Synthesis and Characterization of binuclear Pt(IV) Complexes and
tetranuclear Mixed Valence Complexes of Platinum(II)-Platinum(IV).

José M. Casas*, Beatriz E. Diosdado, Juan Forniés, M. Ángeles García-Monforte,
Raquel Laporta, Antonio Martín, Milagros Tomás.

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain.

Abstract

The binuclear platinum(IV) complexes \([\text{NBu}_4]_2[\text{Pt}^{IV}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4] \) (2) and
\([\text{Pt}^{IV}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)_2(\text{C}_6\text{F}_5)_4\text{Cl}_4] \) (4) have been synthesized by oxidative addition of chlorine to
the binuclear platinum(II) species, but \([\text{NBu}_4]_2[\text{Pt}^{IV}_2(\mu-\text{OH})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4] \) (3) has been
synthesized by substitution of the chloride bridges of the platinum(IV) complex. The square
planar platinum environments of the Pt(II) starting materials change, as expected, to Pt(IV)
octahedral environments with the chloride ligands in \textit{trans}-position. Not important changes in
the Pt-X (X= Clbridge, OH) interatomic distances are produced because of the oxidation.

Depending on the size of the bridging ligands and also probably the anionic character of
the diplatinum(IV) complexes, the apical chloride ligands can still act as bridges toward other
Pt centres. Thus, the organometallic tetra-nuclear mixed-valence platinum(IV)-platinum(II)
complexes with formulas \([\text{NBu}_4]_2[\{\text{Pt}^{IV}(\mu-X)(\text{C}_6\text{F}_5)_2\}_2(\mu-\text{Cl})_4\{\text{Pt}^{II}(\text{C}_6\text{F}_5)_2\}_2] \) \(X = \text{Cl} \) (5),
OH (6)) were obtained by reaction of 2 and 3 with \textit{cis}-[Pt\text{II}(\text{C}_6\text{F}_5)_2(thf)_2]. The structures of
complexes 2, 4 and 6 have been determined by single-crystal X-ray diffraction studies. These
crystal structures confirm that the oxidative addition of the chlorine molecule to the
platinum(II) complexes 2 and 3 takes place on the axial positions of the platinum centers
suggesting a SN\(_2\) mechanism. On the other hand, the central core of the anion of 6 has a chair
like conformation and the long Pt···Pt distances (> 3.2 Å) clearly exclude any Pt-Pt
interaction.

On the other hand, \textit{cis}-[(\text{C}_6\text{F}_5)_2\text{Pt}(\mu-\text{C}_8\text{H}_6\text{N}_4)\text{Pt}(\text{C}_6\text{F}_5)_2] \) (1) can be reduced either
electrochemically or by reacting with [CoCp\(_2\)] to the anion [Pt\(_3(\mu-\text{C}_8\text{H}_6\text{N}_4)(\text{C}_6\text{F}_5)_4\)] which in
the last case, can be isolated as complex 7. According to the EPR studies the anion is not a
mixed Pt(II)/Pt(I) compound but a binuclear Pt(II) derivative with the anion \([C_8H_6N_4]^-\) as bridging ligand.

Introduction

Platinum(IV) complexes are usually obtained by oxidation of platinum(II) precursors [1] with halogens (Cl₂, Br₂, I₂, PhICl₂) [2-5] or organic halogenated molecules (MeI, EtI, PhCH₂Br, …) [6-8]. The oxidative addition process over mononuclear platinum(II) complex produces, in most cases, the mononuclear platinum(IV) species [5,9,10] but in some occasions complexes which show cubane-like structures [11,12], oligomer chains [7,13] or supramolecular polymers [14] are obtained. Only a few binuclear platinum(IV) complexes containing two octahedral Pt(IV) environments sharing an edge or a face have been reported and structurally characterized [15-20].

Mixed-valence platinum(II)-platinum(IV) complexes are also known and have been structurally characterized [21-42]. Most of these compounds display linear structures with \([\cdots\text{Pt}^{II}_L_4\cdots\text{X-Pt}^{IV}_L_4\cdots\text{X}\cdots\text{L}_4\cdots\])ₙ (X= Cl, Br, I) chains, that can be single (1D), ladder type or double (2D) laying along one crystallographic axis in which square-planar coordinated Pt(II) ions and octahedral coordinated Pt(IV) ions are alternately arranged and that have drawn much attention because of their nonlinear optical and luminescence properties [21-23,34,35]. Also, a small amount of discrete bi-, tri-, and tetraneuclear mixed-valence platinum(II)-platinum(IV) complexes have been described [24-30,33,36-42].

On the other hand, partial oxidative addition of binuclear Pt(II) complexes allows to prepare the binuclear platinum(II)-platinum(IV) anions \([I_4\text{Pt}^{IV}(\mu-I)_2\text{Pt}^{III}_2]^{2-}\) [21-27], \([\text{NBu}_4][\text{C}_6\text{F}_5\text{Pt}^{III}_2(\mu-\text{PPh}_2)_2\text{Pt}^{IV}(\kappa^2,\text{N,C-C}_13\text{H}_8\text{N})_{12}]\) [38,39], \([\text{NBu}_4]^2[\text{Pt}^{IV}\text{Pt}^{III}_3(\text{C}_6\text{Cl}_5)_8(\mu-\text{OH})_2(\mu_3-\text{OH})_2]\) [40] and \([\text{Pt}_2(\text{C}_6\text{F}_5)_4(\text{C}_5\text{H}_4\text{NS})_2\text{X}]\) (X= Cl, Br, I). These later are interesting since they have been synthesized as intermediates in the Pt(II)-Pt(II) to Pt(IV)-Pt(IV) sequence [41]. A singular oxidative addition reaction has been described from \([\text{Pt}(\text{PEt}_3)_3]\) and 1,2-disilylbenzene in 1:1 ratio at 60°C yielding the binuclear neutral complex \([\text{Pt}(\text{PEt}_3)_2\text{Pt}^{II}(\mu-\text{HSiC}_6\text{H}_4\text{SiH}_2)_2\text{Pt}^{IV}(\text{PEt}_3)_2]\) [28]. In addition, \([\text{Pt}_3\text{X}_{12}]^{2-}\) (X= Cl, Br) are trinuclear platinum(II)-platinum(IV) mixed valence complexes [26], and they consist in three linearly arranged platinum atoms (Pt⁴⁺-Pt⁰⁻-Pt⁴⁺) connected by halo-bridging ligands. The chloride-compound was isolated from a mixture of Pt(IV) complexes, probably being the result of the
reductive elimination of Cl$_2$ from the [Pt$_3$Cl$_{14}$]$^{2-}$ anion at the central platinum atom, while the bromide derivative has been deliberately synthesized by reaction between [PtBr$_6$]$^{2-}$ and [PtBr$_4$]$^{2-}$ in 2:1 ratio. Very recently, Belli Dell’Amico et al. have published the synthesis and structural characterization of the pentanuclear mixed-valence Pt(II)-Pt(IV) complex anion [Pt$_5$Cl$_{20}$]$^{2-}$ which has been prepared by using Pt(IV) derivatives as starting materials [42].

Puddephatt and co-workers synthesized some platinum(II)-platinum(IV) cationic complexes from binuclear platinum(II) complexes by oxidative addition of halogen over one of the two platinum(II) atoms, and the resulting binuclear products, which have three bridging ligands, suffer an intramolecular transfer reaction of a methyl group [29]. More recently Puddephat has described a strategy to synthesize organoplatinum dendrimers by using a reagent containing alkyl halide and diimine functionalities. The successive growth of the nuclearity needs the coordination of one platinum(II) fragment to the non bonded diimine part in a previous step to the new oxidative addition; so the process involves as intermediates mixed-valence platinum(II)-platinum(IV) complexes [7,36].

In this paper we describe the synthesis of three new neutral and anionic binuclear Pt(IV) complexes, two of which can be used as starting materials for the preparation of the first tetranuclear platinum(II)-platinum(IV) mixed-valence complexes. These anionic organometallic platinum(II)-platinum(IV) complexes are synthesized by addition of the stoichiometric amount of a platinum(II) reagent [cis-[Pt(C$_6$F$_5$)$_2$(thf)$_2$]] to binuclear platinum(IV) complexes in a different way from the route used by Thiele and coworkers [partial oxidation of the correspondent platinum(II) anions with X$_2$ (X = Br, I)] [26,27] or by Puddephatt and coworkers (in which an oxidative addition to binuclear platinum(II) complexes and further group transfer between the platinum atoms are involved) [29,30].

Experimental section

General methods. C, H, and N analyses were carried out with a Perkin-Elmer 240B microanalyzer. IR spectra were recorded over the 4000-200 cm$^{-1}$ range on a Perkin Elmer Spectrum One from Nujol mulls between polyethylene sheets or on a Perkin Elmer Spectrum 100 FT-IR spectrometer with an Universal ATR Sampling Accessory. 1H and 19F NMR spectra were recorded on a Varian Unity-300 or Gemini or a BRUKER AV-400 in CDCl$_3$, .
CD2Cl2 or d6-acetone solutions. [NBu4]2[Pt2(µ-Cl)2(C6F5)4] [43] was prepared as described elsewhere. The 2,2’ bipyrimidine ligand was purchased and used as received from Lancaster.

Electrochemical studies were carried out using an EG&G model 273 potentiostat in conjunction with a three-electrode cell, in which the working electrode was a platinum disc, the auxiliary electrode a platinum wire, and the reference was an aqueous saturated calomel electrode (SCE) separated from the test solution by a fine-porosity frit and an agar bridge saturated with KCl. Solutions were 5 X 10⁻⁴ mol dm⁻³ in the test compound and 0.1 mol dm⁻³ in [NBu4][PF6] as the supporting electrolyte. The solutions were saturated with Ar by bubbling them with this gas before each experiment. At the end of each electrochemical experiment, [Fe(η⁵-C₅H₅)₂] was added to the solution as an internal standard for potential measurements. Under the conditions used, the \(E^0 \) value for the couple [Fe(η⁵-C₅H₅)₂]+/[Fe(η⁵-C₅H₅)₂] was 0.47V. Controlled potential electrochemistry (CPE) was carried out in a two-compartment three electrode cell with a platinum gauze working and counter electrodes in compartments separated by a glass frit; a saturated calomel electrode (SCE) separated from the test solution by a fine-porosity frit and an agar bridge saturated with KCl was used as reference.

EPR data were taken in a Bruker ESP300 spectrometer. The magnetic field was measured with a Bruker ER035M gaussmeter. A Hewlett-Packard HP5350B frequency counter was used to determine the microwave frequency.

Preparation of cis-[(C₆F₅)₂Pt(μ-C₈H₆N₄)Pt(C₆F₅)₂] (1). 0.013 g (0.085 mmol) of 2,2’-bipyrimidine were added to a solution of cis-[Pt(C₆F₅)₂(thf)₂] (0.115 g, 0.171 mmol) in 15 ml of CHCl₃. Instantaneously, a solid precipitated and the suspension was stirred at room temperature for 15 min. Then the solution was evaporated to 5 mL approximately, and the resulting dark orange solid was filtered off and washed with n-hexane. (91% yield). Anal. Found (Calcd. for C₃₂H₆N₄F₂₀Pt₂): C, 31.31 (31.59); H, 0.72 (0.50); N, 4.80 (4.60). IR (cm⁻¹): C₆F₅ X-sensitive mode [44] 815 s, 806 s; other, \(\nu(C-F) \), 965 w, 1586 w, 1557 m, 1503 s, 1419 m, 754 m; ¹H NMR (room temperature), d₆-acetone; δ/ppm: 9.34 ppm(d, 4H), 8.34 ppm (t, 2H). ¹⁹F NMR (room temperature), d₆-acetone; δ/ppm: −114.93 (d, 4Fo, \(3J_{Pp-Fo} = 459.82 \) Hz), −115.01 (d, 4Fo, \(3J_{Pp-Fo} = 460.95 \) Hz), −158.50 (t, 4Fp, \(4J_{Fp-Fo} = 38.65 \) Hz), −161.00 (m, 8Fm). FAB+ (m/z): [Pt₂(C₆F₅)₄(C₈H₆N₄)]: 1216.
Preparation of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (2). To a solution of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (0.150 g, 0.093 mmol) in Me_2CO (10 mL), NBu_4Cl (0.052 g, 0.186 mmol) and a Cl_2/CCl_4 solution in excess were added. After 15 minutes stirring at room temperature, the resulting yellow solution was evaporated to dryness. The residue was washed with water (3x10 mL), and after that the residue was dissolved in CH_2Cl_2 (10 ml) and treated with MgSO_4, which after some minutes stirring was separated by filtration through celite. The resulting CH_2Cl_2 solution was evaporated to dryness and the residue was treated with Et_2O yielding a pale-yellow solid (2) which was filtered off and air dried. Yield: 61%. Anal. Found (Calcd. for C_{56}H_{72}Cl_6F_{20}N_2Pt_2): C, 38.43 (38.20); H, 3.81 (4.14); N, 1.53 (1.60). IR (cm\(^{-1}\)): C_6F_5: \(\nu(C-F)\), 966 vs; X-sensitive mode [44], 790 m; others, 2963 m, 2876 w, 1504 s, 1458 sh, 1444 vs, 1380 w, 1367 w, 1261 w, 1105 w, 1066 s, 1028 w, 1002 w; (NBu_4\(^+\)), 879 w, 739 w; \(\nu(\text{Pt-Cl})_{\text{terminal}}\), 327 s; \(\nu(\text{Pt-Cl})_{\text{bridge}}\) 264 vs. 19F RMN en CD_2Cl_2 (bruker 400 MHz) \(\delta/\text{ppm}\): \(-112.78 \text{ ppm (F}_o, \text{ d, 4F)}, \quad 3J_{\text{Fm-Fo}} = 24.69 \text{ Hz}, \quad 3J_{\text{Pt-Fo}} = 102.14 \text{ Hz}; \quad -115.77 \text{ ppm (F}_o, \text{ d, 4F)}, \quad 3J_{\text{Fm-Fo}} = 24.89 \text{ Hz}, \quad 3J_{\text{Pt-Fo}} = 112.97 \text{ Hz}; \quad -164.43 \text{ ppm (F}_p, \text{ t, 4F)}, \quad -166.59 \text{ ppm (F}_m, \text{ m, 4F)}, \quad -167.29 \text{ ppm (F}_m, \text{ m, 4F})

Preparation of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (3). To a solution of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (2) (0.073 g, 0.041 mmol) in Me_2CO (10 mL), NBu_4OH (1M in H_2O) (66 mg, 0.082 mmol) was added. After 2 hours stirring at room temperature, the solvent was evaporated to dryness. The residue was washed with water (3x10 mL), and after that the residue was dissolved in CH_2Cl_2 (10 ml) and treated with MgSO_4, which after some minutes stirring was separated by filtration through celite. The resulting CH_2Cl_2 solution was evaporated to dryness and the residue was washed with iPrOH (3x1ml) and Et_2O giving a yellow oily residue which could be spectroscopically identified as \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (3). IR (cm\(^{-1}\)): C_6F_5: \(\nu(C-F)\), 965 vs; X-sensitive mode [44], 790 m; others, 2963 m, 2876 w, 1504 m, 1459 s, 1380 m, 1361 m, 1065 s, 1028 w, 1002 w; (NBu_4\(^+\)), 879 w, 739 w; \(\nu(\text{Pt-Cl})_{\text{terminal}}\), 337 s; \(\nu(\text{Pt-Cl})_{\text{bridge}}\) 264 vs. 19F RMN en CD_2Cl_2 (bruker 400 MHz) \(\delta/\text{ppm}\): \(-117.67 \text{ ppm (F}_o, \text{ d, 4F)}, \quad 3J_{\text{Fm-Fo}} = 25.01 \text{ Hz}, \quad 3J_{\text{Pt-Fo}} = 115.86 \text{ Hz}; \quad -121.03 \text{ ppm (F}_o, \text{ d, 4F)}, \quad 3J_{\text{Fm-Fo}} = 30.01 \text{ Hz}, \quad 3J_{\text{Pt-Fo}} = 91.84 \text{ Hz}; \quad -169.04 \text{ ppm (F}_p, \text{ t, 4F)}, \quad -169.99 \text{ ppm (F}_m, \text{ m, 4F)}, \quad -170.75 \text{ ppm (F}_m, \text{ m, 4F}).

Preparation of \([\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)\text{Cl}_4(\text{C}_6\text{F}_5)_4]\) (4). To a suspension of 1 (0.030 g, 0.025 mmol) in 10 ml of \(\text{CH}_2\text{Cl}_2\), 5 ml of a saturated solution of \(\text{Cl}_2\) in \(\text{CCl}_4\) were added. The orange suspension changed to a yellow solution. After 14 h stirring at room temperature the resulting pale yellow suspension was evaporated to dryness and the yellow residue was washed with \(n\)-hexane and filtered. 77% yield. Anal. Found (Calcd. for \(\text{C}_{32}\text{H}_6\text{N}_4\text{Cl}_4\text{F}_{20}\text{Pt}_2\)): C, 28.09 (28.29); H, 0.45 (0.44); N, 4.20 (4.12). IR (cm\(^{-1}\)): \(\text{C}_6\text{F}_5\) X-sensitive mode [44] 809 s, 800 s; \(\nu(\text{C}–\text{F})\) 974 vs; \(\text{C}_8\text{H}_6\text{N}_4\), 1594 vs, 1520 vs, 1425 vs, 821 m, 754 s; \(\nu(\text{Pt}-\text{Cl})\) 354 s. \(^1\text{H}\) NMR (room temperature), \(\delta/\text{ppm}\): 9.78 (t, 4H), 8.81 (m, 2H). \(^{19}\text{F}\) NMR (room temperature), \(\delta/\text{ppm}\): –118.04 (d, 4F\(_0\), \(3J_{\text{Pt-F}} = 103.35\) Hz), –118.24 (d, 4F\(_0\), \(3J_{\text{Pt-F}} = 102.39\) Hz), –158.80 (m, 4F\(_p\)), –162.79 (m, 4F\(_m\)), –163.99 (m, 4F\(_m\)).

Preparation of \([\text{NBu}_4]_2[\{\text{Pt}(\mu-\text{Cl})(\text{C}_6\text{F}_5)_2\}_2(\mu-\text{Cl})_4\{\text{Pt}(\text{C}_6\text{F}_5)_2\}_2\}]\) (5). To a solution of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (2) (0.100 g, 0.057 mmol) in \(\text{CH}_2\text{Cl}_2\) (40 mL), \(\text{cis-}[\text{Pt}(\text{C}_6\text{F}_5)_2(\text{thf})_2]\) (0.076 g, 0.114 mmol) was added. After 5 min stirring at room temperature, the resulting red solution was evaporated to dryness. The residue was treated with \(n\)-hexane (15 mL) yielding a red solid (5) which was filtered off. Yield: 58%. Anal. Found (Calcd. for \(\text{C}_{80}\text{H}_{72}\text{Cl}_6\text{F}_{40}\text{N}_2\text{Pt}_4\)): C, 33.96 (34.14); H, 2.87 (2.58); N, 1.26 (1.00). IR (cm\(^{-1}\)): \(\text{C}_6\text{F}_5\) X-sensitive mode [44], 801 s; \(\nu(\text{C}–\text{F}), 974\) s, 960 s; others, 1638 w, 1607 w, 1504 vs, \(\nu(\text{Pt}-\text{Cl})\), 343 w, 279 w. \(^{19}\text{F}\) NMR (room temperature), \(\delta/\text{ppm}\): –114.79 (d, 2F\(_0\), \(3J_{\text{Pt-F}} = 95\) Hz), –118.81 (d, 2F\(_0\), \(3J_{\text{Pt-F}} = 134\) Hz), –120.32 (d, 2F\(_0\)), –124.94 (d, 2F\(_0\), \(3J_{\text{Pt-F}} = 96\) Hz), –119.51 (d, 4F\(_0\), \(3J_{\text{Pt-F}} = 483\) Hz), –120.48 (d, 4F\(_0\), \(3J_{\text{Pt-F}} = 509\) Hz), –157.83 (m, 2F\(_m\)), –158.13 (m, 2F\(_m\)), –163.19 (t, 1F\(_p\)), –163.25 (t, 1F\(_p\)), –164.82 (t, 2F\(_p\)), –162.89 (m, 6F\(_m\)), –163.64 (m, 2F\(_m\)), –165.48 (m, 4F\(_m\)), –166.63 (m, 4F\(_m\)).

Preparation of \([\text{NBu}_4]_2[\{\text{Pt}(\mu-\text{OH})(\text{C}_6\text{F}_5)_2\}_2(\mu-\text{Cl})_4\{\text{Pt}(\text{C}_6\text{F}_5)_2\}_2\}]\) (6). To a solution of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})(\text{C}_6\text{F}_5)_4\text{Cl}_4]\) (3) prepared as described above (approx. 0.12 mmol) in \(\text{CH}_2\text{Cl}_2\) (40 mL), \(\text{cis-}[\text{Pt}(\text{C}_6\text{F}_5)_2(\text{thf})_2]\) (0.155 g, 0.232 mmol) was added. After 5 min stirring at room temperature, the resulting red solution was evaporated to dryness. The residue was treated with \(n\)-hexane (15 mL) yielding a red solid (6) that was filtered off. Yield: 72%. Anal. Found (Calcd. for \(\text{C}_{80}\text{H}_74\text{Cl}_6\text{F}_{40}\text{O}_2\text{Pt}_4\)): C, 34.36 (34.59); H, 2.99 (2.68); N, 1.02 (1.01). IR (cm\(^{-1}\)): \(\text{C}_6\text{F}_5\) X-sensitive mode [44], 803 s; \(\nu(\text{C}–\text{F})\), 972 s, 956 s; others, 1639 w, 1607 w, 1502 vs; \(\nu(\text{O-H})\) 3574 m; \(\nu(\text{Pt-Cl})\) 352 w, 282 w. \(^{19}\text{F}\) NMR (room temperature), \(\text{CD}_2\text{Cl}_2\);
δ/ppm: –115.38 (d, 2F_0, $^3J_{Pt-F} = 100$ Hz), –119.09 (d, 2F_0, $^3J_{Pt-F} = 127$ Hz), –120.89 (d, 2F_0), –125.40 (d, 2F_0, $^3J_{Pt-F} = 100$ Hz), –120.34 (d, 4F_0), –120.70 (d, 4F_0), –158.66 (t, 1F_p), –159.53 (m, 2F_p), –164.74 (t, 1F_p), –165.57 (t, 2F_p), –167.09 (t, 1F_p), –163.59 (m, 4F_m), –164.55 (m, 2F_m), –166.12 (m, 2F_m), –167.09 (m, 8F_m)

Preparation of \([\text{CoCp}_2][\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)(\text{C}_6\text{F}_5)_4]\) (7). To an orange solution of \([\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)(\text{C}_6\text{F}_5)_4]\) (1) (0.054 g, 0.044 mmol) in 10 mL of thf, \(\text{Cp}_2\text{Co}\) (purified by sublimation (0.008 g, 0.044 mmol) was added. The color of the solution changed immediately to red. After 30 min stirring, the solution was evaporated to dryness and the residue was treated with n-hexane. Yield: 69%. Anal. Found (Calcd. for C\(_{42}\)H\(_{16}\)N\(_4\)F\(_{20}\)CoPt\(_2\)): C, 35.76 (35.88); H, 1.42 (1.15); N, 4.10 (3.98). IR (cm\(^{-1}\)): C\(_6\)F\(_5\) X-sensitive mode [44], 809 s, 800 s; ν(C–F), 959 s; other, C\(_8\)H\(_6\)N\(_4\): 1580 m, 1504 s, 1417 w, 668 w. FAB- (m/z):\([\text{Pt}_2(\text{C}_6\text{F}_5)_4(\text{C}_8\text{H}_6\text{N}_4)]\):1216

X-ray Structure analysis of \([\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2\text{Cl}_4(\text{C}_6\text{F}_5)_4]\) (2), \([\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)\text{Cl}_4(\text{C}_6\text{F}_5)_4]\cdot4\text{Me}_2\text{CO} (4\cdot4\text{Me}_2\text{CO}) and \([\text{NBu}_4]_2[\text{Pt}(\mu-\text{OH})(\text{C}_6\text{F}_5)_2]_2(\mu-\text{Cl})_4\{\text{Pt}(\text{C}_6\text{F}_5)_2\}_2\cdot\text{CH}_2\text{Cl}_2 (6\cdot\text{CH}_2\text{Cl}_2)\).

Relevant crystallographic information for these structures is collected in Supplementary Material (Table 1). Suitable crystals for X-ray diffraction studies were obtained by slow diffusion of n-hexane into solutions of the complexes in Me\(_2\)CO (2 and 4) or CH\(_2\)Cl\(_2\) (6) at 4°C.

Crystals of the complexes were mounted at the end of quartz fibers and held in place with epoxy adhesive. Diffraction measurements were made on an Enraf-Nonius CAD-4 diffractometer, using graphite monochromated Mo-K\(_\alpha\) X-radiation. Lorentz and polarization corrections were applied.

The structures were solved by direct methods. All non-hydrogen atoms of the complex anion and the cation were assigned anisotropic displacement parameters. The hydrogen atoms of the cation were constrained to idealized geometries and assigned isotropic displacement parameters equal to 1.2 times (1.5 times for the methyl carbon atoms) the U_{iso} values of their respective parent atoms. For 2, some very diffuse electron density were found in the final stages of the refinement. After several unsuccessful attempts to model this density as n-hexane, one of the crystallization solvents, the SQUEEZE procedure as implemented in the program PLATON [45] was used to deal with this problem. Besides, one of the methyl carbon atoms of the NBu\(_4^+\) cation is disordered over two positions and their occupancies were refined to 0.7/0.3, and the CH\(_2\)–CH\(_3\) distance were constrained to an idealized value.. For 6,
one methyl carbon atom of the NBu4 group was modeled as a pair of atomic sites with occupancy of 0.5 each and the hydrogen atoms of these atoms and the other methyl carbon atoms were omitted. Five atomic sites in an interstitial zone were modeled as a pair of partially occupied, disordered CH2Cl2 molecules, sharing a common carbon atom. Each of the CH2Cl2 moieties was assigned 0.25 occupancy; thus, the common C site had 0.50 occupancy. A common anisotropic displacement parameter was refined for the five atoms of the disordered CH2Cl2 moieties. Loose restraints to equality were applied to the C–Cl distance and Cl–C–Cl angles. Full-matrix least-squares refinement of these models against \(F^2 \) converged to final residual indices given in Table 1 of the Supplementary Material. The structures were refined using the SHELXL-93 program [46].

Selected crystallographic data, data collection and structure refinement parameters are available in Supporting Information. CCDC 1911936-1911938 contains supplementary crystallographic data on this paper. These data are available, free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Results and Discussion

The anionic complex \([\text{NBu}_4]^2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4]\) was prepared as described elsewhere\(^{37}\) and the neutral binuclear platinum(II) complex \textit{cis}-\[(\text{C}_6\text{F}_5)_2\text{Pt}(\mu-\text{C}_8\text{H}_6\text{N}_4)\text{Pt}(\text{C}_6\text{F}_5)_2\] (1) (See scheme 1) was prepared by reaction of \textit{cis}-[Pt(\text{C}_6\text{F}_5)_2(\text{thf})_2] and the ligand 2,2’-bipyrididine, which is able to act as a bridge between the metal centres [18,47,48].

The IR spectrum of complex 1 is very informative about the structural disposition of the ligands. The similar intensity of the absorptions at 1586 and 1557 cm\(^{-1}\) indicates the bis-chelate bridging coordination of the 2,2’-bipyrididine ligand [48]. Moreover, the presence of only two signals in the \(^1\text{H}\) NMR spectrum of 1 in 2:1 ratio point to a symmetrical arrangement of the N-donor ligand in the complex. In fact, its coordination features are most suitable to synthesize binuclear complexes in which the 2,2’-bipyrididine ligand bridges two platinum centres with a coplanar disposition of their environments [18,47-49]. The mass spectrum confirms the binuclear nature of complex 1.

The electronic properties of the 2,2’-bipyrididine cause that the complexes that contain it suffer chemical and electrochemical reduction processes [50]. For this reason we have studied the redox behavior of complex 1 by electrochemical methods. Figure 1a shows the cyclic...
voltammogram registered at 200 mVs$^{-1}$ in MeCN and using a platinum disc as working electrode. There are two reduction waves connecting with two electrochemically reversible reduction processes, the first one corresponding to an electrochemically reversible system ($E_{1/2(\text{red})} = -0.33$ V) and the second one at lower potential ($E_{1/2(\text{red})} = -1.05$ V).

Aiming to know the number of electrons involved in these reductions, we carried out the electrolysis at controlled potential of a solution of complex 1 in MeCN. A potential of -0.55 V was applied to 100 mL of a solution 0.001M of 1 containing NBu$_4$PF$_6$ (0.1M) as supporting electrolyte. Once 9.65C were transferred to the solution, a strong decrease in the intensity was observed. Moreover, a change in the solution color is observed from orange to brown. The cyclic voltammetry of the resulting solution shows a null intensity of the electrical current at -0.55V, which confirms that the process corresponding to the wave at -0.33V has been completed after the transference of an equimolecular amount of electrons, thus indicating that the wave observed at -0.33V in the CV is due to the binuclear anion 1$^-$ (see Figure 1 in Supplementary Material).

EPR studies of complex cis-$[(C_6F_5)_2Pt(\mu-C_8H_6N_4)Pt(C_6F_5)_2]$ (1).

The Electron Paramagnetic Resonance (EPR) spectrum of a frozen solution (CH$_2$Cl$_2$/thf 1:2) of a *in situ* electrochemically generated radical anion of cis-$[(C_6F_5)_2Pt(\mu-C_8H_6N_4)Pt(C_6F_5)_2]^-$ (1$^-$) is shown in Figure 2. At first glance it can be associated to a slightly orthorhombic $S = \frac{1}{2}$ entity. While the high field feature at $g_z = 1.934$ does not show any resolved structure, the “perpendicular” low field feature consists of several overlapped lines. A detailed analysis of this structure indicated that the different lines can be grouped in two sets, one of them consists of four lines 11.2 mT ($A = 65(2)$ MHz) apart centered at about $g_x = 2.029$ and the other is formed by five lines 7 mT ($A = 40(2)$ MHz) apart centered at about $g_y = 2.009$. Both sets of lines are indicated in Figure 2 with cross and stars, respectively. The lower trace in the figure shows the second derivative spectrum; a comparison of both traces reinforces the former analysis. Moreover, it seems sensible to consider the cross-marked quartet as a part of a five lines feature, the high field small signal being masked into the start labeled quintet.

The EPR spectra of frozen solution of some similar mononuclear and binuclear platinum radical have been reported \[17,50-54\]. In all the cases the EPR spectrum is described as due to a $S = \frac{1}{2}$ entity with an slightly orthorhombic g-tensor and the structure of
the features, when resolved, is associated with the hyperfine interaction with the 195Pt nucleus ($I = \frac{1}{2}$, natural abundance 33.8 %). The assignment of this structure to the hyperfine interaction with the Pt nuclei is supported by some DFT calculation [50-53].

Taking into account the similarity of our EPR signal with those previously reported, a similar assignment can be done. In our case we obtain for the spectroscopic relevant parameters the values: $g_x = 2.029(2), g_y = 2.009(2), g_z = 1.934(2), A_x = 65(2)$ MHz, $A_y = 40(2)$ MHz which are included in Table 1.

In the present case the anisotropy of the g-tensor, measured as the difference of the extreme principal g-values, Δg, is lower than that observed in the other $\{($bpym)$[PtR_2]\}^-$ radicals while the isotropic contribution, $g = (g_x + g_y + g_z)/3$ is practically independent on the ligand R. The lowering of the g-tensor anisotropy suggests that in our case, $R = \text{C}_6\text{F}_5$, the metal orbital contribution to the unpaired electron orbital is lower than in the other cases.

We have also synthesized the reduced anion as complex $[\text{CoCp}_2][\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)(\text{C}_6\text{F}_5)_4]$ (7) by reaction of the neutral complex 1 with Cp$_2$Co freshly sublimated. It has been isolated and its elemental analyses, infrared spectrum and EPR confirm its stoicheiometry and paramagnetic character. (see Experimental)

Synthesis of the platinum (IV) complexes: $[\text{NBu}_4]_2[\text{Pt}_2(\mu-X)_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ [$X = \text{Cl}$ (2), OH (3)] and $[\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ (4).

The binuclear platinum(IV) complexes $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ (2) and $[\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ (4) were obtained by addition of a solution of Cl$_2$ in CCl$_4$ in excess to the corresponding $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4]$ or cis-$[\text{Pt}_2(\mu-C_8H_6N_4)_2(\text{C}_6\text{F}_5)_4]$ (1) respectively (see Scheme 1-a). These oxidative addition reactions take place under mild conditions and involve the oxidation of both platinum(II) centers in the binuclear Pt(II) complexes to platinum(IV). The synthesis of complex 3 is quite more complicated since the reaction of the hydroxo Pt(II) derivative $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(\text{C}_6\text{F}_5)_4]$ (prepared as described elsewhere [55]), with a solution of Cl$_2$ in CH$_2$Cl$_2$ under similar conditions to the ones used for the preparation of 2 and 4 results in a mixture of Pt(IV) complexes. In our hands and after several attempts the best way to achieve complex $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ (3) was by reacting the Pt(IV) derivative $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(\text{C}_6\text{F}_5)_4\text{Cl}_4]$ (2) with NBu$_4$OH in 1:2 molar ratio and the oily residue, which could not be isolated as a solid was spectroscopically
characterized by IR and NMR. The substitution reaction of the chlorine ligands takes place selectively on the chlorine bridge ligands instead the terminal ones, probably due to the fact that the Pt-Cl bridging bonds are weaker that the terminal ones. Although complex 3 is not obtained as a solid, the use of the oily sample allows the isolation of the mixed Pt(II)/Pt(IV) complex (6), as we will see latter. The IR spectra (see Experimental) of complexes 2, 3 and 4 show the typical absorptions for the C₆F₅ groups at around 970 and 795 cm⁻¹ and the absorptions due to the v(Pt-Cl) at around 327 and 264 cm⁻¹ for complex 2, at 337 cm⁻¹ for complex 3 and at 354 cm⁻¹ for complex 4. It is important to note that the position of the band located around 950 cm⁻¹, assigned to v(C-F) and related to the formal oxidation state of the central atom is in all cases in accordance with the oxidation states of the Pt centres [44] (see Table 2). For complex 3 the absorption due to the v(O-H) appears at 3581 cm⁻¹. The ¹H NMR spectrum of complex 4 only shows two signals at 9.78 and 8.81 ppm in 2:1 ratio indicating a symmetrical disposition of the metal moieties with respect to the bridging ligand.

Crystal structures of [NBu₄]₂[Pt₂(µ-Cl)₂Cl₄(C₆F₅)₄]ꞏ (2), [Pt₂Cl₄(C₆F₅)₄(µ-C₈N₄H₆)]ꞏ4Me₂CO (4ꞏ4Me₂CO).

Crystallographic data for complexes 2 and 4ꞏ4Me₂CO are given in Supplementary Material (Table 1), selected bond distances and angles are also given in Supplementary material (Tables 2 and 3 respectively).

The structure of the complex anion of 2, [Pt₂(µ-Cl)₂Cl₄(C₆F₅)₄]²⁻, is shown in Figure 3. There is a crystallographic inversion center in the middle of the anion and thus, the position of half of the atoms is generated by this symmetry operator. This anion contains two platinum atoms in formal oxidation state IV with a Pt-Pt distance of 3.664(1) Å which is similar to that found in the starting platinum(II) complex [55] and excludes any intermetallic interaction. The platinum(IV) atoms are bridged by two Cl ligands in a planar arrangement. Moreover, each platinum(IV) center has also coordinated two terminal cis C₆F₅ groups in the same plane and two trans Cl atoms above and below of the plane, thus resulting an octahedral environment for both metal centers.

The Pt-C distances are equal within the experimental error and similar to the distances found in pentafluorophenylplatinum(II) complexes [56-59]. The Pt–Cl terminal distances are slightly shorter than the Pt–Cl bridging ones, and the value of the distances of each type of Pt-Cl bond are also equal within the experimental error. As expected from an octahedral
geometry the bond angles around each platinum(IV) center are close to 90° for cis ligands (from 81.6(1)° to 94.4(2)°), and 180° for trans ligands [from 174.3(2)° to 178.7(1)°].

The comparison of these structural data with the reported in the literature for the starting complex [NBu4]2[Pt2(µ-Cl)2(C6F5)4] [56] confirms that the skeleton of the binuclear anion of platinum(II) does not suffer important modifications in the bond distances and angles as a result of the oxidation to platinum(IV).

The structure of the complex [Pt2(µ-C8H6N4)2Cl4(C6F5)4] (4) is shown in Figure 4. As for complex 2, half of the positions of the atoms of the molecule are generated by a crystallographic inversion center. This molecule contains two platinum atoms in formal oxidation state IV bridged by a neutral tetradeinate N-ligand (C8H6N4) coordinated to each platinum atom through two nitrogen atoms in a chelating form. Moreover, each platinum(IV) center is bonded to two terminal cis C6F5 groups located in the same plane as the neutral ligand. The octahedral environment of the platinum atoms is completed by two trans Cl atoms. There are not significant changes in the structure of the coordinated 2,2’-bipyrimidine with respect to the free ligand [60].

The Pt–C and the Pt–Cl distances are similar to the corresponding ones in 2. The Pt–N distances are in the range found in other platinum(II) or platinum(IV) complexes containing nitrogen donor ligands [2,3,36]. The N(1)–Pt–N(2) angle is quite narrow (77.9(2)°) due to the chelating nature of the bridging ligand, while the other angles around the platinum atom are in the range from 82.6(2)° to 97.3(3)° for cis ligands, and from 172.3(1)° to 175.0(3)° for trans ligands. The Pt-Pt distance is 5.698(1) Å, within the range of other complexes with this bridging ligand [18].

Synthesis of mixed valence platinum(II)-platinum(IV) complexes: [NBu4]2{Pt(µ-X)(C6F5)2}2(µ-Cl)4{Pt(C6F5)2}2] [X = Cl (5), OH (6)].

The terminal chloro ligands of the binuclear platinum(IV) complexes 2, 3 and 4 are suitable for acting as a bridging group between the platinum(IV) atom and other platinum centers, thus allowing the synthesis of derivatives of higher nuclearity. On the other hand cis-[Pt(C6F5)2(thf)2] has proved to be an excellent synthon for the preparation of polynuclear complexes due to the lability of the thf ligands bonded to the metal center [61-64] generating the acid fragment “cis-Pt(C6F5)2” , which easily incorporates to other Pt complexes. Bearing this in mind, we carried out the reactions of the Pt(IV) complexes 2 and 3 with the Pt(II)
synthon \(\text{cis-}[\text{Pt}(\text{C}_6\text{F}_5)_2(\text{thf})_2] \) in 1:2 molar ratio aiming to prepare Pt complexes of higher nuclearity and in mixed oxidation state [Pt(IV)/Pt(II)]. This synthetic approach is different to those described in the literature for the preparation of Pt(II)-Pt(IV) mixed-valence complexes [15,21-30]. In the reactions of complexes 2 and 3 with \(\text{cis-}[\text{Pt}(\text{C}_6\text{F}_5)_2(\text{thf})_2] \), a dramatic change in the colour of the solution is produced due to charge-transfer absorption band indicating the formation of a chloride-bridged mixed valence complexes [21,65]. From these solutions, the tetranuclear Pt(IV)-X-Pt(II) complexes. \([\text{NBu}_4]_2[\{\text{Pt}(\mu-X)(\text{C}_6\text{F}_5)_2\}_2(\mu-\text{Cl})_4\{\text{Pt}(\text{C}_6\text{F}_5)_2\}_2] \) \(X = \text{Cl} \) (5), \(\text{OH} \) (6) are obtained as red solids. The IR spectra of these complexes show two \(\nu(\text{C-F}) \) bands due to the presence of platinum centers in two different oxidation states (see Table 2). In addition, the IR spectra show the absorptions due to the \(\nu(\text{Pt-Cl}) \) at 343 and 279 cm\(^{-1}\) for 7 and at 325 and 282 cm\(^{-1}\) for 6, in addition the absorption due to the \(\nu(\text{O-H}) \) at 3574 cm\(^{-1}\) for 6.

The \(^{19}\text{F} \) NMR spectra confirm the presence of pentafluorophenyl groups bonded to platinum atoms in different oxidation states. that can be easily distinguish, when the platinum satellites are not overlapped with other signals, because the \textit{ortho}-fluorine atoms corresponding to \text{C}_6\text{F}_5 groups bonded to Pt(IV) atoms present smaller coupling constant (100-130Hz) than groups bonded to Pt(II) (around 500Hz).

It is interesting to mention that, under similar conditions to those used in the synthesis of complexes 5 and 6, there is no reaction between \([\text{Pt}_2(\mu-\text{C}_8\text{H}_6\text{N}_4)_2\text{Cl}_4(\text{C}_6\text{F}_5)_4] \) (4) and \textit{cis}-[\text{Pt}(\text{C}_6\text{F}_5)_2(\text{thf})_2]. This could be the result of the longer separation between the Pt(IV) centres in complex 4 created by the 2,2’-bipyrimidine ligand and in consequence between the chloride ligands of both metal atoms that should act as a bridge.

Crystal structure of \([\text{NBu}_4]_2[\{\text{Pt}(\mu-\text{OH})(\text{C}_6\text{F}_5)_2\}_2(\mu-\text{Cl})_4\{\text{Pt}(\text{C}_6\text{F}_5)_2\}_2\} \cdot \text{CH}_2\text{Cl}_2 \) (6·\text{CH}_2\text{Cl}_2)

Crystallographic data and selected bond distances and angles for complex 6·CH\(_2\)Cl\(_2\) are given in Supplementary material (Tables 1 and 4 respectively). The structure of the complex anion is shown in Fig. 5a and the central core is shown in Figure 5b. The anion is located around an inversion center in \(P2_1/n \) space group. The core of this anion presents a chair like disposition and comprises four platinum atoms, two of them in formal oxidation state (II) and square planar coordination environment and the other two in formal oxidation state (IV) and
octahedral environments. The platinum(IV) centres are bridged by two hydroxo groups while each platinum(II) centre is connected with the two platinum(IV) atoms by bridging chloride ligands. The Pt(II)–Pt(IV) and Pt(IV)–Pt(IV) distances are 3.848(1) Å and 3.289(1) Å respectively, excluding the existence of any metal-metal bonding.

The two Pt(IV) moieties are formed by two µ-OH ligands in cis positions, two terminal cis C₆F₅ groups and two trans-µ-Cl atoms in apical positions thus completing an octahedral environment for both metal centers. The bond angles around each Pt(IV) center range from 76.5(4)° to 97.6(6)° for cis ligands, the smallest value corresponding to O–Pt–O, and from 169.7(6)° to 177.1(2)° for trans ligands. Each Pt(II) atom has two terminal cis C₆F₅ groups and two cis Cl atoms which form a quasi perfect square planar environment [angles for cis ligands range from 88.1(7)° to 93.4(5)°].

Each Pt(II) fragment is connected to each one of the two Pt(IV) centres through one Cl atom acting as bridging ligand and the PtIV–Cl distances are longer than the PtII–Cl ones (see Supplementary Material, Table 4). These Pt–Cl bridging distances [range from 2.292(6) to 2.406(4) Å] are similar to those found in other µ-chlorideplatinum(IV)platinum(II) complexes [42]. The values of the PtII–Cl–PtIV angles [109.3(2) and 108.3(2)°] are greater than those found in complex [NEt₄]₂[Pt₂(NO)₂Cl₆] [24] which contains two platinum atoms in different oxidation states (IV,II) and where the two metal centers are bridged by a chlorine atom and a NO ligand. The steric requirements of the C₆F₅ groups could be responsible of this broader Pt(II)–Cl–Pt(IV) angle. The Pt–C distances are equal within the experimental error disregarding of the platinum formal oxidation state, and similar to other complexes containing the Pt(C₆F₅)₂ fragment [56-59].

The two square planar environments of the Pt(II) atoms lie parallel to each other due to the symmetry of the anion and these planes form a dihedral angle of 26.6° with the plane containing both Pt(IV) and the oxygen atoms. The dihedral angle between the square planes of Pt(II) and the plane containing the platinum(IV) atoms and chlorine atoms is 119.9°. The structure of complex 6 resemble the pentanuclear complex [NBu₄]₂[(PtIV)₂(µ-Cl)₂(Cl)₈]₂(µ-PtII)] [42], where two dinuclear platinum (IV) units are bridged by a platinum(II) centre which is bonded to one of the axial chlorine ligand of each platinum(IV).

The comparison of these structural data with the ones reported for complex [NBu₄]₂[Pt₂(µ-OH)₂(C₆F₅)₄] [55] confirms that the skeleton of the binuclear complex anion does not suffer any important modifications in the bond distances and angles as consequence
of the oxidation reaction to platinum (IV) and the incorporation of the two "cis-PtII(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}" fragments to the Pt(IV) substrates. Additionally, the X-ray structure reveals that the described reactions do not produce any intramolecular reorganization of ligands nor a modification on the formal oxidation states of the Pt centres.

Acknowledgements. We thank Pablo Alonso for helpful discussions and suggestions on the EPR results. This work has been supported by the Spanish MINECO/FEDER (Project CTQ2015-67461-P and MAT2015-68200-C2-1-P) and the Gobierno de Aragón and Fondo Social Europeo (Grupos de referencia E17_17R: Química Inorgánica y de los Compuestos Organometálicos and M4, E11_17R).

Supporting Information Available: Supplementary data related to this article can be found at…
References

Table 1. \(\nu(C-F) \) of several pentafluorophenyl complexes in oxidation state (O.S.) II and IV.

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>Pt</th>
<th>O.S.</th>
<th>(\nu(C-F)) cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\textit{cis-}[(C_6F_5)_2Pt(\mu-C_8H_6N_4)Pt(C_6F_5)_2]) (1)</td>
<td>II</td>
<td>956</td>
<td></td>
</tr>
<tr>
<td>[\text{CoCp}_{2}][\text{Pt}(\mu-C_8H_6N_4)(C_6F_5)_4]) (7).</td>
<td>II</td>
<td>966</td>
<td></td>
</tr>
<tr>
<td>[\text{Pt}_2(\mu-C_8H_6N_4)\text{Cl}_4(C_6F_5)_4] (4)</td>
<td>IV</td>
<td>974</td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(C_6F_5)_4]</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2(C_6F_5)_4\text{Cl}_4]</td>
<td>IV</td>
<td>966</td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[{\text{Pt}(\mu-\text{Cl})(C_6F_5)_2}_2(\mu-\text{Cl})_4{\text{Pt}(C_6F_5)_2}_2]) (5)</td>
<td>IV, II</td>
<td>974, 960</td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(C_6F_5)_4]</td>
<td>II</td>
<td>953</td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{OH})_2(C_6F_5)_4\text{Cl}_4]) (3)</td>
<td>IV</td>
<td>965</td>
<td></td>
</tr>
<tr>
<td>[\text{NBu}_4]_2[{\text{Pt}(\mu-\text{OH})(C_6F_5)_2}_2(\mu-\text{Cl})_4{\text{Pt}(C_6F_5)_2}_2]) (6)</td>
<td>IV, II</td>
<td>972, 956</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Spin-Hamiltonian parameters of some \{(bpym)[PtR_2]_2\}^− radicals.

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(g)</th>
<th>(\Delta g)</th>
<th>(A_1)(MHz)</th>
<th>(A_2)(MHz)</th>
<th>(A_3)(MHz)</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{(bpym)[PtMe_2]_2}^−</td>
<td>2.055</td>
<td>2.011</td>
<td>1.895</td>
<td>1.987</td>
<td>0.160</td>
<td>43</td>
<td>51</td>
<td>(53)</td>
<td>53</td>
</tr>
<tr>
<td>{(bpym)[PtCl_2]_2}^−</td>
<td>2.049</td>
<td>2.008</td>
<td>1.902</td>
<td>1.986</td>
<td>0.147</td>
<td>111</td>
<td>143</td>
<td>< 80</td>
<td>50</td>
</tr>
<tr>
<td>{(bpym)[PtMes_2]_2}^−</td>
<td>2.0435</td>
<td>2.0091</td>
<td>1.916</td>
<td>1.990</td>
<td>0.128</td>
<td>-</td>
<td>45</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>{(bpym)[PtMes_2]_3}^−</td>
<td>2.040</td>
<td>2.008</td>
<td>1.917</td>
<td>1.988</td>
<td>0.123</td>
<td>49</td>
<td>53</td>
<td>(54)</td>
<td>53</td>
</tr>
<tr>
<td>{(bpym)[Pt(C_6F_5)_2]_2}^−</td>
<td>2.029</td>
<td>2.009</td>
<td>1.934</td>
<td>1.991</td>
<td>0.095</td>
<td>65</td>
<td>40</td>
<td>-</td>
<td>*</td>
</tr>
</tbody>
</table>

*included in this article.
Figure 1, a) Cyclic voltammogram of cis-\([\text{C}_6\text{F}_5]_2\text{Pt}(\mu-\text{C}_8\text{H}_6\text{N}_4)\text{Pt}(\text{C}_6\text{F}_5)_2\) (1) in MeCN. b) A detail of first wave of the cyclic voltammogram.
Figure 2. Electron Paramagnetic Resonance spectrum (upper trace) and the second derivative (lower trace) of a frozen solution (CH$_2$Cl$_2$/thf 1:2) of an in situ generated radical anion 1^-
Figure 3. Molecular structure of the complex anion of $[\text{NBu}_4]_2[\text{Pt}_2(\mu-\text{Cl})_2\text{Cl}_4(\text{C}_6\text{F}_5)_4]$ (2).

Figure 4. Molecular structure of the complex of $[\text{Pt}_2\text{Cl}_4(\text{C}_6\text{F}_5)_4(\mu-\text{C}_8\text{N}_4\text{H}_6)]\cdot4\text{Me}_2\text{CO}$ (4-\cdot4Me$_2$CO).
Figure 5. a) Molecular structure of the complex anion of $\left[NBu_4\right]_2\left\{\text{Pt}(\mu-\text{OH})(C_6F_5)_2\right\}_2(\mu-\text{Cl})_4\left\{\text{Pt}(C_6F_5)_2\right\}_2\cdot\text{CH}_2\text{Cl}_2$ (6·CH$_2$Cl$_2$). b) Detail of the core of the complex anion.
Scheme 1