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ABSTRACT 

Many lizards use femoral gland secretions in intraspecific chemical communication, but 
specific compounds have been identified in only a few species. Chemical composition of 
secretions may depend on phylogeny, but it may also evolve to maximize efficacy of 
signals in a given environment. In deserts, the extreme dry and hot environmental 
conditions are hostile for chemical signals and, therefore, we expected desert lizards to 
have secretions with highly stable compounds. Using GC-MS, we identified 74 lipophilic 
compounds in femoral secretions of male and female spiny-tailed lizards, Uromastyx 
aegyptia microlepis (Fam. Agamidae), from the Qatar desert. Compounds included mainly 
steroids and fatty acids, but also terpenoids, ketones, tocopherol, aldehydes and alcohols. 
We found differences between males and females; males had higher proportions of fatty 
acids and tocopherol, but lower proportions of ketones than females. Contrary to 
expectations, the most abundant compounds were not stable in the desert climatic 
conditions at the surface. However, secretions could be rather adapted to microclimatic 
conditions inside burrows where these lizards spend long periods of time. We suggest that 
in addition to phylogenetic and environmental characteristics, we should know the ecology 
of a lizard species before making generalizations on the potential characteristics of its 
chemical signals. 
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1. Introduction 

 

In many lizard species, males have conspicuous femoral or preanal glands that 

secrete chemical compounds (Weldon et al., 2008), which are important in intraspecific 

communication (Mason, 1992; Mason and Parker, 2010; Martín and López, 2011; Wyatt, 

2014). The proportions of some compounds allocated to secretions often depend on a 

male’s condition (Martín and López, 2015), which allows honest signaling of the size, age 

or health state (e.g. López et al., 2006; Martín et al., 2007a; López and Martín, 2012; 

Heathcote et al. 2014). Because this information is reliable, it may be used by females to 

choose potential mates (e.g., Martín and López, 2000, 2006a,b, 2012; Kopena et al., 2011; 

López et al., 2002, 2003; Olsson et al., 2003; López and Martín, 2005a), or by other males 

to assess fighting ability or dominance status of competitor males (Aragón et al., 2001; 

López and Martín, 2002, 2011; Carazo et al., 2007; Martín and López, 2007; Martín et al., 

2007b; Khannoon et al., 2011b).  

Female lizards also often possess femoral pores, but in most species they are much 

smaller and with very little or without apparent secretion (Mason, 1992). Female femoral 

secretions have been overlooked in the literature, probably because they are not as 

prominent as in males, secretions of females are difficult to collect and analyze. However, 

femoral secretions do appear in females of some species, as in the lacertid lizard 

Acanthodactylus boskianus, where the same compounds, although in different proportions, 

are found in both sexes (Khannoon et al., 2011a). Also, female sagebrush lizards, 

Sceloporus graciosus, have active femoral glands during the mating season that produce 

secretions with unknown compounds (Kelso and Martins, 2008). In the desert iguana, 

Dipsosaurus dorsalis, females also produce secretion but only when they are unmated, 

suggesting that this secretion may be used to attract potential mates (Alberts, 1990). 

Secretion of female lizards may be more common than previously though and, therefore, it 

is worth to examine the existence of femoral secretions in females of other lizard species 

too and analyze these secretions. 

With respect to the type of compounds found in femoral gland secretions of lizards, 

both lipids and proteins are found, but lipophilic compounds seem more important in 

intraspecific communication in most species (Mason, 1992; Martín and López, 2006a, 

2011). The presence and abundance of specific compounds seem to vary consistently and 

widely among species (Weldon et al., 2008). It is not clear whether this interspecific 

variation is explained more by phylogenetic than by environmental differences (Alberts, 
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1992; Escobar et al., 2003; Martín and López, 2006c, 2013). With respect to phylogeny, 

however, most information on chemical composition of secretions relates to lizard species 

within the Scleroglossa clade (Weldon et al., 2008), which are considered to rely more on 

chemical senses (Cooper, 1995). Within this clade, specific compounds in secretions are 

known for males of a few species, including mainly Mediterranean lacertids (e.g. López 

and Martín, 2005b, c, 2006, 2009; Martín and López, 2006c,d, 2010a; Gabirot el al., 2008, 

2010; Kopena et al., 2009; Khannoon et al., 2011a,b; Martín et al., 2013c), one cordylid 

(Louw et al., 2007), one teid (Martín et al., 2011) and a few gekkonids (Khannoon, 2012). 

In contrast, compounds in secretions of lizards within the Iguania clade have been 

less studied, probably because these lizards were thought to rely more on visual cues 

(Cooper, 1995). However, lizard species from many Iguanian families have femoral or 

preanal glands and are capable of chemosensory conspecific recognition (Mason and 

Parker, 2010). Within this clade, lipophilic compounds in gland secretions have been 

described only in males of two iguanid species (Weldon et al., 1990; Alberts et al., 

1992a,b; Martín et al., 2013a) and of several south American tropidurid species within the 

genus Liolaemus (Escobar et al., 2001, 2003). Information on chemical signals of agamids 

is also very scarce. An old study using thin layer chromatography (TLC) analyzed 

compounds in preanal secretions of male Uromastyx hardwickii lizards, suggesting the 

presence of fatty acids, triacylglycerols, wax esters, sterols and their esters, and 

phospholipids (Chauhan, 1986). In addition, a recent study examined femoral secretions of 

males of the African tree agama (Acanthocercus atricollis), finding as main compounds 

steroids (mainly cholesterol and cholest-3-ene), fatty acids, and a series of saturated methyl 

ketones (Martín et al., 2013b). To understand the phylogenetic influence on composition of 

femoral gland secretions of lizards, we need more studies that deal with a wider range of 

lizard species within different taxonomic groups. In this context, more studies of agamid 

lizards are required.  

With respect to the environmental influences, we need studies that consider species 

inhabiting a larger variety of environmental conditions. This is because signals used in 

intraspecific communication are expected to evolve to maximize efficacy of the signal in a 

given environment (Guilford and Dawkins, 1991; Endler and Basolo, 1998; Bradbury and 

Vehrencamp, 2011). Factors such as how the signal transmits through the environment, 

durability or persistence of the signal, or how well the signal is detected by the receivers, 

are selective factors modeling the efficacy design of the sexual signals (Guilford and 

Dawkins, 1991; Alberts, 1992; Endler and Basolo, 1998; Boughman, 2002; Martín and 
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López, 2013). All these variables largely depend on the climatic conditions. For example, 

within Iberian Podarcis lacertid lizards, the relative proportion of cholesterol in femoral 

secretions increases in populations inhabiting more hot and dry habitats (Gabirot et al., 

2012), presumably because cholesterol would confer more stability to secretions giving 

them greater longevity (Alberts, 1992; Escobar et al., 2003). Deserts are environments 

especially hostile for chemical signals because dryness and high temperatures can strongly 

and quickly alter the properties of compounds (Martín and López, 2013) and, thus, destroy 

the potential messages of the signal. Therefore, we would expect to find higher abundances 

of the more stable compounds in femoral secretions of lizards living in these extreme dry 

and hot habitats.  

In the present paper, we report the results of an analysis by gas chromatography–

mass spectrometry (GC-MS) of the lipophilic fraction of femoral gland secretions of male 

and female spiny-tailed lizards, Uromastyx aegyptia microlepis (Agamidae), from the 

Qatar desert (Castilla et al., 2014; Cogălniceanu et al., 2014). This is a large (mean male 

body mass of 1,600 g), heliothermic and actively foraging mainly herbivorous agamid 

lizard (Cunningham, 2000; Al-Hazmi, 2001; Wilms et al., 2010; Castilla et al., 2011; 

Herrel et al., 2014) that inhabits deserts and semi-deserts of North Africa and the Middle 

East (Naldo et al., 2009; Cogălniceanu et al., 2014). Both males and females have femoral 

pores with active secretions during the mating season. Because of the large size of this 

lizard, the femoral secretions of females could be easily collected and analyzed too. We 

specifically a) described the composition and relative proportions of compounds in femoral 

secretions, b) examined whether secretions of males and females were different, and c) 

compared the compounds in secretions with those of other agamid lizards. In addition, we 

discuss whether these secretions could be useful in the desert climatic conditions given the 

chemophysical properties of the compounds found. 

 

2. Material and methods  

 

2.1. Species and study area 

 

During spring-summer 2012, we captured U. aegyptia lizards, 29 males (snout-to-

vent length, SVL: mean + SE = 256 + 10 mm) and 15 females (SVL: 237 + 15 mm), in the 

Qatar desert, an area characterized by high aridity (average annual mean temperature of 29 

°C; average annual rainfall of 45 mm). The habitat where the lizards were captured was an 

open rocky and sandy area with scattered bushes (e.g., Lycium shawii, Tetraena qatarensis, 
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Fagonia indica, Suaeda sp.), acacia trees (Acacia tortilis) and several perennial herbs. 

Lizards were captured alive by hand and taken to the laboratory in QEERI (Qatar 

Foundation) where measurements of the animals and secretion collection was made. 

Lizards were returned to the capture sites after measurements. 

 

2.2. Chemical analyses 

 

We extracted secretion from femoral glands of live lizards by pressing around the 

femoral pores. Secretion was directly collected with glass inserts that were kept in glass 

vials closed with Teflon-lined stoppers. Vials were stored at -20 °C until analyses. We 

prepared some blank control vials using the same procedure, but without collecting 

secretion, which could be compared with the lizards samples to exclude contaminants from 

the handling procedure and for examining potential impurities in the solvent or laboratory 

instruments.  

We analysed samples with a ThermoQuest (Austin, TX, USA) Trace 2000 gas 

chromatograph fitted with a poly(5 % diphenyl/ 95 % dimethylsiloxane) column (Supelco, 

Equity-5, 30 m length x 0.25 mm ID, 0.25 μm film thickness, from Supelco Co., 

Bellefonte, PA, USA) and a ThermoQuest Trace 2000 mass spectrometer as detector. We 

injected in splitless mode 2 μl of each sample previously dissolved in 2 ml of n-hexane 

(capillary GC grade, from Sigma-Aldrich Chemical Co. St. Louis, MO, USA). Helium was 

the carrier gas. Injector and detector temperatures were set at 250 °C and 280 °C, 

respectively. The oven temperature program started at 50 °C isothermal for 3 min, then it 

was increased to 300 °C at a rate of 5 °C/min, and finally maintained isothermal at 300 °C 

during 15 min. Mass spectral fragments below m/z = 46 were not recorded. Impurities 

identified in the control vial samples are not reported. To perform an initial identification 

of secretion components, we compared mass spectra of compounds in the sample with 

those in the NIST/EPA/NIH (NIST 02) computerized mass spectral library. Identifications 

were confirmed by comparing spectra and retention times with those of authentic standards 

when they were available (from Sigma-Aldrich Chemical Co. St. Louis, MO, USA). 

 

2.3. Statistical analyses 

 

We determined the relative amount of each compound in the sample as the percent 

of the total ion current (TIC). To correct the problem of nonindependence of proportions, 



- 6 - 

we first logit transformed the proportion data by taking the natural logarithm of proportion 

⁄ (1 – proportion) (Aebischer et al., 1993). We calculated Euclidean distances between 

every pair of individual samples to produce a resemblance matrix that was the basis of 

further analyses. To analyze whether the chemical profiles of the femoral secretions varied 

between males and females, we used a single factor permutational multivariate analysis of 

variance test (PERMANOVA, Anderson, 2001; McArdle and Anderson, 2001) based on 

the Euclidean resemblance matrix using 999 permutations. We also used canonical analysis 

of principal coordinates (CAP, Anderson and Willis, 2003) to test for differences between 

sexes. These statistical tests were made with the software PRIMER V6.1.13 (Clarke and 

Gorley, 2006) with the PERMANOVA+ V1.0.3 add-on package (Anderson et al., 2008). 

 

3. Results 

 

Male U. aegyptia microlepis had a significantly higher number of femoral pores 

than females (males: 17.7 + 0.4 pores/side, range = 13-20; females: 15.2 + 1.1 pores/side, 

range = 11-20; F1,42 = 7.06, P = 0.011). Both males and females had active secretion from 

these pores, although secretion was visibly more abundant in males. 

Overall, a total of 74 lipophilic compounds were identified in the femoral gland 

secretions of males and females (Table 1). Males and females shared 52 compounds (70.3 

% of total of compounds), which comprised 97.9 % of the overall TIC area. However, 

there were some differences between sexes. Males had 65 compounds of which 13 were 

exclusive compounds of males (20.0 % of the compounds found in males, but only 2.9 % 

of TIC area of males), whereas females had 61 compounds of which only 9 were only 

found in females (14.7 % of the compounds of females, 1.4 % of TIC area).  

In males, the main components were 42 steroids (75.5 % of TIC), 11 carboxylic 

acids and their esters ranged between n-C10 and n-C18 (7.3 %), two terpenoids (5.3 %), four 

ketones ranged between n-C17 and n-C22 (4.5 %), tocopherol (4.3 %), two alcohols (2.8 %) 

and three aldehydes (0.3 %) (Table 1). On average, the six most abundant compounds in 

males were cholesta-2,4-diene (10.6 % of TIC), cholestan-3-one (9.9 %), cholesterol (9.3 

%), 4,22-stigmastadiene-3-one (8.7 %), cholesta-3,5-diene (7.5 %) and squalene (4.9 %). 

Major compounds were detected in all individuals, although relative proportions of some 

compounds showed interindividual variability.  

In females, the main components were 45 steroids (80.4 % of TIC), five ketones 

ranged between n-C17 and n-C30 (6.7 %), two terpenoids (4.5 %), seven carboxylic acids 
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and their esters between n-C14 and n-C18 (2.5 %), one alcohol (3.7 %) and tocopherol (2.2 

%) (Table 1). On average, the five most abundant compounds in females were cholestan-3-

one (10.7 % of TIC), cholesta-2,4-diene (9.9 %), cholesterol (9.4 %), cholesta-3,5-diene 

(7.8 %) and 4,22-stigmastadiene-3-one (7.3 %).  

The PERMANOVA based on the resemblance matrix comparing the chemical 

profiles of femoral secretions of males and females showed statistically significant overall 

differences between sexes (pseudo F1,42=4.25, P = 0.045). The CAP analysis classified on 

average 97.7 % of the chemical profiles into the correct sex (δ1
2 = 0.99, P = 0.001, using 

leave-one-out cross-validation and m = 18 axes). The degree of correct classification was 

100 % for males and 93.3 % for females. 

Comparing between sexes the relative abundance of the different types of 

compounds, males had significantly relatively higher proportions of carboxylic acids (F1,42 

= 5.65, P = 0.022) and tocopherol (F1,42 = 7.08, P = 0.011) and lower proportions of 

ketones (F1,42 = 4.59, P = 0.038) than females. However, proportions of steroids (F1,42 = 

1.13, P = 0.29), terpenoids (F1,42 = 0.56, P = 0.46) and alcohols (F1,42 = 0.58, P = 0.45) did 

not significantly differ between sexes. Aldehydes were only found in 20.7 % of individual 

males, and this may explain why males did not significantly differ (F1,42 = 1.52, P = 0.22) 

from females where we did not find any aldehyd. 

 

4. Discussion 

 

The lipophilic fraction of femoral secretions of U. aegyptia microlepis lizards is 

formed mainly by steroids, with minor contributions of fatty acids, terpenoids, ketones, 

tocopherol and other compounds. This composition is similar, but not identical, to what has 

been found in other agamid lizards (Chauhan, 1986; Martín et al., 2013b). Unfortunately, 

the only study made with lizards of the same genus Uromastyx, used very different 

analytical techniques (i.e. thin layer chromatography) (Chauhan, 1986), so our results are 

hardly comparable with these previous data. Our study also reveals that, although both 

sexes shared most compounds, there are significant intersexual differences in presence and 

relative proportions of compounds in secretions of U. aegyptia microlepis. 

With respect to the steroids, there was not a predominant compound forming the 

bulk of secretions of U. aegyptia, as it occurs in many lacertid lizards, where cholesterol 

may account for more than 50% of TIC area in many species (Weldon et al., 2008). In 

contrast, in U. aegyptia there were five or six major steroids with more or less similar 
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proportions ranging between 7-10 % of the TIC area each. This is, however, similar to 

what occurs in secretions of the tree agama (Martín et al., 2013b). Moreover, cholesta-2,4-

diene and cholestan-3-one, were the two most abundant steroids of U. aegyptia, with 

cholesterol being only the third one. Nevertheless, most of the identified steroids of U. 

aegyptia were previously found in secretions of other lizard species (Weldon et al., 2008), 

although there is a large variety of derivatives and unidentified (probably unknown) minor 

steroids that could be exclusive of this species. 

Among steroids found in U. aegyptia microlepis and that have not been found in 

other lizards, it is noterworthy the presence of desmosterol, a sterol intermediate in 

cholesterol synthesis generated during the metabolic pathway that transforms lanosterol 

into cholesterol. In mammals, steroid hormones, such as progesterone or pregnenolone, 

may inhibit cholesterol synthesis at the step between lanosterol and cholesterol, leading to 

the accumulation of desmosterol in tissues (Lindenthal et al., 2001). Therefore, we could 

speculate that the relationship between proportions of cholesterol and desmosterol in 

secretions of U. aegyptia might be related to hormone levels, which might have a 

secondary signaling function of the endocrine or reproductive state of an individual 

(Martín and López, 2015), provided that lizards were able to detect proportions of this 

compound with chemosensory cues. This prompts to further specific studies examining 

relationships between hormone levels, the steroids found in secretions, and their potential 

signaling role. 

 

4.1. Intersexual differences 

 

Although female U. aegyptia microlepis have a lower number of femoral pores than 

males, females also have active secretion from these pores, although in a lower amount in 

comparison to males. Compounds were similar in both sexes, with most of compounds, 

including the major ones, shared by males and females. However, we found significant 

differences in chemical profiles between sexes mainly related to the relative proportions of 

some compounds. Similarly, in the lacertid lizard Acanthodactylus boskianus, the same 

compounds are found in males and females, although there are some small differences in 

proportions of compounds (Khannoon et al., 2011a). Intersexual differences in femoral 

secretions of U. aegyptia microlepis allowed predicting statistically the sex of an 

individual based on its chemical profile, and, thus, it is likely that lizards are also able to 

easily discriminate, by chemosensory cues, the sex of conspecifics. Although this 
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possibility has not yet been experimentally tested in this species, it may be expected, 

considering the chemosensory responses of this lizard to prey chemicals (Cooper and Al-

Johany, 2002) and that most lizard species have well known sex discriminatory abilities 

(Mason and Parker, 2010; Martín and López, 2011) . 

Among the differences observed between sexes, the lower proportions of fatty acids 

and tocopherol in female secretions could indicate a different function of femoral 

secretions in males and females that merits further studies. If it is costly to allocate dietary 

acquired compounds, such as oleic acid or tocopherol to secretions, deviating them from 

their important metabolic functions, males may use secretion of these compounds to signal 

their condition-dependent quality (Martín and López, 2015). Similarly, in some lacertid 

lizards, males that allocate more oleic acid (Martín and López, 2010b) or more tocopherol 

(Kopena et al., 2011) to secretions, are those in a better health condition and/or with a diet 

of higher quality, and their scents are more attractive to females. In contrast, females 

would not need to signal their quality to males in this way and could avoid secreting these 

costly compounds. Nevertheless, the exclusive presence in female secretions of some 

steroids of vegetal origin, such as some lupanols and oleanes, might be also indicators of 

the diet quality and breeding potential of a female. 

Interestingly, femoral secretions of U. aegyptia microlepis have a series of 

saturated methyl ketones with mostly odd-numbered carbon chains, which are relatively 

more abundant in females. A similar bishomologous series of C17–C25 methyl ketones were 

found in the femoral gland secretions of the tree agama, A. atricollis (Martín et al., 2013b), 

but also in secretions of the phylogenetically unrelated South African sungazer, Cordylus 

giganteus (Cordylidae) (Louw et al., 2007) and in the skin of female geckos Eublepharis 

macularius (Mason and Gutzke, 1990) and female Thamnophis sirtalis snakes (Mason et 

al., 1990). These methyl ketones are produced by β-oxidation of free fatty acids followed 

by decarboxylation (Ahern and Downing, 1974), which might explain the relative low 

proportions of fatty acids in female U. aegyptia. Similar series of ketones, but produced by 

skin glands, have a main role in the social and sexual behavior of red garter snakes (Mason 

et al., 1990), so it would be interesting to test whether ketones might have a similar role in 

these lizards. 

 

 

 

 



- 10 - 

4.2. Are secretions adapted to desert climatic conditions? 

 

With respect to the environmental influences, contrary to our expectations for a 

lizard species living in an extremely hot and dry desert environment, the more abundant 

steroids, but cholesterol, are not especially stable compounds that could protect other 

semiochemicals in secretions in the desert climatic conditions. In contrast, the most 

abundant steroids in secretions, such as cholesta-2,4-diene and cholestan-3-one are 

relatively unstable and volatile steroids that would disappear very quickly under hot 

temperatures (Lide and Milne, 1993). Similarly, with respect to fatty acids, we might 

expect in areas with higher temperatures the presence of fatty acids of high molecular 

weight, and, therefore, less volatile (Alberts, 1992), which does not match with the 

medium chain lengths (between C14 and C18) of the most abundant fatty acids of U. 

aegyptia. These mismatches might initially suggest that chemical signals of this lizard have 

not evolve to maximize efficacy of the signal in the desert environment, as it could be 

expected for a sexual signal (Guilford and Dawkins, 1991; Alberts, 1992; Endler and 

Basolo, 1998; Bradbury and Vehrencamp, 2011). 

This apparent contradiction between climatic conditions and physical properties of 

chemical signals could, however, be explained attending to the ecology and behavior of 

this lizard. Thus, secretions could not be useful in the desert surface as scent marks, but 

they could be rather adapted to the microclimatic conditions inside burrows where these 

lizards spend long periods of time (Bouskila, 1983; Wilms et al., 2010). These burrows 

retain temperature as well as humidity very efficiently; temperatures within burrows are 

relatively constant, within the thermal range of the species, providing shelter from the 

unfavorable thermal conditions in the surrounding habitat (Wilms et al., 2010). In fact, the 

relatively high proportions in secretions of U. aegyptia lizards of tocopherol and squalene, 

two antioxidants, might protect secretions from the relatively higher humidity that scent 

marks could experience inside burrows in comparison with the extreme dry conditions 

outside. Femoral secretions could be used to scent-mark these burrows, probably signaling 

the identity of the owner and its characteristics to either competitor males or prospective 

mates. Similarly, Tiliqua skinks, which are mainly active around the entrance of their 

burrows, scent mark these burrows with scats, and use information in these chemical 

signals to decide burrow use (Fenner and Bull, 2011). We suggest that we should know the 

ecology and social behavior of a lizard species before making generalizations on the 
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potential characteristics of its chemical signals based just on its phylogenetic position and 

the environmental characteristics in its habitat. 
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Table 1 
Lipophilic compounds found in femoral gland secretions of adult male and female spiny-

tailed lizards, dhub, Uromastyx aegyptia microlepis, from the Qatar desert. The relative 

content of each component was determined as the percent of the total ion current (TIC) and 

is reported as the average (± 1SE). Characteristic ions (m/z) are reported for some 

unidentified compounds. RT, retention time 

 

RT Compound Males 

(n = 29) 

Females 

(n = 15) 

 Aldehydes:       

9.8 Nonanal 0.14 + 0.14  -  

14.2 Decanal 0.16 + 0.16  -  

20.4 Dodecanal 0.04 + 0.04  -  

 Carboxylic acids:       

17.5 Decanoic acid 0.06 + 0.05  -  

24.8 Dodecanoic acid 0.01 + 0.01  -  

29.0 Tetradecanoic acid 0.25 + 0.13 0.05 + 0.05 

29.5 Tetradecanoic acid, 1-methylethyl ester 0.21 + 0.11 0.46 + 0.15 

30.9 Pentadecanoic acid 0.13 + 0.13  -  

31.8 14-Methyl-pentadecanoic acid, methyl ester 0.02 + 0.01  -  

32.5 Hexadecenoic acid 0.15 + 0.08 0.02 + 0.02 

32.8 Hexadecanoic acid 2.12 + 0.66 0.50 + 0.18 

33.5 Hexadecanoic acid, 1-methylethyl ester 0.93 + 0.46 0.91 + 0.73 

35.4 14-Methyl-hexadecanoic acid, methyl ester  -  0.01 + 0.01 

36.0 9-Octadecenoic acid  1.71 + 0.69 0.61 - 0.18 

36.5 Octadecanoic acid 1.72 + 0.93  -  

 Alcohols:       

22.2 Dodecanol 0.15 + 0.15  -  

36.6 Octadecanol 2.67 + 1.44 3.69 + 2.01 

 Ketones:       

31.3 2-Heptadecanone 0.44 + 0.08 1.13 + 0.29 
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35.0 2-Nonadecanone 1.11 + 0.28 2.03 + 0.44 

38.4 2-Heneicosanone 1.00 + 0.31 1.62 + 0.42 

41.4 2-Docosanone 1.90 + 1.72 1.91 + 1.80 

49.2 12-Tricosanone  -  0.05 + 0.05 

 Terpenoids:       

45.8 Squalene 4.88 + 2.55 4.36 + 1.15 

47.4 Unidentified terpenoid? 0.42 + 0.17 0.16 + 0.09 

 Steroids:       

46.4 Cholesta-2,4-diene 10.57 + 1.56 9.88 + 2.75 

46.5 Cholest-2-ene 1.43 + 1.08 1.05 + 0.33 

46.6 Cholest-3-ene 0.17 + 0.05 0.35 + 0.12 

46.9 Coprostan-3,5,24-trien 1.54 + 0.54 1.14 + 0.46 

47.0 Cholesta-4,6-dien-3-ol  1.50 + 0.58 2.34 + 0.75 

47.3 Cholesta-3,5-diene 7.49 + 0.96 7.78 + 0.97 

47.7 Coprostan-3,5,24-trien, derivative? 0.90 + 0.26 0.79 + 0.16 

47.9 Unidentified Steroid (213,228,253,326,352,367) 0.35 + 0.17 0.36 + 0.27 

48.0 Unidentified Steroid (197,251,347,362,376,395) 1.27 + 0.49 2.68 + 0.91 

48.1 Unidentified Steroid (161,261,368,383,400,415) 0.01 + 0.01 0.08 + 0.08 

48.7 Unidentified Steroid (187,213,242,281,382,407) 0.06 + 0.06 0.05 + 0.05 

49.0 Unidentified Steroid (145,187,281,273,392,418)  -  0.02 + 0.02 

49.2 3-Methoxy-cholest-5-ene 3.42 + 1.07 3.72 + 0.78 

49.3 Unidentified Steroid (254,281,352,367,385,401) 0.79 + 0.39 0.58 + 0.38 

49.4 3-Methoxy cholestane  0.02 + 0.02 0.15 + 0.08 

49.5 Unidentified Steroid (215,341,356,395,402,417) 0.08 + 0.03 0.07 + 0.02 

49.7 3-Methoxy-cholest-7-en-6-ol? 0.34 + 0.33  -  

49.9 Unidentified Steroid (251,287,315,353,385,392) 0.62 + 0.48 0.24 + 0.09 

50.3 Cholesterol 9.29 + 0.82 9.43 + 2.75 

50.4 Cholestan-3-ol 0.52 + 0.38 0.20 + 0.20 

50.8 Cholestan-3-one 9.87 + 2.26 10.75 + 2.40 

51.1 4,22-Stigmastadiene-3-one 8.73 + 2.90 7.30 + 1.79 

51.4 Cholesta-5,24-dien-3-ol (=Desmosterol) 1.79 + 0.24 1.37 + 0.31 
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51.5 Ergost-22-en-3-ol 0.46 + 0.11 1.74 + 0.41 

51.6 Unidentified Steroid (147,354,369,385,402,430) 0.04 + 0.03  -  

51.7 Unidentified Steroid (215,258,392,410,425) 0.12 + 0.09 0.15 + 0.11 

51.8 Cholest-4-en-3-one 3.23 + 1.20 1.74 + 0.70 

52.2 Cholestan-3-one, methyl derivative? 0.65 + 0.15 0.38 + 0.10 

52.3 4,22-Cholestadien-3-one 1.70 + 0.38 0.70 + 0.31 

52.4 Unidentified Steroid (244,287,313,340,382,410) 1.13 + 0.29 0.88 + 0.14 

52.8 Lanosta-8,24-dien-3-ol 0.82 + 0.29 1.05 + 0.98 

52.9 Lanost-8-en-3-ol  1.59 + 1.03 0.04 + 0.04 

53.0 Cholestan-3-one, ethyl derivative? 1.55 + 0.50 3.11 + 0.70 

53.1 Cholest-5-en-3-one 0.02 + 0.02 0.30 + 0.30 

53.2 4,4-Dimethyl-cholesta-22,24-dien-5-ol   -  0.12 + 0.12 

53.3 Stigmast-24(28)-en-3-one 0.34 + 0.11 0.72 + 0.16 

53.4 Unidentified Steroid (149,177,355,391,430) 0.15 + 0.05 0.51 + 0.21 

53.8 12-Oleanen-3-yl acetate  -  0.09 + 0.09 

54.2 Stigmast-4-en-3-one 0.43 + 0.21 0.28 + 0.10 

54.8 Lup-20(29)-en-3-ol, acetate  -  0.13 + 0.13 

56.1 Lupan-3-ol, acetate  -  0.14 + 0.14 

56.3 Lupan-3-ol, derivative?  -  0.19 + 0.19 

56.9 Cholest-5-en-3-ol nonanoate 0.05 + 0.05  -  

57.5 Cholest-5-en-3-ol 9-octadecenoate 0.04 + 0.04  -  

59.2 Cholest-3-ene, derivative? 0.66 + 0.66 0.07 + 0.07 

61.5 3-(Acetyloxy)-cholan-24-oic acid, methyl ester?  -  0.66 + 0.66 

64.0 Stigmasta-5,22-dien-3-ol, acetate 0.32 + 0.32 0.16 + 0.16 

67.6 Stigmast-5-en-3-ol, oleate 0.01 + 0.01 0.12 + 0.12 

 Others:       

50.1 α-Tocopherol 4.33 + 0.77 2.25 + 0.33 

 

 

 




