Scanning different Ni-noble metal (Pt, Pd, Ru) bimetallic nanoparticles supported on carbon nanofibers for one-pot cellobiose conversion

E. Frecha, D. Torres, A. Pueyo, I. Suelves, J.L. Pinilla¹

Instituto de Carboquímica, CSIC. C/ Miguel Luesma Castán, 4. 50018. Zaragoza, Spain

Products analysis by GC:

The reaction products were silylated and analyzed by Gas chromatography (GC, Perkin Elmer Instruments, Clarus[®]580) equipped with a autosampler, a splitter injection port and flame ionization detector (FID). Separation of the products (0.5 μ L of sample, split ratio of 1:11) was performed on an Elite-5 column (Crossbond 5% diphenil-95% dimetyl polioxane, 250 μ m×30 m) and using helium (10 mL/min, 99,9992%, Air Liquid) as carrier gas. Oven temperature program is initially held at 40°C for 2.5 min, ramped to 330 °C at 10 °C /min, and kept at 330 °C for 1 min, while injection and detection temperatures were fixed at 275 °C and 330 °C, respectively.

In short, the derivatization procedure is as follows: sample aliquots (3mL) were first evaporated to dryness under vacuum (75°C) and then converted to their trimethylsilylether counterparts using an overstoichiometric proportion (1mL per 10 mg of solid rescued) of commercial sylilation agent (HMDS:TMCS:Pyridine, 3:1:9, SylonTM HTP, Superlco). The reaction proceeds at 60°C for 30 min under sonication. Before the injection, pyridine is exchanged for toluene and the sample is filtered over a 0.45 μ m PTFE filter. This methodology was similarly applied for the analytical standards used in the quantification.

¹ Corresponding author: José Luis Pinilla (jlpinilla@icb.csic.es)

In order to determine all those volatile compounds (i.e., EG, HMF) which could be lost during sample drying, an aliquot of the filtered sample and diluted in methanol (1:4) are also directly injected.

Products distribution during the hydrolysis test:

Time (h)	Cellobiose conversion	Y _{PRODUCTS} (mass %)				
		Glucose	Fructose	HMF	Levulinic acid	Others*
0	21.40	13.25	1.26	1.00	0.50	5.39
0.5	42.66	14.67	2.11	1.46	0.64	23.77
1	56.68	23.69	3.72	3.00	0.98	25.28
1.5	71.02	27.24	3.96	4.12	0.91	34.79
2	72.73	26.35	3.04	3.99	0.60	38.75
2.5	77.24	28.92	5.09	5.18	1.22	36.84
3	84.24	26.70	5.56	5.71	1.23	45.05

Table S1. Cellobiose conversion and itemized products yields during the hydrolysis tests

*Determined as the difference between the cellobiose conversion and the sum of quantified products.

Hydrogen-temperature programmed reduction (TPR-H₂) results:

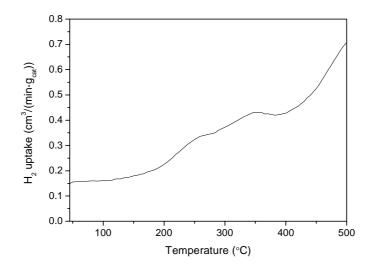
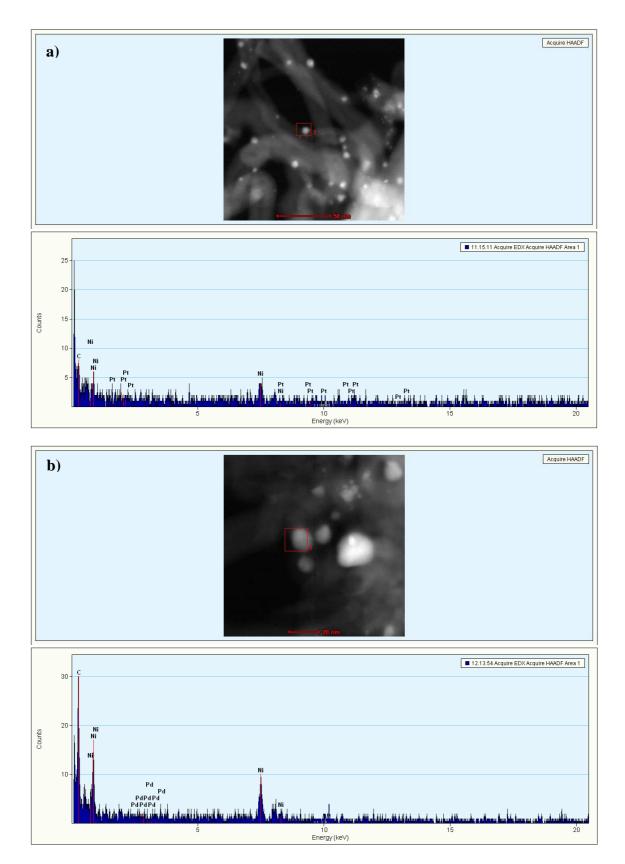



Fig. S1 TPR-H $_2$ signal correspondent to the CNF gasification.

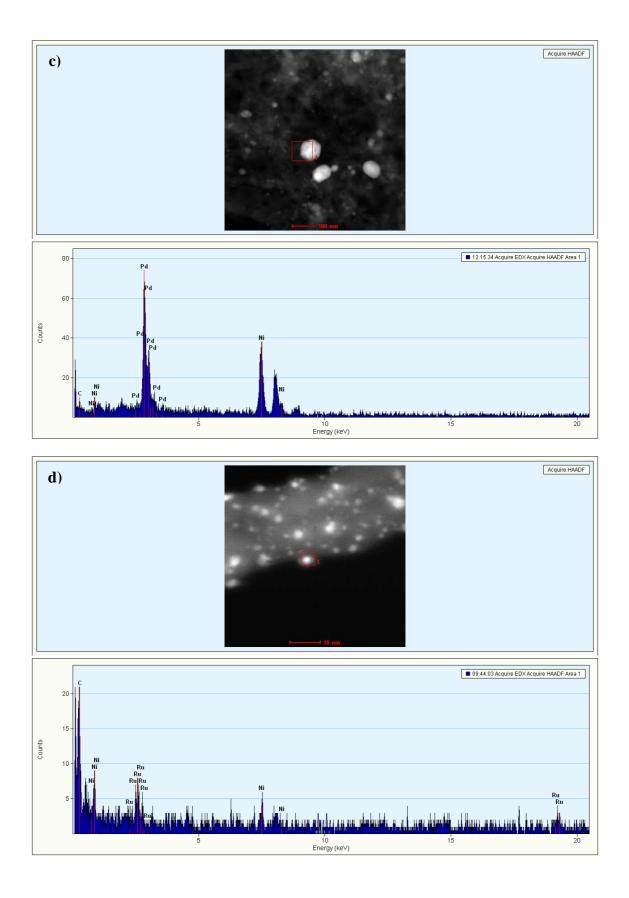
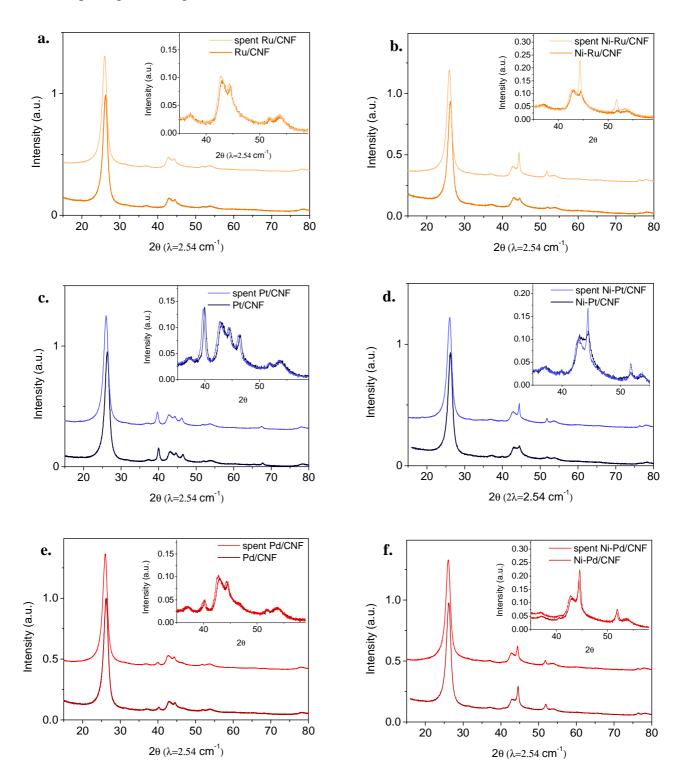



Figure S2 Chemical composition of individual bimetallic nanoparticles determined by EDX analysis: a) Ni-Pt/CNF, b) y c) Ni-Pd/CNF, d) Ni-Ru/CNF.

Catalysts durability

XRD diffractograms of the post-mortem catalysts did not show important morphological changes after reaction tests.

Figure S3. Comparison between XRD signal of fresh and spent catalysts before and after the reaction: a) Ru/CNF, b) Ni-Ru/CNF, c) Pt/CNF, d) Ni-Pt/CNF, e) Pd/CNF, f) Ni-Pd/CNF and g) Ni/CNF.