21 Keywords: spatial ecology, species distribution models, Bayesian model, food-web model,

Predicting marine species distributions: complementarity of food-web and Bayesian

 hierarchical modelling approaches$11{ }^{3}$ Fishing Ecology Management and Economics (FEME) - Universidade Federal do Rio Grande do Norte - UFRN. Depto.
M. Coll* ${ }^{1,2}$, M. Grazia Pennino ${ }^{* 3,4,5}$, J. Steenbeek ${ }^{1,2}$, J. Sole ${ }^{1}$, J.M. Bellido ${ }^{5,6}$
*Authors share first co-authorship.
${ }^{1}$ Institut de Ciències del Mar (CMIMA-CSIC), P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain (current address).
${ }^{2}$ Ecopath International Initiative Research Association, Barcelona, Spain. de Ecologia, Natal (RN), Brazil.
${ }^{4}$ Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50-52, 36390 Vigo, Pontevedra, Spain.
${ }^{5}$ Statistical Modeling Ecology Group (SMEG). Departament d'Estadística i Investigació Operativa, Universitat de València. C/Dr. Moliner 50, Burjassot. 46100 Valencia, Spain.
${ }^{6}$ Instituto Español de Oceanografía, Centro Oceanográfico de Murcia. C/Varadero 1, San Pedro del Pinatar. 30740 Murcia, Spain.
Corresponding author: Marta Coll. E-mail: mcoll@icm.csic.es; marta.coll.work@gmail.com Ecospace, commercial species, Mediterranean Sea.

Abstract

The spatial prediction of species distributions from survey data is a significant component of spatial planning and the ecosystem-based management approach to marine resources. Statistical analysis of species occurrences and their relationships with associated environmental factors is used to predict how likely a species is to occur in unsampled locations as well as future conditions. However, it is known that environmental factors alone may not be sufficient to account for species distribution. Other ecological processes including species interactions (such as competition and predation), and the impact of human activities, may affect the spatial arrangement of a species. Novel techniques have been developed to take a more holistic approach to estimating species distributions, such as Bayesian Hierarchical Species Distribution model (B-HSD model) and mechanistic food-web models using the new Ecospace Habitat Foraging Capacity model (E-HFC model). Here we used both species distribution and spatial food-web models to predict the distribution of European hake (Merluccius merluccius), anglerfishes (Lophius piscatorius and L. budegassa) and red mullets (Mullus barbatus and M. surmuletus) in an exploited marine ecosystem of the Northwestern Mediterranean Sea. We explored the complementarity of both approaches, comparing results of food-web models previously informed with species distribution modelling results, aside from their applicability as independent techniques. The study shows that both modelling results are positively and significantly correlated with observational data. Predicted spatial patterns of biomasses show positive and significant correlations between modelling approaches and are more similar when using both methodologies in a complementary way: when using the E-HFC model previously informed with the environmental envelopes obtained from the B-HSD model outputs, or directly using niche calculations from B-HSD models to drive the niche priors of E-HFC. We discuss advantages, limitations and future developments of both modelling techniques.

1. Introduction

Marine resources and ecosystem services change in response to human stressors, such as fishing activities, habitat modification, and pollution (Halpern et al., 2015), in addition to environmental variability and change (Cury et al., 2008). The need to consider changes in the environment as well as human activities when analysing and managing marine ecosystems highlights the necessity to perform integrated analyses (Link, 2011). The productivity of marine resources depends on many factors: the state of communities, their structural and functional properties, the state of the ecosystems as a whole; external climatological factors; and human exploitation and the dynamics of target species in conjunction with the dynamics of non-target organisms. As such, environmental drivers and human impacts have to be included into the consideration to manage marine resources soundly (Christensen and Maclean, 2011).

To address the need for more holistic assessments, a wide variety of statistical and machine-learning methods predict, often in conjunction with geographic information systems and remote-sensing, spatial species distributions, abundance, and biomass from survey data. Frequently, the purpose of the species distribution statistical models (SDMs thereafter) is to use the information about where a species occurs and the relationship with associated environmental factors to predict how likely the species is to occur in unsampled locations and future environmental conditions. SDMs use the range of sampled environments and the same general time frame of the sampling to predict quantities of interest at un-sampled locations based on measured values at nearby sampled locations or future environmental factors. Spatial predictions of species distributions are thus directly related to the concept of the environmental niche, a specification of a species' response to a suite of environmental factors. Different techniques of SDMs have been applied to the marine environment (e.g., Jones et al., 2012; Kaschner et al., 2006), including the Mediterranean Sea (e.g., Morfin et al., 2012; Saraux et al., 2014). Guisan and Zimmermann (Guisan and Zimmermann, 2000) provide an extensive review of SDM statistical approaches.

Despite SDMs popularity, it is known that environmental drivers alone may not be sufficient to account for species distributions (Navarro et al., 2015; Pollock et al., 2014). Other ecological processes, including trophic interactions (such as competition, predation and facilitation), behavioural parameters, and population dynamics may affect the spatial arrangement of a species, in addition to human activities. Novel techniques take these processes into account when estimating species distributions, such as Bayesian hierarchical species distribution models and mechanistic food-web models using the new Ecospace habitat capacity model.

Bayesian hierarchical species distribution models (B-HSD models thereafter) estimate and predict the abundance and distribution of marine species, using commonly environmental factors, but can also indirectly include biological relationships and human activities. They are particularly appropriate to identify and predict the distribution of the species as they allow both the observed data and model parameters to be considered as random variables, resulting in a more realistic and accurate estimation of uncertainty (Banerjee et al., 2014). B-HSD models are also used in data analyses with geographically uneven levels of survey (sampling) effort, as such bias can be incorporated within the analysis, reducing its influence on estimates of the effects of environmental variables. B-HSD models allow for the incorporation of the spatial component as a random-effect term that represents the spatial intrinsic variability of the data, after the exclusion of the environmental variables (Gelfand et al., 2006). B-HSD model's applications in the Mediterranean Sea have illustrated that they can be implemented for different purposes; for example to identify nurseries areas (Paradinas et al., 2015), high density discards hot-spots (Paradinas et al., 2016; Pennino et al., 2014), or essential fish habitats for vulnerable species (Pennino et al., 2016; Pennino et al., 2013).

Ecological processes and human activities, in addition to environmental factors, can be explicitly considered in process-based oriented modelling (Fulton, 2010; Guisan and Zimmermann, 2000), like in food-web models such as Ecopath with Ecosim (EwE thereafter) (Christensen and Walters, 2004). $E w E$ approach allows building food-web models by describing the ecosystem by means of energy
flows between functional groups, each representing a species, a sub-group of a species (e.g. juveniles and adults) or a group of species that have functional and ecological similarities. Ecospace is the spatial-temporal dynamic module of $E w E$ that allows representing temporal and spatial 2D dynamics of trophic web components (Walters et al., 2010; Walters et al., 1999). Ecospace has been widely applied to quantify the spatial impact of fisheries on marine species (e.g., Christensen et al., 2003), to analyses the impact of management scenarios such as the establishment of marine protected areas (Walters, 2000), to develop spatial optimization routines (e.g., Christensen et al., 2009) and to assess the impact of climate change on marine ecosystems by linking Ecospace with low trophic level models (Fulton, 2011) or external spatial-temporal data (Steenbeek et al., 2013). To overcome limitations of the original configuration of Ecospace, the Habitat Foraging Capacity model (E-HFC model thereafter) (Christensen et al., 2014) was recently added to the spatial-temporal modelling capabilities of $E w E$. The E-HFC model offers the ability to spatially drive foraging capacity of species from the cumulative effects of multiple physical, oceanographic, and environmental and topographic conditions and runs in conjunction with the food web and fisheries dynamics. This development, in combination with the spatial-temporal framework module of $E w E$ (Steenbeek et al., 2013), bridged the gap between envelope environmental models and food-web models (Christensen et al., 2015; Christensen et al., 2014).

A previous study applied the E-HFC model to analyse the historical and current distribution of three commercially important fish species in a marine ecosystem of the NW Mediterranean Sea: European hake (Merluccius merluccius), sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) (Coll et al., 2016). It evaluated the combined effects of environmental and topographic drivers (primary production, salinity, temperature, substrate and depth), in addition to fishing dynamics and food-web structure in their population spatial dynamics. Results illustrated the role of fishing and environmental conditions on the biomass and distributions of these three species. Fishing had the highest impact on results, while the spatial distribution of primary producers and depth followed in
importance.

In the parameterization of the E-HFC model, for each species in the food web previous knowledge is required about which environmental parameters are important, and how species respond to these environmental parameters. This knowledge can be obtained from local field studies or global databases used for species distribution modelling initiatives (Kaschner et al., 2016). However, this vital information can also be obtained from more accurate species distribution modelling studies at local and regional scales.

In the present study, we investigated the distributions of five demersal commercial fish species: European hake, anglerfish (Lophius piscatorius and L. budegassa) and red mullets (Mullus surmuletus and M. barbatus) building from the previous applications of the E-HFC model (Coll et al., 2016) and of B-HSD model (Munoz et al., 2013; Pennino et al., 2014; Pennino et al., 2013) in the NW Mediterranean Sea. We firstly applied the B-HSD and E-HFC models independently and compared results between both methodologies. Afterwards, relevant environmental parameters selected by the B-HSD model and resulting functional responses or niche calculations were used to parametrize the E-HFC model. The aim of the study was to explore the complementarity of both approaches aside from their applicability as independent techniques. We discuss the benefits and limitations of using both methodologies in parallel or in combination, and how this can complement current knowledge about species distributions in the marine environment.

2. Material and Methods

a) Study area

Our study area was located in the Southern Catalan Sea (within the Balearic Sea, NW Mediterranean Sea, Figure 1). The NW Mediterranean Sea is an area of relatively high productivity due to a combined effect of the Northern current and the runoff of the Ebro and Rhone Rivers (Bosc et al., 2004; Estrada, 1996). In the northern area, the continental shelf is narrower, with the northern current
flowing south-westwards along the continental slope, towards the wider continental shelf surrounding the Ebro Delta River. The area contains an important fishing ground for small pelagic fish and demersal mesopredators (Palomera et al., 2007). It is also important for marine predatory species at risk, such as marine mammals and seabirds (Coll et al., 2015).

According to previous studies, important environmental variables drive the dynamics of commercial species in the area such as temperature, salinity and nutrients from the river run off (.e.g., Lloret et al., 2004; Martin et al., 2012; Ospina-Alvarez et al., 2015; Palomera et al., 2007). In addition, commercial marine resources are highly exploited (e.g., Colloca et al., 2013; Fernandes et al., 2017; Tsikliras et al., 2015). Previous studies looking at the temporal dynamics of marine resources identified that environmental factors, human activities and the structure of the food web were important elements to predict ecosystem dynamics (Coll et al., 2008; Coll et al., 2016).

b) Selected species and environmental data

Five demersal species were selected: European hake (Merluccius merluccius), two species of mullets: striped red mullet (Mullus surmuletus) and red mullet (Mullus barbatus), and two species of angler fish: black-bellied angler (Lophius budegassa) and angler (Lophius piscatorius). Due to the difficulties of splitting fisheries statistics of the two species of red mullets and of anglerfish, these four species were treated as two groups in the analyses and models: red mullets and anglerfish, respectively. Henceforth we will refer to red mullets as Mullus spp., and Lophius spp. for anglerfishes. Seven environmental and topographic variables were considered as potential predictors of the species biomass. These included five climatic variables: Sea Surface Temperature (SST) and Sea Bottom Temperature (SBT), both expressed in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$; Sea Surface Salinity (SSS) and Sea Bottom Salinity (SBS), both expressed in Practical Salinity Units (PSU); and primary production (PP, $\mathrm{mg} \mathrm{C} \mathrm{m}{ }^{-2}$ day $^{-1}$); and two topographic features: depth (m); and type of the seabed or substrate.

Environmental variables (SST, SBT, SSS, SBS), as well as primary production (PP) were derived
from a regional application of the ROMS model (Shchepetkin and McWilliams, 2005) coupled to a biogeochemical nitrogen-based plankton model (Fennel et al., 2006). This coupled model implementation was tested in the Western Mediterranean (Alboran Sea) in previous work (Macias et al., 2011; Solé et al., 2016) and had been already used to drive a previous version of the Ecospace HFC model (Coll et al., 2016). The ROMS implementation was adapted to the Catalan Sea with a grid of $0.05^{\circ} \times 0.05^{\circ}$ degrees resolution and a vertical resolution of 40 levels. Both boundary and atmospheric forcing conditions were climatologies. Boundary conditions were obtained from the NEMO model, which is available from http://www.nemo-ocean.eu, and the simulations used in this work were reported in Adani and co-authors (Adani et al., 2011). NEMO output was interpolated to the ROMS grid and imposed to a sponge layer of 10 horizontal grid points with a nudging relaxation time of 30 days. For the biological variables, boundary conditions were set-up as in Fennel and coauthors (Fennel et al., 2006). The meteorological forcing climatology was calculated from the European Center of Medium Weather Forecast (hereafter ECMWF) data, derived from ERA-40 reanalysis for air temperature, short wave radiation, long wave radiation, precipitation, cloud cover and salt flux. For pressure at the surface, we used the ECMWF Era-Interim reanalysis. QuickScat blind data was used for wind forcing (both zonal and meridional). The ROMS model was ran using both boundary conditions and atmospheric forcing climatologies to obtain a stable initial state during eight years. After this spin-up period, we used the ninth year as the year of study with the same climatological conditions used for the spin-up period and results were used as averaged climatology conditions (Coll et al., 2016).

In addition, depth and seabed habitat types were considered for the analyses as they are some of the main factors controlling species distribution and have been identified as key predictors to determine spatial patterns of many species (Lauria et al., 2015; Roos et al., 2015). Data for the seabed habitat types were obtained from the European Marine Observation Data Network (EMODnet) Seabed Habitats project (http://www.emodnet-seabedhabitats.eu/, European Commission's Directorate-

General for Maritime Affairs and Fisheries).
All the environmental data was aggregated at $0.05^{\circ} \times 0.05^{\circ}$ spatial resolution. Following a proposed protocol (Zuur et al., 2010), these variables were explored for correlation, co-linearity, outliers, and missing data before their use in the analysis and modelling (Figure 1 in Supplementary Material). SBS was highly correlated to SBT and SSS ($\mathrm{r}>0.70$) and was the only one with a Generalized Variance Inflation Factor (VIF) > 3 (Figure 2 in Supplementary Material). For this reason, these variables were used alternatively in the Bayesian models taking particular attention to the SBS variable. Specifically, separate model runs were performed including only one of each of the highly correlated variables (SBS, SBT or SSS) to determine which one would explain more of the variance. Finally, after an exploratory analysis, in order to better interpret, both the direction (positive or negative) and magnitudes (effect sizes) of parameter estimates in relation to the others, the explanatory variables were standardized (difference from the mean divided by the corresponding standard deviation) (Gelman, 2008; Hereford et al., 2004).

c) Bayesian Hierarchical Species Distribution model

Many SDMs are applied to predict the spatial distribution of species. However, these algorithms do not always provide accurate results if they run using traditional prediction methods because there is often a large amount of variability in the measurements of both response and environmental variables. Bayesian statistical methods are increasingly used in fisheries (Munoz et al., 2013; Paradinas et al., 2015; Pennino et al., 2014) because they offer several advantages over traditional statistical methods. Using both observed data the model parameters as random variables produces more realistic and accurate uncertainty estimations (Banerjee et al., 2014). Furthermore, Bayesian statistics integrate all types of uncertainties using probability as a metric. By combining uncertainty in input data (likelihood) with extra-data information (prior distributions), posterior probability distributions for all unknown quantities of interest (i.e., parameters) are built using Bayes' theorem (Kinas and Andrade, 2017).

Bayesian methods also allow for the incorporation of the spatial component as a random-effect term, thereby reducing its influence on estimates of the effects of geographical variables (Gelfand et al., 2006). Species distributions in the surrounding locations may influence observed species distributions due to contagious biotic processes (e.g., predation, competition, etc.). Similarly, environmental variables used to describe locations are neither randomly nor uniformly spatially distributed, but structured by physical processes causing gradients and/or patchy structures. One consequence of this general property of ecological variables is that the assumption of independence of the observations is not respected (Legendre, 1993). Therefore, it is necessary to incorporate the spatial structure of the data within the modelling process. Specifically, by treating the spatial effect as a variable of interest, these models can identify additional covariates that may improve the model fit and prediction and highlight the existence of possible effects that may affect the quantity of species biomass, such as human activities or trophic interactions.

Hence, in this study we used a hierarchical Bayesian point-reference spatial distribution model (BHSD model) to estimate the species occurrence and biomass dependency with respect to chosen environmental variables (Munoz et al., 2013).

In particular, Y_{i} and Z_{i} denote, respectively, the spatial distributed occurrence and the conditional-topresence biomass, where $i=1, \ldots \ldots, n$ is the spatial location. Then, as usual with this kind of variables, we modelled the occurrence, Y_{i}, using a Bernoulli distribution. In the case of the biomass, Z_{i}, our selection to model it was a Lognormal distribution. The mean of both variables was then related via the usual link functions (logit and log, respectively) to the environmental effects:

$$
\begin{gather*}
\mathrm{Y}_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}\right) \tag{1}\\
\mathrm{Z}_{i} \sim \operatorname{Lognormal}\left(\mu_{i}, \sigma^{2}{ }_{i}\right) \tag{2}\\
\operatorname{logit}\left(\pi_{\mathrm{i}}\right)=\alpha^{(\mathrm{Y})}+\mathrm{X}_{i} \beta+\mathrm{W}_{i}^{(\mathrm{Y})} \\
\log \left(\mu_{\mathrm{i}}\right)=\alpha^{(\mathrm{Z})}+\mathrm{X}_{i} \beta+\mathrm{W}_{i}{ }^{(\mathrm{Z})}
\end{gather*}
$$

where π_{i} represents the probability of occurrence at location i and μ_{i} and $\sigma_{\mathrm{i}}{ }_{\mathrm{i}}$ are the mean and variance of the conditional-to-presence biomass. The linear predictors containing the effects to which these parameters π_{i} and μ_{i} are linked are formed with: $\alpha^{(Y)}$ and $\alpha^{(Z)}$, the terms representing the intercepts for each variable; β is the vector of regression parameters, X_{i} is the matrix of the explanatory covariates at location i; and the final terms $\mathrm{W}_{i}^{(\mathrm{Y})}$ and $\mathrm{W}_{i}^{(\mathrm{Z})}$ refer to the spatial structure of the occurrence and conditional-to-presence biomass respectively.

For all models, Bayesian parameter estimates and predictions were obtained throughout the Integrated Nested Laplace Approximations (INLA) approach (Rue et al., 2009) and package (http:
www.rinla.org) that is implemented in the R software (R Core Team 2017).

For the spatial effects (W), INLA implements the Stochastic Partial Differential Equations (SPDE) approach (Lindgren et al., 2011), that involves the approximation of a continuously indexed Gaussian Field (GF) with a Matérn covariance function (Q) by a Gaussian Markov Random Field (GMRF). In particular, a prior Gaussian distribution with a zero mean and covariance matrix was assumed for the spatial component which depend on the hyperparameters k and τ, which determined its variance and range, respectively (see Munoz et al., 2013, for more detailed information about spatial effects). As recommended by Held and co-authors (Held et al., 2010) vague zero-mean Gaussian prior distribution with a variance of 1 e 5 were assigned for all fixed-effect parameters, which are approximations of non-informative priors designed to have little influence on the posterior distributions.

The environmental variable selection with all possible interaction terms was mainly based on the Watanabe-Akaike information criterion (WAIC), that is an improvement of the Deviance Information Criterion (DIC), traditionally used for Bayesian models, and better suited than the Akaike Information Criterion (AIC), usually applied within frequentist modelling procedures (Spiegelhalter et al., 2002). Unlike DIC, which is conditioned on a point estimate and is not fully Bayesian, WAIC is a fully Bayesian measure and uses entire posterior distributions to make inference about parameters; hence, estimations are more precise (Watanabe, 2010). Thus, the best (and most parsimonious) model was
chosen based on low WAIC values, containing only relevant predictors; i.e., those predictors with 95% credibility intervals not including the zero. In addition, other two criteria were computed to assess the models performance: the Root Mean Square Error (RMSE) and the adjusted coefficient of determination $\left(\mathrm{R}^{2}\right)$. The RMSE was assessed to check if the selected model has a low standard deviation between observed and predicted values, while the R^{2} was used to prove that the selected model had a reasonable level of variance explained by the variables.

To validate the occurrence of B-HSD predictions, the common cross-validation procedure was implemented, which consists in randomly splitting the original dataset into two main subsets: a training dataset including 75% of the total observations, and a validation dataset containing the remaining 25% of the data (Fielding and Bell, 1997). The relationship between observed data and environmental variables was modeled by using the training dataset (i.e. models were run again with the traning dataset). The quality of predictions was then assessed by using the validation dataset. We repeated the validation procedure 10 times for the best model of each species and results were averaged over the different random subsets. We performed a validation procedure to formally evaluate overall model prediction using the area under the receiver-operating characteristic curve (AUC) (Fielding and Bell, 1997) and the "True Skill Statistic" (TSS) (Allouche et al., 2006). Both values range from 0 to 1 where values closer to 1 are better. For the biomass B-HSD models the Spearman correlation and the RMSE measures were calculated between the predicted and observed values (see section f below for details).

The B-HSD models were applied to data on the five demersal fish species previously mentioned. They were collected during the EU-funded MEDIterranean Trawl Survey (MEDITS) project (Bertrand et al., 2002), carried out from spring to early summer (April to June) from 2002 to 2012. The MEDITS project used a stratified sampling design based on depth (five bathymetric strata: 10 50, $51-100,101-200,201-500$ and $501-700 \mathrm{~m}$) and Geographical Sub-Area (GSA). Sampling stations were randomly placed within each stratum at the beginning of the project (Figure 2a-c). In
all subsequent years, sampling was performed in similar locations. The MEDITS data used in this study concerns the area in the vicinity of the Ebro river mouth (Figure 1), and includes only the first three bathymetric strata from 0 to 200 m . On average, 20 hauls per year divided into the various bathymetric strata were performed every year in this zone (Figure 2a-c). Species biomass was estimated for each haul as the total weight of each species (kg) per km^{2} of trawling (Figure 2d-f). Biomass values of all species were log transformed to down weight extreme values and to ensure a normal distribution and homoscedasticity.

d) Ecospace Habitat Foraging Capacity modelling

The basic routine of Ecopath provides a snapshot of the structure and flows of a food web and describes the balance between production of functional groups and all consumptions within an ecosystem (Christensen and Pauly, 1992; Polovina, 1984). Each functional group can represent a species, a sub-group of a species (e.g. juveniles and adults) or a group of species that have functional and ecological similarities. The Ecopath model uses a system of linear equations to describe the average flows of mass and energy between these groups during a period of time, normally a year. The flow to and from each group is described by the following equation:

$$
\begin{equation*}
B_{i} \cdot(P / B)_{i}=\sum B_{j} \cdot(Q / B)_{j} \cdot D C_{i j}+Y_{i}+E_{i}+B A_{i}+B_{i} \cdot(P / B)_{i} \cdot\left(1-E E_{i}\right) \tag{3}
\end{equation*}
$$

where B_{i} is the biomass of group $i,(P / B)_{i}$ is the production per unit of biomass, Y_{i} is the total fishery catch rate, E_{i} is the net migration rate (emigration-immigration), $B A_{i}$ is the biomass accumulation rate, $E E_{i}$ is the Ecotrophic Efficiency', or the proportion of the production that is utilized in the system, B_{j} is the biomass of consumers or predators $j,(Q / B)_{j}$ is the consumption per unit of biomass of j, and $D C_{i j}$ is the fraction of i in the diet of j. To parameterize an Ecopath model it is required a series of inputs for each functional group i, mostly Biomass $(B i)$, Diet $\left(D C_{i j}\right)$, consumption and production per unit of biomass $\left((Q / B)_{i}\right.$ and $\left.(P / B)_{i}\right)$, and fishing yields and other exports (Y_{i} and E_{i}). Among $\mathrm{B}, \mathrm{P} / \mathrm{B}, \mathrm{Q} / \mathrm{B}, \mathrm{EE}$, one parameter can be estimated by the model and the others are mandatory
inputs (Christensen and Walters, 2004; Christensen et al., 2008).

Ecosim is the temporal dynamic model of $E w E$ and is used to simulate ecosystem effects of (mainly fishing) mortality changes and environmental forcing over time (Christensen and Walters, 2004; Walters et al., 1997; Walters et al., 2000). The model uses a system of time-dependent differential equations from the baseline mass-balance model (equation 3 above), where the biomass growth rate is calculated as:

$$
\begin{equation*}
d B_{i} / d t=g_{i} \cdot \sum Q_{j i}-\sum Q_{i j}+I_{i}-\left(M_{i}+F_{i}+e_{i}\right) \cdot B_{i} \tag{4}
\end{equation*}
$$

where $d B_{i} / d t$ represents the growth rate of group i during the time interval $d t$ in terms of its biomass B_{i}, g_{i} is the net growth efficiency (production/consumption ratio, P / Q), M_{i} is the non-predation $\left((P / B)_{i} \cdot B_{i}\left(1-E E_{i}\right)\right)$ natural mortality rate, F_{i} is fishing mortality rate, e_{i} is emigration rate, I_{i} is immigration rate and $e_{i} \cdot B_{i}-I_{i}$ is the net migration rate. The two summations in equation 4 estimate consumption rates, the first expressing the total consumption by group i, and the second the predation by all predators on the same group i. The consumption rates, Q, are calculated based on the 'foraging arena' concept, where B_{i} 's are divided into vulnerable and invulnerable components (Ahrens et al., 2012).

The set of Ecosim equations are used in the spatial routine Ecospace, the spatial-temporal model of $E w E$, that predicts the biomass dynamics in a two-dimensional space (Walters et al., 1999). 'Water' cells in Ecospace can be assigned to contain one or more habitat types and species can be assigned to preferred habitats (Christensen et al., 2014). Fishing fleets can be limited to fish in specific habitats, and can be subjected to zonal fishing regulations (no taking zones, e.g. Walters et al., 2000). Moreover, spatial variations of primary productivity and of fishing costs (e.g. costs related to the distance from fishing ports) can be incorporated. The model further incorporates dispersal rates of organisms and other behavioural parameters (Christensen et al., 2005).

In the original Ecospace, habitat types associated to biomass distributions and trophic interactions
were represented by a binary habitat use value, with each spatial cell being either entirely suitable (1) or entirely unsuitable (0) for species/functional groups. Therefore, the original version of Ecospace assumed homogenous conditions within each spatial cell, and local, but possibly relevant variations within cells, could not be represented. To overcome these limitations the Habitat Foraging Capacity model was recently developed (Christensen et al., 2014) to add the ability to spatially drive the foraging capacity of species across the Ecospace map from the cumulative responses to multiple physical, oceanographic, and environmental drivers.

In the Habitat Foraging Capacity model (Christensen et al., 2014) (E-HFC), the habitat capacity is defined as the suitability of a cell for a species or functional group to forage. This foraging capacity $C_{r c j}$ for each group j in each cell r, c is a continuous value from 0 to 1 , and is calculated as a function of a vector of environmental attributes $H_{r c}=(H 1, H 2, \ldots H v)_{r c}$ in cell r, c, where $H 1$ to $H v$ represent any number of environmental factors such as water depth, proportion of hard bottom, surface temperature or salinity.

The $C_{r c j}$ values have to be linked to trophic interaction dynamics to specify how $C_{r c j}$ impacts food consumption and predation rates. This is done through a functional response of group j to each environmental condition and through the basic foraging arena equations used to predict trophic interaction (food-web biomass flow) rates in the time dynamic module Ecosim (see Ahrens et al., 2012; Christensen and Walters, 2004; Walters et al., 1997; Walters et al., 2000; Walters and Martell, 2004). Ecosim represents biomass dynamics, trophic interaction and fishery effects as:

$$
\begin{equation*}
d B_{j} / d t=\frac{g_{j} \cdot a_{i j} \cdot v_{i j} \cdot B_{j} \cdot B_{i}}{2 \cdot v_{i j}+a_{i j} \cdot B_{j}}-Z_{j} \cdot B_{j} \tag{5}
\end{equation*}
$$

where B_{j} is predator biomass, B_{i} is prey biomass, Z_{j} is total instantaneous mortality rate of j, g_{j} is growth efficiency (corresponding to the production/consumption ratio, which can vary as predators grow in size), $v_{i j}$ is prey vulnerability exchange rate, and aij is the rate of effective search by the predator. The vulnerable prey density $V_{i j}$ is represented by the foraging arena equation, which can be
expressed as:

$$
\begin{equation*}
V_{i j}=\frac{v_{i j} \cdot B_{j}}{2 \cdot v_{i j}+a_{i j} \cdot B_{j}} \tag{6}
\end{equation*}
$$

where predation pressure in a cell depends on the foraging arena area in that cell. If we assume that variation in relative habitat capacity for the predator means variation in the foraging arena area over which a species can forage successfully, we can include a variation in relative habitat capacity in the Ecospace model by dividing the denominator $a_{i j} \cdot B_{j}$ term by relative habitat size or capacity $C_{r c j}$:

$$
\begin{equation*}
V_{i j}=\frac{v_{i j} \cdot B_{j}}{2 \cdot v_{i j}+a_{i j} \cdot B_{j} / C_{r c j}} \tag{7}
\end{equation*}
$$

This assumption concentrates predation activity into smaller relative areas when C (foraging arena size) is small, so this drives down vulnerable prey densities $V_{i j}$ more rapidly as B_{j} increases in cases with less foraging arena area.

Importantly, including $C_{r c j}$ as a modifier in the $a i j \cdot B j / C_{r c j}$ predation rate term results in the equilibrium predator biomass (B_{j} for which $d B j / d t=0$) being proportional to $C_{r c}$, i.e.,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{j}}=\left(\mathrm{g}_{\mathrm{j}} \cdot \mathrm{v}_{\mathrm{ij}} \cdot \frac{\mathrm{~B}_{\mathrm{i}}}{\mathrm{z}_{\mathrm{j}}}-2 \cdot \frac{\mathrm{v}_{\mathrm{ij}}}{\mathrm{a}_{\mathrm{ij}}}\right) \cdot \mathrm{C}_{\mathrm{rcj}} B_{j}=\left(g_{j} \cdot v_{i j} \cdot \frac{B_{i}}{Z_{j}}-2 \cdot \frac{v_{i j}}{a_{i j}}\right) \cdot C_{r c j} \tag{8}
\end{equation*}
$$

Using the $C_{r c j}$ as modifiers of the foraging arena consumption rate equation results in spatial patterns of biomass of consumers being proportional to $C_{r c}$, other factors (prey biomasses B_{i} and mortality rates Z_{j}) being equal over space. The variation in habitat capacity also affects the vulnerability exchange rates $v_{i j}$, search rates $a_{i j}$, and predation rates Z_{j}, but the default assumption is that the dominant cause of 'poor' or relatively small habitat capacity is the lack of usable foraging arena area (Christensen et al., 2014).

In this study, we used an available ecosystem model developed with $E w E$ (Christensen and Walters,
2004) representing the South Catalan Sea (NW Mediterranean) in 1978 that had been previously calibrated to time series of data from 1978 to 2010 using the temporal dynamic model Ecosim and validated with external data such as trophic levels and mortalities (Coll et al., 2013; Coll et al., 2008; Coll et al., 2006; Navarro et al., 2011). The model included 40 functional groups and four fishing fleets (bottom trawling, purse seine, long lining and tuna fishing), and covered an area of $5000 \mathrm{~km}^{2}$ with depths from 50 to 400 m (Coll et al., 2006). The functional groups included primary and secondary producers, from phytoplankton to large predatory species and the units were expressed in terms of biomass as $\mathrm{t} \cdot \mathrm{km}^{2}$, and production and catch as $\mathrm{t} \cdot \mathrm{km}^{2} \cdot \mathrm{year}^{-1}$. Four of the five studied species, two of anglerfish and the other two of red mullets, were modelled as functional groups merging the two species of the genus Lophius and the two species of the genus Mullus together due to data availability and quality.

A previous E-HFC model developed to evaluate the combined effects of environmental conditions and fishing in the ecosystem dynamics of the Southern Catalan Sea was used as a starting point (Coll et al., 2016). The environmental variables used to parameterize the E-HFC model were the same as the ones used for the B-HSD model. In addition, the spatial pattern of primary production was used to drive the dynamics of the phytoplankton group (through the variation of the initial value of P / B) of the food-web model (Coll et al., 2016). The environmental envelops needed to be parameterized the functional responses in the E-HFC model that link the environmental variables with the response of hake, anglerfish and mullets were firstly obtained from the literature (following the implementation of Coll et al., 2016) and alternatively from results of the B-HSD model (Figure 3, Path 1, see next section for a detailed explanation).

e) Testing modelling integration

Two different approaches were implemented to test the possible integration of B-HSD and E-HFC and are schematized in Figure 3. The first one used the functional responses obtained from the
biomass B-HSD to inform E-HFC (1) and the second one used the niche calculations of the occurrence B-HSD to drive the niche information within E-HFC (2):

1) In order to define the species environmental envelop in the E-HFC model, the functional responses that link the environmental variables with the response of hake, anglerfish and mullets need to be parameterized. Commonly, this is obtained from the literature (Coll et al., 2016). Here we proposed an alternative approach that integrates the functional responses obtained by the biomass B-HSD model in the E-HFC one (Figure 3, Path 1). In particular, the de-standardized functional responses obtained from the biomass B-HSD model outputs were integrated in the E-HFC model. We named this model E-HFC FR.

All other functional groups received the habitat foraging settings and the original configuration of habitats, following the original implementation of the E-HFC model in the study area (Coll et al., 2016).
2) In the E-HFC model it is also possible to inform a priori the niche of the species. This process can be done using bibliographic information, online databases or other information. Here we set the species niche using the output of the probability of occurrence obtained from the occurrence B-HSD model to force the niche priors of the E-HFC model (Figure 3-Path 2) ${ }^{1}$. We named this model EHFC Niche.

Finally, in order to compare the results obtained with above approaches (Figure 3) we also run the EHFC model without any input of the B-HSD ones using the default parameterization of the published study (Coll et al., 2016). We named this model E-HFC original.

The Ecospace model was executed from 1978 to 2012 and results of model simulations were compared averaging the biomass predictions from 2002 to 2012. Results from all modelling outputs were also compared with results from the MEDITS survey for 2002 to 2012 as a validation procedure.

[^0]
f) Comparison and complementarity of modelling results

Results from biomass spatial predictions for European hake, anglerfish and mullets from the biomass B-HSD and E-HFC models were compared using Spearman's spatial correlations using the "corLocal" function of the R software that allows computing this measure for two spatial objects using a focal neighborhood and thus taking into account distance. Values of Spearman's correlations range from -1 to 1 , being 1 equal to a perfect positive correlation between the two datasets.

In particular, in order to test the prediction power of each model, we first interpolated the observed data of each studied species using the "interpolation TIN" function of the Quantum GIS (available in: http://www.qgis.org/en/site/) to obtain a spatial raster with a $0.05^{\circ} \times 0.05^{\circ}$ degree spatial resolution. Afterwards, we compared each model spatial output with observed data using the Spearman's spatial correlation. Additionally, we computed the Root Mean Square Error (RMSE) to measure the cell-bycell difference between the two grids (i.e. observed data and models outputs). Secondly, we compared results of the E-HFC model previously informed with the biomass B-HSD modelling outputs (Figure 3) to assess how similar or different were the outputs using B-HSD to inform the food-web model in comparison to not doing it.

g) Introducing uncertainties in E-HFC model

A formal fitting and validation of the time dynamic model Ecosim was previously performed (Coll et al., 2013; Coll et al., 2008; Navarro et al., 2011) and it is implemented in the models we used in this study. For the Ecospace model a formal fitting and validation assessment is still missing, partially due to the lack of independent spatial data to perform these kinds of analyses. In this study, we present a first attempt to validate Ecospace results comparing results with an independent dataset of spatial observations. In addition, as the Bayesian approach uses probabilities distributions, we used INLA posterior distributions for each hyperparameter to extract n random samples and obtain an explicit quantification of the uncertainties. Therefore, we generated six random samples from the posterior
distribution of the Bayesian results of occurrence for European hake, anglerfishes and red mullets that were used to run alternative Ecospace configurations to complement the prediction map of the mean values. These alternative distributions are possible acceptable solutions from the Bayesian results that allow assessing the impact in Ecospace results. Results from Ecospace were used to calculate an average of the predicted biomass and the standard deviation per species. This procedure illustrates that the process can be formally implemented if B-HSD and E-HFC models are used in a complementary way (e.g., such as in Figure 3 - Path 2).

3. Results

a) European hake

Among the 355 hauls sampled in the studied area between 2002 and 2012, European hake was present in 245 (Figure 2a).

Regarding European hake occurrence, the best statistical fitted model (based on the lowest WAIC, RMSE and higher R 2) resulting from the B-HSD method showed sea bottom temperature (SBT) and the random spatial effect as relevant variables (Table 1 Supplementary Material). Particularly, the SBT presented a negative relationship with the European hake occurrence (posterior mean $=-0.25$; $95 \% \mathrm{CI}=[-0.53,-0.12]$) (Table 2 and Figure 3a in Supplementary Material). The European hake occurrence B-HSD model achieved a 0.67 of AUC and 0.62 of TSS indicating a good degree of discrimination between locations where the species is present and those where it is absent. The final European hake B-HSD biomass model retained as relevant predictors the SBT, sea surface salinity SSS and the random spatial effect (Table 3 Supplementary Material). Specifically, a positive relationship with SBT (posterior mean $=0.39 ; 95 \% \mathrm{CI}=[0.23,0.54]$) and a negative with SSS (posterior mean $=-0.90 ; 95 \% \mathrm{CI}=[-1.51,-0.28])$ and the expected biomass was found, i.e. suggesting that there was more hake in warmer and less saltier waters (Table 1 and Figure $4 a$ and $4 b$).

The predicted spatial biomass for this species resulting from the statistical fitted B-HSD model showed a main hotspot of biomass located in the coastal area and continental shelf around the Ebro Delta (Figure 5a). Considering the food-web modelling approach, results from the original configuration of the model, E-HFC, showed a larger area of high concentration of hake coinciding with the continental shelf and upper slope (Figure 5b). Results from the E-HFC FR and E-HFC Niche were similar to the E-HFC original but extended the area to the coastal region surrounding the Ebro Delta and the southern part of the study area (Figure 5c and 5d). Taking into account the random samples from the probability distributions of European hake occurrence from the Bayesian modelling (Figure 4 and 5 in Supplementary Material) illustrated the low to moderate impact that uncertainty in the niche extension can have on the final spatial prediction of biomass for European hake from Ecospace model, E-HFC Niche (Figure 6a and b).

b) Anglerfishes

Anglerfishes were present in 180 of hauls sampled between 2002 and 2012 (Figure 2b). Specifically, Lophius budegassa was present in 146 hauls, while Lophius piscatorius in 127.

The final B-HSD model of the Lophius spp. occurrence included as relevant predictors the SBT (Table 4 Supplementary Material), showing a negative relationship (posterior mean $=-0.28 ; 95 \% \mathrm{CI}=[-$ $0.68,-0.19]$), in addition to the spatial effect (Table 2 and Figure 3b in Supplementary Material). Occurrence predictions recorded good values of predictions validation measures (AUC $=0.67$; TSS $=$ 0.61), reflecting a high ability of the model to predict true negative and true positive correctly.

Lophius spp. biomass B-HSD models retained SBS and the spatial random effect as final predictors (Table 5 Supplementary Material). The biomass of the Lophius spp. was positively affected by SBS (posterior mean $=0.53 ; 95 \% \mathrm{CI}=[0.18,0.87])$ and the spatial random effect (Table 1 and Figure 4 c$)$. Regarding B-HSD predictions, higher biomass of the species was found at the end of the continental shelf and the upper slope of the central and southern study area (around 200-400 m) (Figure 7a).

Results from the E-HFC model showed the main biomass located surrounding the Ebro Delta area and the upper part of the continental shelf of the central and southern study area (Figure 7b), while results from the E-HFC FR and E-HFC Niche also showed a concentration of biomass in the Ebro Delta area and southern part of the continental shelf (Figure 7c and 7d).

Results of the random samples from the probability distributions of anglerfishes occurrence from the Bayesian modelling (Figure 6 and 7 in Supplementary Material) illustrated the low impact that uncertainty in the niche extension can have on the final spatial prediction of biomass for anglerfishes from Ecospace model, E-HFC Niche (Figure 6c and d).

c) Red mullets

Red mullets were present in 249 hauls sampled between 2002 and 2012 (Figure 2c). Particularly, Mullus surmuletus was present in 158 hauls, while the Mullus barbatus was in 222.

The B-HSD occurrence fitted model of Mullus spp. showed a positive relationship with primary production (posterior mean $=0.64 ; 95 \% \mathrm{CI}=[0.24,1.28]$) (Tables 2, 6 and Figure 3c Supplementary Material). As for the other species, predictions measures presented good values ($\mathrm{AUC}=0.68$; $\mathrm{TSS}=$ 0.63). Similarly to the occurrence, for Mullus spp. biomass, the B-HSD model showed a positive relationship with primary production (posterior mean $=4.23 ; 95 \% \mathrm{CI}=[2.25,5.54])($ Table 1 and Figure 4 d), as well with the random spatial effect (Table 7 Supplementary Material).

The predicted biomass of these species considering the B-HSD model was higher around the coastal areas of the Ebro Delta and northern areas coinciding with the most productive region (Figure 8a). Results from the E-HFC, E-HFC FR and E-HFC Niche models showed the main biomass also located surrounding the Ebro Delta coast and northern areas and the last two showed more similar patterns to the B-HSD results (Figure 8b, 8c and 8d).

Results of the random samples from the probability distributions of red mullets occurrence from the Bayesian modelling (Figure 8 and 9 in Supplementary Material) illustrated the moderate impact that
uncertainty in the niche extension can have on the final spatial prediction of biomass for these species from Ecospace model, E-HFC Niche (Figure 6e and f).

d) Comparison of results

Modelling results regarding biomass distributions showed positive and significant correlations with observational data from the MEDITS project (Figure 9a, 9b and 9c). Correlations between modelling results and observational data were similar between modelling methodologies: they were between $72-81 \%$ for European hake (with largest values for the E-HFC-FR model), $77 \%-97 \%$ for anglerfishes (with largest values for the E-HFC-FR model) and $80 \%-98 \%$ for red mullets (with largest values for the E-HFC-FR and E-HFC-Niche models).

The Spearman correlations between modelling results showed highly positive and significant correlations between results for all the species considered (Figure 9a, 9b and 9c). In all cases, the correlations were higher when B-HSD results drove the E-HFC model, than when both methods were used individually.

With respect to the RMSE measure, low values were achieved by models ranging from 0.23 to 1.4 . With the exception of the mullets, the RMSE of the E-HFC models driven by B-HSD results obtained lower RMSE with respect to the original E-HFC model (Table 2).

In terms of absolute predictions, results from the modelling techniques showed larger divergences, even when compared to observational data (Table 3). When comparing the mean values, the E-HFC modelling results yielded closest values compared to observational data for European hake and anglerfish, and B-HSD models were closer to red mullets. The B-HSD means were the largest values regarding hake and anglerfishes, while E-HFC Niche mean values were the largest for red mullets. In general, results from the Bayesian models predicted larger values of biomass than the food-web models for European hake and anglerfish, and lower for red mullets.

4. Discussion

Studying the factors that affect the spatial distribution of marine biodiversity is a central issue to ecology, essential for evaluating biodiversity patterns, for predicting the impact of environmental change and anthropogenic activities, and for designing useful management programs (Navarro et al., 2015). Advancing the knowledge of marine species distributions is also essential to contribute to an ecosystem-based management approach to marine resources (Pennino et al., 2016) and an ecosystembased spatial planning approach (Moore et al., 2016). Although effective management of marine ecosystems requires information on the spatial distribution of marine species, there is still marked paucity of our understanding of species-environment relationships. Modelling techniques have been identified as key tools to contribute to this knowledge (Guisan and Zimmermann, 2000).

This study illustrates the application of two modelling techniques, applied in isolation and in conjunction, to predict the distribution of occurrence and biomass of commercial marine species in a small area of the NW Mediterranean Sea: a statistical approach, using a Bayesian Hierarchical Species Distribution Model, and a mechanistic approach, using a spatial-temporal food-web model (Ecospace).

Our analyses show that the results of both modelling approaches positively and significantly correlated with observational data, confirming that both techniques are valid tools to predict species distributions in the study area. In addition, both techniques showed high correlation with observations, with a maximum of 29% of data not described by the models. Small divergences between observations and predictions may be because the biological observational data used in this case study represents one season only (late spring to early summer), while the environmental data and food-web parameterization are expressed as annual mean values. A recent study has shown that exploited demersal communities exhibit strong seasonal changes, even in small areas such as the one used in our study (Vilás-González, 2016; Vilas-González et al., Submitted). Divergences between models predictions and observations may also be because while the statistical Bayesian modelling
technique provides information about the potential niche of the sampled population, the food-web modelling technique provides a prediction about the realized niche of the entire population. It is necessary to undertake a similar study using observational data that represents the annual state of the ecosystem to explore this issue deeper. Despite this data is still not available in our study area, this study provides an example of application than can be repeated in a data-richer area.

Our results show clear heterogenic distributions of the demersal fish species in the study area, with main concentrations in the coastal and shelf area. The Ebro River delta is known to be a productive region; it is a high run-off area that boosts primary production and consequently generates the preferential habitat for many species, especially in the recruits phase (Lloret and Lleonart, 2002). Here, also important demersal species are surmised to concentrate (Navarro et al., 2015). However, little is known about the spatial distribution patterns for the three species considered in the study area, and the Western Mediterranean in general. Spatial information is mainly derived from studies of distributions of eggs and larvae, and from sampling in recruitment areas (e.g., Hidalgo et al., 2008; Morfin et al., 2012). In the case of European hake, Olivar and co-authors (Olivar et al., 2003) showed that in the northern part of our study area, distributions of eggs and larvae coincide with the principal fishing grounds of the spawning population, the shelf edge (Recasens et al., 1998). Maynou et al. (Maynou et al., 2003) found that hake nursery areas were mainly located in the central part of the continental shelf between 68 and 168 m depth. In addition, the waters surrounding the Columbretes Islands show high European hake biomass estimates; these islands have been a Marine Protected Area since 1989 , and thus provide a stable, high quality ecosystem to stocks that could be exporting hake adults and recruits to adjacent areas (Paradinas et al., 2015; Stobart et al., 2009).

In the case of Lophius spp. Lopez and co-authors (López et al., 2016) showed that juvenile specimens in July 2013 were mainly located in coastal and continental shelve areas, while higher presence of adults was found closer to the upper slope areas. Mullus spp. has shown to be distributed in coastal and shelf areas, where M. barbatus is more abundant over muddy bottoms with maximum abundance
in the $50-200 \mathrm{~m}$ depth stratus. M. surmuletus prefers rough substrates and ranges between 10 to 50 m , at least in springtime (Lombarte et al., 2000; Tserpes et al., 2002). Overall, our results match the available distribution information, although future spatial-temporal modelling work should aim to analyse these species separately and their seasonal dynamics in-depth.

In terms of which variables could be driving the spatial distributions and abundance of the studied species, our results from B-HSD models highlighted a strong correlation with temperature. European hake and anglerfishes biomass was higher in warmer and less salty waters consistently with their depth ranges, while mullets were more abundant in high productivity habitats. These finding are in line with other studied from different areas such as Maravelias and co-authors (Maravelias et al., 2007), who found that hake and red mullet abundance were higher in waters $>19^{\circ} \mathrm{C}$ in the Aegean Sea. Similarly, Massutí and co-authors (Massutí et al., 2008) found a negative significant relationship between sea bottom salinity and European hake catch per unit of effort around the Balearic Islands waters. This is because European hake depth range coincides with a decrease of salinity approximately from $50-400 \mathrm{~m}$ depth.

In addition, our results highlighted that the spatial random effects estimated from the B-HSD were relevant for all the species in all selected models. The spatial random component is often used to capture the effect of important missing predictors (F Dormann et al., 2007) or to account for ecological processes (e.g., dispersal or aggregative behaviour) or anthropogenic effect that are spatially structured (Merow et al., 2014). In our case, the spatial effect probably reflected a combination of effects, including seasonality and impact of anthropogenic activities and their synergies (Coll et al., 2012; Navarro et al., 2015; Vilas-González et al., Submitted).

Our study also showed positive correlations between methods, illustrating that statistical species distribution and food-web spatial-temporal modelling can yield corresponding predictions. However, biomass predictions from the Bayesian models were larger than the food-web models for European hake and anglerfish, and lower for red mullets. This may be due to the fact that food-web models
directly include the effect of fisheries removals, reducing the potential biomass predicted by the Bayesian model for predators. On the contrary, higher biomass of red mullets could reflect indirect trophic effects such as competition or predation release.

Moreover, our findings suggest that it is best to use the modelling tools in a complementary way: projected species distributions are more similar to observations when the food-web model technique is informed with results from the species distribution modelling technique. In Ecospace, this was accomplished by either using the response functions derived from the statistical analysis in the Ecospace calculations, or by forcing the niche priors of Ecospace foraging capacity directly with results from the statistical models (Figure 3, Path 1 and Path 2, respectively). These results represent a promising venue to develop further case studies to test the methodology complementarity, especially in larger study areas and with larger and more completed spatial-temporal datasets. Hybrid approaches between correlative and mechanistic methods can be pragmatic solutions to improving ecological predictions by adding key mechanisms to simple models (Urban et al., 2016). These methodologies can be part of an essential toolbox for promoting more efficient management by providing more accurate spatial species predictions.

Both techniques used in this study have advantages and disadvantages. The use of Bayesian Hierarchical Species Distribution models can be a powerful approach given that it quantifies both the spatial magnitude and the different sources of uncertainty. It has been demonstrated that this type of models can produce reliable species habitat predictions even in data-poor situation working with small sample size of 50 observations (Fonseca et al., 2017). However, despite these models popularity, they only implicitly consider interactions between species, disregarding the potentially important influence of biotic interactions (such as competition, predation and facilitation) and can become unreliable when they are used to extrapolate to novel conditions (Urban et al., 2016). When using the food-web modelling we can directly incorporate biotic interactions and the dynamics and effects of exploitation and spatial management measures (Christensen and Walters, 2004). However, spatial
food-web modelling approaches require large amounts of spatialized data and its integration needs to be informed by previous knowledge about which key environmental elements drive key processes. By combining the capabilities of the food-web modelling approach with the statistical modelling, we can gain clear advantages from both techniques and make food-web modelling more robust. For example, when using Ecospace with the response functions obtained from the statistical models (Figure 3, Path 1) we can directly model the impact of environmental change on species dynamics and interactions by capturing key spatial-temporal changes of the environmental drivers (Steenbeek et al., 2013). This is an essential aspect for developing future scenarios of change of marine ecosystems and predict future marine food-web configurations. Alternatively, forcing the niche calculations of Ecospace with results from external SDM tools (Figure 3, Path 2) may provide a valid shortcut when spatial-temporal datasets are not fully available but we have validated knowledge about niche changes.

Our study illustrates that by combining both approaches, uncertainty analyses can be developed. This is essential to contribute to the future development needs of Ecospace. Although there are several ways that uncertainty can be incorporated in $E w E$ (Coll and Steenbeek, 2017; Heymans et al., 2016; Steenbeek et al., 2018), current rudimentary means to formally validate its spatial-temporal predictions against observations need to improve and Ecospace requires facilities to first fitting its behaviour to time series of spatial-temporal data such as it is supported in Ecosim (Mackinson et al., 2009; Scott et al., 2016). In our study we present a first attempt to move towards this direction to formally develop a validation tool considering data uncertainty, as it is illustrated here using a random sample of posterior distribution results from Bayesian statistics into Ecospace (Figure 6). The new Ecospace with the HCR model and the spatial-temporal framework will substantially benefit from these future capabilities (Coll et al., 2016; Romagnoni et al., 2015; Steenbeek et al., 2018).

Acknowledgements

MC was partially funded by the European Commission through the Marie Curie Career Integration Grant Fellowships - PCIG10-GA-2011-303534 - to the BIOWEB project. This study is a contribution to the project ECOTRANS (CTM2011-26333, Ministerio de Economía y Competitividad, Spain) and SafeNET (EU-DGMARE MARE/2014/41). MC and JS acknowledge financial support by the European Union's Horizon research program grant agreement No 689518 for the MERCES project. The authors express their gratitude to all the people that work in the MEDITS surveys. MEDITS data collection has been co-funded by the EU through the European Maritime and Fisheries Fund (EMFF) within the National Program of collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy.

Figure captions

Figure 1. Study area located in the Northwestern Mediterranean Sea.

Figure 2. (a-c) Sampling stations of the MEDITS surveys used for European hake (Merluccius merluccius), anglerfishes (Lophius spp.) and red mullets (Mullus spp.); Presence is indicated with red dots, while absence with black dots. (d-f) Observed log-transformed Biomass (kg/km2) averages during 2002-2012.

Figure 3. Working path representing two directions on how Bayesian-Hierarchical Species Distribution modelling (B-HSD) results can be integrated into Ecospace food-web model: (Path 1) by using response functions that describe the link between environmental factors and species responses (E-HFC FR), or (Path 2) by forcing the niche priors of the Foraging Capacity Model with niche calculations from B-HSD results (E-HFC Niche).

Figure 4. Functional response of B-HSD biomass models ($\mathrm{kg} / \mathrm{km}^{2}$) for a-b) European hake (M. merluccius), c) anglerfishes (Lophius spp.) and d) red mullets (Mullets spp.). Predictor acronyms are SBT $=$ Sea Bottom Temperature; SSS $=$ Sea Surface Salinity; SBS $=$ Sea Bottom Salinity; PP $=$ Primary production. The solid line is the smooth function estimate and shaded regions represent 95% credibility interval (CI).

Figure 5. Predicted biomass distributions $\left(\log \left(\mathrm{kg} / \mathrm{km}^{2}\right)\right)$ for European hake (M. merluccius) using a) Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD (Figure 3, Path 2) (E-HFC Niche).

Figure 6. Average and standard deviation of predicted biomass distributions $\left(\log \left(\mathrm{kg} / \mathrm{km}^{2}\right)\right)$ for

European hake (M. merluccius) (a-b), anglerfishes (Lophius spp.) (c-d) and red mullets (Mullus spp.) (e-f) resulting from Ecospace Habitat Foraging Capacity model informed with the niche calculations of random samples from the B-HSD results (Figure 3, Path 2) (E-HFC Niche) (six random samples are plotted in Supplementary Material, Figures 4-9) .

Figure 7. Predicted biomass distributions $\left(\log \left(\mathrm{kg} / \mathrm{km}^{2}\right)\right.$) for anglerfishes (Lophius spp.) using a) Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD (Figure 3, Path 2) (E-HFC Niche).

Figure 8. Predicted biomass distributions ($\log \left(\mathrm{kg} / \mathrm{km}^{2}\right)$) for red mullets (Mullus spp.) using a) Bayesian Hierarchical Species Distribution (B-HSD) model, b) Ecospace Habitat Foraging Capacity model in its original configuration (E-HFC), c) Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD (Figure 3, Path 1) (E-HFC FR), and d) Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD (Figure 3, Path 2) (E-HFC Niche).

Figure 9. Spearman correlation results between observed biomass data and the four different modelling configuration and estimates from the MEDITS project (2002-2012) for a) European hake (M. merluccius), b) anglerfishes (Lophius spp.) and c) red mullets (Mullets spp.). B-HSD: Bayesian Hierarchical Species Distribution model; E-HFC: Ecospace Habitat Foraging Capacity original model; E-HFC FR: Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD; and E-HFC Niche: Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD.

Table 1. Numerical summary of the posterior distribution of the fixed effects for the best biomass BHSD of the three species studied. This summary contains the mean, the standard deviation, the median and a 95% credible interval, which is a central interval containing 95% of the probability under the posterior distribution. Predictors' acronyms are: SBT $=$ Sea Bottom Temperature; SSS $=$ Sea Surface Salinity; SBS = Sea Bottom Salinity; PP = primary production (PP).

Species	Predictor	Mean	SD	$\mathrm{Q}_{0.025}$	$\mathrm{Q}_{0.5}$	$\mathrm{Q}_{0.975}$
European hake	Intercept	1.08	0.05	0.56	0.98	1.96
	SBT	0.39	0.07	0.23	0.39	0.54
	SSS	-0.90	0.31	-1.51	-0.90	-0.28
Anglerfishes	Intercept	0.23	0.01	0.11	0.25	0.54
	SBS	0.53	0.04	0.18	0.54	0.87
Red mullets	Intercept	0.23	0.02	0.13	0.12	0.52
	PP	4.23	0.09	2.25	3.96	5.54

Table 2: Root Mean Square Error (RMSE) results between observed biomass data and the four different modelling configurations. Acronyms are: B-HSD: Bayesian Hierarchical Species Distribution model; E-HFC: Ecospace Habitat Foraging Capacity original model; E-HFC FR: Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD; and E-HFC Niche: Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD.

RMSE	B-HSD	E-HFC	E-HFC FR	E-HFC Niche
European hake (M. merluccius)	0.51	1.4	0.37	0.95
Anglerfishes (Lophius spp.)	0.23	1.11	0.07	0.12
Red mullets (Mullets spp.)	0.38	0.26	0.44	0.43

Table 3. Comparison of spatial model minimum, mean and maximum values of biomass estimates $\left(\mathrm{kg} / \mathrm{km}^{2}\right)$ of European hake (Merluccius merluccius), anglerfishes (Lophius spp.) and red mullets (Mullus spp.) under the four different modelling configuration and estimates from the MEDITS project (2002-2012). B-HSD: Bayesian Hierarchical Species Distribution model; E-HFC: Ecospace Habitat Foraging Capacity original model; E-HFC FR: Ecospace Habitat Foraging Capacity model informed with functional responses from B-HSD; and E-HFC Niche: Ecospace Habitat Foraging Capacity model with the niche calculations driven by results from B-HSD.

Species	Model	Min	Mean	Max
European Hake	B-HSD	0.00	475.60	1431.20
	E-HFC	0.00	17.41	435.41
	E-HFC-FR	0.00	106.29	3890.15
	E-HFC-Niche	0.00	259.14	20958.07
	Observed biomass	0.00	12.83	958.74
Anglerfish	B-HSD	0.00	210.70	951.40
	E-HFC	0.00	6.96	476.17
	E-HFC-FR	0.00	23.57	1744.93
	E-HFC-Niche	0.00	37.44	2356.01
	Observed biomass	0.00	3.14	389.76
Red mullets	B-HSD	0.00	32.2	722.15
	E-HFC	0.00	64.57	2300.44
	E-HFC-FR	0.00	162.05	5143.90
	E-HFC-Niche	0.00	164.25	5059.71
	Observed biomass	0.00	10.81	2404.08

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

c) E-HFC FR

b) E-HFC

d) E-HFC-Niche

802
803

805
806

Figure 6.

Figure 7.

Figure 8.

Figure 9.

b)
) $\quad \stackrel{0}{\dot{\Gamma}}$

c)

References

Adani, M., Dobricic, S., Pinardi, N., 2011. Quality assessment of a 1985-2007 mediterranean sea reanalysis. Journal of Atmospheric and Oceanic Technology 28, 569-589.
Ahrens, R.N.M., Walters, C.J., Christensen, V., 2012. Foraging arena theory. Fish and Fisheries 13, 41-59.
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 43, 1223-1232.
Banerjee, S., Carlin, B.P., Gelfand, A.E., 2014. Hierarchical modeling and analysis for spatial data. Crc Press.
Bertrand, J.A., De Sola, L.G., Papaconstantinou, C., Relini, G., Souplet, A., 2002. The general specifications of the MEDITS surveys. Scientia Marina 66, 9-17.
Bosc, E., Bricaud, A., Antoine, D., 2004. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Global Biogeochemical Cycles 18, doi:10.1029/2003GB002034.
Christensen, V., Coll, M., Buszowski, J., Cheung, W., Frölicher, T., Steenbeek, J., Stock, C.A., Watson, R., Walters, C., 2015. The global ocean is an ecosystem: Simulating marine life and fisheries. Global Ecology and Biogeography 24 507-517.
Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., Walters, C.J., 2014. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397-1412.
Christensen, V., Ferdaña, Z., Steenbeek, J., 2009. Spatial optimization of protected area placement incorporating ecological, social and economical criteria. Ecological Modelling 220, 2583-2593.
Christensen, V., Guenette, S., Heymans, J.J., Walters, C., Watson, R., Zeller, D., Pauly, D., 2003. Hundred-year decline of North Atlantic predatory fishes. Fish and Fisheries 4, 1-24.
Christensen, V., Maclean, J., 2011. Ecosystem Approaches to Fisheries: A Global Perspective. Cambridge University Press, Cambridge 325 pp.
Christensen, V., Pauly, D., 1992. ECOPATH II - A software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61, 169-185.
Christensen, V., Walters, C., 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 72, 109-139.
Christensen, V., Walters, C., Pauly, D., Forrest, R., 2008. Ecopath with Ecosim version 6. User Guide - November 2008. Lenfest Ocean Futures Project 2008, 235 pp.

Authro, 2005. Ecopath with Ecosim: A user's guide. Vancouver, B.C. (Canada).
Coll, M., Navarro, J., Palomera, I., 2013. Ecological role, fishing impact, and management options for the recovery of a Mediterranean endemic skate by means of food web models. Biological Conservation 157, 108-120.
Coll, M., Palomera, I., Tudela, S., Dowd, M., 2008. Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978-2003. Ecological Modelling 217, 95-116.
Coll, M., Palomera, I., Tudela, S., Sardà, F., 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59, 63-96.
Coll, M., Piroddi, C., Albouy, C., Ben Rais Lasram, F., Cheung, W., Christensen, V., Karpouzi, V., Le Loc, F., Mouillot, D., Paleczny, M., Palomares, M.L., Steenbeek, J., Trujillo, P., Watson, R., Pauly, D., 2012. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecology and Biogeography 21, 465-480.
Coll, M., Steenbeek, J., 2017. Standardized ecological indicators to assess aquatic food webs: the ECOIND software plug-in for Ecopath with Ecosim models. Environmental Modelling and Software 89, 120-130.
Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D., Cury, P., 2015. "Low hanging fruits" for conservation of marine vertebrate species at risk in the Mediterranean Sea. Global Ecology and Biogeography 24, 226-239.

Coll, M., Steenbeek, J., Sole, J., Palomera , I., Christensen, V., 2016. Modelling the cumulative spatial-temporal effects of environmental factors and fishing in a NW Mediterranean marine ecosystem. Ecological Modelling 331, 100-114.
Colloca, F., Cardinale, M., Maynou, F., Giannoulaki, M., Scarcella, G., Jenko, K., Bellido, J.M., Fiorentino, F., 2013. Rebuilding Mediterranean fisheries: a new paradigm for ecological sustainability. Fish and Fisheries 14, 89-109.
Cury, P.M., Shin, Y.J., Planque, B., Durant, J.M., Fromentin, J.M., Kramer-Schadt, S., Stenseth, N.C., Travers, M., Grimm, V., 2008. Ecosystem oceanography for global change in fisheries. Trends in Ecology \& Evolution 23, 338-346.
Estrada, M., 1996. Primary production in the northwestern Mediterranean. Scientia Marina 60, 5564.

F Dormann, C., M McPherson, J., B Araújo, M., Bivand, R., Bolliger, J., Carl, G., G Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609-628.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O’Reilly, J., Haidvogel, D., 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochemical Cicles 20, GB3007.
Fernandes, P.G., Ralph, G.M., Nieto, A., Criado, M.G., Vasilakopoulos, P., Maravelias, C.D., Cook, R.M., Pollom, R.A., Kovačić, M., Pollard, D., 2017. Coherent assessments of Europe's marine fishes show regional divergence and megafauna loss. Nature Ecology \& Evolution 1, 0170.
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38-49.
Fonseca, V.P., Pennino, M.G., de Nóbrega, M.F., Oliveira, J.E.L., de Figueiredo Mendes, L., 2017. Identifying fish diversity hot-spots in data-poor situations. Marine Environmental Research 129, 365-373.
Fulton, E., 2011. Interesting times: winners, losers, and system shifts under climate change around Australia. ICES Journal of Marine Science 68, 1329-1342.
Fulton, E.A., 2010. Approaches to end-to-end ecosystem models. Journal of Marine Systems 81, 171183.

Gelfand, A.E., Silander, J.A., Wu, S., Latimer, A., Lewis, P.O., Rebelo, A.G., Holder, M., 2006. Explaining species distribution patterns through hierarchical modeling. Bayesian Analysis 1, 4192.

Gelman, A., 2008. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865-2873.
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.
Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Lowndes, J.S., Rockwood, R.C., Selig, E.R., Selkoe, K.A., Walbridge, S., 2015. Spatial and temporal changes in cumulative human impacts on the world's ocean. Nature Communications 7615.
Held, L., Schrödle, B., Rue, H., 2010. Posterior and cross-validatory predictive checks: a comparison of MCMC and INLA. Statistical modelling and regression structures, 91-110.
Hereford, J., Hansen, T.F., Houle, D., 2004. Comparing strengths of directional selection: how strong is strong? Evolution 58, 2133-2143.
Heymans, J.J., Coll, M., Link, J.S., Mackinson, S., Steenbeek, J., Christensen, V., 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling 331, 173-184.
Hidalgo, M., Massutí, E., Moranta, J., Cartes, J., Lloret, J., Oliver, P., Morales-Nin, B., 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius L.) recruitment process at the Balearic Islands (western Mediterranean): the role of environment on distribution and condition. Journal of Marine Systems 71, 367-384.

Jones, M.C., Dye, S.R., Pinnegar, J.K., Warren, R., Cheung, W.W., 2012. Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecological Modelling 225, 133-145.
Kaschner, K., Kesner-Reyes, K., Garilao, C., Rius-Barile, J., Rees, T., Froese, R., 2016. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, www.aquamaps.org, Version 08/2016.
Kaschner, K., Watson, R., Trites, A., Pauly, D., 2006. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Marine Ecology Progress Series 316.
Kinas, P.G., Andrade, H.A., 2017. Introdução à análise bayesiana (com R). Consultor Editorial.
Lauria, V., Gristina, M., Attrill, M., Fiorentino, F., Garofalo, G., 2015. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea. scientific Reports 5, 13245.
Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74.
Lindgren, F., Rue, H., Lindström, J., 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 423-498.
Link, J., 2011. Ecosystem-based fisheries Management: confronting tradeoffs. Cambridge University Press, Cambridge 207 pp .
Lloret, J., Lleonart, J., 2002. Recruitment dynamics of eight fishery species in the northwestern Mediterranean Sea. Scientia Marina 66, 77-82.
Lloret, J., Palomera, I., Salat, J., Sole, I., 2004. Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fisheries Oceanography 13, 102-110.
Lombarte, A., Recasens, L., González, M., de Sola, L.G., 2000. Spatial segregation of two species of Mullidae (Mullus surmuletus and M. barbatus) in relation to habitat. Marine Ecology Progress Series 206, 239-249.
López, N., Navarro, J., Barría, C., Albo-Puigserver, M., Coll, M., Palomera, I., 2016. Feeding ecology of two demersal opportunistic predators coexisting in the northwestern Mediterranean Sea. Estuarine, Coastal and Shelf Science 175, 15-23.
Macias, D., Catalan, I.A., Solé, J., Morales Nin, B., Ruiz, J., 2011. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy. Deep Sea Research I 58, 1175-1188.
Mackinson, S., Daskalov, G., Heymans, J.J., Neira, S., Arancibia, H., Zetina-Rejón, M., Jiang, H., Cheng, H.Q., Coll, M., Arreguin-Sanchez, F., 2009. Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems. Ecological Modelling 220, 2972-2987.
Maravelias, C.D., Tsitsika, E.V., Papaconstantinou, C., 2007. Environmental influences on the spatial distribution of European hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the Mediterranean. Ecol. Res. 22, 678-685.
Martin, P., Sabates, A., Lloret, J., Martin-Vide, J., 2012. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Climatic Change 110, 925-939.
Massutí, E., Monserrat, S., Oliver, P., Moranta, J., López-Jurado, J.L., Marcos, M., Hidalgo, M., Guijarro, B., Carbonell, A., Pereda, P., 2008. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean: hypothesis for hake and red shrimp off Balearic Islands. Journal of Marine Systems 71, 421-438.
Maynou, F., Lleonart, J., Cartes, J.E., 2003. Seasonal and spatial variability of hake (Merluccius merluccius L.) recruitment in the NW Mediterranean. Fisheries Research 60, 65-78.

Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267-1281.
Moore, C., Drazen, J.C., Radford, B.T., Kelley, C., Newman, S.J., 2016. Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Marine Policy 69, 32-41.
Morfin, M., Fromentin, J.M., Jadaud, A., Bez, N., 2012. Spatio-Temporal Patterns of Key Exploited Marine Species in the Northwestern Mediterranean Sea. PLoS ONE 7, e37907.
Munoz, F., Pennino, M.G., Conesa, D., López-Quílez, A., Bellido, J.M., 2013. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stochastic Environmental Research and Risk Assessment 27, 1171-1180.
Navarro, J., Coll, M., Cardador, L., Fernández, A.M., Bellido, J.M., 2015. The relative roles of the environment, human activities and spatial factors in the spatial distribution of marine biodiversity in the Western Mediterranean Sea. Progress in Oceanography 131, 126-137.
Navarro, J., Coll, M., Louzao, M., Palomera, I., Delgado, A., Forero, M.G., 2011. Comparison of ecosystem modelling and isotopic approach as ecological tools to investigate food webs in the NW Mediterranean Sea. Journal of Experimental Marine Biology and Ecology 401, 97-104.
Olivar, M.P., Quílez, G., Emelianov, M., 2003. Spatial and temporal distribution and abundance of European hake, Merluccius merluccius, eggs and larvae in the Catalan coast (NW Mediterranean). Fisheries Research 60, 321-331.
Ospina-Alvarez, A., Catalan, I., Bernal, M., Roos, D., Palomera, I., 2015. From egg production to recruits: Connectivity and inter-annual variability in the recruitment patterns of European anchovy in the northwestern Mediterranean. Progress in Oceanography http://dx.doi.org/10.1016/j.pocean.2015.01.011.
Palomera, I., Olivar, M.P., Salat, J., Sabates, A., Coll, M., Garcia, A., Morales-Nin, B., 2007. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Progress in Oceanography 74, 377-396.
Paradinas, I., Conesa, D., Pennino, M.G., Muñoz, F., Fernández, A.M., López-Quílez, A., Bellido, J.M., 2015. Bayesian spatio-temporal approach to identifying fish nurseries by validating persistence areas. Marine Ecology Progress Series 528, 245-255.
Paradinas, I., Marín, M., Pennino, M.G., López-Quílez, A., Conesa, D., Barreda, D., Gonzalez, M., Bellido, J.M., 2016. Identifying the best fishing-suitable areas under the new European discard ban. ICES Journal of Marine Science: Journal du Conseil, fsw114.
Pennino, M.G., Mérigot, B., Fonseca, V.P., Monni, V., Rotta, A., 2016. Habitat modeling for cetacean management: Spatial distribution in the southern Pelagos Sanctuary (Mediterranean Sea). Deep Sea Research Part II: Topical Studies in Oceanography.
Pennino, M.G., Muñoz, F., Conesa, D., López-Quílez, A., Bellido, J.M., 2014. Bayesian spatiotemporal discard model in a demersal trawl fishery. Journal of Sea Research 90, 44-53.
Pennino, M.G., Munoz, F., Conesa, D., López-Quílez, A., Bellido, J.M., 2013. Modeling sensitive elasmobranch habitats. Journal of Sea Research 83, 209-218.
Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O'Hara, R.B., Parris, K.M., Vesk, P.A., McCarthy, M.A., 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5, 397-406.
Polovina, J.J., 1984. Model of a Coral-Reef Ecosystem .1. the Ecopath Model and Its Application to French Frigate Shoals. Coral Reefs 3, 1-11.
Recasens, L., Lombarte, A., Morales-Nin, B., Torres, G., 1998. Spatio-temporal variation in the population structure of the European hake in the NW Mediterranean. Journal of Fish Biology 53, 387-401.
Romagnoni, G., Mackinson, S., Hong, J., Eikeset, A.M., 2015. The Ecospace model applied to the North Sea: Evaluating spatial predictions with fish biomass and fishing effort data. Ecological

Modelling 300, 50-60.
Roos, N.C., Carvalho, A.R., Lopes, P.F., Pennino, M.G., 2015. Modeling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast. Marine Environmental Research 110, 92100.

Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series b (statistical methodology) 71, 319-392.
Saraux, C., Fromentin, J.-M., Bigot, J.-L., Bourdeix, J.-H., Morfin, M., Roos, D., Van Beveren, E., Bez, N., 2014. Spatial Structure and Distribution of Small Pelagic Fish in the Northwestern Mediterranean Sea. PLoS ONE 9, e111211.
Scott, E., Serpetti, N., Steenbeek, J., Heymans, J.J., 2016. A Stepwise Fitting Procedure for automated fitting of Ecopath with Ecosim models. SoftwareX.
Shchepetkin, A., McWilliams, J., 2005. The Regional Ocean Modeling System (ROMS): A splitexplicit, free-surface, topography-following coordinates ocean model. Ocean Modelling 9, 347404.

Solé, J., Balabrera-Poy, J., Macías, D., Catalán, I.A., 2016. The role of ocean velocity in clorophyll variability. A modelling study in Alboran Sea. Scientia Marina 80S1, 249-256.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583-616.
Steenbeek, J., Coll, M., Gurney, L., Melin, F., Hoepffner, N., Buszowski, J., Christensen, V., 2013. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial-temporal data. Ecological Modelling 263, 139-151.
Steenbeek, J., Corrales, X., Platts, M., Coll, M., 2018. Ecosampler: a new approach to assessing parameter uncertainty in Ecopath with Ecosim. SoftwareX 7, 198-204.
Stobart, B., Warwick, R., González, C., Mallol, S., Díaz, D., Reñones, O., Goñi, R., 2009. Long-term and spillover effects of a marine protected area on an exploited fish community. Marine Ecolog Progress Series 384, 47-60.
Tserpes, G., Fiorentino, F., Levi, D., Cau, A., Murenu, M., Zamboni, A., Papaconstantinou, C., 2002. Distribution of Mullus barbatus and M. surmuletus (Osteichthyes: Perciformes) in the Mediterranean continental shelf: implications for management. Scientia Marina 66, 39-54.
Tsikliras, A.C., Dinouli, A., Tsiros, V.-Z., Tsalkou, E., 2015. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188.
Urban, M., Bocedi, G., Hendry, A., Mihoub, J.-B., Pe'er, G., Singer, A., Bridle, J., Crozier, L., De Meester, L., Godsoe, W., 2016. Improving the forecast for biodiversity under climate change. Science 353, aad8466.
Vilás-González, D., 2016. Variabilidad espacial y estacional de la comunidad de peces, cefalópodos y crustáceos del Mar Mediterráneo Noroccidental y relación con los factores ambientales y humanos. Barcelona University.
Vilas-González, D., Pennino, M.G., Bellido, J.M., Navarro, J., Palomera, I., Coll, M., Submitted. Seasonality of spatial patterns of abundance, biomass and biodiversity in a demersal community from the NW Mediterranean Sea. Progress in Oceanography.
Walters, C., 2000. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bulletin of Marine Science 66, 745-757.
Walters, C., Christensen, V., Pauly, D., 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries 7, 139-172.
Walters, C., Christensen, V., Walters, W., Rose, K., 2010. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bulletin of Marine Science 86, 439-459.
Walters, C., Pauly, D., Christensen, V., 1999. Ecospace: prediction of mesoscale spatial patterns in
trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539-554.
Walters, C., Pauly, D., Christensen, V., Kitchell, J.F., 2000. Representing Density Dependent Consequences of Life History Strategies in Aquatic Ecosystems: EcoSim II. Ecosystems 3, 70-83.
Walters, C.J., Martell, S.J.D., 2004. Foraging arena theory (II), in: Walters, C.J., Martell, S.J.D. (eds.), Fisheries Ecology and Management. Princeton University Press Princeton, NJ (USA), pp. 229255.

Watanabe, S., 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11, 35713594.

Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3-14.

[^0]: ${ }^{1}$ The niche priors are entered in the Ecospace user interface through the Habitat Capacity Input map layers.

