
SUBMITTED TO APJS

ON FABRY-PÉROT ETALON BASED INSTRUMENTS
I. THE ISOTROPIC CASE

F.J. BAILÉN, D. OROZCO SUÁREZ, AND J.C. DEL TORO INIESTA
Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada, Spain

Submitted to ApJS

ABSTRACT
Here we assess the spectral and imaging properties of Fabry-Pérot etalons when located in solar magnetographs.
We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases,
we focus on the implications caused by the polychromatic illumination of the filter, by irregularities presented in
the optical thickness of the etalon and by deviations from the ideal illumination in both setups. We first review
the general properties of Fabry-Pérots and then address the different sources of degradation of the spectral
transmission profile. We review and extend the general treatment of defects followed by different authors.
We discuss the differences between the point-spread-functions of the collimated and telecentric configurations
for both monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to
collimated mounts show to have a better performance, although varies from point-to-point due to an apodization
of the image inherent to this configuration, contrarily to the (perfect) telecentric case, where the PSF remains
constant but produce artificial velocities and magnetic field signals because of its strong spectral dependence.
We find that the unavoidable presence of imperfections in the telecentrism produce a decrease of flux of photons
and a shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field-of-
view, thus compromising their advantages over the collimated configuration. We evaluate these effects for
different apertures of the incident beam.
Keywords: instrumentation: interferometers, instrumentation: spectrographs, techniques: interferometric

1. INTRODUCTION

Fabry-Pérot interferometers (filters or etalons) are exten-
sively employed as tunable monochromators in post-focus
astronomical instrumentation. Some examples are the Ital-
ian Panoramic Monochromator at THEMIS (Bonaccini et al.
1989, and references therein), the TESOS spectrometer at the
VTT (Kentischer et al. 1998), the Interferometric Bidimen-
sional Spectrometer at the Dunn Solar Telescope of the Sacra-
mento Peak Observatory (Cavallini 1998), the CRisp Imaging
SpectroPolarimeter instrument at the Swedish 1-m Solar Tele-
scope (van Noort & Rouppe van der Voort 2008), the IMaX
instrument aboard SUNRISE (Martínez Pillet et al. 2011), the
GFPI at GREGOR (Puschmann et al. 2013), or the PHI in-
strument on board the Solar Orbiter mission (Solanki et al.
2015). Their main advantage over single-slit based spectro-
graphs is that they allow for fast imaging of the solar scene
and for post-facto imaging reconstruction techniques.1 They
are also preferred against other devices such as Michelson
interferometers or Lyot filters in terms of weight and sim-
plicity. When used in combination with a polarimeter, they
enable dual-beam polarimetry, which gets rid of the unde-
sired seeing-induced or jitter-induced contamination between
Stokes parameters. They present, however, both spectro-
scopic and imaging drawbacks that restrict their performance.

Fabry-Pérot etalons present a spectral transmission profile
characterized by periodic and narrow resonances at certain
wavelengths. The position and width of these depend on in-
trinsic parameters of the etalon, such as its thickness or its
refraction index, as well as on the way the filter is illumi-
nated. In particular, the transmission peaks shift towards the
blue when the incident angle is different from zero, which im-
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1 Techniques for imaging reconstruction in spectrographs that employ slits

are still at an early stage of development (e.g., Quintero Noda et al. 2015)

plies a variation on the transmission at monochromatic wave-
lengths. On the other hand, the width of the resonances
broaden when imperfections (defects) appear in the etalon,
thus degrading the spectral resolution of the filter (e.g., Chab-
bal 1953; Meaburn 1976; Hernandez 1988; Sloggett 1984).
Departure from collimated illumination (i.e., when the inci-
dent beam has a finite aperture) also widens the peaks and
shifts them towards shorter wavelengths (e.g., Sloggett 1984;
Atherton et al. 1981). Analytical expressions for determin-
ing the broadening of the spectral resolution are usually re-
stricted to particular cases, though (e.g., the limiting finesse
of Chabbal 1953). In addition, their derivation is sometimes
unclear (e.g., the aperture finesse of Atherton et al. 1981) and
the way different defects are added has been subject to debate
(Sloggett 1984). We believe that this topic should be revisited
in order to clarify the possible discrepancies and to discuss
the validity of the expressions given by different authors.

Concerning its imaging properties, Fabry-Pérots are used
in both collimated (e.g., Bendling et al 1992; Martínez Pil-
let et al. 2011) and telecentric configurations (e.g. Kentis-
cher et al. 1998; Solanki et al. 2015). In the first case, the
etalon is located in a pupil plane, so different incidence an-
gles in the etalon are mapped to different pixels of the de-
tector. This means that, in case of a uniform object field,
the image shows different peak intensities across the detec-
tor at monochromatic wavelengths due to the shift induced
by the different incident angles on the etalon over the field of
view (FOV). In the (image-space) telecentric configuration,
the etalon is located at a focal plane while the exit pupil is
located at infinity. In this setup, if perfect, each point of the
etalon receives the same cone of rays from the pupil and the
passband is kept constant along the FOV. On the other hand,
each point of the etalon “sees” the pupil as if it was not evenly
illuminated. This effect is due to the variation on the inci-
dence angle for rays coming from different parts of the pupil,
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an effect known as pupil apodization that produces variations
of the spatial point spread function (PSF) of the system and
of the spectral passband across the detector when defects are
present in the etalon.

The image degradation introduced by the Fabry-Pérot in
telecentric mode through pupil apodization was evaluated for
the first time by Beckers (1998), who concluded that colli-
mated illumination of the etalon is preferred over the telecen-
tric configuration in diffraction-limited imaging telescopes.
The PSF varies from one wavelength to another in the telecen-
tric configuration, which gives raise to artificial line of sight
(LOS) velocity signals that may not be corrected for during
data pre-processing. Spurious signals on the magnetic field
can also appear. The magnitude of these effects will be dis-
cussed in a third part of this series of papers. Although his
conclusions were valid, Beckers (1998) calculations were not
strictly correct as he considered variations in the magnitude of
the electromagnetic field but omitted phase errors, i.e., fluc-
tuations in the optical phase produced by the multiple reflec-
tions of light within the etalon. These fluctuations were incor-
porated by von der Lühe & Kentischer (2000), who concluded
that image degradation effects appearing in telecentric con-
figuration are even more pronounced than those predicted by
Beckers (1998). According to them, most wavefront degra-
dation comes from pupil apodization instead of from phase
fluctuations. Scharmer (2006) showed that phase variations
can be compensated partially by refocusing the instrument as
they depend quadratically with the pupil radial coordinate, in
the same fashion as a defocus term.

The collimated configuration is not exempt of problems in
terms of image degradation either, as substrate surface rough-
ness are amplified due to the high-reflectivity of the etalon
surfaces (von der Lühe & Kentischer 2000). Both ampli-
tude and phase fluctuations in collimated configuration com-
ing from these irregularities were also studied by Scharmer
(2006), who pointed out that the effects are less strong than
predicted by von der Lühe & Kentischer (2000) but still im-
portant, specially for high reflecting etalons. Both works sug-
gest, in contrast to Beckers (1998), that the telecentric con-
figuration is preferred over the collimated one if high image
quality is aimed to be achieved. In our opinion, a comparison
needs to be revisited. On the one hand, the von der Lühe &
Kentischer (2000) results about the expected wavefront distor-
tion in a collimated setup look too pessimistic. On the other
hand, the arguments by Scharmer (2006) image degradation
in collimated configurations invite to such an in-depth study.

From our point of view several aspects are yet to be stud-
ied. First, some of the analytical approximations of the spec-
tral performance of the etalon are not presented within the
realm of a consistent theoretical framework and differ from
one author to other (Sloggett 1984). Some of them have not
been generalized to crystalline etalons (e.g., the aperture fi-
nesse defined by Atherton et al. 1981). Second, the effects
of imperfect telecentrism (i.e, of having non-symmetric pupil
apodization over the FOV when the exit pupil is not exactly at
infinity, such as in real instruments) have not been thoroughly
considered yet up to our knowledge. And third, disagree-
ment between authors makes unclear which configuration is
to be preferred in terms of both image quality and spectral
transmission. In particular, in an imperfect telecentric setup
both the PSF and the spectral profile can broaden and become
asymmetric over the FOV (see Section 6). This means, among
other things, that the PSF varies from pixel to pixel even if no
defects are present in telecentric mode, which can be critical

when referring to image quality. Moreover, a spectral shift is
also produced over the FOV, so the passband does not remain
constant and the advantage of using a telecentric setup is no
longer obvious.

On the other hand, etalons are sometimes made up of
electro-optical and piezo-electrical crystals for tuning pur-
poses, specially in space applications (Martínez Pillet et al.
2011; Solanki et al. 2015). The tuning is carried out through
variations in the refraction index and thickness when applying
a voltage. These crystals usually present birefringent proper-
ties and, as they are employed in polarimeters, can disturb
the polarization properties of the incoming light and corrupt
the polarimetric measurement. Anisotropic effects have only
been taken into account through numerical experimentation
(e.g., Doerr et al. 2008) and will be studied analytically in
the second part of this series of papers for both the collimated
and telecentric configuration, in terms of spectral and imaging
performance.

Here, we first summarize the relevant theory for analyzing
the spectroscopic properties of Fabry-Pérot etalons (Sections
2 and 3). We then overview the most common optical config-
urations (Section 4) making emphasis on the possible sources
of the spectral profile degradation. We latter analyze the PSF
deterioration in both perfect (Section 5) and imperfect (Sec-
tion 6) telecentric configurations.

2. BASIC PARAMETERS AND NOMENCLATURE

A Fabry-Pérot etalon is nothing but a resonant optical cavity
made up of two semi-reflective and semi-transparent surfaces
that separate two different optical media of refractive indices n
(the external) and n′ (the internal). Note that single refractive
indices implicitly indicate that the media are assumed to be
isotropic. Besides, we shall assume that the media are homo-
geneous.2 These are correct assumptions for, e.g., air-gapped
etalons but they are not for crystalline ones. We shall never-
theless keep the assumptions throughout this paper and defer
the discussion of anisotropic etalons to the second paper in
this series.

Such an optical cavity is also characterized by its geomet-
rical thickness h and by the amplitude reflection and trans-
mission coefficients r, r′, t, and t′ for the external (unprimed)
and internal (primed) faces of each surface. As shown in Fig.

Figure 1. Transmission and reflection of a plane wave through an isotropic
etalon.

2 An isotropic medium has the same properties and behavior no matter the
direction of the light traveling through it because it is characterized by scalar
dielectric permittivity, magnetic permeability, and electrical conductivity. If
those physical quantities have no directional variations across the medium,
then it is said homogeneous.
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1, a plane wave impinging the first (top) surface at an angle
of incidence θ partially reflects on and refracts through both
surfaces several times. The refraction angle is called θ′.

The fraction of energy reflected from and transmitted
through the etalon is given by

R≡ r2 = r′2, (1)

T ≡ tt′, (2)

where we have assumed that r = −r′. R and T are called the
reflectivity and transmittivity of the etalon. If there is no ab-
sorption, then

R + T = 1. (3)

If, on the contrary, the etalon is coated with a metal that ab-
sorbs light with an absorptivity A, then

R + T + A = 1. (4)

3. THE TRANSMISSION PROFILE FOR AN INCIDENT PLANE WAVE

Each of the transmitted and reflected rays in Fig. 1 has a
constant phase difference with its predecessor. Let us focus,
for instance, in the second and third reflected rays. The optical
path difference between them is

∆s = n′(AB + BC) − nAN. (5)

Since
AB = BC =

h
cosθ′

, (6)

1
2

AC
h

= tanθ′, (7)

and Snell’s law,
n sinθ = n′ sinθ′, (8)

one can finally obtain that

∆s = 2n′hcosθ′. (9)

The corresponding phase difference between the two rays
is

δ =
4π
λ

n′hcosθ′ + 2φ, (10)

where φ is the eventual phase shift introduced by the internal
reflections. If the internal surfaces are not coated —as in crys-
talline etalons—, then φ can only be 0 or π. On the other hand,
if the reflecting surfaces are made of metallic films, φ can take
any value in the range [0,π] depending on the incident angle.
However, if θ′ is close to zero, φmay be considered to be con-
stant. Furthermore, in general, h is very large compared to λ.
In any case, φ can be neglected (Hecht 1998).

According to, e.g., Born & Wolf (1999), the ratio between
the transmitted, I(t), and the incident, I(i), intensities can be
written as

g =
I(t)

I(i) =
τ

1 + F sin2(δ/2)
, (11)

where τ is the transmission (intensity) factor for normal inci-
dence as given by

τ =
(

1 −
A

1 − R

)2

(12)

and parameter F is defined by

F ≡ 4R
(1 − R)2 . (13)
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Figure 2. Transmission profile of an isotropic etalon as a function of wave-
length distance to λ0. An incident plane wave is assumed. Black, blue, and
red lines correspond to θ = 0◦, 1◦, and 2◦, respectively.

Now one can easily realize that Eq. (11) provides a periodic
function of δ whose maxima are produced when δ0 = 2mπ,
with m ∈ Z or, equivalently, when

2n′hcosθ′ = mλ0. (14)

m can be called the interferential order. A graphical represen-
tation of g as a function of wavelength can be seen in Fig-
ure 2. We have used n′ = 1,3 h = 250 µm, A = 0, R = 0.9,
and λ0 = 617.234 nm. For a given etalon with fix refractive
index and thickness, a different refraction (incidence) angle
shifts the peaks of the transmission profile. Incident angles of
θ = 0◦ (black line), 1◦ (blue line), and 2◦ (red line) have been
used. Simple differentiation of Eq. (14) readily shows that the
peak shift is to the blue if θ′ is increased and to the red if θ′ is
decreased.

3.1. Properties of the transmission profile
3.1.1. Transmission peak width and order separation

If we call w the (angular) FWHM of the peaks, it is easy to
see that half the maximum is reached at

δw = 2mπ± w
2
, (15)

or, according to Eq. (11), when

1
F

= sin2 w
4
, (16)

that is, when

w =
4√
F
, (17)

where we have assumed that sin(w/4) = w/4. The FWHM in
Eq. (17) is in radians. If we want it in wavelength units, it is
easy to get

∆λw =
wλ2

0

4πn′hcosθ′
=

2λ0

πm
√

F
, (18)

by differentiating Eq. (10) and using Equation (14).

3 As for air at room temperature.
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Note that F in Eq. (13) is an increasingly monotonic func-
tion of the reflectivity R. Therefore, Eq. (18) tells us that
the width of the transmission peaks basically depends on the
reflectivity of the etalon. Note that ∆λw can slightly vary
with the refraction angle (the bigger the angle, the broader the
peak). This variation has small effects in solar applications as
an angle of 1◦ represents a 2 % modification of ∆λw.

The free spectral range or separation between two succes-
sive peaks is equal to a shift

∆δfree = 2π. (19)

In wavelength units, analogously to Eq. (18),

∆λfree =
λ2

0

2n′hcosθ′
=
λ0

m
. (20)

The free spectral range, thus, only depends on the optical
thickness and on the refraction angle. The order separation
without contamination of contiguous ones (a kind of cleanli-
ness of the etalon transmission profile) is then given by the
so-called finesse,

Fr ≡
∆δfree

w
=
π
√

F
2

, (21)

which is larger when the internal reflectivity on the etalon is
larger. With this definition, the FWHM of the transmission
peak can be rewritten as

∆λw =
λ0

mFr
, (22)

or, equivalently,
λ0

∆λw
= mFr. (23)

The finesse is then inversely proportional to the FWHM of
the transmission peaks: the larger the finesse, the thinner the
peaks. The Fabry-Pérot resolving power is directly given by
the product of the interferential order and the finesse. Since
the width of real etalons can change due to other factors (see
Sect. 4.1.1) and the concept of finesse remains useful, Fr in
Eq. (21) can be called the reflectivity finesse.

3.1.2. Tunability of the etalon

The wavelength tuning procedure in real etalons implies a
change in n′, in h, or in θ. Equation (14) provides the neces-
sary relationship between the three parameters and the wave-
length of the transmission peak. If the selected tuning pro-
cedure is a tilt of the incidence angle, then one can approxi-
mately calculate that an angle

∆θ '
√
λ0n′

h
(24)

is necessary to tune the etalon from one transmission peak to
the next (a whole free spectral range):4 for example, with the
values used for plotting Fig. 2, ∆θ ' 2.◦85.

Since Eqs. (14), (18), and (20) depend on cosθ′, the trans-
mission function is not the same across the field of view when
illumination is out from normal incidence. Then, it is highly
advisable to work with etalons as close as possible to normal
incidence.

4 This equation can be obtained by using Eq. (14) for m with θ = 0 and for
m + 1. For typical values of real etalons of interest in solar physics, (1/m)2

turns out to be negligible (hence the approximation).

If we now keep fixed the incident angle, then a tuning
equation can be derived from Eq. (14) by taking logarithmic
derivatives:

∆λ0(V )
λ0

=
∆n′(V )

n′
+
∆h(V )

h
, (25)

where we have assumed that the tuning agent, the driver for
changing the thickness or the refractive index of the etalon
is voltage. This is the case of piezoelectric or electro-optic
etalons that can change either n′, h or both after a modification
of a feeding high voltage signal.

According to Álvarez-Herrero et al. (2006), the converse
piezoelectric effect in Z-cut crystals5 can be described by the
linear relationship

∆h(V ) = d33V (26)

and the electro-optic change in the refractive index is given by
(the unclamped Pockel’s effect formula)

∆n′(V ) = −
n′3r13V

2h
. (27)

Combining Eqs. (25), (26), and (27), we get the final tuning
relationship6

∆λ0 =

(
d33 −

n′3r13

2

)
λ0V

h
. (28)

3.1.3. Sensitivity to variations in the refractive index and etalon
thickness

Three are the key parameters describing the etalon trans-
mission profile, namely, the central wavelength, the peak
FWHM, and the free spectral range. If the incident angle of
the light beam is kept constant, according to Eqs. (14), (18),
(20), and (28), these three parameters depend on the refrac-
tive index n′ and the thickness h. Impurities in the mate-
rial or defects in polishing the surfaces can induce irregulari-
ties in any of them (or both) across the etalon clear aperture.
These changes in the optical thickness can induce modifica-
tions in λ0, ∆λw, and ∆λfree. An assessment of those possible
changes is in order.

Error propagation in Eq. (14) provides

δλ0

λ0
=
δn′

n′
+
δh
h
. (29)

Error propagation in Eq. (18) provides

δ(∆λw)
∆λw

= −
δn′

n′
−
δh
h
. (30)

A similar equation can be found for perturbations in the free
spectral range:

δ(∆λfree)
∆λfree

= −
δn′

n′
−
δh
h
. (31)

Therefore, a given percent error in h or n′ is transmitted
directly to λ0, ∆λw, and ∆λfree. Since typical thickness inho-
mogeneities in etalons are of the order of 1 nm, they amount a

5 Uniaxial crystals are certainly anisotropic and hence birefringent mate-
rials. We mention them here to illustrate a way of changing its (ordinary)
refractive index.

6 The actual values of the d33 and r13 coefficients depend on the specific
sample device.
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factor 4 ·10−6 for thicknesses of 250 µm, approximately. This
is perfectly negligible for ∆λw and ∆λfree. However, signifi-
cant shifts of the order of the FWHM can be produced for the
wavelength transmission peak. Perturbations in the refractive
index are also much more important for the peak wavelength
than for the peak width and free spectral range: a small per-
cent or per mil may be perfectly negligible for ∆λw and ∆λfree
but not for λ0.

In summary we can say that the expected impurities or inho-
mogeneities in our etalons affect less the shape of the trans-
mission profile than the peak wavelength. See Sect. 4 for a
discussion on these defects for the two typical optical config-
urations in which etalons are mounted in astronomical instru-
ments.

3.1.4. Transmission peak as a function of the incident angle

Let us consider a variation in δ due to a modification in
the refraction angle (or the incidence angle, of course) for a
given wavelength. In such a case, Eqs. (10) and (11) predict a
maximum of the transmission profile for normal incidence. At
given wavelengths, the transmitted intensity decreases with an
increasing incidence angle. This is the cause of the so-called
pupil apodization that is discussed later in Sect. 4.2.

The monochromatic decrease in intensity is indeed induced
by a shift in wavelength of the transmission peaks. Error prop-
agation can now be written as

δλ0

λ0
=
δ cosθ′

cosθ′
=

√
1 −

sin2 θ

n′2
− 1, (32)

where we have assumed shifts with respect to the peak (at
θ = θ′ = 0). If the incidence angle is small, we can write last
equation in a more simple way:

δλ0

λ0
' −

θ2

2n′2
. (33)

For our sample etalon in Fig. 2, a maximum incidence angle
of 0.◦4 translates to a maximum wavelength shift of, approx-
imately, 15 pm, larger than the typical peak FWHM. Notice
that the shift can be reduced by increasing the refraction in-
dex. For example, for Lithium Niobate, n' 2.3 and δλ0 ' 2.8
pm. Again, the effect of non-normal incident angle is neg-
ligible for the width of the transmission peaks and the free
spectral range. Note that the right-hand side term of Eq. (32)
is 2.4 · 10−6; when multiplied by ∆λw ∼ 10 pm, it gives
δ∆λw ∼ 2.4 ·10−4 pm. It is important to remark that, no mat-
ter the incidence angle, the right-hand sides in Eqs. (32) and
(33) are always non-positive. This means that transmission
peak shifts are always to the blue.

4. TWO OPTICAL CONFIGURATIONS

Fabry-Pérot etalons are used in solar physics in two typical
optical configurations, namely, collimated and telecentric. In
the first configuration the etalon is located at (or very close
to) a pupil plane. In the second configuration the etalon is put
very close to a focal plane. The properties and performance
of the etalon are naturally different and are discussed in this
Section.

4.1. Collimated configuration
Let us consider an optical configuration like the one

sketched in Figure 3. The etalon is located on a pupil plane.
In such a location, the etalon is illuminated with parallel rays

Figure 3. Layout of a collimated beam etalon configuration.

(plane waves) from each point in the object (assumed at in-
finity). The transmitted intensity at each image point is then
given by Eq. (11) multiplied by the surface of the pupil. This
is so because all rays added at a given image point go through
the etalon with the same incidence angle. As commented on
in Sect. 3.1.4, we can deduce that in case of a uniform ob-
ject field, images A′ and C′ will show a smaller peak intensity
than B′ at a monochromatic wavelength simply because the
incidence angle (hence the refraction angle) is larger. This
is an effect that could easily be corrected for through a stan-
dard flat-field procedure. Sensors detect the flux of energy
that passes through the entire transmission peak instead of the
monochromatic intensity, though. As the spectral width of
the profile is almost insensitive to variations in the incidence
angle (Section 3.1.4), there is no effect in the total flux of
photons detected on the sensor over the field of view. What is
more relevant is the wavelength shift induced by the different
incidence angle. The transmission functions at points A′ and
C′ are blue shifted with respect to that at B′.

The results in Sect. 3.1.4 account for the effects of a non-
zero angle between the etalon normal and the instrument opti-
cal axis. The sensitivity of the final image to inhomogeneities
of the collimated etalon can be studied with the results from
Section 3.1.3. Locally larger optical thicknesses imply red
shifts and locally smaller optical thicknesses produce blue
shifts. In this collimated configuration, the inhomogeneities
are integrated and, hence, spectrally “blurred” on the final im-
age. Such inhomogeneities broaden the effective transmission
profile as a consequence of having different profiles shifted
with respect to each other. This is discussed in the following
Section 4.1.1. The consequences on the spatial point spread
function of the instrument are considered in Section 5.1.

4.1.1. Effective finesse

Regardless of quantitative effects, it is obvious that the
highest quality etalons should be pursued. That is, we typi-
cally aim at using the smoothest, flattest, and more accurately
parallel etalons. The perfect etalon does not exist, however.
Defects appear in real etalons that locally change the optical
path through it. Most papers and books refer to air-gapped
(or other fluid) etalons and only discuss on inhomogeneities
in the etalon width, h. Crystalline etalons, however, may also
present irregularities in the refractive index, n′.7 Since both
h and n′ always appear multiplied together, the relevant phys-
ical quantity is indeed the optical path s ≡ n′hcosθ′, which
accounts for all possible incidence angles. The classical ap-

7 We restrict here to effects in one of the indices. Possible birefringence
effects are deferred to a subsequent paper.
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proach to these non-uniform etalons is to treat them as a set of
individual etalons, each with a given optical thickness (e.g.,
Chabbal 1953). Although incoherent summation of the var-
ious etalon intensity distributions is not rigorously correct,
according to Vaughan (1989), differences with the accurate
coherent summation of amplitude distributions are not very
large. These differences were studied by Hernandez (1988),
who showed that they are negligible for high-quality (highly
reflective) etalons. Then, the common approach (e.g., Ather-
ton et al. 1981) is to ascribe different finesses to the vari-
ous plate defects under consideration and add their inverses
quadratically. This was first proposed by Meaburn (1976) un-
der the assumption that all functions involved in the degrada-
tion of the intensity profile were Gaussian.

The most commonly employed expressions for the spheri-
cal, Gaussian, and departure from parallelism finesse defects
(Fig. 4) are, probably, those presented by Chabbal (1953).
Analytical expressions for the sinusoidal defect (Fig. 4d) have
not been presented in the literature up to our knowledge, al-
though this defect has already been studied by Sloggett (1984)
and Hill (1963). Defect finesse formulas presented by Chab-
bal (1953) are restricted, however, to the limit when the defect
distribution is very broad compared to the original transmis-
sion profile (i.e., without including irregularities). This hap-
pens either when defects are very large or when the reflectivity
is high and, therefore, the original spectral profile is very nar-
row. The latter case is of interest as achieving high finesses
is usually intended and small variations in the optical path
can degrade the profile severely. We shall refer to Chabbal
(1953) expressions, then, as limiting finesses since they re-
strict the maximum possible finesse of the etalon. These lim-
iting expressions are, however, usually employed as generic
ones (e.g., Atherton et al. 1981; Gary et al. 2006), i.e., as if
they were valid for any magnitude of the defect.

The most complete approach to describe the etalon plate
defects is, in our opinion, the one by Sloggett (1984), who
presented a general treatment applicable to any defect form
or magnitude useful for etalons whose surface reflectivity is
moderate to high. He heuristically suggested that the FWHM
of a defect-broadened transmission profile, w, is approxi-
mately given by

w2 = w2
0 +α2σ2

d , (34)

where w0 is the width of the profile corresponding to an etalon
without defects (as given by Eq. 17), σd is the standard de-
viation of the probability density function associated to the
perturbation or error in the phase δ introduced by the defects,
and α is a coefficient that can be derived from numerical con-
volution of the transmission profile of a perfect etalon with
the probability density function of the errors. This coefficient
depends on the type and magnitude of the defect. Sloggett
(1984) obtained by numerical methods that α converges to
2
√

3 ' 3.46 for all defects in the small magnitude regime
(σd/w0 < 0.1). This value of α agrees with the results found
analytically by Steel (1986), who considered small perturba-
tions of the incident wavefront caused by etalon defects. Note
that for large defects compared to the original spectral profile
(σd >> w0), the width of the degraded profile is equivalent to
that of the defect distribution, wd , and the value of α coincides
with the factor that relates the FWHM of the distribution with
its standard deviation (wd = ασd). The value of α in this limit
must be consistent with the results of Chabbal (1953).

With such a broadened profile, the reflective finesse repre-
sents no longer a spectral “cleanliness” of the etalon transmis-

sion profile. However, we can identify

Fd ≡
2π
ασd

(35)

as a defect finesse and speak of an effective finesse given by

Feff ≡
(

1
F2

r
+

1
F2

d

)−1/2

. (36)

With this definition, we can continue using the finesse concept
as an useful parameter for characterizing the etalon spectral
cleanliness. Hence, using this effective finesse in Eq. (22)
instead of the reflectivity finesse, the actual width of the etalon
transmission peak becomes

∆λw =
λ0

mFeff
. (37)

Sloggett (1984) pointed out that defect finesse expressions
obtained through Eq. (35) could differ from the limiting fi-
nesses of Chabbal (1953) depending on the magnitude of the
defect. He did not explicitly obtained finesse expressions for
the different defects, though. We believe that they need to
be presented in order to compare them with those of Chabbal
(1953) and others. We shall present here compact expressions
for four examples of the defect finesse assuming defects are
small (α = 2

√
3). A complete discussion on the derivation of

the defect finesses is carried out in Appendix A.
Consider a dish-like defect with a spherical or parabolic

shape like the one shown in Fig. 4 (a) characterized by a peak-
to-peak excursion ∆ss in the optical path.8 The defect finesse
can be shown to be given by,

Fds =
λ

2∆ss
. (38)

Figure 4. Typical defects of Fabry-Pérot etalons: (a) spherically shaped with
a peak-to-peak excursion ∆ss; (b) irregularities following a Gaussian distri-
bution with a variance ∆s2

g; (c) linear wedge with a peak-to-peak deviation
∆sp; and (d) sinusoidal defect of peak-to-peak amplitude ∆sa.

If we now focus on Fig. 4 (b), we have a micro-rough sur-
face with deviations from s that follow a normalized Gaussian
distribution with variance ∆s2

g. In this case, the defect finesse
is

Fdg =
λ

4
√

3∆sg
' λ

6.9∆sg
. (39)

Third, if departure from parallelism is linear as in Fig. 4 (c),
with a peak-to-peak excursion of ∆sp, then the defect finesse
can be written as

Fdp =
λ√

3∆sp
' λ

1.7∆sp
. (40)

Consider finally an etalon with an optical path roughness
given by a sinusoid of amplitude ∆sa and zero offset. The
corresponding defect finesse is

8 Sloggett (1984) refers to the peak-to-peak excursions as 2∆s instead of
∆s.
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Fda =
λ√

6∆sa
' λ

2.5∆sa
. (41)

Should the defects of a given etalon be described by the
superposition of two or more of these distributions, it is nat-
urally understood that its inverse square finesse would result
from summing up the square inverse finesses of each distribu-
tion.

As indicated before, for σd >> w0, the value of α should
give rise to consistent finesse expressions compared to the
ones found by Chabbal (1953). Furthermore, these are, in
principle, different from Eqs. (38-41). Figure 5 shows the
value of α in the range 0.01< σd/w0 < 30 obtained after nu-
merical convolution of the four defect distributions here con-
sidered (Appendix A) with the transmission profile g of an
etalon with reflectivity R = 0.95 and unity transmission fac-
tor.9 We observe that α tends in all cases to 2

√
3 ' 3.46 for

σd/w0 < 0.1, as already shown by Sloggett (1984). In the
limit σd >> w0, α tends to 2

√
3 for the spherical and paral-

lelism distributions, to 2
√

2ln2 ' 2.35 for the Gaussian dis-
tribution and to 2

√
2 ' 2.83 for the sinusoidal one. The lim-

iting finesse F lim
d coincides then with Eqs. (38) and (40) for

the spherical and the parallelism defects as the limiting value
of α coincides with that of the small defect regime. On the
contrary, for the Gaussian and sinusoidal distribution the lim-
iting finesse formulas differ from Eqs. (39) and (41). Their
expressions are given by

F lim
dg
' λ

4.7∆sg
, (42)

and

F lim
da
' λ

2∆sa
. (43)

The limiting value of α coincides in each case with the fac-
tor that relates the FWHM with the standard deviation of the
defect distributions (Appendix A) and agrees with the limiting
finesse expression of of Chabbal (1953), as expected.

The defect finesse expressions here presented have been re-
stricted only to two limits: “small” and “large” defects. In
general, Eq. (35) must be applied with the value of α that
corresponds to the magnitude of the particular defect (Figure
5).

4.1.2. Transmission profile widths across the image

A further effect can produce a differential broadening of
the transmission peaks of the etalon across the focal plane in
a collimated configuration. Since any point in the final im-
age is formed with rays that went through the etalon at higher
incidence angle for greater radial distances from image cen-
ter, the transmission peak broadening is dependent on such a
radial distance.

Differentiating Eq. (18), one easily gets that the relative
variation in the FWHM of the peak is

δ∆λw

∆λw
= tanθ′ δθ′. (44)

9 Note that Sloggett (1984) presented the value of α up to 5σd/w0 in his
paper employing a Lorentzian function as transmission profile instead of g.
We believe that this upper limit of σd/w0 is insufficient to evaluate the ten-
dency of α in the regime σd >> w0. For that reason, we have extended by a
factor of six.
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Figure 5. Value of the coefficient α for the Gaussian (black), spherical (red),
parallelism (blue), and sinusoidal (green) defects against the standard devia-
tion of probability density function associated to each defect normalized by
the width of the profile of an etalon without defects, σd/w0.

With a typical value less than 0.◦5 for the maximum incidence
angle in solar telescopes, the ratio is 8 · 10−5. Therefore, we
can safely disregard this effect for our very slow instruments.

4.1.3. Deviations from perfect collimation

Deviations from perfect collimation can be viewed as il-
luminating the etalon with a spherical wavefront of a finite
numerical aperture. The consequence would be a broadening
and a displacement of the profiles with respect to that of par-
allel illumination. Of course, aberrations can also be present
in the incident wavefront, but these will not be considered
here. Following Sloggett (1984) method, the broadening of
the transmission profile due to the angular spread illumina-
tion of each point of the etalon can be dealt with an aperture
finesse (Appendix A) given by

Fdf ≡
2π
mΩ

n′2

n2 =
2

m tan2 θm

n′2

n2 , (45)

where Ω stands for the solid angle of the cone of rays travers-
ing the etalon, and θm is the maximum incidence angle in the
cone. This expression is compatible with that presented by
Atherton et al. (1981), except for the factor n′2/n2. We think
the disagreement is due to the fact that Atherton et al. (1981)
considered an air-gapped etalon in their derivation and not the
general (crystalline) case.

4.2. Telecentric configuration
To keep the same passband across the FOV, an alternative

configuration can be used. In a (image-space) telecentric con-
figuration (Fig. 6) the etalon is located (almost) at the focal
plane and the exit pupil at infinity (or, equivalently, the en-
trance pupil is at the front focal point of the system).

Each point of the etalon sees the same cone of rays com-
ing from the pupil. Unlike the collimated case, all three A′,
B′, and C′ points are evenly illuminated if the object field is
flat and no wavelength shifts in the transmission peaks are ex-
pected from one point to another. The transmitted intensity
is not g any longer, though. Since these rays are coherent
because they come from the same object point, addition of in-
tensities does not provide a solution and we should deal with
electric field amplitudes.
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Figure 6. Layout of a telecentric beam etalon configuration where the en-
trance pupil is located at the focus of the lens (and the exit pupil is therefore
at infinity). In this case, points A′ and C′ receive the same cone of rays as for
point B′.

4.2.1. Transmission profile

The vector electric field of the ray transmitted by the etalon
in Fig. 1 is given by

E(t) =
T eiδ/2

1 − Reiδ E(i), (46)

where (t) and (i) refer again to the transmitted and incident
quantities and R and T are given by Eqs. (1) and (3). This
expression differs from that presented in most text books (e.g.,
Born & Wolf 1999) by the general phase factor eiδ/2, which is
irrelevant in their discussion. However, it is, at first, important
in our current analysis as it depends on the incidence angle.10

The origin of the global phase is discussed in Appendix B.
With some simple algebra, Eq. (46) can be cast as

E(t) =
√
τ

1 − R
eiδ/2 − Re−iδ/2

1 + F sin2(δ/2)
E(i), (47)

where τ is defined in Eq. (12) and F in Equation (13). Con-
sider now the geometry sketched in Figure 7. For a general
optical system, the electric field at any point P′ = (ξ,η) is given
by the sum of all electric fields across the pupil surface:

Ẽ(t)(ξ,η) =
1

πR2
pup

∫∫
pupil

E(t)(x,y)e−ik(αx+βy) dxdy, (48)

where α ≡ ξ/ f and β ≡ η/ f are the cosine directors of OP′

(notice that we restrict ourselves to small angles).11 There-
fore, the electric field in the image plane is proportional to the
Fourier transform of that in the pupil plane. For our discus-
sion about the telecentric configuration we should concentrate
in the electric field at point O′: all the points in the focal plane
receive the same cone of light.12

The axial symmetry of Fig. 7 indicates that the pupil electric
field only depends on r and we can thus write

Ẽ(t)(0,0) =
2

R2
pup

∫ Rpup

0
r E(t)(r)dr. (49)

10 Neither von der Lühe & Kentischer (2000) nor Scharmer (2006) take
this phase factor into account.

11 We have normalized by the pupil surface in order to obtain quantities
that can later be compared with the results for the collimated configuration.

12 It is interesting to remark that there is not a general convention on the
(arbitrary) positiveness or negativeness of δ and, consequently, on the sign of
the exponent of the direct Fourier transform. Other authors, such as Hecht
(1998) use an opposite sign to the one used here.

Figure 7. Rays coming from the pupil to the image plane. Indeed they go
from the lens in Fig. 6 to the etalon.
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Figure 8. Transmission profiles as functions of the wavelength distance to
617.28 nm. A collimated configuration of the etalon is represented in black
line. A telecentric configuration with f/40 (blue), f/60 (green) and f/80
(red) is also shown.

All points in the pupil at a distance r from its center have
an associated incidence angle θ to the etalon. Therefore, each
monochromatic ray out of the optical axis contributes less and
less energy (Sect. 3.1.4) as θ increases. The bigger the dis-
tance to the pupil center, the smaller the energy. Hence the
pupil is seen from the etalon as if it were not evenly illumi-
nated. This is the so-called pupil apodization effect, first dis-
covered by Beckers (1998) and later discussed and elaborated
by von der Lühe & Kentischer (2000) and Scharmer (2006).
Moreover, those rays coming from the external parts of the
pupil have their corresponding transmission peaks shifted to
the blue (Sect. 3.1.4) with respect to the central ray. There-
fore, the integration of all rays should translate into a blue
shifted and a broadened transmission peak with the subse-
quent loss of spectral resolution as compared to the collimated
case.

The average ratio between the transmitted and incident in-
tensities in the telecentric configuration is then given by

g̃ =
Ẽ(t)Ẽ(t)∗

E(i)E(i)∗ , (50)

where the asterisk indicates the complex conjugate. Figure
8 shows a plot of the average transmission peak in a tele-
centric configuration with f/40, f/60 and f/80. As a ref-
erence, the same etalon but in a collimated configuration is
used. A refractive index of n′ = 2.3 has been used along with
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Table 1
Etalon parameters in four configurations, namely, collimated, and telecentric

with f/80, f/60, and f/40.

Parameters Collimated f/80 f/60 f/40

τ 1 0.96 0.88 0.60
∆λ0 (pm) 0 -1.13 -2.02 -4.55
∆λw (pm) 8.80 9.18 9.97 13.9
∆λfree (nm) 0.33 0.33 0.33 0.33
Feff 37.7 36.1 33.2 23.8

λ0 = 617.28nm, h = 250µm, A = 0, and R = 0.92. We will em-
ploy these parameters, corresponding to a commercial etalon,
throughout the rest of this work. Table 1 gives the remain-
ing key parameters for evaluating g and g̃ after Eqs. (11) and
(50), respectively. As expected, the transmission profiles re-
duce their peak intensity and broaden when changing from
the collimated configuration to telecentric configuration. The
transmission profiles are also shifted bluewards with respect
to the reference wavelength. These effects are more promi-
nent for smaller f-numbers due to the increasing of the aper-
ture of the incident cone of rays.

4.2.2. Effects on the effective finesse and on the peak wavelength

To circumvent the tedious (rigorous) calculation of Eq. (49)
after having substituted the electric field of Eq. (47) into it, we
can use the aperture finesse of Sect. 4.1.3 as an approximate
measure of the transmission profile broadening. One should
only include Fdf in the effective finesse expression of Equa-
tion (36). To assess the validity of such an approximation, we
re-write Fdf in terms of the image space f-number, f #, as

Fdf =
8( f #)2

m
n′2

n2 , (51)

which gives Feff = 36.5, 34.2, 26.2 for f/80, f/60, f/40, re-
spectively. These values are to be compared with the exact
ones given in Table 1. As expected, the larger the f #, the
better the approximation.

We have seen that another consequence of receiving a cone
of rays instead of a collimated beam is a blue shift of the
spectral profile (Sect. 4.2). From the average change of phase
compared to the collimated case, it can be shown (Appendix
A) that the spectral shift of the profile, ∆λ0, depends on both
the refraction index and the f-number through

∆λ0 ' −
λ0

16( f #)2

n2

n′2
. (52)

That is, for larger f-numbers and refraction indices, the
spectral shift decreases. For a collimated beam, f #→∞, we
have ∆λ0 → 0 and Fa →∞, as expected. Using this equa-
tion, the expected blue shifts are about −4.55 pm, −2.02 pm,
and −1.14 for f/40, f/60, and f/80. These values fit extraor-
dinarily well with those presented in Table 1.13

13 Title (1970) found the same analytical expression for the blue shift of
the spectral profile. The derivation he followed is not rigorous though, since
it is based on an analytical expression for the transmitted profile obtained
by averaging Eq. (11) over the cone of rays instead of adding electric field
amplitudes.

4.2.3. Plate-defect-induced effects

An assessment on how sensitive the final image is to etalon
inhomogeneities and to a non-zero angle between the instru-
ment optical axis and the etalon optical axis is as easy as in
Sections 3.1.3 and 3.1.4. Equations (30) and (31) are the same
for all rays in the incoming cone of light because they are in-
dependent of the incident angle in a telecentric configuration.
Then, the average transmitted intensity in Eq. (50) will suffer
exactly the same effect across the image, namely, that defects
or errors in the optical thickness are only important for the
wavelength tuning of the transmission peak. Modifications
in the FWHM of peaks and the free spectral range can be ne-
glected. Equation (32) is also valid for all the rays in the cone.
Hence, we should only take care of changes in the peak wave-
length.

Since the defects of the etalon are directly mapped to the
image in this telecentric configuration, the wavelength shifts
have a direct influence in the derived LOS velocities with the
instrument. To correct at first order for these LOS velocity
shifts one can measure them while taking flat-field exposures:
if we determine the line position for every pixel with a flat il-
lumination, we should only subtract the so-derived velocities
from those evaluated independently. However, it is important
to remark that the induced artificial LOS velocities cannot be
corrected completely in telecentric mounts unless the PSF is
fully characterized both spatially and spectrally. This is prob-
ably one of the most important disadvantages of this configu-
ration.

5. THE PSF IN THE TWO CONFIGURATIONS

Let us now study the spectral and spatial PSF of the tele-
centric configuration compared to the collimated case.

Equations (47) and (48) are fully general for both config-
urations since they hold for monochromatic plane waves im-
pinging the etalon. The electric field on the image plane is the
Fourier transform of that illuminating the pupil. The differ-
ence between the two systems is whether E(t) and the phase
difference δ are constant across the pupil or not. That is, they
are independent of the spatial coordinates (x,y) of the pupil
plane in the collimated configuration whereas they are not in
the telecentric configuration: E(t) and δ do depend on x and y.

5.1. PSF in collimated configuration
Figure 9 displays a 2D layout of a collimated etalon config-

uration where two rays of incidence angle θ reach the etalon
and, later, the image plane. Since the etalon is placed on the
pupil, all rays striking on it with an angle θ will be projected
on the same point P′(ξ,η) of the image plane no matter their
incidence positions at the etalon. A relationship between P′
and the incidence angle θ can easily be found if we assume
the stop is placed at the object nodal plane of the system (in a
single lens paraxial system, this means that the stop is placed
at the lens and the central ray is not deviated). If f stands for
the focal length,

cosθ =
f√

ξ2 +η2 + f 2
. (53)

The phase difference δ at P′ can be written then as

δ(ξ,η) =
4πh
λ

√
n′2 − n2 +

n2 f 2

ξ2 +η2 + f 2 . (54)
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Figure 9. 2D layout of a collimated beam etalon configuration for two rays
that impact on the etalon with an angle θ.

It is important to remark that δ does not depend on the pupil
plane coordinates (x,y). Therefore, for a perfect etalon with
no defects, Eq. (48) simply turns into

Ẽ(t)
(ξ,η) =

1
πR2

pup
E(t)

0 (ξ,η)
∫∫

pupil
e−ik(αx+βy)dxdy, (55)

where E(t)
0 (ξ,η) is the electric field transmitted by the etalon

that approaches P′. It should be noticed that Eq. (55) is
proportional to the Fraunhofer integral of a circular aperture
(Hecht 1998). Hence,14

Ẽ(t)(z;z0) = Ẽ(t)
0 (z0)

2J1(z − z0)
z − z0

, (56)

where J1(z) is the first order Bessel function and the variable
z is given by

z =
2π
λ

Rpup

√
ξ2 +η2

f
. (57)

Unlike in the case of a clear circular aperture, space invari-
ance has been lost with the collimated etalon and the response
of the system depends on the position across the image. Thus,
the point spread function cannot be interpreted as a regular
PSF since it varies from point to point. The instrument does
not respond with the convolution of the object intensity dis-
tribution with the PSF. Rather, one has to multiply the object
surface brightness with the local PSF and integrate. Such a
local PSF can be expressed as

S(z;z0) = g(z0)
[

2J1(z − z0)
z − z0

]2

, (58)

where g(z0) is given by Eq. (11) with the dependence on z0
given through Equation (54). Then, the monochromatic, local
PSF turns out to be the same as the PSF produced by a circular
aperture except for a transmission factor. This result enables
to interpret the response of the etalon as that of a clear circular
aperture (hence, through convolution with S0 ≡ [2J1(z)/z]2)
but multiplied with the local transmission profile value. In
other words, we have an apodization of the image. This im-
plies that an etalon without defects in collimated configura-
tion only affects the image quality by reducing the monochro-

14 Here we use z0 as a parameter, which is denoted by the semicolon in
front of it.

matic intensity. As soon as we go radially out from the opti-
cal axis, g(z0) is shifted in wavelength (see Section 4.1) and,
hence, it is reduced compared to the transmission factor (τ )
at the given wavelength. Therefore, the most significant con-
sequence we can expect of image apodization is a radial de-
crease of the monochromatic S/N of the observations since
the largest noise source is typically photon noise, which is
proportional to the square root of the signal. Since g is a
monotonically decreasing function of z, longer focal lengths
can be beneficial for given etalons at the expenses of either
reducing the FOV or increasing the size of the detector.

So far we have discussed the monochromatic behavior of
the etalons. Our instruments always integrate a finite pass-
band per each wavelength sample; thus, the polychromatic
response has to be addressed. This is done in Section 5.3.

For a real etalon with defects, Eq. (55) is no longer valid.
Either h, n′, or both depend on the pupil plane coordinates
since the defects are located at specific points (x,y). This de-
pendence must be incorporated into Eq. (54) and the PSF
should be evaluated numerically. An approximation of the
real PSF can be obtained through the convolution of S with
a defect density distribution much in the same way as we do
in order to get the results of Section 4.1.1. As S0 does not
depend on δ, such a convolution can only affect g(z0). We can
then safely expect that the net effect of inhomogeneities are
mostly seen in the spectral transmission, but not in the spatial
shape of the PSF. 15

On the other hand, the (unavoidable) presence of micro-
roughness errors in the reflecting surfaces should translate
into an increase of the energy contained in the wings of the
PSF, as they are high-frequency errors. This undesired ex-
cess of energy in the lobes of the PSF is commonly referred
as stray light and its consequence is a loss of contrast. In
spectropolarimetry, stray light is a particularly delicate issue,
though, because it represents a contamination of the magnetic
signal at a given feature by the signal originated in other struc-
tures located all around the feature.

Consider now an imperfectly collimated input beam. The
phase shift depends in this case on the pupil coordinates as
the incidence angle changes across the etalon. The net effect
is essentially the same as locating the etalon in an imperfect
telecentric configuration (Section 6). This is obvious as we
only care about the irradiance distribution across the detector
and, thus, the integrals that must be performed are the same
as in the telecentric case except for a an irrelevant scale factor
that accounts for the projection of the pupil on the etalon. The
only difference is that etalon defects are still averaged out over
the illuminated area, whereas in the telecentric mount defects
are directly mapped into the detector.

5.2. PSF in telecentric configuration
In the telecentric configuration, any point P′(ξ,η) of the

etalon sees a cone of rays, each coming from different parts
of the pupil. Therefore, the phase shift δ now depends as well
on the pupil plane coordinates. From Fig. 10,

15 Attention must be paid if the Strehl’s ratio is used for evaluating the
wavefront degradation in etalons since small variations in the optical path
can lead to large variations in the transmission in g(zo). Thus, a decay in the
monochromatic Strehl’s ratio may come from a decay in the monochromatic
transmission and not from degradation of the PSF. In our opinion, the Strehl’s
ratio should be employed only with the quasi-monochromatic PSF (Sec. 5.3).
In any case, the PSFs normalization factors need to be chosen taking into
account that the energy enclosed by the degraded and unaberrated PSFs must
be the same.
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Figure 10. 2D Layout of a telecentric beam etalon configuration for a ray
that comes from the pupil at P(x,y) and is projected to the etalon at P′(ξ,η).

cosθ =
f√

(x − ξ)2 + (y −η)2 + f 2
. (59)

Hence, the explicit dependence on both the pupil and image
plane coordinates is

δ(x,y, ξ,η) =

=
4πh
λ

√
n′2 − n2 +

n2 f 2

(x − ξ)2 + (y −η)2 + f 2 .
(60)

Likewise in the collimated etalon with defects case, E(t)

does depend here on the pupil plane coordinates and cannot
be taken out from the integral in Equation (55). The PSF must
be calculated numerically.

Figure 11 shows the monochromatic PSFs as functions of
the radial distance from the optical axis, ρ≡ (ξ2 +η2)1/2, nor-
malized by the Airy disk radius of a clear, circular aperture,
ρAiry = 1.22 fλ0(2Rpup)−1. Solid lines represent the monochro-
matic PSFs as evaluated at their respective peak wavelengths,
λt ≡ λ0 +∆λ0, where ∆λ0 is given in Table 1. Dashed lines
represent the quasi-monochromatic PSFs after integrating the
finite etalon passband (see Section 5.3). Blue, and red corre-
spond to the f/40 and f/80 telecentric cases. For the sake
of comparison, the PSFs are normalized to their maximum
transmissions, which are also given in Table 1.

Differences between both collimated and telecentric con-
figurations become more evident from the vicinity of the first
minimum of the Airy pattern and are more prominent, as ex-
pected, for the shorter f # beams.

Following Sect. 4.2, one could expect that the telecen-
tric PSF gets broadened as compared to the collimated case,
whose width coincides with that for a clear, circular aperture:
∆ρAiry = 1.029 fλ0(2Rpup)−1. This is actually true only at cer-
tain wavelengths. Figure 12 shows in solid lines the FWHM
of the monochromatic PSF, ∆ρ, normalized to ∆ρAiry, against
the wavelength shift from λ0 for both f/40 (blue) and f/80
(red). We can observe that the PSF broadening is a wave-
length dependent effect, as evaluated for the first time by
Beckers (1998). The PSF narrows towards the blue with re-
spect to the FWHM at λt . The opposite is the case for red
wavelength displacements. The reason for this is that pupil
apodization (and phase errors) is a wavelength-dependent ef-
fect (Fig. 13). Towards the red of λt , the center of the pupil is
brighter than the edges. The effect is very similar to a Gaus-
sian apodization of the pupil, which translates to a broaden-
ing of the central disk of the PSF. The “effective” size of the
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Figure 11. Normalized PSFs calculated in the telecentric configuration at
f/40 and f/80 (blue and red line respectively) and in the collimated con-
figuration (black) line for normal illumination of the pupil. The quasi-
monochromatic PSFs of both f-numbers have also been represented (blue and
red dashed lines respectively).
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Figure 12. FWHM of the PSF in a perfect telecentric configuration normal-
ized to the Airy disk FWHM as a function of the wavelength shift . F-numbers
f/40 (blue line) and f/80 (red line) have been employed. The FWHM of the
quasi-monochromatic PSFs for f/40 and f/80 (blue and red dashed lines re-
spectively) have also been included. Vertical, dashed-dotted lines mark the
position of the maximum transmission wavelengths. In black, that of the col-
limated configuration.

pupil decreases and also reduces the energy in the secondary
rings (Mahajan 1991); towards the blue of λt , a central ob-
scuration appears and the brightness shifts with annular shape
towards the edges. The practical effect of obscuring an op-
tical system is to decrease the central disk of the PSF at the
expenses of expanding the wings of the PSF (Mahajan 1991),
thus contributing to stray light effects. This argumentation is
consistent with the results found by von der Lühe & Kentis-
cher (2000).

The maximum and minimum FWHM of the PSFs differ in
less than a 10% and 3% from ∆ρAiry for the f/40 and f/80
beams, respectively. Also notice that the separation between
the minimum and the maximum is of the order of the FWHM
of the spectral profile (Table 1). For larger shifts, the pupil
tends to be evenly illuminated and the PSF of a diffraction-
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Figure 13. Pupil apodization in a telecentric mount illuminated with a f/40
beam for different shifts with respect to λ0. From the upper left to the lower
right: ∆λ = −10,−6,−2,2,6 and 10 pm.

Figure 14. 2D Layout of a non-telecentric beam configuration (the lens and
the pupil are located at the same position) for a collimated beam that illu-
minates the pupil with an incident angle Θ. The chief ray does not deviate,
whereas the rest of rays reach the etalon with different angles θ.

limited system with the same pupil size is recovered. As re-
marked by Beckers (1998), the wavelength dependence of the
FWHM introduces artificial velocity signals in solar images
with velocity structure. An evaluation of this effect in real
instrumentation is presented in the third part of this series of
papers, where we show that errors in the magnetic field can
also appear.

In an ideal telecentric configuration, where all chief rays
across the FOV are parallel to the optical axis, each point of
the etalon receives the same cone of rays. Thus, all results ob-
tained for normal illumination are also valid for any direction
of the incident illumination of the pupil.

5.3. Quasi-monochromatic PSF
Real observations are polychromatic. We should be in-

terested therefore in the quasi-monochromatic response of
the system. Typically, in front of the quasi-monochromatic
Fabry-Pérot etalon, instruments have an order-sorting pre-
filter. Let T (λ) be the transmission profile of the pre-filter
(typically a window-shape function). If O(ξ,η;λ) denotes the
monochromatic brightness distribution of the object, then the
image quasi-monochromatic intensity distribution centered at
λ0 can be expressed as

I(ξ,η;λ0)

=
∫ +∞

−∞
T (λ)

∫∫
O(ξ,η;λ−λ0) ·S(ξ−ξ0,η−η0,λ−λ0)dλdξ0 dη0,

(61)

in the collimated configuration and

I(ξ,η;λ0) =
∫ +∞

−∞
T (λ) [O(ξ,η;λ−λ0)∗S(ξ,η;λ−λ0)]dλ,

(62)
in the telecentric configuration, where the symbol ∗ stands
for convolution. Convolution in Eq. (62) is carried out in the
space domain. Therefore, only if the object brightness distri-
bution is independent of wavelength (von der Lühe & Kentis-
cher 2000), as in the case of the continuum, then O can go out
from the integral and write

I(ξ,η;λ0) = O(ξ,η; )∗
∫ +∞

−∞
T (λ)S(ξ,η;λ−λ0)dλ, (63)

in the telecentric configuration. Hence, the right-hand side of
the convolution can be identified as a quasi-monochromatic
PSF, Squasi, which coincides with the integral in wavelength
of the monochromatic S multiplied by T (λ).

The quasi-monochromatic PSF is strictly valid only for the
continuum wavelengths, though. Within the spectral lines, the
spatial and spectral properties of light can be highly correlated
and, thus, space invariance no longer holds. The response of
the instrument, then depends on the object itself. However,
one can reasonably expect that the integration in wavelength
somehow reduces the purely monochromatic effects in the fi-
nal images at other wavelength samples. This can only be
checked numerically.16

Along with the monochromatic PSFs, Fig. (11) shows Squasi
for the two telecentric cases in dashed lines. (The collimated
Squasi exactly coincides with the monochromatic one after nor-
malization.) You can see that the quasi-monochromatic PSF
performance is better than that of the monochromatic one, as
best witnessed close to the minima. The reason for this is that
the the position of the monochromatic PSF minima are very
sensitive to wavelength variations in the vicinities of λ0. The
net effect is an improvement of the PSF when averaging spec-
trally the monochromatic PSFs (von der Lühe & Kentischer
2000).

Figure 12 also shows the quasi-monochromatic cases in
dashed lines. The quasi-monochromatic PSF widths are larger
than in the collimated configuration, although it can be seen
that the effect of integrating the monochromatic PSFs virtu-
ally balances out their spectral variations.

6. DEVIATIONS FROM PERFECT TELECENTRISM

Real instruments cannot strictly follow the requirements for
a perfect telecentric system. In an imperfect telecentric in-
strument, the entrance pupil is not exactly located at the focal
plane of the instrument, and the exit pupil is at an interme-
diate position between the lens and infinity. The situation is
exemplified in Fig. (14) where, without loss of generality,
the pupil is assumed at the same location as the lens. The
main consequence is that the chief ray cannot be normal to

16 We refer the reader to the third paper of this series for a quantitative
evaluation of this phenomenon.
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Figure 15. Apodization of pupil as seen from the etalon for a telecentric
beam with f/60 and at different angles of incidence of the chief ray in the
vertical direction: Θ = 0◦, 0.◦1, 0.◦2, 0.◦3, 0.◦4 and 0.◦5 from the upper left
to the lower right. Coordinates have been normalized to the pupil radius.

the etalon but is at an incidence angle Θ, which varies across
the image. Real instruments always have tolerances for such
an incidence angle that cannot be exactly zero as in the ideal
case. With such an oblique chief ray, the pupil apodization
gets asymmetric. Figure 15 displays the pupil illumination as
seen from the etalon as a function of the chief ray angle of in-
cidence. While the radial decrease in brightness is symmetric
at Θ = 0, it becomes more asymmetric as soon as Θ increases.
The result certainly has an influence in the PSF that varies
across the field of view.

6.1. PSF shape over the FOV
Figure 16 shows the monochromatic PSF at the peak wave-

length at normal incidence, λt , corresponding to a beam with
f/80 for different angles of incidence of the chief ray against
the radial coordinate of the image plane, ρ, centered at ρ0 =
f sinΘ (corresponding to the maximum of the PSF of a colli-
mated beam in a circular aperture with incident angle Θ) and
normalized by the width of the Airy pattern, ρAiry. We can
observe: (1) a spatial shift of the maximum with respect to
the collimated case, (2) a broadening of the PSF, and (3) a de-
crease of the peak transmitted intensity across the FOV. It is
also important to remark that perfect telecentrism is recovered
at Θ = 0, since Θ defines in a certain sense the degree of tele-
centrism. The fact that the PSF is not centered readily implies
stray light from the surroundings. Note that ∼ 0.2ρAiry (the
approximate peak of the PSF for Θ = 0.◦5) means a third of
a pixel in a critically sampled instrument. The broadening of
the PSF drives the results in the same direction.

The change of the (normalized) FWHM against Θ is
shown in Figure 17 for the monochromatic (λt) and quasi-
monochromatic PSFs of an imperfect telecentric configura-
tion illuminated with an f/80 beam. It is to be noticed that the
PSF width grows monotonically with the chief ray incidence
angle. The variation of width at 0.◦5 is about 7% and 8% for
the monochromatic and quasi-monochromatic curves respec-
tively. Figure 18 shows the spatial shift of the PSF peak, ρp,
with respect to ρ0 against Θ for λt , λt +δλ (δλ = 5 pm) and for
the quasi-monochromatic PSF. The etalon is illuminated with
a f/80 beam in all cases. The spatial displacement is about
18% and 15% at 0.5 for the monochromatic PSF at λt and for
the quasi-monochromatic PSF respectively. Interestingly, the
dependence at λt + δλ is different from that at λt , which indi-
cates that the shift is wavelength dependent and that the PSFs
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Figure 16. PSF profiles of the a telecentric etalon with f/80 at λt and at
different angles of incidence of the chief ray: Θ = 0◦ (black), 0.◦125 (blue),
0.◦25 (red), 0.◦375 (green) and 0.◦5 (magenta). Each profile is centered at
ρ0 = f sinΘ.
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Figure 17. FWHM of the PSF at λt normalized by the FWHM of the Airy
disk across Θ for a f/80 beam (red solid line). The FWHM of the quasi-
monochromatic PSF (red dashed line) and the FWHM of the PSF for a colli-
mated beam have also been plotted (black solid line).

overlap not only spatially but also spectrally over the image
plane.

6.2. Behavior of the spectral profile over the FOV
The loss of symmetry in the cone of rays is also mapped

into the transmission profiles of the etalon. These profiles will
be shifted and deformed, as happens with the PSFs. Figure 19
shows the transmission profile as a function of the wavelength
distance to λ0 for Θ = 0◦ , 0.◦125, 0.◦25, 0.◦375 and 0.◦5. A
beam with f/60 has been employed to clearly visualize the
asymmetrization and loss of illumination with Θ. We can ap-
preciate the blue shift across the FOV, as well as a decrease of
the symmetry, a broadening of the profiles and a decrease of
the peak transmitted intensity as Θ grows. Also note that at
Θ = 0 we recover the transmission profile for f/60 presented
in Figure 8.

Figure 20 shows the transmitted intensity with Θ evaluated
at the wavelength of the peak transmission for normal illumi-
nation, λt . A beam with f/80 has been employed. The decay
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Figure 19. Spectral transmission function at f/60 for chief ray angles of
incidence Θ = 0◦ (black), 0.◦125 (blue), 0.◦25 (red), 0.375 (green), and 0.◦5
(magenta).

of transmission at λ0 with the incident angle of the collimated
case is also represented. The peak intensity goes from 0.96
and 1 at 0◦ to 0.52 and 0.49 at 0.◦5 for the telecentric and
collimated beams respectively. It should be noticed that in
the collimated case the intensity decays faster with the inci-
dence angle. We also show the total energy contained in the
transmission profiles for both the telecentric and collimated
beams with the chief ray incidence angle. We have normal-
ized both to the total energy contained in the transmission pro-
file of the collimated configuration (which remains constant
over Θ). The total energy of the profile is calculated by in-
tegrating the spectral transmission factor, g̃. We can observe
that the flux of the telecentric configuration is reduced about
9% from the center of the image to its edges.

Although the telecentric configuration was devised to avoid
the wavelength shift, ∆λ, across the FOV, characteristic to
the collimated configuration, a wavelength shift will appear
in real instruments, as seen in Figure 19. Figure 21 shows the
spectral displacement of the wavelength peak with Θ for the
nominal wavelength, λ0, for different f-numbers. It can be no-
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Figure 20. Transmitted intensity at λt for a telecentric configuration with
f/80 across Θ (red solid line) and for a collimated configuration (black solid
line). The total flux of energy transmitted normalized by the flux transmitted
in the collimated configuration (black dashed line) is also represented(red
dashed line).
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Figure 21. Spectral shift of the peak wavelength across Θ for f-numbers
f/50 (blue), f/60 (green), f/80 (red), and f/150 (magenta). As reference,
the spectral shift of the collimated configuration is also plotted (black line).

ticed that the shift goes towards the blue for all angles and has
a weaker dependence on Θ as the f-number decreases from
infinity (collimated case) to ' 60. For f # < 60, the shift is
reduced as Θ increases until reaching a minimum at a certain
value (larger for smaller f-numbers) and then grows monoton-
ically towards the blue. The weaker dependence with smaller
f-numbers contrasts with other effects, such as the broadening
and the asymmetrization of the PSF and of the spectral pro-
file, where the effect is more prominent for smaller f-numbers.
This indicates that a compromise must be reached in general
between the spectral shift and the degradation of the PSF and
of the spectral transmission with the f-number in our instru-
ments.

To qualitatively understand why the wavelength shift de-
creases or increases over the FOV depending on both the f-
number and the chief ray angle, let us take a look to Figure
14. If we set Θ = 0 (normal illumination of the pupil), the
cone of rays becomes symmetric and the maximum incidence
angle is the same at both sides of the optical axis. The effect
is a wavelength displacement of the peak wavelength towards
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the blue of the nominal wavelength, λ0. As Θ increases, the
maximum incidence angle decreases at one side of the optical
axis and increases at the other side. This causes a sort of trade-
off to increase or to decrease the shift with respect to normal
illumination when averaging the electric field transmitted by
the etalon over the pupil. This is of course f # dependent as the
cone of rays reaching the etalon narrows when the f-number
increases and vice-versa.

7. SUMMARY AND CONCLUSIONS

We have discussed the properties of Fabry-Pérot etalons in
the two optical configurations commonly employed in solar
instruments, namely, collimated and telecentric. We have fo-
cused on both their use as tunable spectral filters and as imag-
ing elements.

First, we have overviewed the general properties of Fabry-
Pérot etalons, their tunability and their sensitivity to variations
in the optical thickness. We have remarked that changes in the
optical thickness specially affect the peak wavelength but not
so much to the shape of the transmission profile.

We have studied the degradation of the spectral profiles
originated by both etalon defects and illumination with a
beam of a certain aperture. We have followed the general
treatment given by Sloggett (1984) and we have extended
their results by presenting explicit formulas for the finesse de-
fects of typical inhomogeneities (spherical, Gaussian, paral-
lelism and sinusoidal). The found expressions are valid for
irregularities having a small effect in the transmission pro-
file. We have also obtained formulas for the finesse defects
in the opposite limit, i.e., when irregularities dominate. We
have shown that these finesses agree with the limiting formu-
las of Chabbal (1953), commonly employed in the literature
but only valid for defects that produce a severe degradation
of the profile. They differ from the small defect case for the
Gaussian and sinusoidal defects, whereas they coincide for
the spherical and parallelism error, as expected. On the other
hand, we have generalized the aperture finesse presented by
Atherton et al. (1981), to the crystalline case and we have de-
duced an analytical expression for the blue shift of a telecen-
tric etalon. The derived expressions show a good agreement
with results obtained from numerical simulations of the spec-
tral profile.

Regarding their imaging performance, we have shown that,
in a collimated mount, the PSF is proportional to that of an
ideal diffraction-limited instrument. The proportionality fac-
tor is given by the spectral profile of the etalon. This implies
that convolution with the object cannot be applied since the
PSF is not space invariant. A monochromatic decrease of the
S/N is then expected from the center to the borders of the im-
age. However, the decay of monochromatic transmission can
be dramatic if variations of the optical thickness do not pre-
serve the peak shift low compared to the width of the profile,
though. In a perfect telecentric etalon the PSF remains the
same from point to point but strongly depends on the wave-
length over the transmission profile. This gives rise to artifi-
cial velocities and magnetic fields that can only be calibrated
in a first approximation.

We have argued that fluctuations of the optical path due to

defects are averaged in collimated setups and only affect at
first order to the transmission as we go off axis. Stray-light is
also expected if micro-roughness errors are present. The PSF
shape remains equal and symmetric all over the FOV, though.
In a telecentric setup, imperfections in the optical path pro-
duce a change on the PSF pixel-to-pixel and further contribute
to artificial velocity and magnetic field signals. In the case
that two or more etalons are combined to increase the effec-
tive free spectral range and/or to improve the resolution, the
errors can be amplified in both mounts, and may also produce
large local transmission variations in the telecentric configu-
ration because of the different shifts of the spectral profiles
due to different local thicknesses.

We have added in our discussion the effect of the quasi-
monochromatic nature of the measurements due to the finite
passband of the etalons. The response of the instrument turns
out to depend, in general, on the object itself in both the
collimated and the telecentric configurations. Therefore, the
quasi-monochromatic PSF cannot be employed as a regular
one, except for observations of spectrally flat features (i.e., in
the continuum). Purely monochromatic effects, such as the
decay of intensity in collimated etalons and the artificial sig-
nals originated in telecentric ones, are expected to balance out
in some way, although not entirely. Quantitative effects can
only be evaluated numerically.

We have finally addressed the consequences of variations
on the chief ray over the FOV in telecentric setups. We
have shown that they can produce a severe asymmetrization,
a broadening and a shift of both the peak transmission and the
PSF. These effects are nonlinear with the angle and with the
f-number, and, thus, very sensitive with the optical tolerances
of the instrument. A decrease of the transmitted flux of pho-
tons with larger incidence angles of the chief ray has also been
demonstrated, apart from a reduction the monochromatic in-
tensity. All these issues, except for the shift of the peak, are
not present in the collimated configuration and, when com-
bined, lead to artificial signals in the spectrum of the measured
Stokes vector and to a degradation of the image. Besides, the
widening and shift of the spectral profile in imperfect (real)
telecentric mounts confronts with the general conception of
employing this configuration to keep the passband constant
over the field of view.

The consequences of imperfect telecentrism can also be ap-
plied to imperfect collimated mounts, where the etalon is il-
luminated by a finite f-number beam with different incidence
angles on the etalon. The only difference is that defects still
average over the footprint of the beam on the etalon.

This study was initiated upon some starting notes by our
friend José Antonio Bonet, a colleague for most of the de-
velopment phases of the IMaX and SO/PHI instruments. We
owe very much to these notes (including a couple of figures)
and would like to publicly (and warmly) thank his contri-
bution. This work has been supported by Spanish Ministry
of Economy and Competitiveness through projects ESP2014-
56169-C6-1-R and ESP-2016-77548-C5-1-R. DOS also ac-
knowledges financial support through the Ramón y Cajal fel-
lowship.
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APPENDIX

A: DERIVATION OF THE SMALL-DEFECT FINESSE EXPRESSIONS

To model real etalons with typical defects, we call ε the error in δ induced by an optical path defect ∆s. Thus,

ε =
4π∆s
λ

=
∆s
s
δ, (A1)

where δ is given by Equation (10), λ is the wavelength of the incident beam and s≡ n′hcosθ′ is the optical path in one pass of the
beam through the etalon. Let D(ε) be the probability density function for ε, so that D(ε0)dε is the surface fraction of the etalon
aperture, dS, for which the error in δ is in the range (ε0, ε0 + dε). That is:

dS = D(ε)dε, (A2)

where

dε =
4π
λ

ds. (A3)

By definition, the error distribution function is just given then by

D(ε) = κ
dS
dε
, (A4)

where κ is a normalization factor introduced for D(ε) to represent a probability density function in a strict sense, that is, to fulfill
the property ∫ ∞

−∞
D(ε)dε = 1. (A5)

Let us call µd and σ2
d the mean and variance of the distribution respectively. Assuming defects are small (α = 2

√
3), Eq. (35)

can be expressed then as (Sloggett 1984)

Fd =
π

σd
√

3
. (A6)

By relating the variance of the defect distribution with measurable parameters of the defect, such as departure from an ideal
flat surface, we can obtain useful expressions for the defect finesse.

Spherical defect
We will focus first on the spherical-shape defect shown in Figure 4 (a). If we consider an etalon with circular or parabolic

symmetry and define r as the radial coordinate (Fig. 22a), the optical path across the etalon surface is given by

s = ar2
+ s0, (A7)

with a peak-to-peak excursion ∆ss = aR2, where a is a proportionality factor, R is the radius of the etalon, and s0 is the optical
path at r = 0. The differential of the optical path can be expressed just as

ds = 2ardr. (A8)

Therefore, Eq. (A3), can be cast as

dε =
8π
λ

ardr. (A9)

On the other hand, taking profit of the symmetry of the problem,

dS = 2πrdr. (A10)

Substituting this expression in Eq. (A4) we have that Ds is a rectangular distribution that, after normalization (κ = 4aλ−1ε−1
max),

can be written as

Ds(ε) =

 ε−1
max if 0< ε≤ εmax

0 otherwise
, (A11)

where εmax = (4π/λ)∆ss. This distribution is also useful for uniformly distributed random defects and for aperture defects
(Sloggett 1984). Its mean is just µds = εmax/2 and its variance is given then by

σ2
ds

=
1

12
ε2

max. (A12)
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Consequently, substituting σds in Eq. (A6), we get that

Fds =
λ

2∆ss
. (A13)

Note that εmax also coincides with the FWHM of the defect distribution in this particular case. Therefore, the relation between
σds and the FWHM is given by wds = 2

√
3σds and the limiting finesse is expected to coincide with that here deduced for small

defects.

Gaussian random defect
If we now consider Fig. 4 (b), we have a micro-rough surface with deviations from s that follow a normalized Gaussian

distribution with variance ∆s2
g. In this case, the standard deviation of the distribution is obviously σdg = 4π∆sg/λ. Substituting

this value in Eq. (A6),

Fdg =
λ

4
√

3∆sg
. (A14)

On the other hand, the FWHM of this distribution is related to the standard deviation as wdg = 2
√

2ln2σdg . Therefore, the value
of α will tend to 2

√
2ln2σdg when defects dominate and the limiting finesse will differ from the finesse here deduced for small

defects.

Parallelism defect
For the parallelism defect shown in Figure 4 (c), if we consider a circular etalon with radius R and define the X direction to be

the direction of departure from parallelism (Figure 22b), the optical path depends on the x coordinate as

s = ax + s0, (A15)

with a peak-to-peak deviation from paralellism ∆sp = 2aR, where a is a proportionality factor and s0 is the optical path at x = 0.
The differential of the optical path is simply

ds = adx. (A16)

Therefore, using Eq. (A3)

dε =
4πa
λ

dx. (A17)

On the other hand,
dS = 2ydx = 2(R2

− x2)1/2dx, (A18)

and, substituting in Eq. (A1) we have that

x =
ελ

4πa
. (A19)

Replacing x in Eq. (A4) and restricting to |ε| ≤ εmax/2, where εmax = (4π/λ)∆sp, we can express

Dp(ε) = κ
λ

2π

[
R2

−

(
λ

4πa

)2

ε2

]1/2

. (A20)

The normalization constant is given in this case by κ = (πaR2)−1. We can cast this equation more elegantly as

Dp(ε) =

 4/(πεmax)
[
1 − 4ε2/ε2

max

]1/2
if |ε| ≤ εmax/2

0 otherwise
, (A21)

Note that the mean is zero as it is symmetrical about ε = 0. The variance is given by

σ2
dp

=
ε2

max

16
. (A22)

Then, σdp = π∆sp/λ and the defect finesse (Eq. A6) can be written as

Fdp =
λ√

3∆sp
. (A23)

The FWHM of this distribution is given by wdp = 2−1
√

3εmax = 2
√

3σdp . As for the spherical defect, the limiting value of α is
expected then to tend to 2

√
3 for large defects.
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Figure 22. Coordinates employed for the calculation of the density distribution function of different defects: (a) coordinates used in in the spherical defect; (b)
coordinates used in both the parallelism and sinusoidal defect.

Sinusoidal defect
Consider finally an etalon with an optical path roughness given by a sinusoid of peak-to-peak amplitude ∆sa, as shown in

Figure 4 (d). If we consider a circular etalon with radius R and define the X direction to be the direction of the sinusoid, the
optical path have a dependence with the x coordinate

s =
∆sa

2
sinωx + s0, (A24)

where ∆sa is peak-to-peak deviation amplitude of the sinusoid, ω is its (spatial) frequency of oscillation, and s0 is the optical path
at x = 0. The differential of the optical path is given by

ds =
∆sa

2
ω cosωx dx. (A25)

Therefore, using Eq. (A3)

dε =
2πω
λ

∆sa

√
1 − 4(s − s0)2/∆s2

a dx, (A26)

and, according to Eq. (A1),

dε =
2πω
λ

∆sa

√
1 − (ελ)2/(2π∆sa)2dx. (A27)

On the other hand, for a circular etalon
dS = 2ydx = 2(R2

− x2)1/2dx, (A28)

where x is related to ε by

x =
1
ω

[
arcsin

(
2(s − s0)
∆sa

)
+ 2πn

]
. (A29)

The term 2πn, accounts for the multiplicity of the solutions, where n = 0,±1,±2, ...,±N, and

N =
1

2π

[
ωR − arcsin

(
2(s − s0)
∆sa

)]
. (A30)

Then, in the range |ε| ≤ εmax/2, with εmax = (4π/λ)∆sa,

D(ε)' κ
λ

√
R2 −ω−2

(
arcsin

[
2(s − s0)/∆sa

]
+ 2πn

)2

πω∆sa
[
1 − (ελ)2/(2π∆sa)2

]1/2 . (A31)

If we approximate R2 >> x2, which is valid for fast spatial modulations of the sinusoidal defect and for n<< N

D(ε)' κ Rλ

πω∆sa
√

1 − (ελ)2/(2π∆sa)2
= κ

2R

ω
√
ε2

max/4 − ε2
, (A32)
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where the normalization constant can be shown to be given by κ = ω(2Rπ)−1. The probability density function can then be cast as

Da(ε) =

 π−1[ε2
max/4 − ε2]−1/2 if |ε| ≤ εmax/2

0 otherwise
, (A33)

Due to the symmetry of the distribution, µa = 0 and

σ2
da

=
ε2

max

8
. (A34)

Then, the finesse defect can be expressed as (Eq.A6)

Fda =
λ

∆sa
√

6
. (A35)

The FWHM of this distribution, wda , is just εmax. Therefore, wda = 2
√

2σ ' 2.83σda . The value of α will tend then to 2
√

2 when
defects dominate and the limiting finesse will differ from the one here deduced for small defects.

Aperture finesse and spectral shift in telecentric configuration
Following the arguments of Sloggett (1984), we can also deduce an expression for the aperture finesse. Let us consider that the

etalon with refraction index n′ is at the focal plane of a lens of radius R. Each point of the etalon will receive rays coming from
all parts of the lens. In this case, the phase error corresponding to each ray with incidence angle θ from a medium with refraction
index n, compared to normal incidence and for θ << 1, is given by

ε =
4πn′h
λ

(1 − cosθ′)' n2mπθ2

n′2
, (A36)

where m = 2n′hλ−1 is the interferential order for θ ' 0. First, we shall calculate the density distribution of the incidence angle θ
in the etalon, D(θ). Similarly to Eq. (A4)

D(θ) = κ
dS
dθ
. (A37)

Here dS represents the portion of the lens corresponding to the angles of the rays coming to the etalon with angles between
(θ0,θ0 + dθ). Let r be the radial coordinate of the lens. Then

dS = 2πrdr. (A38)

For small angles, r ' θ f and dr ' θ f 2dθ, where f is the focal length of the system. Thus

dS = 2π f 2θdθ, (A39)

and, for θ in the range (0,θm), where θm is the maximum incidence angle, the angular distribution is simply

D(θ) = 2πκ f 2θ, (A40)

where κ = (π f 2θ2
m)−1 after normalization. To obtain D(ε) we can use the relation

D(θ)dθ = D(ε)dε (A41)

and
dθ
dε

=
n′2

2πn2mθ
. (A42)

Then,

Df(ε) =
{

n′2(n2mπθ2
m)−1 if 0< ε < εmax

0 otherwise
, (A43)

where εmax = n2mπθ2
mn−2. Notice that the density distribution is a rectangular function, as for the spherical defect. Actually, we

can rewrite Eq. (A43) as

Df(ε) =
{

1/(2
√

3σdf ) 0< ε < 2
√

3σdf

0 otherwise
, (A44)

which only differs from Eq. (A11) by a constant that is not relevant as both distributions are normalized. The mean value of the
distribution and its variance turn out to be
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µdf =
εmax

2
=

1
2

n2mπθ2
m

n′2
, (A45)

σ2
df

=
ε2

max

12
=

1
12

(
n2mπθ2

m

n′2

)2

, (A46)

Using Eq. (35) and Ω = πθ2
m, the aperture finesse can be deduced to be (Eq. A6)

Fdf =
2π
mΩ

n′2

n2 . (A47)

The FWHM of this distribution is therefore also given by wdf = 2
√

3σdf . Since α tends for 2
√

3 for both the small and large
defect regime, the limiting finesse defect will coincide with this expression.

Since the mean value of this distribution is not zero (Eq. A45), the profile is expected to shift towards the blue. As the density
distribution is symmetrical about its mean, the retardance corresponding to the peak wavelength in telecentric configuration, λt ,
will be related to the retardance at the peak wavelength for collimated illumination by

δ(λt) = δ(λ0) +µdf (λ0). (A48)

If we relate the maximum incidence angle with the f-number of the incident beam through θm = (2 f #)−1, the transmission peak
then depends on λ0 as

λt =
16( f #)2n′2λ0

16( f #)2n′2 + n2 , (A49)

and the blue shift ∆λ0 = λt −λ0 is then given by

∆λ0 = −
λ0

16( f #)2 + n2

n2

n′2
. (A50)

For large values of the f-number compared to the refraction index of the medium in which the etalon is immersed, we can simplify
this expression to

∆λ0 ' −
λ0

16( f #)2

n2

n′2
. (A51)

B:TRANSMITTED ELECTRIC FIELD

If we denote by subindices 1,2,...N the first, second and successive transmitted rays until the Nth ray in Fig. (1), their electric
fields are given, following to the notation presented in Sect.2, by

E(t)
1 = tt′eiδ/2E(i),

E(t)
2 = tt′r2ei(δ/2+δ)E(i),

E(t)
3 = tt′r4ei(δ/2+2δ)E(i),

...

E(t)
N = tt′r2(N−1)ei(δ/2+(N−1)δ)E(i),

(B1)

where a global phase δ/2 has been included to take into account that the electric field is retarded in the first pass with respect one
to the incident by the amount 2πλ−1n′hcosθ′. The transmitted electric field would be the superposition of each individual ray.
Note that the transmitted rays follow a geometric sequence of common ratio r2eiδ . As r < 1, the sum of all rays can be expressed
as

E(t) =
T eiδ/2

1 − Reiδ E(i). (B2)

The global phase is usually neglected as it disappears when calculating the transmitted intensity by complex conjugating the
electric field. This phase cannot be neglected for telecentric illumination of the etalon, as it depends on the incidence angle and,
thus, on the pupil coordinates.
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