, 1969, 1970)¾with migratory 120	
sub-units with different levels of connectivity (Gerlotto et al., 2012; Hintzen et al., 2014; 121	
Bertrand et al., 2016; Sassa et al., 2016). A priori the population structure of T. picturatus of 122	
the North East Atlantic seems to be enclosed within local migration triangle model 123	
(Vasconcelos et al., 2018; Moreira et al., 2018, 2019a), where continental/islands shelf could 124	
function as nursery or growth zone, and offshore (seamount/bank) areas would act as feeding 125	
zones (Gomes et al., 2001; Arkhipov et al., 2002; Menezes et al., 2006).  126	

Small and medium pelagic stocks from the Canary Islands have recently been included in 127	
the annual assessment framework of the Fishery Committee for the Eastern Central Atlantic 128	
(CECAF) (FAO, 2016). It entails the knowledge on biology and ecology of the species and the 129	
correct delimitation of stock boundaries for an adequate status assessment of these populations. 130	
Although the population of blue jack mackerel completes its life cycle in Canary archipelago 131	
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(Jurado-Ruzafa et al., 2011, 2013; Moyano and Hernández-León, 2011), some studies have 132	
suggested the possibility of connectivity with other closer populations. In particular, the 133	
presence of larvae has been occasionally detected into upwelling filaments from the African 134	
coast that reach the Canary Islands (Moyano et al., 2009, 2014; Rodríguez et al., 2009; Brochier 135	
et al., 2011), which could represent a complementary source of individuals, making the 136	
population structure more complex (John and Zelck, 1997; Moyano and Hernández-León, 137	
2009). Also, some authors have suggested connectivity among the Macaronesian archipelagos, 138	
and also with the Portugal mainland due to the high similarity in the chemical composition and 139	
shape of otoliths (Vasconcelos et al., 2018; Moreira et al., 2018, 2019a). However, the possible 140	
processes of mixing/connectivity remain unknown. For those reasons, the main goal of the 141	
present study was the otolith shape analysis of T. picturatus from the Canary Islands (i) to 142	
determine the otolith phenotype variability; (ii) to establish if there are seasonal changes in the 143	
frequency of these morphotypes, which may indicate migratory process; and (iii) to establish 144	
the relationship between phenotypes and somatic growth. The initial hypothesis is that 145	
population might be composed of several phenotypes due to nearby with the African coast and 146	
Madeira archipelago. 147	
 148	
2. Material and methods 149	
2.1. Data sources 150	

The present study was performed using a biological database of blue jack mackerel of the 151	
Canary Oceanographic Centre of the Spanish Oceanographic Institute (IEO) in the Canary 152	
Islands (Spain). It was composed by 2,472 individuals monthly collected from the commercial 153	
landings between March 2005 and March 2006 in the Tenerife Island (NE Atlantic Ocean, Fig. 154	
1), where more than 70% of the annual landings of small pelagic fish in the Canary Islands are 155	
performed (EU, 2017). All the specimens were measured for total length (TL, 0.1 cm) applying 156	
a correction factor for avoiding a size loss by freezing process (Jurado-Ruzafa and Santamaría, 157	
2013). Sex was macroscopically assigned and categorized into three types: juvenile, male and 158	
female (Jurado-Ruzafa and Santamaría, 2013). The sagittae otoliths were extracted, cleaned, 159	
and storage dried in labeled vials for the ageing and morphological studies. However, only 160	
otoliths of 472 specimens with the clearest annuli deposition (from 0 to 6 years, see Jurado-161	
Ruzafa and Santamaría, 2018) were considered for our purpose. Finally, the unique data of 6 162	
years-old age was eliminated from subsample to avoid biases. 163	
 164	
2.2. Otolith shape analysis 165	



	 6	

The left otoliths were placed with the inner side (sulcus acusticus) downward and rostrum 166	
to the right (Fig. S1, Supplementary material). They were digitized against a black background 167	
using a digital camera coupled to a stereomicroscope at 10× magnification and NIS-Elements 168	
F© imaging software. ImageJ 1.50i (http://imagej.nih.gov/ij) was used for taking measurements 169	
of otolith length (OL, 0.01 mm). 170	

The shape was analysed using wavelet functions whose advantage in relation to other 171	
contour analyses (i.e., Elliptic Fourier, Fast Fourier Transform or shape indices) is that they 172	
enable to identify single morphological points (landmarks) located on the x-axis along the 173	
contour, where the rostrum is the origin of the contour (Parisi-Baradad et al., 2005; Lombarte 174	
et al., 2006; Sadighzadeh et al., 2012). A total of 512 equidistant Cartesian coordinates on each 175	
orthogonal projection of the otolith were extracted and analysed using the wavelet transformed 176	
(WLT; see Parisi-Baradad et al., 2005). Image processing was performed using the image 177	
analysis software Age and Shape (version 1.0; Infaimon SL©, Barcelona, Spain). Each contour 178	
originated nine wavelets depending on the degree of otolith detail (Fig. 2). The 4th wavelet was 179	
used in the present study since it is the best scale for the discrimination of stocks (Sadighzadeh 180	
et al., 2014), related to intraspecific differentiation of otolith phenotypes. 181	
 182	
2.3. Statistical analysis 183	

A principal component analysis (PCA) based on the variance–covariance matrix was 184	
performed to reduce the wavelet functions without losing information (Sadighzadeh et al., 185	
2012, 2014; Tuset et al., 2015, 2016). To detect the significant eigenvectors, the percentage of 186	
total explained variation of eigenvectors versus proportion of variance expected under the 187	
“broken stick model” was plotted (Frontier, 1976; Gauldie and Crampton, 2002). Intraspecific 188	
differences that might be attributed to allometry were tested using Pearson’s correlations 189	
between otolith length and the principal components (Stransky and MacLellan, 2005; Tuset et 190	
al., 2015). The effect of otolith length was removed using the residuals of the common within-191	
group slopes of the linear regressions of each component on otolith length, building a new PCA 192	
matrix (Tuset et al., 2015, 2016). The new PCA components were tested for normality and the 193	
homogeneity using a permutational multivariate analysis of variance (PERMANOVA; 194	
Anderson, 2001) with 9,999 permutations and the Manhattan distance to detect differences 195	
sexes. 196	

Clustering of otoliths was performed using the k-means algorithm with the package NbClust 197	
in R, a common method for partitioning a dataset into groups of patterns (Hartigan and Wong, 198	
1979). It divides data set into a pre-defined k number of clusters (here ranging between 2 to 10) 199	
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whereby each observation is assigned to the cluster that minimises the distance of that point to 200	
the cluster centroid. The most subjective element in K-means clustering is the requirement for 201	
the input of a predefined number of clusters into the algorithm (Hung et al., 2005; Yao et al., 202	
2013). To determine the number of clusters (also named ‘morphotypes’ or ‘M’) we used the 203	
‘all’ criteria for obtaining the more common effective solution. To validate the optional 204	
solution, several internal and stability measures were obtained for the more probably options 205	
using the package clValid (Brock et al., 2008). 206	

A statistical test of independence (c2) was performed to determine the influence of sexes 207	
(males and females) on the type of morphotype and to examine possible variations of the 208	
frequency of juveniles and adults of each morphotype through the year. For that, the catch date 209	
was grouped in three periods following the life cycle proposed for Trachurus murphyi (Gerlotto 210	
et al., 2012) and adapted for T. picturatus (Jurado-Ruzafa and Santamaría, 2011, 2013): 211	
breeding (January-April), feeding (May-July) and recruitment (August-December). The adult 212	
specimens were considered from age-1 since mature specimens were reported from this age 213	
(Jurado-Ruzafa and Santamaría, 2013, 2018). 214	

The total length and age of fish were tested for the assumption of normality and homogeneity 215	
of variance using the Kolmogorov-Smirnov (K-S) test for goodness-of-fit, and Bartlett’s test 216	
(Zar, 1996), respectively. Since variables were not normally distributed, the comparison of 217	
mean values among morphotypes was performed using a non-parametric test (Kruskall Wallis 218	
test) (Zar, 1996). To determine whether the fish age and length-frequency distributions differ 219	
between them, a Kolmogorov-Smirnov test was used. This test identifies differences between 220	
two observed frequency distributions and is particularly sensitive to deviations in skew and 221	
kurtosis: hence a Bonferroni correction was employed to account for multiple comparisons 222	
among them. 223	

To analyse the disparities in the fish growth parameters among morphotypes, von 224	
Bertalanffy growth (VBG) model (Von Bertalanffy, 1938) was fitted:  225	

Lt = Linf(1 − e−k(t−t0)) + ε 226	
where Lt is the predicted mean length at age t, Linf is the asymptotic mean length, k is the growth 227	
rate, t0 is the theoretical age at which length is 0, and ε denotes the belief that residuals would 228	
be distributed normally about the expected growth line (Haddon, 2001). Starting parameters for 229	
the model were determined using a Ford-Walford plot. A Gauss-Newton’s algorithm for 230	
nonlinear least square procedure was used to estimate the growth parameters. Confidence 231	
intervals of growth parameters were calculated via bootstrapping with 1,000 iterations. The fish 232	
growth parameters were estimated with the package FSA (Ogle, 2016) in R. The comparison of 233	
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fish growth parameters among morphotypes was performed without fixed variables, fixing one, 234	
two or the three parameters and using Akaike’s Information Criterion (AIC) to investigate the 235	
robustness models. In particular, the ΔAIC value was used (ΔAIC= 0) to find the ‘best’ model, 236	
which is the difference between the AIC value for each model and the lowest observed ΔAIC 237	
value. Moreover, models with AIC values differing by less than 2 were considered equally 238	
plausible (Burnham and Anderson, 2002). 239	

All statistical analyses and graphical representations were conducted with the software R (R 240	
Core Team, 2016). 241	
 242	
3. Results 243	
3.1. Otolith phenotypic variability 244	
The first 27 principal components of the PCA analysis accounted for higher variance than 245	
expected by chance alone (93.1%), but only the first six components reached values above 5% 246	
of the variance (Table S1, Supplementary material). The PERMANOVA analysis did not 247	
indicated significant differences in the otolith shape between sexes (F1, 470=1.242, p= 0.217). 248	

The result of K-means analysis suggested the presence of 2 or 3 morphotypes as the best 249	
option interpreting the distribution data (Fig. S1, Supplementary material). However, the 250	
validation measures clearly showed that the best solution was the selection of 3 morphotypes 251	
(M1, M2 and M3) (Table S1, Supplementary material). Assuming this premise, the positive 252	
values of PC1 axis (20.4% of variance explained) represented a lanceolated shape (M2) versus 253	
a more elliptic pattern (M3) characterized by a wider and more concavity of dorsal-ventral 254	
margin (Figs. 3a, b) (Fig. S3, Supplementary material). The density distributions of the three 255	
morphotypes showed a skewed unimodal pattern linked to the standard phenotype described 256	
before. The negative records of PC2 axis (12.6% of variance) differentiated the otoliths with a 257	
peaked antirostrum (M2 and M3); whereas the positive values identified otolith with an 258	
antirostrum absent or few developed (M1) (Figs. 3a, b) (Fig. S3, Supplementary material). For 259	
this space, the density distribution of M3 exhibited a skewed unimodal pattern, whereas the M1 260	
and M2 displayed skewed bimodal patterns. These results indicated that the antirostrum size 261	
was different among the three phenotypes. In addition, the PC5 and PC6 axis discerned the 262	
posterior margin of otolith in angled or oblique (Fig. S3, Supplementary material). 263	
 264	
3.2. Seasonal variability of phenotypes 265	

There was no difference in the frequency of males and females among phenotypes (c2= 266	
3.189, df=2, p=0.203). However, the adult/juvenile proportions in each morphotype were not 267	
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independent of the life cycle (c2= 37.421, c2= 69.428, c2= 31.433; df= 2 and p< 0.001 for M1, 268	
M2 and M3, respectively). Juveniles were mainly detected in the recruitment period, although 269	
they also predominated during the feeding period for the M1 and breeding season for M2 and 270	
M3 (Fig. 4). A high relative frequency of adult fish for the three morphotypes was observed 271	
during the feeding period (>55%), which noticeably decreased in the spawning time (Fig. 4). 272	
 273	
3.3. Linking phenotypes with fish growth 274	

Although there were no significant differences in the age and total length average among 275	
morphotypes (Table 1), significant variations were detected in the distribution of M1 versus 276	
M2 (K-S test, Z= 0.166, p= 0.020 for age; Z= 0.202, p= 0.001 for total length) and M3 (K-S 277	
test, Z= 0.194, p= 0.007 for age; Z= 0.239, p< 0.001 for total length) (Fig. 5). In contrast, the 278	
structure was similar for M2 and M3 (K-S test, Z= 0.208, p= 0.003 for age; Z= 0.068, p= 0.877 279	
for total length) (Fig. 5). 280	

Three models of fish growth were selected on the basis of ΔAIC value (Table S3). The best 281	
model (ΔAIC= 0) indicated a differential growth linked to the morphotypes described (Table 282	
2). In this case, the VBG parameters with the lowest growth rate (k=0.143 years-1) and highest 283	
asymptotic length (Linf = 40.95 cm TL) were estimated for specimens with M2; whereas the 284	
fastest growth (k=0.321years-1) and lowest asymptotic length (Linf = 29.94 cm TL) were attained 285	
for individuals with M3. However, models fixing Linf (ΔAIC= 0.5) or k (ΔAIC= 1.6) were also 286	
plausible, attaining smaller growth parameters the morphotypes M2 and M3 (Table 2). 287	
 288	
4. Discussion 289	

The present study demonstrated that T. picturatus from the Canary Islands present variability 290	
in the otolith shape. The analytical methods revealed the presence three phenotypes (M1, M2 291	
and M3), which were independent of sex and age. Their identification was based on well-292	
defined features: the presence/absence of antirostrum and notch in the excisura ostii, and the 293	
type of curvature of the dorsal-posterior and ventral margins. However, the skewed 294	
(asymmetrical) distribution of morphotypes (see PC1 axis, Fig. 3) and the bi-modal distribution 295	
noted in the M1 and M2 (see PC2 axis, Fig. 3) might question the suitability of the results 296	
obtained. In this sense, the tails of distribution were related to contour irregularities, whereas 297	
the bi-modal pattern illustrated the morphological variability in the antirostrum zone (e.g., more 298	
pointed versus blunt, or the degree of convexity of margin when antirostrum is absent/present). 299	
This representation of specific details is a particular quality of wavelets (Parisi-Baradad et al., 300	
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2005) versus Elliptic Fourier (Moreira et al., 2019a), but these features are certainly 301	
inconsistent for the partitioning of patterns. 302	

Although the phenotypic variability described in the present study has been already shown 303	
in other studies (Vasconcelos et al., 2006; Moreira et al., 2019a) and websites (AFORO; 304	
www.isis.cmima.csic.es/aforo/; Lombarte et al., 2006), its frequency is unexplored for all the 305	
Atlantic and Mediterranean populations. For that reason, our findings open a new perspective 306	
on the population structure of T. picturatus and reinforce the idea that any fishing management 307	
scenario should require a more exhaustive phenotypic knowledge for a more precise 308	
understanding of the population dynamics. Besides, they may be useful to anticipate how 309	
populations respond to natural and anthropogenic processes (Ward et al., 2016). 310	
 311	
4.1. Population structure 312	

The seasonal variation of juveniles and adults through annual cycle suggested a population 313	
model based on local migration triangles (Gomes et al., 2001; Arkhipov et al., 2002; Menezes 314	
et al., 2006). The low relative abundance of adults during the recruitment period would be due 315	
to a migratory behaviour towards deeper-waters for feeding. After, they would move into 316	
coastal waters for spawning and would remain feeding inshore before returning to seamounts. 317	
Juveniles would inhabit in coastal areas and be more abundant in the recruitment and breeding 318	
seasons since the peak spawning is around February (Jurado-Ruzafa and Santamaría, 2011, 319	
2013). However, juveniles with phenotype M1 showed an alternative pattern declining during 320	
the breeding season and noticeably increasing during the feeding period. One possible 321	
explanation of those specific differences may be the existence of behavioural groups with 322	
distinct circuits that mix during certain seasons and life history stages. Considering this 323	
hypothesis, the population structure of T. picturatus from the Canary Islands may be closer to 324	
the ‘contingent theory’ (Secor 1999, 2002, 2005), according to which, coexisting migratory and 325	
resident contingents (understood as a group of individuals) with different capabilities and life-326	
cycle patterns (ICES, 2007) would coexist. In fact, secondary spawning and recruitment areas 327	
in oceanic waters are considered in T. murphyi (Gerlotto et al., 2012), and aggregations of 328	
spawners have been observed offshore of the Azores in T. picturatus (Arkhipov et al., 2002), 329	
as occur in other fish species (Keating et al., 2014). The ‘contingent theory’ considers that a 330	
simple migration triangle only represents one contingent in a sympatric complex of contingents. 331	
Thus, the population contains several different sets of individuals with natal homing behaviours 332	
directed toward different natal locations. In this scenario, phenotypes M2 and M3 may 333	
correspond to a contingent developing its life cycle closer inshore (Jurado-Ruzafa and 334	



	 11	

Santamaría, 2011, 2013; Moyano and Hernández-León, 2011), whereas the phenotype M1 may 335	
represent a contingent with a more offshore life style with phases closer to the coast. 336	

 337	
4.2. Implications of phenotypic variability 338	

The intraspecific variations in otolith shape (e.g., convexity) response to specific exogenous 339	
factors (Hüssy, 2008; Tuset et al., 2015), whereas the rostrum and antirostrum size are linked 340	
to genetic variations (Reichenbarcher et al., 2009; Vignon and Morat, 2010; Radharkrishnan et 341	
al., 2012; Reichenbarcher and Reichard, 2014). Nevertheless, the presence of similar 342	
phenotypes in populations across the NE Atlantic and the Mediterranean (Lombarte et al., 2006; 343	
Vasconcelos et al., 2006; Moreira et al., 2019a) is not consistent with a partial genetic isolation, 344	
which was recently rejected by Moreira et al. (2019b). Thus, the possibility of variations in the 345	
somatic growth related to differential behaviour may be an option more plausible as occurs in 346	
other fish species (Karlou-Riga, 2000; Tuset et al., 2016; Rodgveller et al., 2017). Moreover, 347	
the presence of antirostrum has been related to shallower coastal habitat and the formation of 348	
large fish aggregations with local movements (Vignon, 2012). 349	

Theoretically, the slower growing individuals have larger (elongated) otoliths than faster 350	
growing fishes of the same size (Secor and Dean, 1989; Reznick et al., 1989; Francis et al., 351	
1993; Worthington et al., 1995; Tuset et al., 2004). From the three plausible models of fish 352	
growth obtained, only the non-fixing model perfectly correlated the fish and otolith growth: 353	
slower growing individuals (M2) would have elongated otoliths and faster growing individuals 354	
(M3) would present elliptic otoliths. Certainly, the fish and otolith growth depends on the prey 355	
availability and type. The slower growing individuals swim more efficiently increasing food 356	
availability leading to larger size and fitness avoiding adverse environmental conditions, 357	
whereas faster-growth fishes intake more prey reaching more quickly age/size at maturation 358	
and achieving higher recruitments (Chapman et al., 2012a,b; Gillanders et al., 2015). 359	
Specimens of T. picturatus with smaller mouth ingest mainly copepods and amphipods, 360	
whereas individuals with larger mouth capture more highly mobile prey as fish (Cuscó, 2015). 361	
However, the main problem of non-fixing model was the high value of Linf for M2 (40.95 cm 362	
TL) since the largest fish was 28.9 cm TL, which also occurred in the Azores population (García 363	
et al., 2014). Jurado-Ruzafa and Santamaría (2018) argued that larger specimens might be 364	
found in areas that are not exploited by the artisanal purse-seine fleet, which undertakes daily 365	
trips close to the coast around the Canary archipelago. We think that these morphotypes reflect 366	
variations in the fish growth rates, but the estimated von Bertalanffy growth parameters in the 367	
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present study should not be used for other purposes such as fishing assessment due to low 368	
number of specimens by case. 369	

 370	
5. Conclusions 371	

The phenotypic variability on the otolith shape of T. picturatus from the Canary Islands 372	
reveals a population composed by specimens, likely with different life history traits. The most 373	
plausible explanation to outline population structure is a spatial model based on the ‘contingent 374	
theory’; however, this model would require further analysis for its confirmation (i.e., telemetric 375	
techniques). Assuming this theory, the mechanisms underlying the migratory process should be 376	
understood both within the specific context of each island as in the whole Canary archipelago. 377	
In any case, we do not dismiss a regional connectivity by larvae transport or oceanic migration, 378	
as several authors have suggested (Vasconcelos et al., 2018; Moreira et al., 2019a). In fact, 379	
Vasconcelos et al. (2018) emphasized that an accurate assessment of T. picturatus in overall 380	
Atlantic area would be necessary to implement the knowledge on migratory processes (vertical 381	
and/or horizontal) for detecting the location and time of year when mixing of stocks occurs. 382	
Moreover, the comparative studies among regions should be careful in the sampling scheme 383	
and in the otolith age-interpretation. Therefore, the discrepancies found at a regional scale 384	
should be taken with caution. Finally, the possible presence of mixed populations in the 385	
artisanal small pelagic fishery in the Canary Islands constitutes a huge challenge to design an 386	
appropriate managing strategy, even more in the current climate change scenario. Besides, this 387	
kind of scientific studies should be performed for other exploited small pelagic fish inhabiting 388	
waters around the Canary Islands, due to it is more than probable that similar situations are 389	
occurring for other species. The results here presented open a wide range of opportunities for 390	
further studies which will need the coordinated work to clarify the dynamics of this species, not 391	
only at a local, but also at the regional scale. 392	
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Legends 689	

 690	
Fig. 1. Geographical location of Trachurus picturatus sampled off the north-eastern Atlantic 691	
Ocean. Arrows indicates theoretical hypotheses on the stock mixing in the Canary Islands. 692	
 693	
Fig. 2. Decomposition of otolith contour using wavelet functions in Trachurus picturatus from 694	
the Canary Islands (NE Atlantic Ocean). X-axis is the 512 equidistant points of contour; Y-axis 695	
represents the mean normalized distance. The wavelets 4 were used for the identification of 696	
stocks following Sadighzadeh et al. (2014). 697	
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 698	
Fig. 3. (a) Scatterplot of the first and second axes of the PCA and marginal density distribution 699	
plots of the three otolith phenotypes found in Trachurus picturatus from the Canary Islands 700	
(NE Atlantic Ocean); (b) Average decomposition of otolith contour of the three phenotypes 701	
showing the zones with higher intraspecific variability. Colour circles indicate the centroid of 702	
each morphotype. 703	
 704	
Fig. 4. Temporal and ontogenetic variability of the three otolith phenotypes found in Trachurus 705	
picturatus from the Canary Islands (NE Atlantic Ocean). Ad., adult; Juv., juvenile. Breeding, 706	
January-April; Feeding, May-July; Recruitment, August-December (Jurado-Ruzafa and 707	
Santamaría, 2011, 2013). The percentage and number of specimens (in parenthesis) by group 708	
are given. 709	
  710	
Fig. 5. Frequency distributions by fish age and size of the three otolith phenotypes found in 711	
Trachurus picturatus from the Canary Islands (NE Atlantic Ocean). 712	
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 766	
Table 1              
Mean comparison of the fish and otolith length and age between morphotypes of Trachurus picturatus from the 
Canary Islands (NE Atlantic Ocean). n, number of individuals; ns, non-significant; OL, otolith length; TL, total 
length. 

Variable 

Morphotype 1                     
(n= 166)   

Morphotype 2                     
(n= 169)   

Morphotype 3                      
(n= 137)   

Kruskall- 
Wallis test 

min. max. mean ± sd   min. max. mean ± sd   min. max. mean ± sd   

TL (cm) 11.3 32 20.01 ± 5.40  12.4 28.9 19.46 ± 4.00  10.4 27.2 
19.29 ± 

3.76  0.328 (ns) 
OL (mm) 3.20 8.67 5.80 ± 1.44  3.93 8.53 5.79 ± 1.05  2.94 7.53 5.70 ± 0.97  0.158 (ns) 
Age (years) 0 5 1.72 ± 1.65   0 5 1.43 ± 1.28   0 5 1.46 ± 1.07   0.375 (ns) 
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Table 2             
Estimation of the von Bertalanffy growth parameters using the otolith reading method for the morphotypes of Trachurus picturatus from the Canary Islands (NE Atlantic 
Ocean). C.I., confidence intervals; k, growth rate (year–1); Linf, asymptotic length (cm); n, number of individuals; ns, non-significant; t0, time (year). 
  Non-fixing  Fixing Linf  Fixing k 

Parameters   
Morphotype 1 

(n=166) 
Morphotype 2 

(n=169) 
Morphotype 
3 (n=137)   

Morphotype 1 
(n=166) 

Morphotype 2 
(n=169) 

Morphotype 3 
(n=137)   

Morphotype 
1 (n=166) 

Morphotype 
2 (n=169) 

Morphotype 3 
(n=137) 

Linf Estimate 32.46 40.95 29.64  33.25  34.03 32.54 32.55 
 Standar error 1.84 7.19 2.38  1.56  1.63 1.57 1.74 
 Lower 2.5% C.I. 28.85 27.05 24.96  30.16  30.83 29.45 29.17 
 Upper 97.5% C.I. 35.94 54.04 34.35  36.31  37.23 35.63 36.00              

k Estimate 0.28 0.14 0.32  0.26 0.23 0.24  0.25 
 Standar error 0.05 0.05 0.08  0.04 0.03 0.03  0.03 
 Lower 2.5% C.I. 0.19 0.05 0.17  0.19 0.17 0.18  0.18 
 Upper 97.5% C.I. 0.38 0.25 0.47  0.34 0.29 0.29  0.30              

to Estimate -2.04 -3.21 -2.00  -2.11 -2.58 -2.36  -2.20 -2.47 -2.32 
 Standar error 0.21 0.49 0.30  0.18 0.22 0.20  0.17 0.20 0.19 
 Lower 2.5% C.I. -2.44 -4.08 -2.59  -2.46 -3.00 -2.76  -2.53 -2.85 -2.69 

  Upper 97.5% C.I. -1.62 -2.24 -1.42   -1.76 -2.16 -1.96   -1.87 -2.08 -1.96 
 779	
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 781	
Supplementary material 782	

 783	
 784	
 785	
 786	
 787	
 788	
 789	
 790	
 791	
 792	
 793	
 794	
 795	
 796	
 797	
Fig. S1.  Lateral surface of sagittae otoliths of Trachurus picturatus from the Canary Islands 798	
(NE Atlantic Ocean) illustrating features considered. 799	
 800	

 801	
Fig. S2. Determination of clusters obtained by K-means analysis. 802	

 803	
 804	
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 806	
Fig. S3. Correlation values between the points of otolith contour (n= 512) and the first six PC 807	
components. 808	
 809	
 810	
 811	
 812	
 813	
 814	
 815	
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 821	
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 823	
 824	
 825	

Table S1   
Variance explained by Principal 
components (PC) derived from otolith 
shape analysis of Trachurus picturatus  
from the Canary Islands (NE Atlantic 
Ocean). 

PC Eigenvalue Variance 
(%) 

1 0.00195 20.38 
2 0.00121 12.64 
3 0.00065 6.81 
4 0.00062 6.44 
5 0.00059 6.13 
6 0.00052 5.46 
7 0.00046 4.81 
8 0.00037 3.85 
9 0.00026 2.71 
10 0.00023 2.35 
11 0.00022 2.28 
12 0.00020 2.10 
13 0.00018 1.87 
14 0.00017 1.77 
15 0.00016 1.65 
16 0.00014 1.50 
17 0.00013 1.36 
18 0.00012 1.25 
19 0.00011 1.18 
20 0.00010 1.04 
21 0.00009 0.97 
22 0.00009 0.95 
23 0.00009 0.92 
24 0.00007 0.75 
25 0.00006 0.68 
26 0.00006 0.65 
27 0.00006 0.58 

   
Total   93.09 
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