
1 

 

 1 

Predicting marine species distributions: complementarity of food-web and Bayesian 2 

hierarchical modelling approaches 3 

 4 

M. Coll*l,2, M. Grazia Pennino*3,4,5, J. Steenbeek1,2, J. Sole1, J.M. Bellido5,6 5 

*Authors share first co-authorship. 6 

 7 

1 Institut de Ciències del Mar (CMIMA-CSIC), P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain (current 8 

address).  9 

2 Ecopath International Initiative Research Association, Barcelona, Spain. 10 

3 Fishing Ecology Management and Economics (FEME) - Universidade Federal do Rio Grande do Norte – UFRN. Depto. 11 

de Ecologia, Natal (RN), Brazil. 12 

4 Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50-52, 13 

36390 Vigo, Pontevedra, Spain. 14 

5 Statistical Modeling Ecology Group (SMEG). Departament d'Estadística i Investigació Operativa, Universitat de 15 

València. C/Dr. Moliner 50, Burjassot. 46100 Valencia, Spain. 16 

6 Instituto Español de Oceanografía, Centro Oceanográfico de Murcia. C/Varadero 1, San Pedro del Pinatar. 30740 Murcia, 17 

Spain. 18 

Corresponding author: Marta Coll. E-mail: mcoll@icm.csic.es; marta.coll.work@gmail.com 19 

 20 

Keywords: spatial ecology, species distribution models, Bayesian model, food-web model, 21 

Ecospace, commercial species, Mediterranean Sea. 22 

 23 

 24 

25 

mailto:mcoll@icm.csic.es
mailto:marta.coll.work@gmail.com


2 

 

Abstract  26 

The spatial prediction of species distributions from survey data is a significant component of spatial 27 

planning and the ecosystem-based management approach to marine resources. Statistical analysis of 28 

species occurrences and their relationships with associated environmental factors is used to predict 29 

how likely a species is to occur in unsampled locations as well as future conditions. However, it is 30 

known that environmental factors alone may not be sufficient to account for species distribution. 31 

Other ecological processes including species interactions (such as competition and predation), and 32 

the impact of human activities, may affect the spatial arrangement of a species. Novel techniques 33 

have been developed to take a more holistic approach to estimating species distributions, such as 34 

Bayesian Hierarchical Species Distribution model (B-HSD model) and mechanistic food-web models 35 

using the new Ecospace Habitat Foraging Capacity model (E-HFC model). Here we used both species 36 

distribution and spatial food-web models to predict the distribution of European hake (Merluccius 37 

merluccius), anglerfishes (Lophius piscatorius and L. budegassa) and red mullets (Mullus barbatus 38 

and M. surmuletus) in an exploited marine ecosystem of the Northwestern Mediterranean Sea. We 39 

explored the complementarity of both approaches, comparing results of food-web models previously 40 

informed with species distribution modelling results, aside from their applicability as independent 41 

techniques. The study shows that both modelling results are positively and significantly correlated 42 

with observational data. Predicted spatial patterns of biomasses show positive and significant 43 

correlations between modelling approaches and are more similar when using both methodologies in 44 

a complementary way: when using the E-HFC model previously informed with the environmental 45 

envelopes obtained from the B-HSD model outputs, or directly using niche calculations from B-HSD 46 

models to drive the niche priors of E-HFC. We discuss advantages, limitations and future 47 

developments of both modelling techniques.  48 

49 
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1. Introduction 50 

Marine resources and ecosystem services change in response to human stressors, such as fishing 51 

activities, habitat modification, and pollution (Halpern et al., 2015), in addition to environmental 52 

variability and change (Cury et al., 2008). The need to consider changes in the environment as well 53 

as human activities when analysing and managing marine ecosystems highlights the necessity to 54 

perform integrated analyses (Link, 2011). The productivity of marine resources depends on many 55 

factors: the state of communities, their structural and functional properties, the state of the ecosystems 56 

as a whole; external climatological factors; and human exploitation and the dynamics of target species 57 

in conjunction with the dynamics of non-target organisms. As such, environmental drivers and human 58 

impacts have to be included into the consideration to manage marine resources soundly (Christensen 59 

and Maclean, 2011).  60 

To address the need for more holistic assessments, a wide variety of statistical and machine-learning 61 

methods predict, often in conjunction with geographic information systems and remote-sensing, 62 

spatial species distributions, abundance, and biomass from survey data. Frequently, the purpose of 63 

the species distribution statistical models (SDMs thereafter) is to use the information about where a 64 

species occurs and the relationship with associated environmental factors to predict how likely the 65 

species is to occur in unsampled locations and future environmental conditions. SDMs use the range 66 

of sampled environments and the same general time frame of the sampling to predict quantities of 67 

interest at un-sampled locations based on measured values at nearby sampled locations or future 68 

environmental factors. Spatial predictions of species distributions are thus directly related to the 69 

concept of the environmental niche, a specification of a species' response to a suite of environmental 70 

factors. Different techniques of SDMs have been applied to the marine environment (e.g., Jones et 71 

al., 2012; Kaschner et al., 2006), including the Mediterranean Sea (e.g., Morfin et al., 2012; Saraux 72 

et al., 2014). Guisan and Zimmermann (Guisan and Zimmermann, 2000) provide an extensive review 73 

of SDM statistical approaches.  74 
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Despite SDMs popularity, it is known that environmental drivers alone may not be sufficient to 75 

account for species distributions (Navarro et al., 2015; Pollock et al., 2014). Other ecological 76 

processes, including trophic interactions (such as competition, predation and facilitation), behavioural 77 

parameters, and population dynamics may affect the spatial arrangement of a species, in addition to 78 

human activities. Novel techniques take these processes into account when estimating species 79 

distributions, such as Bayesian hierarchical species distribution models and mechanistic food-web 80 

models using the new Ecospace habitat capacity model. 81 

Bayesian hierarchical species distribution models (B-HSD models thereafter) estimate and predict 82 

the abundance and distribution of marine species, using commonly environmental factors, but can 83 

also indirectly include biological relationships and human activities. They are particularly appropriate 84 

to identify and predict the distribution of the species as they allow both the observed data and model 85 

parameters to be considered as random variables, resulting in a more realistic and accurate estimation 86 

of uncertainty (Banerjee et al., 2014). B-HSD models are also used in data analyses with 87 

geographically uneven levels of survey (sampling) effort, as such bias can be incorporated within the 88 

analysis, reducing its influence on estimates of the effects of environmental variables. B-HSD models 89 

allow for the incorporation of the spatial component as a random-effect term that represents the spatial 90 

intrinsic variability of the data, after the exclusion of the environmental variables (Gelfand et al., 91 

2006). B-HSD model’s applications in the Mediterranean Sea have illustrated that they can be 92 

implemented for different purposes; for example to identify nurseries areas (Paradinas et al., 2015), 93 

high density discards hot-spots (Paradinas et al., 2016; Pennino et al., 2014), or essential fish habitats 94 

for vulnerable species (Pennino et al., 2016; Pennino et al., 2013).  95 

Ecological processes and human activities, in addition to environmental factors, can be explicitly 96 

considered in process-based oriented modelling (Fulton, 2010; Guisan and Zimmermann, 2000), like 97 

in food-web models such as Ecopath with Ecosim (EwE thereafter) (Christensen and Walters, 2004). 98 

EwE approach allows building food-web models by describing the ecosystem by means of energy 99 
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flows between functional groups, each representing a species, a sub-group of a species (e.g. juveniles 100 

and adults) or a group of species that have functional and ecological similarities. Ecospace is the 101 

spatial-temporal dynamic module of EwE that allows representing temporal and spatial 2D dynamics 102 

of trophic web components (Walters et al., 2010; Walters et al., 1999). Ecospace has been widely 103 

applied to quantify the spatial impact of fisheries on marine species (e.g., Christensen et al., 2003), 104 

to analyses the impact of management scenarios such as the establishment of marine protected areas 105 

(Walters, 2000), to develop spatial optimization routines (e.g., Christensen et al., 2009) and to assess 106 

the impact of climate change on marine ecosystems by linking Ecospace with low trophic level 107 

models (Fulton, 2011) or external spatial-temporal data (Steenbeek et al., 2013). To overcome 108 

limitations of the original configuration of Ecospace, the Habitat Foraging Capacity model (E-HFC 109 

model thereafter) (Christensen et al., 2014) was recently added to the spatial-temporal modelling 110 

capabilities of EwE. The E-HFC model offers the ability to spatially drive foraging capacity of species 111 

from the cumulative effects of multiple physical, oceanographic, and environmental and topographic 112 

conditions and runs in conjunction with the food web and fisheries dynamics. This development, in 113 

combination with the spatial-temporal framework module of EwE (Steenbeek et al., 2013), bridged 114 

the gap between envelope environmental models and food-web models (Christensen et al., 2015; 115 

Christensen et al., 2014).  116 

A previous study applied the E-HFC model to analyse the historical and current distribution of three 117 

commercially important fish species in a marine ecosystem of the NW Mediterranean Sea: European 118 

hake (Merluccius merluccius), sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) 119 

(Coll et al., 2016). It evaluated the combined effects of environmental and topographic drivers 120 

(primary production, salinity, temperature, substrate and depth), in addition to fishing dynamics and 121 

food-web structure in their population spatial dynamics. Results illustrated the role of fishing and 122 

environmental conditions on the biomass and distributions of these three species. Fishing had the 123 

highest impact on results, while the spatial distribution of primary producers and depth followed in 124 
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importance.  125 

In the parameterization of the E-HFC model, for each species in the food web previous knowledge is 126 

required about which environmental parameters are important, and how species respond to these 127 

environmental parameters. This knowledge can be obtained from local field studies or global 128 

databases used for species distribution modelling initiatives (Kaschner et al., 2016). However, this 129 

vital information can also be obtained from more accurate species distribution modelling studies at 130 

local and regional scales.  131 

In the present study, we investigated the distributions of five demersal commercial fish species: 132 

European hake, anglerfish (Lophius piscatorius and L. budegassa) and red mullets (Mullus 133 

surmuletus and M. barbatus) building from the previous applications of the E-HFC model (Coll et 134 

al., 2016) and of B-HSD model (Munoz et al., 2013; Pennino et al., 2014; Pennino et al., 2013) in the 135 

NW Mediterranean Sea. We firstly applied the B-HSD and E-HFC models independently and 136 

compared results between both methodologies. Afterwards, relevant environmental parameters 137 

selected by the B-HSD model and resulting functional responses or niche calculations were used to 138 

parametrize the E-HFC model. The aim of the study was to explore the complementarity of both 139 

approaches aside from their applicability as independent techniques. We discuss the benefits and 140 

limitations of using both methodologies in parallel or in combination, and how this can complement 141 

current knowledge about species distributions in the marine environment. 142 

2. Material and Methods 143 

a) Study area 144 

Our study area was located in the Southern Catalan Sea (within the Balearic Sea, NW Mediterranean 145 

Sea, Figure 1). The NW Mediterranean Sea is an area of relatively high productivity due to a 146 

combined effect of the Northern current and the runoff of the Ebro and Rhone Rivers (Bosc et al., 147 

2004; Estrada, 1996). In the northern area, the continental shelf is narrower, with the northern current 148 
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flowing south-westwards along the continental slope, towards the wider continental shelf surrounding 149 

the Ebro Delta River. The area contains an important fishing ground for small pelagic fish and 150 

demersal mesopredators (Palomera et al., 2007). It is also important for marine predatory species at 151 

risk, such as marine mammals and seabirds (Coll et al., 2015). 152 

According to previous studies, important environmental variables drive the dynamics of commercial 153 

species in the area such as temperature, salinity and nutrients from the river run off (.e.g., Lloret et 154 

al., 2004; Martin et al., 2012; Ospina-Alvarez et al., 2015; Palomera et al., 2007). In addition, 155 

commercial marine resources are highly exploited (e.g., Colloca et al., 2013; Fernandes et al., 2017; 156 

Tsikliras et al., 2015). Previous studies looking at the temporal dynamics of marine resources 157 

identified that environmental factors, human activities and the structure of the food web were 158 

important elements to predict ecosystem dynamics (Coll et al., 2008; Coll et al., 2016). 159 

b) Selected species and environmental data 160 

Five demersal species were selected: European hake (Merluccius merluccius), two species of mullets: 161 

striped red mullet (Mullus surmuletus) and red mullet (Mullus barbatus), and two species of angler 162 

fish: black-bellied angler (Lophius budegassa) and angler (Lophius piscatorius). Due to the 163 

difficulties of splitting fisheries statistics of the two species of red mullets and of anglerfish, these 164 

four species were treated as two groups in the analyses and models: red mullets and anglerfish, 165 

respectively. Henceforth we will refer to red mullets as Mullus spp., and Lophius spp. for anglerfishes. 166 

Seven environmental and topographic variables were considered as potential predictors of the species 167 

biomass. These included five climatic variables: Sea Surface Temperature (SST) and Sea Bottom 168 

Temperature (SBT), both expressed in degrees Celsius (ºC); Sea Surface Salinity (SSS) and Sea 169 

Bottom Salinity (SBS), both expressed in Practical Salinity Units (PSU); and primary production (PP, 170 

mg C m-2 day-1); and two topographic features: depth (m); and type of the seabed or substrate.  171 

Environmental variables (SST, SBT, SSS, SBS), as well as primary production (PP) were derived 172 
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from a regional application of the ROMS model (Shchepetkin and McWilliams, 2005) coupled to a 173 

biogeochemical nitrogen-based plankton model (Fennel et al., 2006). This coupled model 174 

implementation was tested in the Western Mediterranean (Alboran Sea) in previous work (Macias et 175 

al., 2011; Solé et al., 2016) and had been already used to drive a previous version of the Ecospace 176 

HFC model (Coll et al., 2016). The ROMS implementation was adapted to the Catalan Sea with a 177 

grid of 0.05º x 0.05º degrees resolution and a vertical resolution of 40 levels. Both boundary and 178 

atmospheric forcing conditions were climatologies. Boundary conditions were obtained from the 179 

NEMO model, which is available from http://www.nemo-ocean.eu, and the simulations used in this 180 

work were reported in Adani and co-authors (Adani et al., 2011). NEMO output was interpolated to 181 

the ROMS grid and imposed to a sponge layer of 10 horizontal grid points with a nudging relaxation 182 

time of 30 days. For the biological variables, boundary conditions were set-up as in Fennel and co-183 

authors (Fennel et al., 2006). The meteorological forcing climatology was calculated from the 184 

European Center of Medium Weather Forecast (hereafter ECMWF) data, derived from ERA-40 185 

reanalysis for air temperature, short wave radiation, long wave radiation, precipitation, cloud cover 186 

and salt flux. For pressure at the surface, we used the ECMWF Era-Interim reanalysis. QuickScat 187 

blind data was used for wind forcing (both zonal and meridional). The ROMS model was ran using 188 

both boundary conditions and atmospheric forcing climatologies to obtain a stable initial state during 189 

eight years. After this spin-up period, we used the ninth year as the year of study with the same 190 

climatological conditions used for the spin-up period and results were used as averaged climatology 191 

conditions (Coll et al., 2016).  192 

In addition, depth and seabed habitat types were considered for the analyses as they are some of the 193 

main factors controlling species distribution and have been identified as key predictors to determine 194 

spatial patterns of many species (Lauria et al., 2015; Roos et al., 2015). Data for the seabed habitat 195 

types were obtained from the European Marine Observation Data Network (EMODnet) Seabed 196 

Habitats project (http://www.emodnet-seabedhabitats.eu/, European Commission’s Directorate-197 
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General for Maritime Affairs and Fisheries).  198 

All the environmental data was aggregated at 0.05°×0.05° spatial resolution. Following a proposed 199 

protocol (Zuur et al., 2010), these variables were explored for correlation, co-linearity, outliers, and 200 

missing data before their use in the analysis and modelling (Figure 1 in Supplementary Material).  201 

SBS was highly correlated to SBT and SSS (r > 0.70) and was the only one with a Generalized 202 

Variance Inflation Factor (VIF) > 3 (Figure 2 in Supplementary Material). For this reason, these 203 

variables were used alternatively in the Bayesian models taking particular attention to the SBS 204 

variable. Specifically, separate model runs were performed including only one of each of the highly 205 

correlated variables (SBS, SBT or SSS) to determine which one would explain more of the variance.  206 

Finally, after an exploratory analysis, in order to better interpret, both the direction (positive or 207 

negative) and magnitudes (effect sizes) of parameter estimates in relation to the others, the 208 

explanatory variables were standardized (difference from the mean divided by the corresponding 209 

standard deviation) (Gelman, 2008; Hereford et al., 2004). 210 

c) Bayesian Hierarchical Species Distribution model  211 

Many SDMs are applied to predict the spatial distribution of species. However, these algorithms do 212 

not always provide accurate results if they run using traditional prediction methods because there is 213 

often a large amount of variability in the measurements of both response and environmental variables. 214 

Bayesian statistical methods are increasingly used in fisheries (Munoz et al., 2013; Paradinas et al., 215 

2015; Pennino et al., 2014) because they offer several advantages over traditional statistical methods. 216 

Using both observed data the model parameters as random variables produces more realistic and 217 

accurate uncertainty estimations (Banerjee et al., 2014). Furthermore, Bayesian statistics integrate all 218 

types of uncertainties using probability as a metric. By combining uncertainty in input data 219 

(likelihood) with extra-data information (prior distributions), posterior probability distributions for 220 

all unknown quantities of interest (i.e., parameters) are built using Bayes’ theorem (Kinas and 221 

Andrade, 2017). 222 



10 

 

Bayesian methods also allow for the incorporation of the spatial component as a random-effect term, 223 

thereby reducing its influence on estimates of the effects of geographical variables (Gelfand et al., 224 

2006). Species distributions in the surrounding locations may influence observed species distributions 225 

due to contagious biotic processes (e.g., predation, competition, etc.). Similarly, environmental 226 

variables used to describe locations are neither randomly nor uniformly spatially distributed, but 227 

structured by physical processes causing gradients and/or patchy structures. One consequence of this 228 

general property of ecological variables is that the assumption of independence of the observations 229 

is not respected (Legendre, 1993). Therefore, it is necessary to incorporate the spatial structure of the 230 

data within the modelling process. Specifically, by treating the spatial effect as a variable of interest, 231 

these models can identify additional covariates that may improve the model fit and prediction and 232 

highlight the existence of possible effects that may affect the quantity of species biomass, such as 233 

human activities or trophic interactions. 234 

Hence, in this study we used a hierarchical Bayesian point-reference spatial distribution model (B-235 

HSD model) to estimate the species occurrence and biomass dependency with respect to chosen 236 

environmental variables (Munoz et al., 2013).  237 

In particular, Yi and Zi denote, respectively, the spatial distributed occurrence and the conditional-to-238 

presence biomass, where i = 1,....., n is the spatial location. Then, as usual with this kind of variables, 239 

we modelled the occurrence, Yi, using a Bernoulli distribution. In the case of the biomass, Zi, our 240 

selection to model it was a Lognormal distribution. The mean of both variables was then related via 241 

the usual link functions (logit and log, respectively) to the environmental effects: 242 

                    Yi ~ Bernoulli(πi)               (1) 243 

 244 
Zi ~ Lognormal (µi , σ

2
i)         (2) 245 

 246 

logit(πi) = α(Y) + Xiβ + Wi
(Y)

 247 

 248 

log(µi) = α(Z)  +Xiβ + Wi
(Z)   249 

 250 
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where πi represents the probability of occurrence at location i and µi and σ2
i are the mean and variance 251 

of the conditional-to-presence biomass. The linear predictors containing the effects to which these 252 

parameters πi and µi are linked are formed with: α(Y) and α(Z), the terms representing the intercepts for 253 

each variable; β is the vector of regression parameters, Xi is the matrix of the explanatory covariates 254 

at location i; and the final terms Wi
(Y) and Wi

(Z)  refer to the spatial structure of the occurrence and 255 

conditional-to-presence biomass respectively. 256 

For all models, Bayesian parameter estimates and predictions were obtained throughout the Integrated 257 

Nested Laplace Approximations (INLA) approach (Rue et al., 2009) and package (http:\\www.r-258 

inla.org) that is implemented in the R software (R Core Team 2017).  259 

For the spatial effects (W), INLA implements the Stochastic Partial Differential Equations (SPDE) 260 

approach (Lindgren et al., 2011), that involves the approximation of a continuously indexed Gaussian 261 

Field (GF) with a Matérn covariance function (Q) by a Gaussian Markov Random Field (GMRF). In 262 

particular, a prior Gaussian distribution with a zero mean and covariance matrix was assumed for the 263 

spatial component which depend on the hyperparameters k and τ, which determined its variance and 264 

range, respectively (see Munoz et al., 2013, for more detailed information about spatial effects). As 265 

recommended by Held and co-authors (Held et al., 2010) vague zero-mean Gaussian prior distribution 266 

with a variance of 1e5 were assigned for all fixed-effect parameters, which are approximations of 267 

non-informative priors designed to have little influence on the posterior distributions.  268 

The environmental variable selection with all possible interaction terms was mainly based on the 269 

Watanabe-Akaike information criterion (WAIC), that is an improvement of the Deviance Information 270 

Criterion (DIC), traditionally used for Bayesian models, and better suited than the Akaike Information 271 

Criterion (AIC), usually applied within frequentist modelling procedures (Spiegelhalter et al., 2002). 272 

Unlike DIC, which is conditioned on a point estimate and is not fully Bayesian, WAIC is a fully 273 

Bayesian measure and uses entire posterior distributions to make inference about parameters; hence, 274 

estimations are more precise (Watanabe, 2010). Thus, the best (and most parsimonious) model was 275 
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chosen based on low WAIC values, containing only relevant predictors; i.e., those predictors with 276 

95% credibility intervals not including the zero. In addition, other two criteria were computed to 277 

assess the models performance: the Root Mean Square Error (RMSE) and the adjusted coefficient of 278 

determination (R2). The RMSE was assessed to check if the selected model has a low standard 279 

deviation between observed and predicted values, while the R2 was used to prove that the selected 280 

model had a reasonable level of variance explained by the variables. 281 

To validate the occurrence of B-HSD predictions, the common cross-validation procedure was 282 

implemented, which consists in randomly splitting the original dataset into two main subsets: a 283 

training dataset including 75% of the total observations, and a validation dataset containing the 284 

remaining 25% of the data (Fielding and Bell, 1997). The relationship between observed data and 285 

environmental variables was modeled by using the training dataset (i.e. models were run again with 286 

the traning dataset). The quality of predictions was then assessed by using the validation dataset. We 287 

repeated the validation procedure 10 times for the best model of each species and results were 288 

averaged over the different random subsets. We performed a validation procedure to formally evaluate 289 

overall model prediction using the area under the receiver-operating characteristic curve (AUC) 290 

(Fielding and Bell, 1997) and the “True Skill Statistic” (TSS) (Allouche et al., 2006). Both values 291 

range from 0 to 1 where values closer to 1 are better. For the biomass B-HSD models the Spearman 292 

correlation and the RMSE measures were calculated between the predicted and observed values (see 293 

section f below for details). 294 

The B-HSD models were applied to data on the five demersal fish species previously mentioned. 295 

They were collected during the EU-funded MEDIterranean Trawl Survey (MEDITS) project 296 

(Bertrand et al., 2002), carried out from spring to early summer (April to June) from 2002 to 2012. 297 

The MEDITS project used a stratified sampling design based on depth (five bathymetric strata: 10 – 298 

50, 51 – 100, 101 – 200, 201 – 500 and 501 – 700 m) and Geographical Sub-Area (GSA). Sampling 299 

stations were randomly placed within each stratum at the beginning of the project (Figure 2a-c). In 300 
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all subsequent years, sampling was performed in similar locations. The MEDITS data used in this 301 

study concerns the area in the vicinity of the Ebro river mouth (Figure 1), and includes only the first 302 

three bathymetric strata from 0 to 200 m. On average, 20 hauls per year divided into the various 303 

bathymetric strata were performed every year in this zone (Figure 2a-c). Species biomass was 304 

estimated for each haul as the total weight of each species (kg) per km2 of trawling (Figure 2d-f). 305 

Biomass values of all species were log transformed to down weight extreme values and to ensure a 306 

normal distribution and homoscedasticity. 307 

d) Ecospace Habitat Foraging Capacity modelling 308 

The basic routine of Ecopath provides a snapshot of the structure and flows of a food web and 309 

describes the balance between production of functional groups and all consumptions within an 310 

ecosystem (Christensen and Pauly, 1992; Polovina, 1984). Each functional group can represent a 311 

species, a sub-group of a species (e.g. juveniles and adults) or a group of species that have functional 312 

and ecological similarities. The Ecopath model uses a system of linear equations to describe the 313 

average flows of mass and energy between these groups during a period of time, normally a year. The 314 

flow to and from each group is described by the following equation: 315 

 )EE -(1 · (P/B) · B +BA + E +Y + C D · (Q/B) · B = (P/B) · B iii ii iijjjii                                     (3) 316 

where Bi is the biomass of group i, (P/B)i is the production per unit of biomass, Yi is the total fishery 317 

catch rate, Ei is the net migration rate (emigration−immigration), BAi is the biomass accumulation 318 

rate, EEi is the Ecotrophic Efficiency’, or the proportion of the production that is utilized in the 319 

system, Bj is the biomass of consumers or predators j, (Q/B)j is the consumption per unit of biomass 320 

of j, and DCij is the fraction of i in the diet of j. To parameterize an Ecopath model it is required a 321 

series of inputs for each functional group i, mostly Biomass (Bi), Diet (DCij), consumption and 322 

production per unit of biomass ((Q/B)i and (P/B)i), and fishing yields and other exports (Yi and Ei). 323 

Among B, P/B, Q/B, EE, one parameter can be estimated by the model and the others are mandatory 324 
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inputs (Christensen and Walters, 2004; Christensen et al., 2008). 325 

Ecosim is the temporal dynamic model of EwE and is used to simulate ecosystem effects of (mainly 326 

fishing) mortality changes and environmental forcing over time (Christensen and Walters, 2004; 327 

Walters et al., 1997; Walters et al., 2000). The model uses a system of time-dependent differential 328 

equations from the baseline mass-balance model (equation 3 above), where the biomass growth rate 329 

is calculated as: 330 

iiiiijijiii B )e + F + (M - I +  Q -  Q g  = /dtdB  
                                          (4) 331 

where dBi/dt represents the growth rate of group i during the time interval dt in terms of its biomass 332 

Bi, gi is the net growth efficiency (production/consumption ratio, P/Q), Mi is the non-predation 333 

((P/B)i·Bi(1−EEi)) natural mortality rate, Fi is fishing mortality rate, ei is emigration rate, Ii is 334 

immigration rate and ei·Bi−Ii is the net migration rate. The two summations in equation 4 estimate 335 

consumption rates, the first expressing the total consumption by group i, and the second the predation 336 

by all predators on the same group i. The consumption rates, Q, are calculated based on the ‘foraging 337 

arena’ concept, where Bi’s are divided into vulnerable and invulnerable components (Ahrens et al., 338 

2012).  339 

The set of Ecosim equations are used in the spatial routine Ecospace, the spatial-temporal model of 340 

EwE, that predicts the biomass dynamics in a two-dimensional space (Walters et al., 1999). ‘Water’ 341 

cells in Ecospace can be assigned to contain one or more habitat types and species can be assigned to 342 

preferred habitats (Christensen et al., 2014). Fishing fleets can be limited to fish in specific habitats, 343 

and can be subjected to zonal fishing regulations (no taking zones, e.g. Walters et al., 2000). 344 

Moreover, spatial variations of primary productivity and of fishing costs (e.g. costs related to the 345 

distance from fishing ports) can be incorporated. The model further incorporates dispersal rates of 346 

organisms and other behavioural parameters (Christensen et al., 2005).  347 

In the original Ecospace, habitat types associated to biomass distributions and trophic interactions 348 
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were represented by a binary habitat use value, with each spatial cell being either entirely suitable (1) 349 

or entirely unsuitable (0) for species/functional groups. Therefore, the original version of Ecospace 350 

assumed homogenous conditions within each spatial cell, and local, but possibly relevant variations 351 

within cells, could not be represented. To overcome these limitations the Habitat Foraging Capacity 352 

model was recently developed (Christensen et al., 2014) to add the ability to spatially drive the 353 

foraging capacity of species across the Ecospace map from the cumulative responses to multiple 354 

physical, oceanographic, and environmental drivers.  355 

In the Habitat Foraging Capacity model (Christensen et al., 2014) (E-HFC), the habitat capacity is 356 

defined as the suitability of a cell for a species or functional group to forage. This foraging capacity 357 

Crcj for each group j in each cell r,c is a continuous value from 0 to 1, and is calculated as a function 358 

of a vector of environmental attributes Hrc = (H1,H2,…Hv)rc in cell r,c, where H1 to Hv represent any 359 

number of environmental factors such as water depth, proportion of hard bottom, surface temperature 360 

or salinity. 361 

The Crcj values have to be linked to trophic interaction dynamics to specify how Crcj impacts food 362 

consumption and predation rates. This is done through a functional response of group j to each 363 

environmental condition and through the basic foraging arena equations used to predict trophic 364 

interaction (food-web biomass flow) rates in the time dynamic module Ecosim (see Ahrens et al., 365 

2012; Christensen and Walters, 2004; Walters et al., 1997; Walters et al., 2000; Walters and Martell, 366 

2004). Ecosim represents biomass dynamics, trophic interaction and fishery effects as:  367 

jj

jijij

ijijijj

j BZ
Bav2

BBvag
  = /dtdB 




                  (5) 368 

where Bj is predator biomass, Bi is prey biomass, Zj is total instantaneous mortality rate of j, gj is 369 

growth efficiency (corresponding to the production/consumption ratio, which can vary as predators 370 

grow in size), vij is prey vulnerability exchange rate, and aij is the rate of effective search by the 371 

predator. The vulnerable prey density Vij is represented by the foraging arena equation, which can be 372 
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expressed as: 373 

jijij

jij

ij
Bav2

Bv
  = V




           (6) 374 

where predation pressure in a cell depends on the foraging arena area in that cell. If we assume that 375 

variation in relative habitat capacity for the predator means variation in the foraging arena area over 376 

which a species can forage successfully, we can include a variation in relative habitat capacity in the 377 

Ecospace model by dividing the denominator aij·Bj term by relative habitat size or capacity Crcj: 378 

rcj
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ij
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         (7) 379 

This assumption concentrates predation activity into smaller relative areas when C (foraging arena 380 

size) is small, so this drives down vulnerable prey densities Vij more rapidly as Bj increases in cases 381 

with less foraging arena area.  382 

Importantly, including Crcj as a modifier in the aij·Bj/Crcj predation rate term results in the equilibrium 383 

predator biomass (Bj for which dBj/dt=0) being proportional to Crcj, i.e., 384 

Bj = (gj ∙ vij ∙
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 2      385 

   (8) 386 

Using the Crcj as modifiers of the foraging arena consumption rate equation results in spatial patterns 387 

of biomass of consumers being proportional to Crcj, other factors (prey biomasses Bi and mortality 388 

rates Zj) being equal over space. The variation in habitat capacity also affects the vulnerability 389 

exchange rates vij, search rates aij, and predation rates Zj, but the default assumption is that the 390 

dominant cause of ‘poor’ or relatively small habitat capacity is the lack of usable foraging arena area 391 

(Christensen et al., 2014). 392 

In this study, we used an available ecosystem model developed with EwE (Christensen and Walters, 393 
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2004) representing the South Catalan Sea (NW Mediterranean) in 1978 that had been previously 394 

calibrated to time series of data from 1978 to 2010 using the temporal dynamic model Ecosim and 395 

validated with external data such as trophic levels and mortalities (Coll et al., 2013; Coll et al., 2008; 396 

Coll et al., 2006; Navarro et al., 2011). The model included 40 functional groups and four fishing 397 

fleets (bottom trawling, purse seine, long lining and tuna fishing), and covered an area of 5000 km2 398 

with depths from 50 to 400 m (Coll et al., 2006). The functional groups included primary and 399 

secondary producers, from phytoplankton to large predatory species and the units were expressed in 400 

terms of biomass as t·km2, and production and catch as t·km2·year-1. Four of the five studied species, 401 

two of anglerfish and the other two of red mullets, were modelled as functional groups merging the 402 

two species of the genus Lophius and the two species of the genus Mullus together due to data 403 

availability and quality. 404 

A previous E-HFC model developed to evaluate the combined effects of environmental conditions 405 

and fishing in the ecosystem dynamics of the Southern Catalan Sea was used as a starting point (Coll 406 

et al., 2016). The environmental variables used to parameterize the E-HFC model were the same as 407 

the ones used for the B-HSD model. In addition, the spatial pattern of primary production was used 408 

to drive the dynamics of the phytoplankton group (through the variation of the initial value of P/B) 409 

of the food-web model (Coll et al., 2016). The environmental envelops needed to be parameterized 410 

the functional responses in the E-HFC model that link the environmental variables with the response 411 

of hake, anglerfish and mullets were firstly obtained from the literature (following the implementation 412 

of Coll et al., 2016) and alternatively from results of the B-HSD model (Figure 3, Path 1, see next 413 

section for a detailed explanation). 414 

e) Testing modelling integration 415 

Two different approaches were implemented to test the possible integration of B-HSD and E-HFC 416 

and are schematized in Figure 3. The first one used the functional responses obtained from the 417 
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biomass B-HSD to inform E-HFC (1) and the second one used the niche calculations of the occurrence 418 

B-HSD to drive the niche information within E-HFC (2): 419 

1) In order to define the species environmental envelop in the E-HFC model, the functional responses 420 

that link the environmental variables with the response of hake, anglerfish and mullets need to be 421 

parameterized. Commonly, this is obtained from the literature (Coll et al., 2016). Here we proposed 422 

an alternative approach that integrates the functional responses obtained by the biomass B-HSD 423 

model in the E-HFC one (Figure 3, Path 1). In particular, the de-standardized functional responses 424 

obtained from the biomass B-HSD model outputs were integrated in the E-HFC model. We named 425 

this model E-HFC FR. 426 

All other functional groups received the habitat foraging settings and the original configuration of 427 

habitats, following the original implementation of the E-HFC model in the study area (Coll et al., 428 

2016). 429 

2) In the E-HFC model it is also possible to inform a priori the niche of the species. This process can 430 

be done using bibliographic information, online databases or other information. Here we set the 431 

species niche using the output of the probability of occurrence obtained from the occurrence B-HSD 432 

model to force the niche priors of the E-HFC model (Figure 3 - Path 2)1. We named this model E-433 

HFC Niche. 434 

Finally, in order to compare the results obtained with above approaches (Figure 3) we also run the E-435 

HFC model without any input of the B-HSD ones using the default parameterization of the published 436 

study (Coll et al., 2016). We named this model E-HFC original. 437 

The Ecospace model was executed from 1978 to 2012 and results of model simulations were 438 

compared averaging the biomass predictions from 2002 to 2012. Results from all modelling outputs 439 

were also compared with results from the MEDITS survey for 2002 to 2012 as a validation procedure. 440 

                                                 
1 The niche priors are entered in the Ecospace user interface through the Habitat Capacity Input map layers. 
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f) Comparison and complementarity of modelling results 441 

Results from biomass spatial predictions for European hake, anglerfish and mullets from the biomass 442 

B-HSD and E-HFC models were compared using Spearman’s spatial correlations using the 443 

“corLocal” function of the R software that allows computing this measure for two spatial objects 444 

using a focal neighborhood and thus taking into account distance. Values of Spearman’s correlations 445 

range from -1 to 1, being 1 equal to a perfect positive correlation between the two datasets. 446 

In particular, in order to test the prediction power of each model, we first interpolated the observed 447 

data of each studied species using the “interpolation TIN” function of the Quantum GIS (available in: 448 

http://www.qgis.org/en/site/) to obtain a spatial raster with a 0.05º x 0.05º degree spatial resolution. 449 

Afterwards, we compared each model spatial output with observed data using the Spearman’s spatial 450 

correlation. Additionally, we computed the Root Mean Square Error (RMSE) to measure the cell-by-451 

cell difference between the two grids (i.e. observed data and models outputs). Secondly, we compared 452 

results of the E-HFC model previously informed with the biomass B-HSD modelling outputs (Figure 453 

3) to assess how similar or different were the outputs using B-HSD to inform the food-web model in 454 

comparison to not doing it.  455 

g) Introducing uncertainties in E-HFC model 456 

A formal fitting and validation of the time dynamic model Ecosim was previously performed (Coll et 457 

al., 2013; Coll et al., 2008; Navarro et al., 2011) and it is implemented in the models we used in this 458 

study. For the Ecospace model a formal fitting and validation assessment is still missing, partially 459 

due to the lack of independent spatial data to perform these kinds of analyses. In this study, we present 460 

a first attempt to validate Ecospace results comparing results with an independent dataset of spatial 461 

observations. In addition, as the Bayesian approach uses probabilities distributions, we used INLA 462 

posterior distributions for each hyperparameter to extract n random samples and obtain an explicit 463 

quantification of the uncertainties. Therefore, we generated six random samples from the posterior 464 

http://www.qgis.org/en/site/
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distribution of the Bayesian results of occurrence for European hake, anglerfishes and red mullets 465 

that were used to run alternative Ecospace configurations to complement the prediction map of the 466 

mean values. These alternative distributions are possible acceptable solutions from the Bayesian 467 

results that allow assessing the impact in Ecospace results. Results from Ecospace were used to 468 

calculate an average of the predicted biomass and the standard deviation per species. This procedure 469 

illustrates that the process can be formally implemented if B-HSD and E-HFC models are used in a 470 

complementary way (e.g., such as in Figure 3 - Path 2).  471 

3. Results 472 

a) European hake  473 

Among the 355 hauls sampled in the studied area between 2002 and 2012, European hake was present 474 

in 245 (Figure 2a).  475 

Regarding European hake occurrence, the best statistical fitted model (based on the lowest WAIC, 476 

RMSE and higher R2) resulting from the B-HSD method showed sea bottom temperature (SBT) and 477 

the random spatial effect as relevant variables (Table 1 Supplementary Material). Particularly, the 478 

SBT presented a negative relationship with the European hake occurrence (posterior mean = -0.25; 479 

95% CI = [-0.53, -0.12]) (Table 2 and Figure 3a in Supplementary Material). The European hake 480 

occurrence B-HSD model achieved a 0.67 of AUC and 0.62 of TSS indicating a good degree of 481 

discrimination between locations where the species is present and those where it is absent. The final  482 

European hake B-HSD biomass model retained as relevant predictors the SBT, sea surface salinity 483 

SSS and the random spatial effect (Table 3 Supplementary Material). Specifically, a positive 484 

relationship with SBT (posterior mean = 0.39; 95% CI = [0.23, 0.54]) and a negative with SSS 485 

(posterior mean = -0.90; 95% CI = [-1.51, -0.28]) and the expected biomass was found, i.e. suggesting 486 

that there was more hake in warmer and less saltier waters (Table 1 and Figure 4a and 4b).  487 
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The predicted spatial biomass for this species resulting from the statistical fitted B-HSD model 488 

showed a main hotspot of biomass located in the coastal area and continental shelf around the Ebro 489 

Delta (Figure 5a). Considering the food-web modelling approach, results from the original 490 

configuration of the model, E-HFC, showed a larger area of high concentration of hake coinciding 491 

with the continental shelf and upper slope (Figure 5b). Results from the E-HFC FR and E-HFC Niche 492 

were similar to the E-HFC original but extended the area to the coastal region surrounding the Ebro 493 

Delta and the southern part of the study area (Figure 5c and 5d). Taking into account the random 494 

samples from the probability distributions of European hake occurrence from the Bayesian modelling 495 

(Figure 4 and 5 in Supplementary Material) illustrated the low to moderate impact that uncertainty in 496 

the niche extension can have on the final spatial prediction of biomass for European hake from 497 

Ecospace model, E-HFC Niche (Figure 6a and b). 498 

b) Anglerfishes 499 

Anglerfishes were present in 180 of hauls sampled between 2002 and 2012 (Figure 2b). Specifically, 500 

Lophius budegassa was present in 146 hauls, while Lophius piscatorius in 127.  501 

The final B-HSD model of the Lophius spp. occurrence included as relevant predictors the SBT (Table 502 

4 Supplementary Material), showing a negative relationship (posterior mean = -0.28; 95% CI = [-503 

0.68, -0.19]), in addition to the spatial effect (Table 2 and Figure 3b in Supplementary Material). 504 

Occurrence predictions recorded good values of predictions validation measures (AUC = 0.67; TSS= 505 

0.61), reflecting a high ability of the model to predict true negative and true positive correctly.  506 

Lophius spp. biomass B-HSD models retained SBS and the spatial random effect as final predictors 507 

(Table 5 Supplementary Material). The biomass of the Lophius spp. was positively affected by SBS 508 

(posterior mean = 0.53; 95% CI = [0.18, 0.87]) and the spatial random effect (Table 1 and Figure 4c).  509 

Regarding B-HSD predictions, higher biomass of the species was found at the end of the continental 510 

shelf and the upper slope of the central and southern study area (around 200-400 m) (Figure 7a). 511 
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Results from the E-HFC model showed the main biomass located surrounding the Ebro Delta area 512 

and the upper part of the continental shelf of the central and southern study area (Figure 7b), while 513 

results from the E-HFC FR and E-HFC Niche also showed a concentration of biomass in the Ebro 514 

Delta area and southern part of the continental shelf (Figure 7c and 7d). 515 

Results of the random samples from the probability distributions of anglerfishes occurrence from the 516 

Bayesian modelling (Figure 6 and 7 in Supplementary Material) illustrated the low impact that 517 

uncertainty in the niche extension can have on the final spatial prediction of biomass for anglerfishes 518 

from Ecospace model, E-HFC Niche (Figure 6c and d). 519 

c) Red mullets 520 

Red mullets were present in 249 hauls sampled between 2002 and 2012 (Figure 2c). Particularly, 521 

Mullus surmuletus was present in 158 hauls, while the Mullus barbatus was in 222.  522 

The B-HSD occurrence fitted model of Mullus spp. showed a positive relationship with primary 523 

production (posterior mean = 0.64; 95% CI = [0.24, 1.28]) (Tables 2, 6 and Figure 3c Supplementary 524 

Material). As for the other species, predictions measures presented good values (AUC = 0.68; TSS= 525 

0.63). Similarly to the occurrence, for Mullus spp. biomass, the B-HSD model showed a positive 526 

relationship with primary production (posterior mean = 4.23; 95% CI = [2.25, 5.54]) (Table 1 and 527 

Figure 4d), as well with the random spatial effect (Table 7 Supplementary Material).  528 

The predicted biomass of these species considering the B-HSD model was higher around the coastal 529 

areas of the Ebro Delta and northern areas coinciding with the most productive region (Figure 8a). 530 

Results from the E-HFC, E-HFC FR and E-HFC Niche models showed the main biomass also located 531 

surrounding the Ebro Delta coast and northern areas and the last two showed more similar patterns to 532 

the B-HSD results (Figure 8b, 8c and 8d). 533 

Results of the random samples from the probability distributions of red mullets occurrence from the 534 

Bayesian modelling (Figure 8 and 9 in Supplementary Material) illustrated the moderate impact that 535 
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uncertainty in the niche extension can have on the final spatial prediction of biomass for these species 536 

from Ecospace model, E-HFC Niche (Figure 6e and f). 537 

d) Comparison of results   538 

Modelling results regarding biomass distributions showed positive and significant correlations with 539 

observational data from the MEDITS project (Figure 9a, 9b and 9c). Correlations between modelling 540 

results and observational data were similar between modelling methodologies: they were between 541 

72-81% for European hake (with largest values for the E-HFC-FR model), 77%-97% for anglerfishes 542 

(with largest values for the E-HFC-FR model) and 80%-98% for red mullets (with largest values for 543 

the E-HFC-FR and E-HFC-Niche models). 544 

The Spearman correlations between modelling results showed highly positive and significant 545 

correlations between results for all the species considered (Figure 9a, 9b and 9c). In all cases, the 546 

correlations were higher when B-HSD results drove the E-HFC model, than when both methods were 547 

used individually. 548 

With respect to the RMSE measure, low values were achieved by models ranging from 0.23 to 1.4. 549 

With the exception of the mullets, the RMSE of the E-HFC models driven by B-HSD results obtained 550 

lower RMSE with respect to the original E-HFC model (Table 2). 551 

In terms of absolute predictions, results from the modelling techniques showed larger divergences, 552 

even when compared to observational data (Table 3). When comparing the mean values, the E-HFC 553 

modelling results yielded closest values compared to observational data for European hake and 554 

anglerfish, and B-HSD models were closer to red mullets. The B-HSD means were the largest values 555 

regarding hake and anglerfishes, while E-HFC Niche mean values were the largest for red mullets. 556 

In general, results from the Bayesian models predicted larger values of biomass than the food-web 557 

models for European hake and anglerfish, and lower for red mullets. 558 
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4. Discussion 559 

Studying the factors that affect the spatial distribution of marine biodiversity is a central issue to 560 

ecology, essential for evaluating biodiversity patterns, for predicting the impact of environmental 561 

change and anthropogenic activities, and for designing useful management programs (Navarro et al., 562 

2015). Advancing the knowledge of marine species distributions is also essential to contribute to an 563 

ecosystem-based management approach to marine resources (Pennino et al., 2016) and an ecosystem-564 

based spatial planning approach (Moore et al., 2016). Although effective management of marine 565 

ecosystems requires information on the spatial distribution of marine species, there is still marked 566 

paucity of our understanding of species-environment relationships. Modelling techniques have been 567 

identified as key tools to contribute to this knowledge (Guisan and Zimmermann, 2000).  568 

This study illustrates the application of two modelling techniques, applied in isolation and in 569 

conjunction, to predict the distribution of occurrence and biomass of commercial marine species in a 570 

small area of the NW Mediterranean Sea: a statistical approach, using a Bayesian Hierarchical Species 571 

Distribution Model, and a mechanistic approach, using a spatial-temporal food-web model 572 

(Ecospace).  573 

Our analyses show that the results of both modelling approaches positively and significantly 574 

correlated with observational data, confirming that both techniques are valid tools to predict species 575 

distributions in the study area. In addition, both techniques showed high correlation with 576 

observations, with a maximum of 29% of data not described by the models. Small divergences 577 

between observations and predictions may be because the biological observational data used in this 578 

case study represents one season only (late spring to early summer), while the environmental data 579 

and food-web parameterization are expressed as annual mean values. A recent study has shown that 580 

exploited demersal communities exhibit strong seasonal changes, even in small areas such as the one 581 

used in our study (Vilás-González, 2016; Vilas-González et al., Submitted). Divergences between 582 

models predictions and observations may also be because while the statistical Bayesian modelling 583 
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technique provides information about the potential niche of the sampled population, the food-web 584 

modelling technique provides a prediction about the realized niche of the entire population. It is 585 

necessary to undertake a similar study using observational data that represents the annual state of the 586 

ecosystem to explore this issue deeper. Despite this data is still not available in our study area, this 587 

study provides an example of application than can be repeated in a data-richer area. 588 

Our results show clear heterogenic distributions of the demersal fish species in the study area, with 589 

main concentrations in the coastal and shelf area. The Ebro River delta is known to be a productive 590 

region; it is a high run-off area that boosts primary production and consequently generates the 591 

preferential habitat for many species, especially in the recruits phase (Lloret and Lleonart, 2002). 592 

Here, also important demersal species are surmised to concentrate (Navarro et al., 2015). However, 593 

little is known about the spatial distribution patterns for the three species considered in the study area, 594 

and the Western Mediterranean in general. Spatial information is mainly derived from studies of 595 

distributions of eggs and larvae, and from sampling in recruitment areas (e.g., Hidalgo et al., 2008; 596 

Morfin et al., 2012). In the case of European hake, Olivar and co-authors (Olivar et al., 2003) showed 597 

that in the northern part of our study area, distributions of eggs and larvae coincide with the principal 598 

fishing grounds of the spawning population, the shelf edge (Recasens et al., 1998). Maynou et al. 599 

(Maynou et al., 2003) found that hake nursery areas were mainly located in the central part of the 600 

continental shelf between 68 and 168 m depth. In addition, the waters surrounding the Columbretes 601 

Islands show high European hake biomass estimates; these islands have been a Marine Protected Area 602 

since 1989, and thus provide a stable, high quality ecosystem to stocks that could be exporting hake 603 

adults and recruits to adjacent areas (Paradinas et al., 2015; Stobart et al., 2009).  604 

In the case of Lophius spp. Lopez and co-authors (López et al., 2016) showed that  juvenile specimens 605 

in July 2013 were mainly located in coastal and continental shelve areas, while higher presence of 606 

adults was found closer to the upper slope areas. Mullus spp. has shown to be distributed in coastal 607 

and shelf areas, where M. barbatus is more abundant over muddy bottoms with maximum abundance 608 
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in the 50 – 200 m depth stratus. M. surmuletus prefers rough substrates and ranges between 10 to 50 609 

m, at least in springtime (Lombarte et al., 2000; Tserpes et al., 2002). Overall, our results match the 610 

available distribution information, although future spatial-temporal modelling work should aim to 611 

analyse these species separately and their seasonal dynamics in-depth. 612 

In terms of which variables could be driving the spatial distributions and abundance of the studied 613 

species, our results from B-HSD models highlighted a strong correlation with temperature. European 614 

hake and anglerfishes biomass was higher in warmer and less salty waters consistently with their 615 

depth ranges, while mullets were more abundant in high productivity habitats. These finding are in 616 

line with other studied from different areas such as Maravelias and co-authors (Maravelias et al., 617 

2007), who found that hake and red mullet abundance were higher in waters > 19 ºC in the Aegean 618 

Sea. Similarly, Massutí and co-authors (Massutí et al., 2008) found a negative significant relationship 619 

between sea bottom salinity and European hake catch per unit of effort around the Balearic Islands 620 

waters. This is because European hake depth range coincides with a decrease of salinity 621 

approximately from 50-400 m depth.  622 

In addition, our results highlighted that the spatial random effects estimated from the B-HSD were 623 

relevant for all the species in all selected models. The spatial random component is often used to 624 

capture the effect of important missing predictors (F Dormann et al., 2007) or to account for 625 

ecological processes (e.g., dispersal or aggregative behaviour) or anthropogenic effect that are 626 

spatially structured (Merow et al., 2014). In our case, the spatial effect probably reflected a 627 

combination of effects, including seasonality and impact of anthropogenic activities and their 628 

synergies (Coll et al., 2012; Navarro et al., 2015; Vilas-González et al., Submitted). 629 

Our study also showed positive correlations between methods, illustrating that statistical species 630 

distribution and food-web spatial-temporal modelling can yield corresponding predictions. However, 631 

biomass predictions from the Bayesian models were larger than the food-web models for European 632 

hake and anglerfish, and lower for red mullets. This may be due to the fact that food-web models 633 
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directly include the effect of fisheries removals, reducing the potential biomass predicted by the 634 

Bayesian model for predators. On the contrary, higher biomass of red mullets could reflect indirect 635 

trophic effects such as competition or predation release. 636 

Moreover, our findings suggest that it is best to use the modelling tools in a complementary way: 637 

projected species distributions are more similar to observations when the food-web model technique 638 

is informed with results from the species distribution modelling technique. In Ecospace, this was 639 

accomplished by either using the response functions derived from the statistical analysis in the 640 

Ecospace calculations, or by forcing the niche priors of Ecospace foraging capacity directly with 641 

results from the statistical models (Figure 3, Path 1 and Path 2, respectively). These results represent 642 

a promising venue to develop further case studies to test the methodology complementarity, especially 643 

in larger study areas and with larger and more completed spatial-temporal datasets. Hybrid 644 

approaches between correlative and mechanistic methods can be pragmatic solutions to improving 645 

ecological predictions by adding key mechanisms to simple models (Urban et al., 2016). These 646 

methodologies can be part of an essential toolbox for promoting more efficient management by 647 

providing more accurate spatial species predictions.  648 

Both techniques used in this study have advantages and disadvantages. The use of Bayesian 649 

Hierarchical Species Distribution models can be a powerful approach given that it quantifies both the 650 

spatial magnitude and the different sources of uncertainty. It has been demonstrated that this type of 651 

models can produce reliable species habitat predictions even in data-poor situation working with 652 

small sample size of 50 observations (Fonseca et al., 2017). However, despite these models popularity, 653 

they only implicitly consider interactions between species, disregarding the potentially important 654 

influence of biotic interactions (such as competition, predation and facilitation) and can become 655 

unreliable when they are used to extrapolate to novel conditions (Urban et al., 2016). When using the 656 

food-web modelling we can directly incorporate biotic interactions and the dynamics and effects of 657 

exploitation and spatial management measures (Christensen and Walters, 2004). However, spatial 658 
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food-web modelling approaches require large amounts of spatialized data and its integration needs to 659 

be informed by previous knowledge about which key environmental elements drive key processes. 660 

By combining the capabilities of the food-web modelling approach with the statistical modelling, we 661 

can gain clear advantages from both techniques and make food-web modelling more robust. For 662 

example, when using Ecospace with the response functions obtained from the statistical models 663 

(Figure 3, Path 1) we can directly model the impact of environmental change on species dynamics 664 

and interactions by capturing key spatial-temporal changes of the environmental drivers (Steenbeek 665 

et al., 2013). This is an essential aspect for developing future scenarios of change of marine 666 

ecosystems and predict future marine food-web configurations. Alternatively, forcing the niche 667 

calculations of Ecospace with results from external SDM tools (Figure 3, Path 2) may provide a valid 668 

shortcut when spatial-temporal datasets are not fully available but we have validated knowledge about 669 

niche changes.  670 

Our study illustrates that by combining both approaches, uncertainty analyses can be developed. This 671 

is essential to contribute to the future development needs of Ecospace. Although there are several 672 

ways that uncertainty can be incorporated in EwE (Coll and Steenbeek, 2017; Heymans et al., 2016; 673 

Steenbeek et al., 2018), current rudimentary means to formally validate its spatial-temporal 674 

predictions against observations need to improve and Ecospace requires facilities to first fitting its 675 

behaviour to time series of spatial-temporal data such as it is supported in Ecosim (Mackinson et al., 676 

2009; Scott et al., 2016). In our study we present a first attempt to move towards this direction to 677 

formally develop a validation tool considering data uncertainty, as it is illustrated here using a random 678 

sample of posterior distribution results from Bayesian statistics into Ecospace (Figure 6). The new 679 

Ecospace with the HCR model and the spatial-temporal framework will substantially benefit from 680 

these future capabilities (Coll et al., 2016; Romagnoni et al., 2015; Steenbeek et al., 2018). 681 

  682 
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Figure captions 694 

Figure 1. Study area located in the Northwestern Mediterranean Sea. 695 

Figure 2. (a-c) Sampling stations of the MEDITS surveys used for European hake (Merluccius 696 

merluccius), anglerfishes (Lophius spp.) and red mullets (Mullus spp.); Presence is indicated 697 

with red dots, while absence with black dots. (d-f) Observed log-transformed Biomass (kg/km2) 698 

averages during 2002-2012. 699 

Figure 3. Working path representing two directions on how Bayesian-Hierarchical Species 700 

Distribution modelling (B-HSD) results can be integrated into Ecospace food-web model: (Path 701 

1) by using response functions that describe the link between environmental factors and species 702 

responses (E-HFC FR), or (Path 2) by forcing the niche priors of the Foraging Capacity Model 703 

with niche calculations from B-HSD results (E-HFC Niche). 704 

Figure 4. Functional response of B-HSD biomass models (kg/km2) for a-b) European hake (M. 705 

merluccius), c) anglerfishes (Lophius spp.) and d) red mullets (Mullets spp.). Predictor acronyms 706 

are SBT = Sea Bottom Temperature; SSS= Sea Surface Salinity; SBS= Sea Bottom Salinity; PP= 707 

Primary production. The solid line is the smooth function estimate and shaded regions represent 708 

95% credibility interval (CI). 709 

Figure 5. Predicted biomass distributions (log(kg/km2)) for European hake (M. merluccius) using a) 710 

Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging 711 

Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity 712 

model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) 713 

Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from 714 

B-HSD (Figure 3, Path 2) (E-HFC Niche). 715 

Figure 6. Average and standard deviation of predicted biomass distributions (log(kg/km2)) for 716 



31 

 

European hake (M. merluccius) (a-b), anglerfishes (Lophius spp.) (c-d) and red mullets (Mullus 717 

spp.) (e-f) resulting from Ecospace Habitat Foraging Capacity model informed with the niche 718 

calculations of random samples from the B-HSD results (Figure 3, Path 2) (E-HFC Niche) (six 719 

random samples are plotted in Supplementary Material, Figures 4-9) . 720 

Figure 7. Predicted biomass distributions (log(kg/km2)) for anglerfishes (Lophius spp.) using a) 721 

Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging 722 

Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity 723 

model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) 724 

Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from 725 

B-HSD (Figure 3, Path 2) (E-HFC Niche). 726 

Figure 8. Predicted biomass distributions (log(kg/km2)) for red mullets (Mullus spp.) using a) 727 

Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging 728 

Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity 729 

model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) 730 

Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from 731 

B-HSD (Figure 3, Path 2) (E-HFC Niche). 732 

Figure 9. Spearman correlation results between observed biomass data and the four different 733 

modelling configuration and estimates from the MEDITS project (2002-2012) for a) European 734 

hake (M. merluccius), b) anglerfishes (Lophius spp.) and c) red mullets (Mullets spp.). B-HSD: 735 

Bayesian Hierarchical Species Distribution model; E-HFC: Ecospace Habitat Foraging Capacity 736 

original model; E-HFC FR: Ecospace Habitat Foraging Capacity model informed with functional 737 

responses from B-HSD; and E-HFC Niche: Ecospace Habitat Foraging Capacity model with the 738 

niche calculations driven by results from B-HSD. 739 

 740 

741 
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Tables 742 

Table 1. Numerical summary of the posterior distribution of the fixed effects for the best biomass B-743 

HSD of the three species studied. This summary contains the mean, the standard deviation, the 744 

median and a 95% credible interval, which is a central interval containing 95% of the probability 745 

under the posterior distribution. Predictors’ acronyms are: SBT = Sea Bottom Temperature; SSS 746 

= Sea Surface Salinity; SBS = Sea Bottom Salinity; PP = primary production (PP). 747 

 748 

Species Predictor Mean SD Q0.025 Q0.5 Q0.975 

European hake Intercept 1.08 0.05 0.56 0.98 1.96 

 SBT 0.39 0.07 0.23 0.39 0.54 

 SSS -0.90 0.31 -1.51 -0.90 -0.28 

Anglerfishes Intercept 0.23 0.01 0.11 0.25 0.54 

 SBS 0.53 0.04 0.18 0.54 0.87 

Red mullets Intercept 0.23 0.02 0.13 0.12 0.52 

 PP 4.23 0.09 2.25 3.96 5.54 

 749 

 750 

 751 

 752 

 753 

 754 

  755 
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Table 2: Root Mean Square Error (RMSE) results between observed biomass data and the four 756 

different modelling configurations. Acronyms are: B-HSD: Bayesian Hierarchical Species 757 

Distribution model; E-HFC: Ecospace Habitat Foraging Capacity original model; E-HFC FR: 758 

Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD; and 759 

E-HFC Niche: Ecospace Habitat Foraging Capacity model with the niche calculations driven by 760 

results from B-HSD. 761 

RMSE B-HSD E-HFC E-HFC FR E-HFC Niche 

European hake (M. merluccius) 0.51 1.4 0.37 0.95 

Anglerfishes (Lophius spp.) 0.23 1.11 0.07 0.12 

Red mullets (Mullets spp.) 0.38 0.26 0.44 0.43 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 
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Table 3. Comparison of spatial model minimum, mean and maximum values of biomass estimates 771 

(kg/km2) of European hake (Merluccius merluccius), anglerfishes (Lophius spp.) and red mullets 772 

(Mullus spp.) under the four different modelling configuration and estimates from the MEDITS 773 

project (2002-2012). B-HSD: Bayesian Hierarchical Species Distribution model; E-HFC: Ecospace 774 

Habitat Foraging Capacity original model; E-HFC FR: Ecospace Habitat Foraging Capacity model 775 

informed with functional responses from B-HSD; and E-HFC Niche: Ecospace Habitat Foraging 776 

Capacity model with the niche calculations driven by results from B-HSD. 777 

 778 

 779 

Species Model Min Mean Max 

 B-HSD 0.00 475.60 1431.20 

European Hake E-HFC 0.00 17.41 435.41 

 E-HFC-FR 0.00 106.29 3890.15 

 E-HFC-Niche 0.00 259.14 20958.07 

 Observed biomass 0.00 12.83 958.74 

 B-HSD 0.00 210.70 951.40 

Anglerfish E-HFC 0.00 6.96 476.17 

 E-HFC-FR 0.00 23.57 1744.93 

 E-HFC-Niche 0.00 37.44 2356.01 

 Observed biomass 0.00 3.14 389.76 

 B-HSD 0.00 32.2 722.15 

Red mullets E-HFC 0.00 64.57 2300.44 

 E-HFC-FR 0.00 162.05 5143.90 

 E-HFC-Niche 0.00 164.25 5059.71 

 Observed biomass 0.00 10.81 2404.08 

 780 

 781 

 782 

783 
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