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Abstract
We study a coevolving nonlinear votermodel (CNVM) on a two-layer network. Coevolution stands
for coupled dynamics of the state of the nodes and of the topology of the network in each layer. The
plasticity parameter pmeasures the relative time scale of the evolution of the states of the nodes and
the evolution of the network by link rewiring. Nonlinearity of the interactions is taken into account
through a parameterq that describes the nonlinear effect of localmajorities being q=1 themarginal
situation of the ordinary votermodel. Finally the connection between the two layers ismeasured by a
degree ofmultiplexingℓ. In terms of these three parameters,p, q andℓwefind a rich phase diagram
with different phases and transitions.When the two layers have the same plasticity p, the
fragmentation transition observed in a single layer is shifted to larger values of p plasticity, so that
multiplexing avoids fragmentation. Different plasticities for the two layers lead to newphases that do
not exist in aCNVM in a single layer, namely an asymmetric fragmented phase for q>1 and an active
shattered phase for q<1. Coupling layers with different types of nonlinearity, q1<1 and q2>1, we
canfind two different transitions by increasing the plasticity parameter, a first absorbing transition
with no fragmentation and a subsequent fragmentation transition.

1. Introduction

Real-world networked systems ranging frombiological systems [1, 2] and human society [3, 4] to transportation
[5] and infrastructure systems [6–8] are rarely isolated but often formed bymultiple layers of networks. In order
to perform functionality properly, the networked systemsmaintainmultilayer structures and interactions
between different layers of networks. The concept ofmultilayer networks [9] has been proposed alongwith
interconnected networks [10], interdependent networks [11], andmultiplex networks [12], for amore complete
modeling of interconnected systems.Multilayer networks are a framework not only for a better description of
complex systems but also for novel dynamical processes that cannot be captured in a single layer framework [9,
13–15]. Indeed, several studies onmultilayer networks show that interlayer connections account for significant
differences inmany phenomena, including percolation [10, 16, 17], diffusion [18], epidemic spreading [19–22],
cascade of failures [11, 23], opinion formation [15, 24–26], online communities [27], game theory [28–30] or
cultural dynamics [31].

One fundamental feature studied inmultilayer networks is coevolution dynamics [24, 27, 32], that is the
evolution of a network structure in response to the dynamical processes that change the state of the nodes [33]. A
coevolving votermodel is a representativemodel of coevolution dynamics on complex networks [34, 35]. An
ordinary coevolving votermodel consists of two different kinds of processes: copying and rewiring. The ratio of
time scales at which these two processes occur ismeasured by a parameter p called plasticity of the network. For
the copying process, with a certain probability p a node changes its state by copying the state of one of its
neighbors randomly chosen, following the original imitationmechanism implemented by the votermodel. For
the rewiring process, with the complementary probability 1−p a node rewires its connectionwith a neighbor
having a different state, to another node having the same state. The ordinary coevolving votermodel exhibits an
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absorbing phase transition between an dynamically active coexistence phase and an absorbing phase in the
thermodynamic limit [34]. Thefinite sizemanifestation of this transition is a network fragmentation transition.
Coevolution dynamics of the votermodel onmultilayer networks gives amore completemodeling of real world
situations: for instance, the individuals’ opinion and social networksmay evolve throughmultiple different
types of social relationship, such as family, friends, and colleagues, or communication, friendship and trade
networks. An important parameter in thismultilayer description is the degree ofmultiplexitymeasured by the
density of interlayer links, i.e. density of links between nodes in different layers. It has been found that a
coevolving votermodel in amultilayer network exhibits a shattered fragmentationwith a phase showingmany
disjointed small components [24]. This phase does not exist in a coevolving votermodel in a single network
layer. In addition, it has also been shown that the votermodel onmultilayer networks cannot be reduced to a
single layer description [15]. Therefore, the structure ofmultilayer networks significantly affects the dynamical
consequences of coevolution in the votermodel [24, 27].

More recently, collective or group interactions beyond the dyadic interactions of the votermodel have been
consideredwithin a coevolution dynamics context [36, 37]. Specifically, a coevolving nonlinear votermodel
(CNVM)has been studied in order to incorporate collective interactions and coevolution dynamics at the same
time [36]. The nonlinearity in theCNVM takes into account that the state of an agent is affected by the state of all
of their neighbors as awhole, and not by a pairwise interaction [38–41]. The nonlinear interaction gives rise to
diverse phases, with differentmechanisms for fragmentation transitions. Such formof nonlinearity was also
studied in social impact theory [42], in language evolution problems [43], or in language competition dynamics
under the name of volatility [44–46]. However, the effect of the nonlinearity in a coevolving votermodel has
been examined only on a single layer network as the simplest example.

In view of the nontrivialmodifications found for a coevolving votermodel when considering amultilayer
framework, we address in this paper the study of a CNVMon amultilayer network. The outline of the paper is as
follows. In section 2we specify our dynamicalmodel. Section 3 describes our results for the case inwhich the two
layers have the same plasticity p. In this case wefind that the fragmentation transition found in a single layer [36]
continues to exist, but with a delayed threshold of p. Our numerical results are qualitatively described by amean-
field approach. Section 4 considers the case inwhich the two layers have different plasticities, andwe find a rich
variety of phases such as a dynamically active shattered phase, an asymmetric fragmented phase, and a
coexistence phase. In section 5we analyze the case of layers with different nonlinearity which also results in other
non-trivial phase transitions that are not observed in a single layer network. For instance, two subsequent
transitions can occur among coexistence, consensus, and absorbing fragmented phases.

2.Model

Ourmodel considersmultilayer networks composed of two different layers inwhich each layer is initially
independently constructed as a degree regular networkwith the same number of nodesN andwith the same
number k 4á ñ = of random intralayer links for each node. Inter-layer links connect two nodes that belong to the
two different layers(figure 1).We define the degree ofmultiplexityℓ [24] as the density of inter-layer links so
thatℓN is the total number of links connecting nodes in different layers. Initially each node i is in one of two
states, si=+1 (up) or−1 (down), with the same probability 1/2, and it has the same state in both layers. At a
given configuration, links between two nodes in the same layer (intra-links) can be classified as active or inert,
depending on the state of the pair of connected nodes. Active (inert) links stand for the links connecting two
nodes in different (same) states.

The dynamicalmodel is as follows: at each step, we randomly choose a layer and a node i in the chosen layer.

Wemeasure the fraction of active links of node iwith respect to its degree ki,
a

k
i

i
( )where ai is the number of active

links of node i. Nonlinear interactions are implemented through a probability a

k

q
i

i
( ) , where q is the nonlinearity

parametermeasuring the nonlinear effect of localmajorities in the selection on pair interacting agents.With this
probability, the node i takes an action of either copying or rewiring. Then, we choose one of its neighborsj,
having a state different than the one of node i (or equivalently we choose one of the active links of node i). Note

thatwith the complementary probability 1 a

k

q
i

i
- ( ) , nothing happens and another node is randomly selected.

Next, rewiring occurs with probabilityp: the chosen active link is removed, and rewired to a newnode having
the same state as the state of node i. And, with probability 1−pnode i changes its state by copying the state of
node j. Subsequently, a node connected to i in the other layer by an inter-link also changes its state adopting the
same state than node i. This synchronization process leads to the same state for connected nodes across different
layers.While the number of nodes and the density of links are constant, the network structure and the
configuration of the states of the state vary in time. These update processes proceed until the system reaches a
steady state.

2

New J. Phys. 21 (2019) 035004 BMin andMSMiguel



In ourmodel, we have threemain parameters: plasticity or rewiring rate p, nonlinearity q, and the degree of
multiplexityℓ. First, the plasticitymeasures howoften the process of rewiring occurs as compared to the process
of copying.When p=0, a network is static, so that themodel becomes the votermodel onmultilayer networks
[15]. On the other hand, when p is non-zero, both the structure of the network and the state of the nodes in the
network change in a coevolution dynamics. In the other extreme p=1, there is no copying process and the
network eventually becomes fragmented due to the rewiring processes. Second, the nonlinearity parameterq

measures the effect of local group interactions. Nonlinearity ismathematically implemented as a

k

q
i

i
( ) [36,

38–41].When q=1, ourmodel becomes the ordinary coevolving linear votermodel [34]. For q>1, nodes
withmore active links have a higher probability, as compared to the ordinary linear votermodel, to take an
action than other nodes.When q<1, nodes with less active links aremore likely to take action than in the linear
votermodel. Finally, the degree ofmultiplexityℓ stands for the density of interlayer links.ℓ=1 corresponds to
one-to-one connections among the nodes in the two layers, whileℓ=0 corresponds to the case of no
interconnections,meaning that the two layers are isolated.When 0<ℓ<1, the networks on the two layers are
interconnected but have sparse interconnections than one-to-one connections.

3. Symmetric plasticity inmultilayer networks

We indicate as p1 and p2 the plasticities of each layer. The simplest case of the coevolvingmodel onmultilayer
networks is the case of symmetric plasticity, so that p=p1=p2. To describe the properties of the steady state,
we use the size S of the largest network component formeasuring the global connectivity and the absolute
value m∣ ∣ofmagnetization m si i= å for each layer. For a single layer, the nonlinearityq significantly changes
the coevolution dynamics [36]: when q<1, a fragmentation transition between a dynamically active
coexistence phase in a single component network and a fragmented phase occurs for a critical plasticity pc, while
when q>1 a distinct type of a fragmentation transition occurs between an absorbing consensus phase and a
fragmented phase.When q=1, which is the case of the ordinary linear votermodel, an absorbing phase
transition between a dynamically active coexistence phase and an absorbing phase in a fragmented network is
recovered [34, 36]. Note that in the long time limit the active phase for the linear case q=1 can survive only for
the thermodynamic limit N  ¥ since for anyfinite systems the active phase falls into a consensus phase due to
finite size fluctuations [34, 36].

The same phases and transitions described for the single layer case continue to exist inmulti-layer networks
but the critical plasticity pc is delayed as the degree ofmultiplexityℓ increases. For different nonlinearity
parameters q=0.5, 1, and 2, we determine S, m∣ ∣, and the characteristic time τ to reach afinal state (figure 2).
Note that S, m∣ ∣, and τ for both layers are statistically the same due to the symmetric case analyzed here.When
q=0.5, wefind an absorbing phase transition between a coexistence phase and a fragmented phase. This

Figure 1. Schematic illustration of update rules in a nonlinear coevolving votermodel onmultilayer networks. At each step, a layer and

node i in the layer are chosen randomly. Then, with a probability a

k

q
i

i( ) one of the active links is chosen. And, we rewire an active link

with probability p and copy the state of the chosen neighbor with probability 1−p. If node i is connected to a node in the other layer,
the state of the node in the other layer is synchronized to its state with the state of i.
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absorbing phase transition is clearly identified by looking at the density ρ of active links in either of the two
equivalent layers (figure 3). The coexistence phase, which is dynamically active, is well characterized by afinite
value of ρ and by the divergence of τ in the thermodynamic limit N  ¥. The fragmented phase corresponds
to ρ=0, S=1/2 andm=0, implying twodisjoint clusters, each of them in a consensus state but butwith
opposite consensus states.When q=2, wefind a different transition at the critical plasticity pc between two
absorbing phases, a consensus and a fragmented phase. The consensus phase is characterized by ρ=0, S=1
and m 1=∣ ∣ , implying a single network componentwith an ordered state. Therefore, we can conclude that the
fragmentation transition for q=0.5 and q=2 is qualitatively different. For q=0.5, wefind a continuous
absorbing phase transition, characterized by the density of active links ρ. But, for q=2, wefind a different
transition between two absorbing phases, a consensus and a fragmented phase.More details on the nature of
these transitionswere discussed elsewhere [36]. For the linear case q=1 [24], we also observe a delay of the
fragmentation transitionwhen increasing the degree ofmultiplexity.We have checked that the delay of the
transition is a robust feature for networks with different average degree k 8, 16á ñ = , as shown infigure 4(a), (b).
We alsofind that the transition point pc becomes larger as ká ñ increases. In addition, wefind that the
fragmentation transition and the shift of pc as p increases persists for considerably large values of q, i.e. q=4, 8,
16 (figure 4(c)).

We further examine the effect of themultiplexity in terms of the dependence pc onℓ for q=0.5 and 2
(figure 5). For both q=0.5 and 2, wefind a delayed onset(larger pc) of the fragmented phasewith increasing
multiplexityℓ. The shift of pcmeans that the inter-layer connections in amultilayer structure prolong the global
connectivity in the coevolution dynamics:multiplexity provides a source of disorder due to the synchronization
process. Therefore increasing the degree ofmultiplexityℓ leads to the shift of pc. This the samemechanism that

Figure 2.The size S of the largest component and the absolute value m∣ ∣ofmagnetization of (a) q=0.5, (b) 1, and (c) 2with symmetric
plasticity p=p1=p2 for differentℓ=0, 0.5, 1 onmultilayer degree regular networkswith k 4á ñ = andN=104 for each layer,
averaged over 104 runs. The characteristics time τ to reach thefinal state of (d) q=0.5, (e) 1, and (f) 2 is also shown forN=103 and
104.

Figure 3.The density ρ of active links and the size S of the largest component with symmetric plasticity p=p1=p2 for different
ℓ=0,1with k 4á ñ = andN=103 for each layer.
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for the linear votermodel and therefore both for linear and nonlinear interactions,multiplexity prevents
fragmentation.However, the role of nonlinearity is shown in the final state: a dynamically active coexistence
phase in q=0.5 and a consensus phase in q=2.

In order to obtain an analytic insight for the shift of pc, we introducemean-field equations [24, 34, 36, 40] for
the nonlinear votermodel onmultilayer networks. These equations are valid in the thermodynamic limit
N  ¥.We define the average degree of each layer as k1á ñand k2á ñ. The density of active links ρi in each layer
i 1, 2Î { }can be described by the following equations [36, 40]

t
p p k q k q k

d

d
1 2 2 1 2 . 1i

i
q

i i
q

i i i i j
q

i i
r

r r r r r= - + - á ñ - - á ñ - + - á ñℓ( )[ ( ) ] ( ) ( )

Note that these coupled equations reduce to previous results in the appropriate limit of linear interactions q=1
[24] or decoupled layersℓ=0 [36]. Assuming that the two layers have the same
mean degree k k k1 2á ñ = á ñ = á ñ( ), and for symmetric coupling(p=p1=p2)

t
p p k q k q k

d

d
1 2 2 1 2 , 2q q qr

r r r r r= - + - á ñ - - á ñ - + - á ñℓ( )[ ( ) ] ( ) ( )

where ρ=ρ1=ρ2 due to the symmetry. For the steady state, the trivial solution ρ=0 corresponds to a
fragmentation state where the dynamics is frozen and the non-zero solution corresponds to a dynamically active
state. The non-zero solution ρ* of equation (2) gives

Figure 4.The size of the largest cluster for (a) q=1/2 and (b) q=2with different k 4, 8, 16á ñ = . (c)The size of the largest cluster for
large q=4, 8, 16 for withℓ=0 andℓ=1.

Figure 5.Phase diagram for the symmetric plasticity case with (e) q=0.5 and (f) q=2 together with network examples of (a)
fragmented (p, q,ℓ)=(0.9, 0.5, 0.5), (b) coexistence (0.2, 0.5, 0.5), (c) fragmented (0.8, 2, 0.5), and (d) consensus (0.2, 2, 0.5) phases.
The phase diagram is obtained numerically with initialmultilayer degree regular networks with k 4á ñ = andN=103. The lines in the
diagram are just to guide the eyes.
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k p q p q

k p p q

1 2 2 1

2 1 1
. 3*r =
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ℓ
ℓ
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( )

The transition point to the fragmentation phasewith ρ=0 is

p
k k q

k q

2

1 2
. 4c =

á ñ + á ñ -
+ á ñ -

ℓ ( )

Thus, thismean-field approximation accounts for the linear growth of pcwith respect toℓ obtained numerically.
The analytical approach predicts successfully the shift of pc but it gives quantitatively inaccurate values of pc as it
is also the case for the linear votermodel [24]. Themean-field approximation predicts that the transition appears
in a narrow range of parameter values for ká ñand q. However, our numerical simulations discussed above
(figure 4) show that the transition is robust against changes of these parameters.

4. Asymmetric plasticity inmultilayer networks

Far from the symmetric case, an extreme coupling scenario is that of fully asymmetric plasticity,meaning that
one layer only rewires (p1=1, the dynamic layer) and the other layer only changes the state of the nodes
(p2=0, the voter layer). The dynamic layer is affected by the voter layer due to the synchronization step, but the
voter layer is independent of the dynamic layer.Hence as t  ¥, the voter layer will either remain in an active
coexistence phase (q<1), except forfinite size effects, or will reach a consensus phase (q>1), as the result of
the single layer dynamics [36]. However, the dynamic layer can show a variety of asymptotic states depending on
the nonlinearity q and the degree ofmultiplexityℓ. It is worthwhile tomention thatwe use the random rewiring
when finding a new connection in a dynamic layer. But, different rewiring protocols such as rewiring based on
the principle eigenvalue of adjacencymatrix [47, 48], local rewiring [37], and preferential attachment rewiring
[49]may bring out different phenomena such as localization ofmultilayer networks [47]. In order to describe
these possible states, we determine in the dynamic layer, and for q=0.5, 1, 2, the size of the largest network
component S1, the size of the second largest network component S2, the absolute value m∣ ∣ofmagnetization, and
the relative number of components nc to the network sizeN, as shown infigure 6. In addition, we also determine
the fraction Sinter of nodes in the dynamic layer that belong to the largest network component S1 and at the same
time are connected to the voter layer. Since in ourmodel only a fraction of nodes (ℓN) have interlayer links, Sinter
refers to the fraction of nodes of the largest network componentwith interlayer links. Note that S Sinter 1
and S Ninter  ℓ .

When q=1 (the linear voter case [24]), wefind a shattered phase in the dynamic layer for a broad range of
values ofℓ, showing two large components in opposite states andmany isolated nodes (figures 6(b), (e)). This

Figure 6. For a bilayer with fully asymmetric plasticity p1=1 and p2=0 the following quantities for the dynamic layer p1=1 are
shown: size S1 of the largest component, size S2 of the second largest component, the fraction Sinter of nodes having interconnections
in the largest network component and the absolute value m∣ ∣ofmagnetization for (a) q=0.5, (b) 1, and (c) 2.Numerical simulations
onmultilayer initially degree regular networks with k 4á ñ = andN=104 for each layer. The relative number of network components
nc of the dynamic layer for (d) q=0.5, (d) 1, and (f) 2 is also reported for different system sizes.
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shattered phase appears because nodes in the voter layer drive the separation of nodes in the dynamic layer by the
synchronization step of the dynamics.

When q=0.5, a representative example of q<1, the structure of the dynamical layer evolves to a shattered
phasewhere two significant network components are in opposite states andmany small clusters exist for awide
range ofℓ similarly to the linear voter case (q= 1). The relative number of components nc clearly identifies the
existence ofmany isolated nodes in the dynamic layer (figure 6(d)). Asℓ increases from zero, nc increases linearly
and S1 and S2 decreases linearly aswell. Sinter is nearly zero for allℓ, indicating that the nodes having interlayer
links are thosewhich are isolated in their layer.However, the absolute value of themagnetization m∣ ∣ in the
dynamical layer remains zero at variance withwhat happens for q=1. This neutralmagnetization is caused by a
dynamically active coexistence phase in the voter layer which perpetually drives themagnetization to zero. In
this sense we name this phase as an active shattered phase, while in the shattered phase for q=1 all isolated
nodes are in the same state, which is the state inwhich the voter layer has reached a consensus. For largeℓ, S1
increases andfinally all nodes belong to one connected network componentwhich is in a coexistence phase
(m 0=∣ ∣ ).Whenℓ is large, the voter layer which is in a dynamically active phase creates continuously active links
in the dynamic layer as a consequence of the synchronization step of our dynamicalmodel. Hence the
fragmentation phase in the dynamic layer cannot be stable. In between these two phases, there is a critical value
of the degree ofmultiplexityℓc identifying a transition between an active shattered phase and a coexistence
phase.

For the other type of nonlinearity q>1, for examplewhen q=2, the shattered phase disappears (nc≈0)
and S1 gradually increases asℓ increases (figures 6(c), (f)). Instead of the shattered phase, we find an asymmetric
fragmented phase inwhich S1≈1−S2 for allℓ exceptℓ=1.Whenℓ=1, we recover a consensus phase with
S1=1 and S2=0. Themagnetization m∣ ∣also increases with increasingℓ since the difference between S1 and S2
increases linearly. This phasewith separated and asymmetric size of two extensive clusters is also not observed in
a coevolution dynamics of the nonlinear votermodel in a single layer.

A phase diagramwith respect toℓ and q is shown infigure 7(e).Wefind three different phases already
described above: (I) asymmetric fragmented phase, (II) active shattered phase, and (III) coexistence phase.
Examples of themultilayer network configuration for the different phases are also shown (figures 7(a)–(d)).
When q<1, wefind a transition atℓc between the active shattered and coexistence phases in the dynamic layer
L1while the voter layer L2 remains in a dynamically active coexistence phase (figure 7(c)).Whenℓ≈1, the
dynamic layer L1 alsomaintains a large active coexistence component due to the high degree ofmultiplexity
(figure 7(d)).When q>1, the dynamic layer L1 exhibits two large connected clusters butwith asymmetric sizes.
In addition, the size difference of the two clusters decreases linearly withℓ (figures 7(a), (b)). Phases (I) and (II)
are not found in coevolution dynamics either in a single component network [36] or in amultilayer with linear

Figure 7.Phase diagram (e) for the fully asymmetric plasticity case (p1=1 and p2=0). Network configuration of (a) asymmetric
fragmented phase (q,ℓ)=(2, 0.2), and (b) (2, 0.8), (c) shattered phase (0.5, 0.6), and (d) coexistence phase (0.5, 0.95). The phase
diagram is obtained numerically withmultilayer initially degree regular networkswith k 4á ñ = andN=103.
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interactions [24]. Phase (III) is the analog of the dynamically active coexistence phase found in the single layer
case, nowwith the same phase in the two layers. The difference is that in the presentmultilayer case this phase
exists forℓ>ℓc as a consequence of large plasticity asymmetry, while in the single layer case it only exists below
the fragmentation transition (p<pc) as in the coexistence phase (b) in (figure 5)

The relative number of components nc and the size of the largest component S of the dynamic layer L1 as a
function of q andℓ is shown infigure 8 for the fully asymmetric case p1=1 and p2=0 and comparedwith
results for partially asymmetric coupling (p p1 2¹ ). For the partially asymmetric cases, i.e. (p1, p2)=(0.8, 0.2)
(figure 8(b)) and (0.5, 0) (figure 8(c)), wefind that the shattered phase where nc is nonzero is still present but in a
smaller range of parameters than for the fully asymmetric case. Thisfinding implies that asymmetric plasticity is
the source of the shattered phase so that the area in the (q,ℓ)parameter space where shattering occurs is
maximized at fully asymmetric coupling. In addition, a sharp transition at q=1 indicates that the type of
nonlinearity essentially determines the formof the fragmentation transition. For q>1, the values obtained for S
indicate that the asymmetric fragmentation phase also exists for general asymmetric values of the plasticity
(figures 8(d)–(f)). The range of parameters inwhich this phase exists ismaximized at the fully asymmetric
coupling, while for small asymmetry in the plasticity values a consensus phase also exists. In summary, the new
phases found for the fully asymmetric case continue to exist when the two layers have different plasticities.

Finally, we calculate the characteristic time τ to reach an absorbing state for different values of the nonlinear
parameter q (figure 9). For q=0.5, τ increases exponentially with the system sizeN, (figure 9(a)), so that in the
thermodynamic limit (N  ¥)we have a dynamically active coexistence phase and no absorbing state is
reached. Forfinite systems, a finite size fluctuationwill eventually take the system to an absorbing state, but due
to the exponential dependence of the characteristic time onN, this is very rarely seen in our simulations andwe
observe dynamically active configurations which are extremely long lived.When q=1, the characteristic time

Figure 8.The relative number of components nc and size S of the largest component as a function of nonlinearity q and the degree of
multiplexingℓ for partially asymmetric plasticities (a), (d) (p1, p2)=(1, 0) (b), (e) (0.8, 0.2), and (c), (f) (0.5, 0) onmultilayer networks
withN=103.

Figure 9.The characteristics time τ to reach steady state as a function of system sizeN for (a) q=0.5, (b) q=1, and (c) q=2 for
differentℓ and (p1, p2)=(1, 0).
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grows linearly with the system sizeN, in the sameway as in the usual votermodel (figure 9(b)). In contrast, τ
increases logarithmically withN for q=2 (figure 9(c)), so that the absorbing state is reached in a relatively short
time. The different scalingwithN of these characteristic times, for different values of the nonlinear parameter q,
is consistent with previous results for aCNVMon a single layer network [36] and alsowith local rewiring [37].

5. Asymmetric nonlinearity inmultilayer networks

In this section, we consider the situation inwhich the two layers have a different nonlinear parameter q.
Specifically, we consider three different cases (q1, q2)=(0.5, 1), (2, 1), (0.5, 2)with the same plasticity parameter
for both layers p=p1=p2 (figure 10). For the cases (q1, q2)=(0.5, 1) and (q1, q2)=(2, 1), wefind that the
transition point pc is shifted for both layers with increasingℓ, in a similar way thanwe found for the symmetric
nonlinearity case (see figure 2). In this case of asymmetric nonlinearity the layer that has slower dynamics (longer
characteristics time τ)determines the steady state of the coevolving dynamics. For instance, when two layers
with q=0.5 and q=1 are coupled, the layer with q=0.5, with τ that grows exponentially withN, dominates
the dynamics, and hence the system shows a fragmentation transition between a coexistence phase and a
fragmented phase similarly towhat happenswhen q1=q2=0.5. In otherwords, in the long time limit,
coevolution dynamics is shaped by the layer taking longer to reach itsfinal state.

We alsofind an anomalous fragmentation transitionwhen two layers with different q are coupled.When (q1,
q2)=(0.5, 2) andℓ=1, there exist two subsequent transitions: one is the transition between a coexistence
phase and a consensus phase and the other is between a consensus phase and a fragmented phase as shown in
figure 10(c). For intermediateℓ=0.5, the system exhibits an asymmetric active phase, that is active but
m 0¹∣ ∣ . These results exemplify the rich variety in phase transitions that occur inmultilayer structures with
heterogeneous layer nonlinearities.

6.Discussion

Wehave studied a coevolving votermodel on bilayer networks, focusing on the combined effect of nonlinear
interactions, network plasticity and the degree ofmultiplexity.We observe a rich phase diagramwith a number
of newdifferent phases and transitions.When the two layers have the same network plasticity and nonlinear
parameter, we obtain a fragmentation transition similar to the one obtained in a single layer [36], but the
transition is systematically shifted to larger values of the plasticity when increasing the degree ofmultiplexity.
Therefore,multiplexing prevents fragmentation [24] also for a nonlinear votermodel.When the two layers have
different plasticities p but the same nonlinear parameter, wefind newphases that do not exist in aCNVM in a
single layer, namely an asymmetric fragmented phase and a dynamically active shattered phase. These phases are
also not found in themultilayer version of the ordinary linear votermodel. Finally, when coupling a nonlinear
layer with a linear one (q= 1)wefind that the layer with smaller nonlinearity, which is the one thatwould reach

Figure 10.The size S of the largest component and the absolute value m∣ ∣ofmagnetization of (a), (d) (q1, q2)=(0.5, 1), (b), (e) (2, 1),
and (c), (f) (0.5, 2) for differentℓ=0, 0.5, 1 onmultilayer degree regular networks with k 4á ñ = andN=104 for each layer.
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thefinal state in a longer time for q1=q2, dominates the dynamics. In addition, when coupling layers with
different types of nonlinearity q1<1 and q2>1we observe an asymmetric active phase and also, for complete
multiplexingℓ=1, we observe two subsequent transitionswhen increasing the plasticity parameter: from a
coexistence phase to a consensus phase, and from consensus to an absorbing fragmented phase.
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