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Abstract

We study a coevolving nonlinear voter model (CNVM) on a two-layer network. Coevolution stands
for coupled dynamics of the state of the nodes and of the topology of the network in each layer. The
plasticity parameter p measures the relative time scale of the evolution of the states of the nodes and
the evolution of the network by link rewiring. Nonlinearity of the interactions is taken into account
through a parameter g that describes the nonlinear effect of local majorities beingg = 1 the marginal
situation of the ordinary voter model. Finally the connection between the two layers is measured by a
degree of multiplexing #. In terms of these three parameters, p, g and £ we find a rich phase diagram
with different phases and transitions. When the two layers have the same plasticity p, the
fragmentation transition observed in a single layer is shifted to larger values of p plasticity, so that
multiplexing avoids fragmentation. Different plasticities for the two layers lead to new phases that do
not existina CNVM in a single layer, namely an asymmetric fragmented phase for g > 1 and an active
shattered phase for g < 1. Coupling layers with different types of nonlinearity,q; < landg, > 1,we
can find two different transitions by increasing the plasticity parameter, a first absorbing transition
with no fragmentation and a subsequent fragmentation transition.

1. Introduction

Real-world networked systems ranging from biological systems [1, 2] and human society [3, 4] to transportation
[5] and infrastructure systems [6—8] are rarely isolated but often formed by multiple layers of networks. In order
to perform functionality properly, the networked systems maintain multilayer structures and interactions
between different layers of networks. The concept of multilayer networks [9] has been proposed along with
interconnected networks [10], interdependent networks [11], and multiplex networks [12], for a more complete
modeling of interconnected systems. Multilayer networks are a framework not only for a better description of
complex systems but also for novel dynamical processes that cannot be captured in a single layer framework [9,
13—15]. Indeed, several studies on multilayer networks show that interlayer connections account for significant
differences in many phenomena, including percolation [10, 16, 17], diffusion [18], epidemic spreading [19-22],
cascade of failures [11, 23], opinion formation [15, 24-26], online communities [27], game theory [28-30] or
cultural dynamics [31].

One fundamental feature studied in multilayer networks is coevolution dynamics [24, 27, 32], that is the
evolution of a network structure in response to the dynamical processes that change the state of the nodes [33]. A
coevolving voter model is a representative model of coevolution dynamics on complex networks [34, 35]. An
ordinary coevolving voter model consists of two different kinds of processes: copying and rewiring. The ratio of
time scales at which these two processes occur is measured by a parameter p called plasticity of the network. For
the copying process, with a certain probability p a node changes its state by copying the state of one of its
neighbors randomly chosen, following the original imitation mechanism implemented by the voter model. For
the rewiring process, with the complementary probability 1 —p a node rewires its connection with a neighbor
having a different state, to another node having the same state. The ordinary coevolving voter model exhibits an
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absorbing phase transition between an dynamically active coexistence phase and an absorbing phase in the
thermodynamic limit [34]. The finite size manifestation of this transition is a network fragmentation transition.
Coevolution dynamics of the voter model on multilayer networks gives a more complete modeling of real world
situations: for instance, the individuals’ opinion and social networks may evolve through multiple different
types of social relationship, such as family, friends, and colleagues, or communication, friendship and trade
networks. An important parameter in this multilayer description is the degree of multiplexity measured by the
density of interlayer links, i.e. density of links between nodes in different layers. It has been found thata
coevolving voter model in a multilayer network exhibits a shattered fragmentation with a phase showing many
disjointed small components [24]. This phase does not exist in a coevolving voter model in a single network
layer. In addition, it has also been shown that the voter model on multilayer networks cannot be reduced to a
single layer description [15]. Therefore, the structure of multilayer networks significantly affects the dynamical
consequences of coevolution in the voter model [24, 27].

More recently, collective or group interactions beyond the dyadic interactions of the voter model have been
considered within a coevolution dynamics context [36, 37]. Specifically, a coevolving nonlinear voter model
(CNVM) has been studied in order to incorporate collective interactions and coevolution dynamics at the same
time [36]. The nonlinearity in the CNVM takes into account that the state of an agent is affected by the state of all
of their neighbors as a whole, and not by a pairwise interaction [38—41]. The nonlinear interaction gives rise to
diverse phases, with different mechanisms for fragmentation transitions. Such form of nonlinearity was also
studied in social impact theory [42], in language evolution problems [43], or in language competition dynamics
under the name of volatility [44—46]. However, the effect of the nonlinearity in a coevolving voter model has
been examined only on a single layer network as the simplest example.

In view of the nontrivial modifications found for a coevolving voter model when considering a multilayer
framework, we address in this paper the study of a CNVM on a multilayer network. The outline of the paper is as
follows. In section 2 we specify our dynamical model. Section 3 describes our results for the case in which the two
layers have the same plasticity p. In this case we find that the fragmentation transition found in a single layer [36]
continues to exist, but with a delayed threshold of p. Our numerical results are qualitatively described by a mean-
field approach. Section 4 considers the case in which the two layers have different plasticities, and we find a rich
variety of phases such as a dynamically active shattered phase, an asymmetric fragmented phase, and a
coexistence phase. In section 5 we analyze the case of layers with different nonlinearity which also results in other
non-trivial phase transitions that are not observed in a single layer network. For instance, two subsequent
transitions can occur among coexistence, consensus, and absorbing fragmented phases.

2. Model

Our model considers multilayer networks composed of two different layers in which each layer is initially
independently constructed as a degree regular network with the same number of nodes N and with the same
number (k) = 4 of random intralayer links for each node. Inter-layer links connect two nodes that belong to the
two different layers (figure 1). We define the degree of multiplexity £ [24] as the density of inter-layer links so
that #Nis the total number of links connecting nodes in different layers. Initially each node iis in one of two
states, s; = +1 (up) or — 1 (down), with the same probability 1/2, and it has the same state in both layers. Ata
given configuration, links between two nodes in the same layer (intra-links) can be classified as active or inert,
depending on the state of the pair of connected nodes. Active (inert) links stand for the links connecting two
nodes in different (same) states.

The dynamical model is as follows: at each step, we randomly choose a layer and a node 7 in the chosen layer.

We measure the fraction of active links of node i with respect to its degree k;, (%) where g;is the number of active

links of node i. Nonlinear interactions are implemented through a probability (%)q, where q is the nonlinearity

parameter measuring the nonlinear effect of local majorities in the selection on pair interacting agents. With this
probability, the node i takes an action of either copying or rewiring. Then, we choose one of its neighbors j,
having a state different than the one of node i (or equivalently we choose one of the active links of node 7). Note

ai

that with the complementary probability 1 — (?)q, nothing happens and another node is randomly selected.

Next, rewiring occurs with probability p: the chosen active link is removed, and rewired to a new node having
the same state as the state of node i. And, with probability 1 —p node i changes its state by copying the state of
node j. Subsequently, a node connected to 7in the other layer by an inter-link also changes its state adopting the
same state than node i. This synchronization process leads to the same state for connected nodes across different
layers. While the number of nodes and the density of links are constant, the network structure and the
configuration of the states of the state vary in time. These update processes proceed until the system reaches a
steady state.




IOP Publishing NewJ. Phys. 21 (2019) 035004 BMin and M S Miguel
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q: nonlinearity
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Figure 1. Schematic illustration of update rules in a nonlinear coevolving voter model on multilayer networks. At each step, alayer and
node iin the layer are chosen randomly. Then, with a probability (%) one of the active links is chosen. And, we rewire an active link
i

with probability p and copy the state of the chosen neighbor with probability 1—p. If node i is connected to a node in the other layer,
the state of the node in the other layer is synchronized to its state with the state of 7.

In our model, we have three main parameters: plasticity or rewiring rate p, nonlinearity g, and the degree of
multiplexity £. First, the plasticity measures how often the process of rewiring occurs as compared to the process
of copying. When p = 0, anetwork is static, so that the model becomes the voter model on multilayer networks
[15]. On the other hand, when p is non-zero, both the structure of the network and the state of the nodes in the
network change in a coevolution dynamics. In the other extreme p = 1, there is no copying process and the
network eventually becomes fragmented due to the rewiring processes. Second, the nonlinearity parameter gq

measures the effect of local group interactions. Nonlinearity is mathematically implemented as (% [36,

38—41]. When g = 1, our model becomes the ordinary coevolving linear voter model [34]. For g > 1, nodes
with more active links have a higher probability, as compared to the ordinary linear voter model, to take an
action than other nodes. When g < 1, nodes with less active links are more likely to take action than in the linear
voter model. Finally, the degree of multiplexity # stands for the density of interlayer links. # = 1 corresponds to
one-to-one connections among the nodes in the two layers, while # = 0 corresponds to the case of no
interconnections, meaning that the two layers are isolated. When 0 < # < 1, the networks on the two layers are
interconnected but have sparse interconnections than one-to-one connections.

3. Symmetric plasticity in multilayer networks

We indicate as p; and p, the plasticities of each layer. The simplest case of the coevolving model on multilayer
networks is the case of symmetric plasticity, so that p = p; = p,. To describe the properties of the steady state,
we use the size S of the largest network component for measuring the global connectivity and the absolute

value |m|of magnetization m = }_;s; for each layer. For a single layer, the nonlinearity g significantly changes
the coevolution dynamics [36]: when g < 1, a fragmentation transition between a dynamically active
coexistence phase in a single component network and a fragmented phase occurs for a critical plasticity p, while
when g > 1adistinct type of a fragmentation transition occurs between an absorbing consensus phase and a
fragmented phase. When g = 1, which is the case of the ordinary linear voter model, an absorbing phase
transition between a dynamically active coexistence phase and an absorbing phase in a fragmented network is
recovered [34, 36]. Note that in the long time limit the active phase for the linear case ¢ = 1 can survive only for
the thermodynamiclimit N — oo since for any finite systems the active phase falls into a consensus phase due to
finite size fluctuations [34, 36].

The same phases and transitions described for the single layer case continue to exist in multi-layer networks
but the critical plasticity p, is delayed as the degree of multiplexity # increases. For different nonlinearity
parameters g = 0.5, 1,and 2, we determine S, |/, and the characteristic time 7 to reach a final state (figure 2).
Note that S, |m]|, and 7 for both layers are statistically the same due to the symmetric case analyzed here. When
q = 0.5, we find an absorbing phase transition between a coexistence phase and a fragmented phase. This

3
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Figure 2. The size S of the largest component and the absolute value || of magnetization of (a) ¢ = 0.5, (b) 1, and (c) 2 with symmetric
plasticity p = p, = p, for different # = 0,0.5, 1 on multilayer degree regular networks with (k) = 4 and N = 10* for each layer,
averaged over 10* runs. The characteristics time 7 to reach the final state of (d) q = 0.5,(e) 1,and (f) 2 is also shown for N = 10*and
10*
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Figure 3. The density p of active links and the size S of the largest component with symmetric plasticityp = p, = p, for different
¢ = 0,1 with (k) = 4and N = 10’ for each layer.

absorbing phase transition is clearly identified by looking at the density p of active links in either of the two
equivalent layers (figure 3). The coexistence phase, which is dynamically active, is well characterized by a finite
value of p and by the divergence of 7in the thermodynamic limit N — oo. The fragmented phase corresponds
top = 0,8 = 1/2and m = 0, implying two disjoint clusters, each of them in a consensus state but but with
opposite consensus states. When g = 2, we find a different transition at the critical plasticity p, between two
absorbing phases, a consensus and a fragmented phase. The consensus phase is characterizedby p = 0,5 = 1
and |m| = 1, implying a single network component with an ordered state. Therefore, we can conclude that the
fragmentation transition for g = 0.5and q = 2 is qualitatively different. For ¢ = 0.5, we find a continuous
absorbing phase transition, characterized by the density of active links p. But, for ¢ = 2, we find a different
transition between two absorbing phases, a consensus and a fragmented phase. More details on the nature of
these transitions were discussed elsewhere [36]. For the linear case g = 1[24], we also observe a delay of the
fragmentation transition when increasing the degree of multiplexity. We have checked that the delay of the
transition is a robust feature for networks with different average degree (k) = 8, 16, as shown in figure 4(a), (b).
We also find that the transition point p. becomes larger as (k) increases. In addition, we find that the
fragmentation transition and the shift of p. as p increases persists for considerably large values of g, i.e.q = 4, 8,
16 (figure 4(c)).

We further examine the effect of the multiplexity in terms of the dependence p.on  forg = 0.5 and 2
(figure 5). For both g = 0.5 and 2, we find a delayed onset (larger p,) of the fragmented phase with increasing
multiplexity £. The shift of p. means that the inter-layer connections in a multilayer structure prolong the global
connectivity in the coevolution dynamics: multiplexity provides a source of disorder due to the synchronization
process. Therefore increasing the degree of multiplexity £ leads to the shift of p,. This the same mechanism that

4
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Figure 5. Phase diagram for the symmetric plasticity case with () ¢ = 0.5 and (f) ¢ = 2 together with network examples of (a)
fragmented (p, ¢, ) = (0.9, 0.5,0.5), (b) coexistence (0.2, 0.5, 0.5), (c) fragmented (0.8, 2, 0.5), and (d) consensus (0.2, 2, 0.5) phases.
The phase diagram is obtained numerically with initial multilayer degree regular networks with (k) = 4 and N = 10°. The lines in the
diagram are just to guide the eyes.

for the linear voter model and therefore both for linear and nonlinear interactions, multiplexity prevents
fragmentation. However, the role of nonlinearity is shown in the final state: a dynamically active coexistence
phaseing = 0.5and a consensus phaseing = 2.

In order to obtain an analytic insight for the shift of p, we introduce mean-field equations [24, 34, 36, 40] for
the nonlinear voter model on multilayer networks. These equations are valid in the thermodynamic limit
N — co. We define the average degree of each layer as (k) and (k,). The density of active links p;in each layer
i € {1, 2} can be described by the following equations [36, 40]

do.
d—pt‘ = —pip; + pI(1 = p)l(ki) — 29 = 2((ki) — @)p;] + P11 = 2p) (ki) M
Note that these coupled equations reduce to previous results in the appropriate limit of linear interactions g = 1
[24] or decoupled layers # = 0[36]. Assuming that the two layers have the same

mean degree ((k) = (ki) = (ky)), and for symmetric coupling (p = p; = p»)

j—f = —pp + p?(1 = p)[(k) — 29 — 2((k) — @) p] + £p7(1 — 2p)(k), (@)

where p = p; = p, due to the symmetry. For the steady state, the trivial solution p = 0 correspondstoa
fragmentation state where the dynamics is frozen and the non-zero solution corresponds to a dynamically active
state. The non-zero solution p* of equation (2) gives
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Figure 6. For a bilayer with fully asymmetric plasticity p; = 1and p, = 0 the following quantities for the dynamic layer p; = 1 are
shown: size S of the largest component, size S, of the second largest component, the fraction S;,; of nodes having interconnections
in the largest network component and the absolute value || of magnetization for (a) g = 0.5, (b) 1, and (c) 2. Numerical simulations
on multilayer initially degree regular networks with (k) = 4 and N = 10* for each layer. The relative number of network components
nc of the dynamic layer for (d) g = 0.5, (d) 1, and (f) 2 is also reported for different system sizes.
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Thus, this mean-field approximation accounts for the linear growth of p, with respect to £ obtained numerically.
The analytical approach predicts successfully the shift of p. but it gives quantitatively inaccurate values of p. as it
is also the case for the linear voter model [24]. The mean-field approximation predicts that the transition appears
in a narrow range of parameter values for (k) and g. However, our numerical simulations discussed above
(figure 4) show that the transition is robust against changes of these parameters.

4. Asymmetric plasticity in multilayer networks

Far from the symmetric case, an extreme coupling scenario is that of fully asymmetric plasticity, meaning that
one layer only rewires (p; = 1, the dynamic layer) and the other layer only changes the state of the nodes
(p2 = 0, the voter layer). The dynamic layer is affected by the voter layer due to the synchronization step, but the
voter layer is independent of the dynamic layer. Hence as t — o0, the voter layer will either remain in an active
coexistence phase (g < 1), except for finite size effects, or will reach a consensus phase (¢ > 1), as the result of
the single layer dynamics [36]. However, the dynamic layer can show a variety of asymptotic states depending on
the nonlinearity g and the degree of multiplexity #. It is worthwhile to mention that we use the random rewiring
when finding a new connection in a dynamic layer. But, different rewiring protocols such as rewiring based on
the principle eigenvalue of adjacency matrix [47, 48], local rewiring [37], and preferential attachment rewiring
[49] may bring out different phenomena such as localization of multilayer networks [47]. In order to describe
these possible states, we determine in the dynamic layer, and for g = 0.5, 1, 2, the size of the largest network
component Sy, the size of the second largest network component S,, the absolute value |m] of magnetization, and
the relative number of components rnc to the network size N, as shown in figure 6. In addition, we also determine
the fraction Sj,; of nodes in the dynamic layer that belong to the largest network component S; and at the same
time are connected to the voter layer. Since in our model only a fraction of nodes (£N) have interlayer links, S;,e;
refers to the fraction of nodes of the largest network component with interlayer links. Note that Sipeer < S
and Siper < ZN.

When g = 1 (the linear voter case [24]), we find a shattered phase in the dynamic layer for a broad range of
values of ¢, showing two large components in opposite states and many isolated nodes (figures 6(b), (¢)). This

6
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Figure 7. Phase diagram (e) for the fully asymmetric plasticity case (p; = 1 and p, = 0). Network configuration of (a) asymmetric

fragmented phase (¢, ¢) = (2,0.2), and (b) (2, 0.8), (c) shattered phase (0.5, 0.6), and (d) coexistence phase (0.5, 0.95). The phase
diagram is obtained numerically with multilayer initially degree regular networks with (k) = 4 and N = 10°.

shattered phase appears because nodes in the voter layer drive the separation of nodes in the dynamic layer by the
synchronization step of the dynamics.

When g = 0.5, arepresentative example of g < 1, the structure of the dynamical layer evolves to a shattered
phase where two significant network components are in opposite states and many small clusters exist for a wide
range of £ similarly to the linear voter case (g = 1). The relative number of components nc clearly identifies the
existence of many isolated nodes in the dynamic layer (figure 6(d)). As £ increases from zero, ncincreases linearly
and S; and S, decreases linearly as well. S;,., is nearly zero for all , indicating that the nodes having interlayer
links are those which are isolated in their layer. However, the absolute value of the magnetization || in the
dynamical layer remains zero at variance with what happens for ¢ = 1. This neutral magnetization is caused by a
dynamically active coexistence phase in the voter layer which perpetually drives the magnetization to zero. In
this sense we name this phase as an active shattered phase, while in the shattered phase for g = 1 allisolated
nodes are in the same state, which is the state in which the voter layer has reached a consensus. For large 7, S,
increases and finally all nodes belong to one connected network component which is in a coexistence phase
(Im| = 0). When ¢ is large, the voter layer which is in a dynamically active phase creates continuously active links
in the dynamic layer as a consequence of the synchronization step of our dynamical model. Hence the
fragmentation phase in the dynamic layer cannot be stable. In between these two phases, there is a critical value
of the degree of multiplexity #. identifying a transition between an active shattered phase and a coexistence
phase.

For the other type of nonlinearity g > 1, for example when g = 2, the shattered phase disappears (nc = 0)
and S, gradually increases as £ increases (figures 6(c), (f)). Instead of the shattered phase, we find an asymmetric
fragmented phase inwhich S; ~ 1 — S, forall # except £ = 1. When# = 1, we recover a consensus phase with
S1 = land S, = 0. The magnetization |m| also increases with increasing ¢ since the difference between S; and S,
increases linearly. This phase with separated and asymmetric size of two extensive clusters is also not observed in
a coevolution dynamics of the nonlinear voter model in a single layer.

A phase diagram with respect to £ and g is shown in figure 7(e). We find three different phases already
described above: (I) asymmetric fragmented phase, (II) active shattered phase, and (III) coexistence phase.
Examples of the multilayer network configuration for the different phases are also shown (figures 7(a)—(d)).
When g < 1, we find a transition at £, between the active shattered and coexistence phases in the dynamic layer
L1 while the voter layer L2 remains in a dynamically active coexistence phase (figure 7(c)). When ¢ = 1, the
dynamic layer L1 also maintains a large active coexistence component due to the high degree of multiplexity
(figure 7(d)). When g > 1, the dynamic layer L1 exhibits two large connected clusters but with asymmetric sizes.
In addition, the size difference of the two clusters decreases linearly with £ (figures 7(a), (b)). Phases (I) and (II)
are not found in coevolution dynamics either in a single component network [36] or in a multilayer with linear

7
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Figure 8. The relative number of components nc and size S of the largest component as a function of nonlinearity g and the degree of
multiplexing # for partially asymmetric plasticities (a), (d) (p1, p2) = (1, 0) (b), (e) (0.8, 0.2), and (¢), (f) (0.5, 0) on multilayer networks
withN = 10°.
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Figure 9. The characteristics time 7 to reach steady state as a function of system size N for (a) ¢ = 0.5, (b)q = 1,and (c)q = 2 for
different £ and (py, p,) = (1,0).

interactions [24]. Phase (III) is the analog of the dynamically active coexistence phase found in the single layer
case, now with the same phase in the two layers. The difference is that in the present multilayer case this phase
exists for £ > £.asaconsequence of large plasticity asymmetry, while in the single layer case it only exists below
the fragmentation transition (p < p,.) as in the coexistence phase (b) in (figure 5)

The relative number of components nic and the size of the largest component S of the dynamiclayer L1 asa
function of g and £ is shown in figure 8 for the fully asymmetric case p; = 1and p, = 0 and compared with
results for partially asymmetric coupling (p, = p,). For the partially asymmetric cases, i.e. (py, p,) = (0.8,0.2)
(figure 8(b)) and (0.5, 0) (figure 8(c)), we find that the shattered phase where ncis nonzero is still presentbutin a
smaller range of parameters than for the fully asymmetric case. This finding implies that asymmetric plasticity is
the source of the shattered phase so that the area in the (g, ¢) parameter space where shattering occurs is
maximized at fully asymmetric coupling. In addition, a sharp transition atq = 1 indicates that the type of
nonlinearity essentially determines the form of the fragmentation transition. For g > 1, the values obtained for S
indicate that the asymmetric fragmentation phase also exists for general asymmetric values of the plasticity
(figures 8(d)—(f)). The range of parameters in which this phase exists is maximized at the fully asymmetric
coupling, while for small asymmetry in the plasticity values a consensus phase also exists. In summary, the new
phases found for the fully asymmetric case continue to exist when the two layers have different plasticities.

Finally, we calculate the characteristic time 7 to reach an absorbing state for different values of the nonlinear
parameter g (figure 9). For g = 0.5, 7 increases exponentially with the system size N, (figure 9(a)), so that in the
thermodynamiclimit (N — oo0) we have a dynamically active coexistence phase and no absorbing state is
reached. For finite systems, a finite size fluctuation will eventually take the system to an absorbing state, but due
to the exponential dependence of the characteristic time on N, this is very rarely seen in our simulations and we
observe dynamically active configurations which are extremely long lived. When g = 1, the characteristic time
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Figure 10. The size S of the largest component and the absolute value || of magnetization of (a), (d) (1, g2) = (0.5, 1), (b), (e) (2, 1),
and (¢), (f) (0.5, 2) for different # = 0,0.5, 1 on multilayer degree regular networks with (k) = 4 and N = 10* for each layer.

grows linearly with the system size N, in the same way as in the usual voter model (figure 9(b)). In contrast, 7
increases logarithmically with N for ¢ = 2 (figure 9(c)), so that the absorbing state is reached in a relatively short
time. The different scaling with N of these characteristic times, for different values of the nonlinear parameter g,
is consistent with previous results fora CNVM on a single layer network [36] and also with local rewiring [37].

5. Asymmetric nonlinearity in multilayer networks

In this section, we consider the situation in which the two layers have a different nonlinear parameter g.
Specifically, we consider three different cases (q;, q2) = (0.5, 1), (2, 1), (0.5, 2) with the same plasticity parameter
forbothlayersp = p; = p, (figure 10). For the cases (91, q2) = (0.5, 1)and (41, q2) = (2, 1), we find that the
transition point p, is shifted for both layers with increasing £, in a similar way than we found for the symmetric
nonlinearity case (see figure 2). In this case of asymmetric nonlinearity the layer that has slower dynamics (longer
characteristics time 7) determines the steady state of the coevolving dynamics. For instance, when two layers
withq = 0.5and q = 1 are coupled, the layer with g = 0.5, with 7 that grows exponentially with N, dominates
the dynamics, and hence the system shows a fragmentation transition between a coexistence phase and a
fragmented phase similarly to what happens when q; = g, = 0.5. In other words, in the long time limit,
coevolution dynamics is shaped by the layer taking longer to reach its final state.

We also find an anomalous fragmentation transition when two layers with different g are coupled. When (g,
q2) = (0.5,2)and Z = 1, there exist two subsequent transitions: one is the transition between a coexistence
phase and a consensus phase and the other is between a consensus phase and a fragmented phase as shown in
figure 10(c). For intermediate £ = 0.5, the system exhibits an asymmetric active phase, that is active but
|m| = 0. These results exemplify the rich variety in phase transitions that occur in multilayer structures with
heterogeneous layer nonlinearities.

6. Discussion

We have studied a coevolving voter model on bilayer networks, focusing on the combined effect of nonlinear
interactions, network plasticity and the degree of multiplexity. We observe a rich phase diagram with a number
of new different phases and transitions. When the two layers have the same network plasticity and nonlinear
parameter, we obtain a fragmentation transition similar to the one obtained in a single layer [36], but the
transition is systematically shifted to larger values of the plasticity when increasing the degree of multiplexity.
Therefore, multiplexing prevents fragmentation [24] also for a nonlinear voter model. When the two layers have
different plasticities p but the same nonlinear parameter, we find new phases that do not existina CNVMina
single layer, namely an asymmetric fragmented phase and a dynamically active shattered phase. These phases are
also not found in the multilayer version of the ordinary linear voter model. Finally, when coupling a nonlinear
layer with alinear one (q = 1) we find that the layer with smaller nonlinearity, which is the one that would reach
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the final state in alonger time for q; = ¢,, dominates the dynamics. In addition, when coupling layers with
different types of nonlinearity q; < land g, > 1 we observe an asymmetric active phase and also, for complete
multiplexing# = 1, we observe two subsequent transitions when increasing the plasticity parameter: froma
coexistence phase to a consensus phase, and from consensus to an absorbing fragmented phase.
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