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Abstract
Wedevelop a theoretical framework to describe the scattering of photons against a two-level quantum
emitter with arbitrary correlated dephasing noise. This is particularly relevant towaveguide-QED
setupswith solid-state emitters, such as superconducting qubits or quantumdots, which couple to
complex dephasing environments in addition to the propagating photons along thewaveguide.
Combining input–output theory and stochasticmethods, we predict the effect of correlated dephasing
in single-photon transmission experiments withweak coherent inputs.We discuss homodyne
detection and photon counting of the scattered photons and show that bothmeasurements give the
modulus and phase of the single-photon transmittance despite the presence of noise and dissipation.
In addition, we demonstrate that these spectroscopicmeasurements contain the same information as
standard time-resolved Ramsey interferometry, and thus they can be used to fully characterize the
noise correlations without direct access to the emitter. Themethod is exemplifiedwith paradigmatic
correlated dephasingmodels such as coloredGaussian noise, white noise, telegraph noise, and 1/f-
noise, as typically encountered in solid-state environments.

1. Introduction

Thefield of waveguide-QED [1, 2] describes a variety of experimental setupswhere a quantum emitter interacts
preferentially with a family of guided photonicmodes, so that the emission rates γ± into thewaveguide
approaches or even surpasses decay γloss into unwantedmodes (seefigure 1). This regime has been achieved, for
instance, in experiments with superconducting circuits [3–6], neutral atoms [7–10], molecules [11], and
quantumdots in photonic crystals [12–14].With a few exceptions, such as [15, 16], most experiments work in
the rotating-wave approximation (RWA) regime, allowing for a adequate description in terms of one- and few-
photonwavefunctions [17–19], input–output theory [20–22], diagrammaticmethods [23–25], and path integral
formalism [26, 27]. Those descriptions usually do not account for other sources of error, such as dephasing, but
we know that 1/f-noise severely affects all solid-state devices [28], including quantumdots and superconducting
circuits. There have been some experimental attempts at characterizing noise sources outside actual circuits,
directly exploring the dynamics of the quantum scatterer using time-resolvedmethods [29–40] or Fourier
transform spectroscopy [41–46]. Those detailed studies require time-resolvedmeasurements and direct control
of the quantum scatterer inmany cases, somethingwhichmay be unfeasible or undesirable inwaveguide-QED
setups.

The purpose of this work is to develop a framework of waveguide-QED and scattering theory that accounts
for general correlated dephasing, teaching us how to probe a qubit’s noise and environment using few-photon
scattering experiments. There are earlier works connecting noise with spectroscopy: Kubo’sfluctuation-
dissipation relations links dephasing to lineshapes in nuclearmagnetic resonance [47], as do later works in the
field of quantum chemistry [48]. Our study complements thoseworks, focusing on the quantummechanical
processes associated to single- andmultiphoton scattering inwaveguide-QED.Wewrite down a stochastic
version of the input–output formalism that consistently includes dephasing noise in the energy levels of the
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quantum emitter in addition to the dissipative dynamics due to the coupling to photons in thewaveguide.We
then relate the correlations in that noise to the average scatteringmatrix of individual photons and coherent
wavepackets, and develop strategies to extract those correlations from actual experiments, in conjunctionwith
earlier approaches to scattering tomography [49].

The paper and ourmain results are organized as follows. In section 2we introduce themodel for a noisy two-
level emitter in awaveguide.We describe dephasing noise as a stationary stochastic processΔ(t) and derive the
stochastic input–output equations. In section 3, we review the standard procedure of Ramsey interferometry
and showhow to quantify the noise correlations via theRamsey envelope Cf(t).We also introduce paradigmatic
correlated noisemodels, whichwill be essential to understand the scattering results in the next sections. In
particular, section 4 shows that the same information provided by Ramsey spectroscopy can be obtained from
single-photon scattering experiments, wherewe onlymanipulate the qubit through the scattered photons.We
solve the stochastic input–output equations for a qubit that interacts with a single propagating photon, and show
that the averaged single-photon scatteringmatrix can be related one-to-one to the Ramsey envelope.We also
discuss analytical predictions for scattering under realistic dephasingmodels such as coloredGaussian noise and
1/f noise.We showhow the noise correlationsmodify the spectral lineshapes on each case, recovering simple
limits such as the Lorentzian profiles that arefitted inmost waveguide-QED experiments. Section 5 generalizes
these ideas, showing how tomeasure the averaged scatteringmatrix usingweak coherent state inputs together
with homodyne or photon countingmeasurements, and how to reconstruct the Ramsey envelopeCf(t) from
such spectroscopicmeasurements. This opens the door to the reconstruction ofmore general correlated noise
models that are non-Gaussian but common inmany solid-state environments such as telegraph noise and 1/f
noise due to ensembles of two-level fluctuators (TLFs).We treat this separately in appendix Adue to the higher
complexity of the stochasticmethods needed for the analysis.We close this work in section 6, discussing the
conclusions and open questions.

2.Model for a noisy qubit in a photonicwaveguide

Our study considers the setup depicted infigure 1: a two-level quantum emitter or qubit is strongly coupled to a
1Dphotonic waveguide, emitting photonswith rates g along opposite directions, while simultaneously
interactingwith an unwanted environment that induces correlated dephasing and dissipation into unguided
modes. TheHamiltonian of the total system can be decomposed as

H t H t H H , 1qb ph qb ph= + + -( ) ( ) ( )

and belowwe describe each term.
First, the qubitHamiltonian is given by

H t t
1

2
, 2zqb 0w s= + D( ) [ ( )] ( )

where e e g gzs = ñá - ñá∣ ∣ ∣ ∣ is the diagonal Pauli operator, with eñ∣ and gñ∣ the excited and ground states of the
qubit.We phenomenologicallymodel environment-induced dephasing as a stochastic fluctuationΔ(t) of the
qubit frequency around amean valueω0.We assume the stochastic processΔ(t) [50–52] has vanishingmean—
i.e. the stochastic average ¼⟪ ⟫over noise realizations is zero t 0D =⟪ ( )⟫ —, and is stationary—i.e. all
expectation values and noise correlations t t... n1D D⟪ ( ) ( )⟫ are invariant under a global shift in time—. The
simplest autocorrelation function 0 tD D⟪ ( ) ( )⟫defines a characteristic correlation time τc of the noise as,

Figure 1.Anoisy qubit with arbitrary correlated dephasing noiseΔ(t) couples with rates γ± to right- and left-propagating photons
along a 1Dwaveguide. The qubit also decays with rate γloss into unguidedmodes.Wemodel dephasing as a stochastic process, and
photon scattering via input–output theorywith operators a tin

( ) and a tout
 ( ).
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Those conditions and themachinery of stochasticmethods [50–52] account for any realistic source of qubit
dephasing, including arbitrary correlatedMarkovian andnon-Markovian noise, or 1/fnoise, among the
examples considered below.

The second term in equation (1) corresponds to theHamiltonian of free photons propagating in the
waveguide and in unguidedmodes,

H a a b bd d . 4ph ò òå w w w w= +
m

w
m

w
m

w w
=

( )† †

Here, the annihilation operator aw
m destroys a photon of frequencyω propagating to the right (μ=+) and left

(μ=−) of thewaveguide, whereas bω destroys an unguided photon of frequencyω. They satisfy standard
commutation relations a a, d d w w= - ¢w

m
w
m

mm¢
¢

¢[ ] ( )† and b b, d w w= - ¢w w¢[ ] ( )† .We consider the RWA
throughout this work, so that photons are only populated in a narrow bandwidth around themean frequency of
the qubitω0, and the integration limits ofω in equation (4) can be safely extended to¥ [20, 53].

The last term in theHamiltonian (1)describes the qubit-photon interaction, which in the RWA reads

H a b
2

d h.c.
2

d h.c. , 5qb ph
lossò òå

g
p

w s
g
p

w s= + + +
m

m
w
m

w-
=

+ +( ) ( ) ( )

with e gs = ñá+ ∣ ∣and g es = ñá- ∣ ∣ the raising and lowering qubit operators. The qubit absorbs and emits
photons at a rate γμ for waveguide photons in directionμ=±, and at a rate γloss for unguided photons.
Assuming aMarkov approximation in the qubit-photon coupling t, ,loss 0g g wDm ( ∣ ( )∣ ), the dynamics of
the photons can be integrated out, and the noisy qubit is effectively governed by quantumLangevin equations
[20, 54, 53], given in theHeisenberg picture as

t
t a t b t

d

d 2
i i i , 6z z0 in loss inås
w s s g s g= -

G
+ + D + +

m
m

m
-

-

=

⎜ ⎟⎛
⎝

⎞
⎠[ ( )] ( ) ( ) ( )

t
a t b t

d

d
1 2i h.c. 2i h.c. . 7z

z in loss inås
s g s g s= -G + - - - -

m
m

m

=

+ +( ) ( ( ) ) ( ( ) ) ( )

Here, the total decay of the qubitΓ=γ+γloss, combines the emission of the qubit into guided g g g= ++ -
and unguidedmodes γloss.While typical qubit-waveguide couplings are symmetric γ±=γ/2, our formalism
with independent channels (μ=±)naturally admits the possibility of a ‘chiral’waveguide with different
couplings to left- and right-moving photons g g¹- + [55–57]. The initial condition of the photons is determined
via theHeisenberg operators a tin

m ( ) and bin(t), which describe the inputfield photons in thewaveguide and
unguidedmodes, respectively, and read

a t a t b t b t
1

2
d e , and

1

2
d e , 8t t t t

in
i

0 in
i

0
0 0ò òp

w
p

w= =m w
w
m w

w
- - - -( ) ( ) ( ) ( ) ( )( ) ( )

with a t0w
m ( ) and bω(t0) theHeisenberg operators at the initial time.

After interactingwith the qubit, the photons leave thewaveguide through the right m = +( ) and left
m = -( ) output ports, where they can bemeasured. The output fields of thewaveguide photons are described by
the output operators a tout

m ( ), which are given by input–output relations as [20, 54]

a t a t ti , with . 9out in g s m= - = m m
m

-( ) ( ) ( ) ( )

These equations allow us to access the information of the qubit’s dynamics via thewaveguide photons andwill
be essential for the optical characterization of the correlated dephasing noise.

Due to the random classical fieldΔ(t), the equations ofmotion (6) and (7) are stochastic differential
equations. In such equations, each particular realization of the noise provides different quantum expectation
values sá ñ- or zsá ñ, andwe need to average over all possible noise realizations to obtainmoremeaningful and
measurable values—i.e. sá ñ-⟪ ⟫or zsá ñ⟪ ⟫, as well as higher ordermulti-time correlations if needed—. In the
remainder of the paper we calculate this kind of stochastic averages to characterize the effect of correlated
dephasing noise on both the time-resolved dynamics (section 3) and the single-photon spectroscopy (section 4–
5) of the qubit.

3. Time-resolved characterization of correlated dephasing noise

In this section, wefirst review the concepts of Ramsey interferometry (see section 3.1) and then introduce the
paradigmaticmodel of coloredGaussian noise (see section 3.2), which can be analytically solved for arbitrary
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noise correlation times τc. Reviewing these concepts will be essential to understand the effect of correlated
dephasing in the photon scattering of the next sections.

3.1. Ramsey interferometry
Ramsey interferometry [29, 30, 35] is themost commonway to characterize qubit decoherence. This and other
time-resolvedmethods require full control and read-out of the qubit, while it is in contact with its environment
(see figure 2(a)). Thesemethods are experimentally demanding, but give detailed information about noise
correlations, specially when combinedwith dynamical decoupling [32, 37] and other control techniques
[33, 36, 38, 39].

A standard Ramsey sequence consists of thefive steps from figure 2(b): (i) preparation of the qubit in its
ground state gñ∣ , (ii) application of aHadamard gateH(0)with a very fastπ/2 pulse, (iii) evolution of the qubit
for a time t, (iv) application of a secondHadamard gateH(t), and (v)measurement of the qubit population
difference zsá ñ. The purpose of steps (i)–(ii) is to produce the initial superposition state,

H g e g0 0 0
1

2
0 , 10Y ñ = ñ ñ = ñ + ñ ñ∣ ( ) ( )∣ ∣ (∣ ∣ )∣ ( )

for which the qubit coherence ismaximal, namely 0 1 2sá ñ =-( ) . Steps (iii)–(v)monitor the destruction of the
qubit coherence tsá ñ-( ) , under the influence the noisy environment. Repeating this procedure for various
waiting times t and averaging overmany realizations, one obtains the average coherence tsá ñ-⟪ ⟫( ).

The dynamics of the qubit coherence under the influence of pure dephasing and radiative decay is obtained
by taking expectation values on the quantumLangevin equation (6). For the initial condition (10), it reads

t
i t

d

d 2
, 110s w sá ñ = -

G
+ + D á ñ- -⎜ ⎟⎛

⎝
⎞
⎠[ ( )] ( )

which is amultiplicative stochastic differential equationwith a randomvariableΔ(t) [50–52]. To solve for the
average tsá ñ-⟪ ⟫( ), we integrate equation(11) formally and average the result over all stochastic realizations of
the random trajectoryΔ(t), obtaining

C t
1

2
e . 12t2 i 0sá ñ = w

f
- - G +⟪ ⟫ ( ) ( )( )

In addition to the exponential decaywith rateΓ due to the coupling to photons3, pure dephasing originates an
extra decay factorCf(t) known as Kubo’s relaxation function [47] or ‘Ramsey envelope’ [33]. For stationary
noise,Cf(t) is the average of the randomphase accummulated by the qubit after a time t, namely

C t e . 14t ti d
t

0ò=f
- ¢D ¢( ) ⟪ ⟫ ( )( )

In general, this function depends on noise correlations of arbitrary order t tn1D ¼ D⟪ ( ) ( )⟫whose
characterization requires sophisticated noise spectroscopymethods [38, 58], but forGaussian noise wewillfind
that only first and secondmoments are required, as shownbelow.

Figure 2.Time-resolved characterization of correlated dephasing noise. (a)Aqubit coupled to a generic noisy environment causing
pure dephasingΔ(t), and radiative relaxationwith rateΓ. (b)Basic Ramsey sequence consisting of (i) ground state preparation,
(ii)Hadamard gateH(0), (iii) free evolution, (iv) secondHadamard gateH(t), and (v)measurement of the qubit population difference

tzsá ñ( ) . (c)Ramsey envelopesCf(t) for a noisy qubit with coloredGaussian dephasing, characterized by the noise strengthσ and the
correlation time τc=1/κ (see equation (17)). Forκ=10σ the noise is in the white limit andCf(t) is exponential (blue/solid line).
Forκ=0 the noise is quasi-static andCf(t) is Gaussian (red/dashed line). Finally, forκ=2σ the decay interpolates between the two
previous behaviors.

3
Notice that the relaxation decayΓ can be obtained independently of the dephashing noise bymeasuring zsá ñ⟪ ⟫without the second

Hadamard gate infigure 2, resulting in the pure exponential decay,

e 1. 13z
tsá ñ = --G⟪ ⟫ ( )
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3.2. ColoredGaussian noise, white noise, and quasi-static noise
For stationaryGaussian noise with vanishingmean, all cummulants and correlations can be expressed in terms
of the autocorrelation 0 tD D⟪ ( ) ( )⟫ [47, 51], and thusCf(t) in equation (14) is reduced to

C t texp d 0 . 15
t

0
ò t t t= - - D Df ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )⟪ ( ) ( )⟫ ( )

If the noise is alsoMarkovian, Doob’s theorem [51] implies that the noise can be described as anOrnstein–
Uhlenbeck process [50–52]with autocorrelation given explicitly by

0 e . 162t sD D = k t-⟪ ( ) ( )⟫ ( )∣ ∣

This richmodel describes ‘coloredGaussian noise’with strength 02 1 2s = D⟪ ( )⟫ and a correlation time
τc=1/κ, that covers both fast and slownoise limits. This includeswhite noisewith autocorrelation

0 2t g d tD D = f⟪ ( ) ( )⟫ ( ), when taking the limits k  ¥ and s  ¥, while keeping a constant pure
dephasing rate γf=σ2/κ. It also includes quasi-static noise in the opposite limit of 0k  , inwhich the
autocorrelation becomes constant 0 2t sD D =⟪ ( ) ( )⟫ .

Another advantage of the coloredGaussian noise (16) is that the Ramsey envelope (15) can be derived
analytically

C t texp e 1 . 17t2s k k= - + -f
k-( ) ( ( ) ( )) ( )

This super-exponential envelope has beenfitted to experimental data to quantify the strength and correlation of
realistic environments [29, 33]. Figure 2(c) shows the typical shape of this envelope in the the limits of fast and
slownoise. In thewhite noise limit (blue/solid line), the decay is exponential C t texp g= -f f( ) ( )with
γf=σ2/κ; in the quasi-static limit limit (red/dashed), the decay is Gaussian C t texp 2 ;2 2s= -f ( ) ( ) and for
intermediate values such asκ=2σ, the curve clearly interpolates between both shapes (black/dotted).

4. Single-photon scattering froma qubitwith correlated dephasing noise

In the followingwe use the stochastic input–output formalismof section 2 to compute the average single-
photon scatteringmatrix for a qubit with stationary dephasing noiseΔ(t).Most importantly, in section 4.1we
derive the stochastic differential equation to solve for the average transmittance tw

m⟪ ⟫ and reflectance rw
m⟪ ⟫ in a

single-photon scattering experiment. In the spirit of Kubo [47], we also show that these scattering coefficients
contain the same noise correlations as the Ramsey envelopeCf(t), which can be determined by an independent
time-resolved experiment as shown in the previous section. Finally, we evaluate tw

m⟪ ⟫ for a qubit with colored
Gaussian noise (see section 4.2) and 1/fnoise (see section 4.3), discussing on each case the broadening of the
spectral lineshape and the connections towell-known results in the literature.

4.1. Average single-photon scatteringmatrix
The single-photon scatteringmatrix Snw

lm describes the interaction between an isolated photon and a quantum
emitter. It is defined as the probability amplitude for the emitter to transform an incoming photonwith
frequencyω in channelμ=±into an outgoing photonwith possibly different frequency ν and direction
λ=±:

S g a a g0 0 . 18out inn w= á á ñ ñnw
lm l m∣ ∣ ( ) ( )∣ ∣ ( )†

Themonochromatic input–output photonic operators ain wm ( ) and aout w
m ( ) are given by the Fourier transform 

of theHeisenberg input–output field amplitudes defined above [20]:

a a t a a t, , 19in in out out w w w w= =m m m m( ) [ ( )]( ) ( ) [ ( )]( ) ( )

with f t d f t2 te t1 2 i òw p= w-
-¥

¥
[ ( )]( ) ( ) ( ) for a test function f (t). Notice that thesemonochromatic

operators (19) satisfy canonical bosonic commutation relations aswell as their time-domain counterparts,
namely a a a a, ,in in out outn w n w d d n w= = -l m l m

lm[ ( ) ( )] [ ( ) ( )] ( )† † .
The scatteringmatrix of the noisy qubit is derived by combining equations (9), (18), and (19) to obtain

S G t
2

. 20d d n w
g g
p

n w= - - -nw
lm

lm
l m

w( ) [ ( )]( ) ( )

Here, the scattering overlap, G t t aie 2 0 0ti 1 2
inp g s w= á ñw

w
m

m-( ) ( ) ∣ ( ) ( )∣† satisfies an inhomogeneous stochastic
differential equation derived from equations (6)–(7),

G

t
t G t

d

d 2
i i 1, 210w w= -

G
- - + D +w

w⎜ ⎟⎛
⎝

⎞
⎠[ ] ( ) ( ) ( )
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andwith initial conditionGω(t0)=0 for t0  -¥. This is similar to the equation for the qubit’s
coherence(11), but now including a constant source term.

As explained in section 5, spectroscopicmeasurements are not related to S but to the average scattering
matrix Snw

lm⟪ ⟫. Computing this quantity is a two-step process. First, we formally integrate equation (21) for a
stationary noiseΔ(t) and solve for the average G tw⟪ ( )⟫. Using the stationary noise property

Ce et t t ti d i d
t

t

0 t= =ò ò f
- ¢D ¢ - ¢D ¢

t

t

-⟪ ⟫ ⟪ ⟫ ( )( ) ( ) and taking the limit t0  -¥, wefind that the solution is
independent of time, namely

G t G C 2 i . 220 t w w= = G - -w w f⟪ ( )⟫ ⟪ ⟫ [ ( )]( [ ]) ( )

Note how the noise correlations enter via theKubo relaxation functionCf(t) in equation (14) after a Laplace
transform f t s t f td e st

0
 ò=

¥ -[ ( )]( ) ( ). The second step is to take the stochastic average in equation (20) and
insert the Fourier transformof equation (22)which is trivially given by

G t G2 n w p d n w- = -w w[⟪ ( )⟫]( ) ⟪ ⟫ ( ). The total averaged scatteringmatrix then reads

S G , 23d g g d n w= - -nw
lm

lm l m w⟪ ⟫ { ⟪ ⟫} ( ) ( )

where the delta function d n w-( ) indicates that the scattering conserves the energy of the photons on average.
On each realization, we can imagine the emitter absorbing a photonwhen its transition frequency isω0+Δ(t),
and then relaxing by spontaneous emissionwhen it has a different frequency t0w + D ¢( ). During this process,
the dephasing environment exerts work on the qubit, adding and subtracting energy via the external fieldΔ(t),
even though the total work is zero on average. The systemof qubit and photons is thus an open systemdue to the
presence of the dephasing environment andmust be described by amixed state in general. Nevertheless, this is
not relevant whenwe focus on the scattered photons on the same frequencymode as the input. The averaged
single-photon transmittance tw

m⟪ ⟫ and reflectance rw
m⟪ ⟫ are directly given by the pre-factors in equation (23) as

t C t1 2 i , 240g w w= - G - -w
m

m f⟪ ⟫ [ ( )]( [ ]) ( )

r G t 1 , 25g g g g= - = -w
m

w m m w
m

+ - -⟪ ⟫ ⟪ ⟫ (⟪ ⟫ ) ( )

andmeasure the average amplitude of the photons on the same (λ=μ) and opposite (λ=−μ) output channel
with respect to the input beamμ. Notice that the asymmetry in the couplings g g¹+ - appears in equations (24)–
(25) as a pre-factor of Gw⟪ ⟫ and thus it only rescales the lineshape of the qubit. For the scope of the present paper
it is therefore enough to consider examples in the symmetric case only (γμ=γ/2), but wewill still keep all the
formulas general.

Equations (21)–(25) have deep physicalmeaning as they allow us to predict the spectroscopic lineshape of a
noisy qubit either by solving the stochastic differential equation (21) or by using the knowledge of the Ramsey
envelopeCf(t) obtained independently via standard time-resolved noise experiments. In [47]Kubo used the
fluctuation-dissipation theorem tofind a similar relation betweenCf(t) and the noise power spectrum, but this
quantity is generic and not as simple tomeasure in a scattering experiment as the average transmittancewe have
introduced (see section 5).

Finally, wewould like to remark that the present derivationmay be easily extended in variousmanners. So
farwe have considered a noisy qubit that is perfectly ‘side-coupled’ to thewaveguide, but in experiments there
may be impedancemismatches and internal reflections that cause Fano resonance in the scattering profiles
[59, 60]. Therefore, appendix B generalizes equations (24)–(25) for a noisy qubit with a Fano resonance and
shows that the corresponding relations between transmission and reflection coefficients are still valid under
correlated dephasing noise. On the other hand, it is also possible to includemultiple noise sources on the qubit.
In this respect, appendix C shows that adding awhite noise background tWBD ( ) to correlated noise,
i.e. t t tWBD  D + D( ) ( ) ( ), amounts to a trivial replacement 2 2 WBgG  G + in the stochastic
equation (21), where γWB is the pure dephasing rate of thewhite noise background.

4.2. Average transmittance of qubit with coloredGaussian dephasing
In spectroscopy, correlated dephasing is typically referred to as spectral diffusion [42–45] because it broadens the
lineshapes of emitters. In this subsectionwe analyze this broadening and the average single-photon
transmittance tw

m⟪ ⟫of a qubit with coloredGaussian dephasing noise (see section 3.2 for details on themodel),
paying special attention to the limits of white and quasi-static noise where the transmittance exhibits
qualitatively different behaviors.

Equation (24) provides an expression for the single-photon transmittance tw
m⟪ ⟫ in terms of the analytical

Ramsey envelope in equation (17). For coloredGaussian noise with arbitrary correlation time τc=1/κ and
noise strengthσwe can either estimate numerically the Laplace transform, or expand the super-exponential
function in a power series to obtain

6
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In the limit of white noise ( ,k s  ¥withσ2/κfixed), only the termwith n=0 survives in equation (26), and
the average transmittance is a Lorentzian function4,

t 1
2 i

, 27
0

g
g w w

= -
G + - -w

m m

f
⟪ ⟫

( )
( )

with pure dephasing rate γf=σ2/κ. This is a well-known result, typically proven via themaster equation
formalism [61], which demonstrates that white pure noise dephasingmaintains the natural Lorentzian lineshape
of the qubit, while its width and depth getmodified by γf [3, 11, 59]. This Lorentzian behavior is shownby the
blue/solid transmittance infigure 3(a), for typical waveguideQEDparameters. If we now consider afinite but
moderate correlation time s k < ¥, more andmore terms in the series expansion (26) become important,
resulting in a transmittancewith a larger width and smaller depth, as shown by the black/dashed–dotted curve
infigure 3(a). Finally, in the quasi-static limit of very long correlation times k s < ¥ , all terms in
equation (26) contribute and the series expansion fails to converge numerically. In this case, wemake the
approximation 0k  inwhich the relaxation function (17) is Gaussian, C t texp 22 2s= -f ( ) ( ), and perform
the required Laplace transform analytically, obtaining5

t 1
2

e erfc
2 i

2
, 2802 i 0 2

2 2
g
s

p w w
s

= -
G - -

w
m m w w

s
G - - ⎛

⎝⎜
⎞
⎠⎟⟪ ⟫ [ ] ( )

( [ ])

with the complementary error function z xerfc 2 d e
z

x2

òp=
¥ -( ) ( ) . From equation (28)we conclude that in

the slownoise limit t,k s < ¥ w
m ⟪ ⟫ is Gaussian-like and has awidth proportional to the noise strength σ.

This behavior is shown by the red/dashed transmittance from figure 3(a). Notice that the Lorentzian (blue/
solid) andGaussian-like (red/dashed) lineshape limits can be qualitatively distinguished in transmittance
experiments by their width, curvature, and tails [62], suggesting that spectroscopy can be a simple approach to
discover the noise correlation properties.More specifically,fitting arbitrary parametersκ andσ to experimental
transmittance data tw

m⟪ ⟫onemay even quantify the correlation time τc=1/κ and the noise strengthσ of a
given environment as recently done in [5].

ColoredGaussian noise is a useful and powerful dephasingmodel, and thus it is tempting to assume that this
is the real noise. Indeed, this is what is done inmost commonwaveguide-QED experiments, where a Lorentzian
profile is assumed and a single dephasing parameter gf isfitted [3]. In section 5wewill show that there is amore

general approach, using estimates of the transmittance tw
m⟪ ⟫ to extract the Ramsey profile and noise

correlations, in a single-photon scattering protocol that generalizes current experiments (see figure 3(b)).

4.3. Average transmittance of a qubit with 1/fdephasing noise
In this subsection, we consider a noisy qubit with dephasing due to 1/f noise, a very slowly varying, highly
correlated, and low-frequency noise that is ubiquitously encountered in electronics and solid-state devices such
as superconducting qubits or quantumdots [28]. Nowadays there is still ongoing research on themicroscopic
origin and universalmechanisms behind this type of noise [63–67], but an unquestionable experimental
evidence is that its noise power spectrum, 2 0 w p t w= D D( ) [⟪ ( ) ( )⟫]( ), presents a power-law behavior

Figure 3. (a)Average single-photon transmittance tw
m⟪ ⟫ of a noisy qubit coupled to a 1Dphotonic waveguidewith parameters

2, 0.9g g g= = G , and γloss=0.1Γ.We consider a coloredGaussian dephasingmodel, characterized by the correlation time
τc=1/κ and the noise strengthσ=Γ. Forκ=10σ, the noise is in thewhite limit and the transmittance has a Lorentzian lineshape
(blue/solid). Forκ=0 the noise is quasi-static and tw

m⟪ ⟫ is Gaussian-like as given in equation (28) (red/dashed). Finally, forκ=2σ
the transmittance interpolates between two previous behaviors (black/dashed–dotted). (b)Measurement of tw

m⟪ ⟫ of a noisy qubit in a
waveguide, using a coherent state input W G(∣ ∣ ), and homodyne or powermeasurements at the output.

4
In thewhite noise limit, equation (17) becomes the exponentialCf(t)=exp(−γft), so that the Lorentzian lineshape follows directly from

the Laplace transform in equation (24).
5
This expression can also be obtained by a simple static average over noiseless Lorentzian transmittances with different qubit frequencies as
t P1 d 2 i iG 0òg w w= - D D G - - + Dw
m

m⟪ ⟫ ( ) ( [ ] ), where P 2 eG
2 1 2 22 2psD = s- -D( ) ( ) ( ) is a Gaussian probability distributionwith

standard deviationσ.
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1 w wµ h( ) , with 0<η<2. In fact, it is exactly this low-frequency divergence whatmakes 1/fnoise so
difficult tofilter and to controllably observe in experiments [28].

There have been various proposals for phenomenologicallymodeling the effects of 1/fnoise within afinite
but broad frequencywindow min maxk w k  [68–72]. The basic assumption is that it is produced by a sum
ofNuncorrelated noise sources,
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with noise componentsΔj(t)presenting correlations of the form 0 ej j j
2 jt sD D = k t-⟪ ( ) ( )⟫ ∣ ∣, and thus the total

autocorrelation and noise spectrum read
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To achieve this situation, the noise componentsΔj(t) can bemodeled as independentOrnstein–Uhlenbeck
processes [72] (section 3.2), but it is also typically assumed thatΔj(t) are originated by an ensemble of TLFs
[68–70], characterized by different noise strengthsσj and jumping ratesκj (see appendix A.2). In either case, if
the parametersκj present an uniformdistribution of log j10 k G( ) in a broad range from 1 mink k= to
κN=κmax, and if j j1 1

1 2s s k k= h-( )( ) , then in the limitN?1 the noise spectrum  w( ) in equation (30)
approximates a power-law behavior [72],
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Infigure 4(a)we illustrate the effectiveness of thismethodwith a numerical simulation of 1/f 0.99 noise with only
N=8 independent noise components.We see that that exact noise spectrum in equation (30) (blue/solid),
approximates well the expected the power-law behavior (red/dashed) in the frequency range
10−4=ω/Γ=104.

Nowwe solve for the average transmittance tw
m⟪ ⟫ and the Ramsey envelopeCf(t) for a noisy qubit subject to

the abovemodel of 1/fnoise.We can simulateGaussian or non-Gaussian 1/fnoise depending if we choose the
noise componentsΔj(t) in equation (29) as coloredGaussian noises (see section 4.2) or as an ensemble of TLFs
(see appendix A.4). In the former case,Cf(t) in equation (15) can be analytically computed from the
autocorrelation (30), and reads

C t
N

texp
1

e 1 , 32
j

N

j j
t

j
1

2 jå s k k= - + -f
k

=

-
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( )

where jk andσj are chosen to simulate the 1/fmodel as explained above. To obtain tw
m⟪ ⟫weuse equation (24)

and numerically calculate the Laplace transformof equation (32) as done in section 3.2 for a single colored
Gaussian noise. On the other hand, calculating tw

m⟪ ⟫ for non-Gaussian 1/fnoise requiresmore advanced
stochasticmethods for describing the dynamics of the TLFs. This is done in full detail in appendix A, but herewe
discuss the results. Infigures 4(b) and (c)we display tw

m⟪ ⟫ andCf(t) for a noisy qubit with dephasing due to the
1/f 0.99 noise simulated infigure 4(a), and typical waveguideQEDparameters. The red/dashed lines are the
predictions in theGaussian case as calculated via equation (32), whereas the blue/solid lines correspond to the
non-Gaussian situation, calculated from equations (A.20)–(A.22). Themain difference betweenGaussian and
non-Gaussian 1/f-noises are small bumps in tw

m⟪ ⟫ andCf(t), which are signatures of the sparsity or granularity
of the dephasing environment as treated in detail in appendix A.3. Besides that, both predictions agree well and

Figure 4.Noisy qubit with 1/f dephasing noise. (a)Noise power spectrum  w( ) for 1/f 0.99 noise (red/dashed), and its simulation by
N=8 uncorrelated noises (blue/solid)with 10 , 10N1

5k k= G = G- , andσ1=2Γ, as indicated in equations (31) and (30),
respectively. (b)Average transmittance tw

m⟪ ⟫ for qubit with the 1/f 0.99 dephasing noisemodel in (a), and thewaveguide parameters
γ±=γ/2, γ=0.9Γ, and γloss=0.1Γ. The red/dashed curve corresponds toGaussian 1/f 0.99 noise and the blue/solid to non-
Gaussian 1/f 0.99 noise causedN=8 different two-level fluctuators (see appendix A). (c)Time-resolved Ramsey envelopeCf(t)
corresponding to the same parameters and same line-types as in (b).
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behave very similar to a single coloredGaussian noise in the quasi-static limit, except for the power-law
spectrum  w( ).

5. Spectroscopic characterization of correlated dephasing noise

This section introduces a simple experimental protocol tomeasure the average single-photon transmittance and
reflectance, and to recover the correlated dephasing noise from those quantities. This protocol only requires
attenuated coherent states and either homodyne or powermeasurements at the output—the choice of which
dependsmainly onwhether the experiment is performedwithmicrowave [3, 5] or optical photons [60, 73, 74]
—. In section 5.1we summarize and discuss themost important results to apply the protocol, while section 5.2
contains details on the derivation. In addition to this, appendix B generalizes the protocol to the case the noisy
qubit sees Fano resonances [75, 76], as for instance, in experiments with quantumdots in photonic crystals
waveguides [59, 60, 77].

5.1. Results of the protocol
The experimental procedure is sketched infigure 3(b), where amonochromatic coherent state a ñw

m∣ of
amplitude aw

m and frequencyω is injected on the input channelμ=±of thewaveguide.We study the evolution
of the corresponding initial state

0 , 33qb aY ñ = Y ñ ñw
m∣ ( ) ∣ ∣ ( )

which describes a coherently driven qubit from an arbitrary initial state qbY ñ∣ , and vacuum states in all photonic
channels different thanμ.Wewill work in the limit of weak driving, W G∣ ∣ , with driving strength given by

ia gW = - w
m

m .We showbelow that in this limit we recover the single-photon transmittance fromhomodyne

or powermeasurements in steady state, as follows

a
t , 34out ss 2

a
á ñ

= + W G
m

w
m w

m⟪ ˜ ⟫ ⟪ ⟫ [∣ ∣ ] ( )

a a
t2 1 2 1 Re , 35out out ss

2
2

a
b b

á ñ
= - + - + W G

m m

w
m m m w

m⟪ ⟫
∣ ∣

( ) {⟪ ⟫} [∣ ∣ ] ( )
†

withβμ=γμ/Γ the directionalβ-factor, and a t a te t
out

i
out=m w m˜ ( ) ( ).

Note that, while homodynemeasurements in equation (34) provide direct access to tw
m⟪ ⟫, power

measurements in equation (35) give us only its real part, but we can still reconstruct the full transmittance via the
Kramers–Kronig relation,

t
t

Im
1

d
1 Re

, 36 òp
w

w w
= ¢

-

¢ -w
m w

m

-¥

¥
¢{⟪ ⟫}

{⟪ ⟫}
( )

with  representing theCauchy’s principal value of the integral. In the literature it is not well recognized that
powermeasurements alone are enough to determine themodulus and phase of the transmittance tw

m⟪ ⟫, even in
the presence of general correlated noise and dissipation as shownhere. Indeed, it is typically believed that power
measurements give direct access to t 2

w
m∣⟪ ⟫∣ , but in appendixDwe show that this is only true in the absence of any

dephasing, so that t tRe 2=w
m

w
m{⟪ ⟫} ∣⟪ ⟫∣ . Formore details see appendixD,which also includes the expressions

for single-photon reflectancemeasurements rw
m⟪ ⟫, and a discussion on the conservation of the average photon

flux in these experiments.
Aftermeasuring the single-photon transmittance tw

m⟪ ⟫, we can invert equation (24) to access to the time-
resolvedRamsey envelopeCf(t) and characterize noise correlations of the environment. A convenient inverse
formula can be derivedwhen the dephasing fluctuationΔ(t)has a symmetric probability distribution around
the average, which is very reasonable assumption in experiments. In this case, the Ramsey envelope defined in
equation (14) is a real function of time, C t C t *=f f( ) [ ( )] , and it can be directly related to tRe w

m⟪ ⟫by6

C t
t

t t
2

e
1 Re

, for 0. 37t2 1
p g

=
-

>f
w
m

m

G -
⎡
⎣⎢

⎤
⎦⎥( ) ⟪ ⟫ ( ) ( )( )

This relation (37) has important physical consequences to single-photon scattering experiments inwaveguide
QED, as it demonstrates that applying a Fourier transformation on the usual transmittance data
[3, 5, 11, 59, 60, 73, 74], one can characterize noise correlationswithout requiring direct access and time-
dependent control of the emitter.Moreover, equation (37) is particularly convenient in the case of power

6
Inverting equation (24) in the general case leads to C t t t2 e 1t1 2 2 1p g= -f w

m
m

- G -( ) ( ) [( ⟪ ⟫) ]( )( ) , for t>0, but this expression presents
a slower numerical convergence compared to equation (37). Notice that the presence of a non-zero photon decayΓ>0 allows us to
mathematically replace the inverse Laplace transform 1- by themore convenient inverse Fourier transform 1- .
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measurements (35) as it only requires the knowledge of tRe w
m⟪ ⟫, and thus avoids the use of theKramers–Kronig

transformation (36).

5.2.Derivation of the protocol
Let us briefly summarize how equations (34)–(35) are derived.We beginwith the equations ofmotion for the
noisy qubit, taking expectation values on (6)–(7)with the initial condition (33). Using the property
a t 0 e 0t

in
ia dY ñ = Y ñl

w
m

lm
w-( )∣ ( ) ∣ ( ) withλ=±, and going to a rotating framewith the driving frequencyω, we

find

t
t

d

d 2
i i , 38z0s w w s sá ñ = -

G
- - + D á ñ - Wá ñ- -⎜ ⎟⎛

⎝
⎞
⎠˜ [ ] ( ) ˜ ( )

t

d

d
1 2 h.c. . 39z z *s s sá ñ = -G + á ñ + W á ñ +-( ) ( ˜ ) ( )

Here, we have defined the slowly evolving coherence t te tis sá ñ = á ñw- -˜ ( ) ( ) and the strength of the coherent
drive ia gW = - w

m
m . The qubit equations are stochastic Bloch equations that can combine correlated

dephasingwith saturation at strong drives W G∣ ∣ [78]. The stochasticmethods from section appendix A
provide a solution to this complex dynamics of the qubit, but noise spectroscopy only requires the steady state
averaged coherence tsss sá ñ = á ñ- -

¥⟪ ˜ ⟫ ⟪ ˜ ⟫ , which appears both in homodyne and power steady state
measurements as7

a
, 40out ss
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†

In the low driving limit W G∣ ∣ , the qubit will remain close to the ground state 1z
2sá ñ = - + W G[∣ ∣ ] , and

equations (21) and (38) become equivalent.We can thusmap the qubit steady state coherence sssá ñ-⟪ ˜ ⟫ to the
solution of average scattering overlap in section 4 as,

G . 42ss
2sá ñ W = + W Gw

-⟪ ˜ ⟫ ⟪ ⟫ [∣ ∣ ] ( )

From this relationwe conclude that homodyne and powermeasurements give us full information about the
average single-photon transmittance tw

m⟪ ⟫ and reflectance rw
m⟪ ⟫, and allow a full spectroscopic characterization

of the noise via equations (34)–(37).

6. Conclusions and outlook

Wedeveloped a stochastic version of input–output theorywhich consistently describes the effect of correlated
dephasing noise in single-photon scattering experiments withweak coherent inputs. Using this theory, we
studied scattering subject to the typical noisemodels from solid-state and quantumoptics—white noise, quasi-
static noise, coloredGaussian noise (see sections 3.2 and 4.2), and 1/fnoise (see section 4.3), in addition to
telegraph noise and non-Gaussian jumpmodels in appendix A—, illustrating how to calculate the single-photon
transmittance tw

m⟪ ⟫ and reflectance rw
m⟪ ⟫of eachmodel.

Complementary to these theoretical developments, we introduced a spectroscopicmethod that extracts the
qubit noise correlations from standard homodyne or photon countingmeasurements. Themethod provides the
same information as time-resolved Ramsey experiments, but does not require direct access or time-dependent
control of the emitter. Thismethod and the techniques developed in this work are suited not only forwaveguide
QED experiments—superconducting circuits [3–5, 15], quantumdots in photonic crystals [59, 60], SiV-centers
in diamondwaveguides [74, 79], or nanoplasmonics [80]—, but also for generic experiments with two-level
quantum emitters interactingwith propagating photons, such asmolecules in a 3Dbath [73] or ions in a Paul
trap [81].

There are still several open questions and extensions to consider in the interaction between few photons and
noisy quantum emitters. For instance, our theory is valid for general stationary random fluctuationsΔ(t), but we
only analyzed phenomenological classical noisemodels. Therefore, it would be interesting to study the effects of
specificmicroscopic quantummodels producing correlated pure dephasing on the quantum scatterers [82, 83],
and try tofind the connections to the phenomenologicalmodels analyzed here.Moreover, we can combine the
stochasticmethods discussed herewith our recent theory of scattering tomography [49] to characterizemulti-
photon processes ormany-body scatterers [84–86] under realistic conditions of noise.

7
To derive the relation (41), we combined the input–output equations (9), the equation ofmotion (39), and used the exact relation

1 Re 4z ss ss*s sá ñ = - + W á ñ G-⟪ ⟫ { ⟪ ˜ ⟫ }, which results from integrating(39) and averaging in steady state.
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AppendixA. Average single-photon transmittance of a qubit with dephasing due to
correlated non-GaussianMarkovian noisemodels

In themain text we explicitly calculated the average transmittance of a qubit with coloredGaussian noise and
Gaussian 1/fnoise, whereCf(t) is analytical and tw

m⟪ ⟫ can be directly obtained from (24). AlthoughGaussian
noisemodels are very successfully applied in numerous experiments [82], theGaussianity assumption breaks
down in situations where the qubit is coupled to a sparse dephasing environment [38] such as a few frequency
modes [58], or ensembles of fewTLFs [63, 70]. In the followingwe extend the analysis to arbitrary correlated
non-GaussianMarkovian noisemodels which include telegraph noise caused by a single TLF (see appendix A.2),
tunable non-Gaussian noise caused by a sparse ensemble of TLFs (see appendix A.3), and non-Gaussian 1/f
noise (see appendix A.4) typically found in solid-state devices [28]. To compute tw

m⟪ ⟫ andCf(t) for a qubit under
these types of dephasing, we require the stochasticmethods introduced in the following appendix A.1.

A.1. Stochastic differential equationswith arbitrary correlatedMarkovian noise
Herewe state the equations to solve for the average transmittance tw

m⟪ ⟫ and the Ramsey envelopeCf(t) in the
case of themost general correlated, stationary, andMarkovian dephasing noise. In practice, we generalize the
method in page 418 of [51] to inhomogeneous stochastic differential equations, and then apply it to the
scattering equation (21).

Our first assumption is that the stochastic processΔ(t) is stationary andMarkovian. The probability for the
noise to be in realizationΔ(t)=Δ at time t, conditioned on beingΔ(t0)=Δ0 at time t0 is denoted by
P t P t t, , ,0 0D = D D( ) ( ∣ ). Themost generalMarkovian dynamics for the above conditional probability is
governed by a differential Chapman-Kolmogorov equation [52],

t
P t LP t, , , A.1

¶
¶

D = D( ) ( ) ( )

with initial condition P t, 0 0dD = D - D( ) ( ) and classical Liouvillian L given by

LP t D P t D P t W P t, ,
1

2
, d , , . A.21

2

2 2 òD = -
¶
¶D

D D +
¶
¶D

D D + D¢ D D¢ D¢( ) [ ( ) ( )] [ ( ) ( )] ( ) ( ) ( )

Here,D1(Δ) is the drift function,D2(t)�0 the diffusion function, andW , 0D D¢( ) forD ¹ D¢ are
transition probabilities between different values of the noise. The conservation of total probability also requires

LP td , 0ò D D =( ) and thus Wd , 0ò D D D¢ =( ) .We further assume L is time-independent to have an
homogeneous stationaryMarkovian process withwell-defined steady state LPss(Δ)=0.

Wewant to studyGω(t)which is a stochastic process related toΔ(t) via equation (21). SinceΔ(t) is
Markovian, the joint process [Δ(t),Gω(t)] isMarkovian too [51]with joint probability denoted by G t, , Dw( ).
For amultiplicative inhomogeneous stochastic differential equation of the formdG/dt=A(Δ)G+B, the joint
probability satisfies [51]

t
G t A

G
G B

G
L, , , A.3 




¶
¶

D = - D
¶

¶
-

¶
¶

+w
w

w
w

( ) ( ) ( ) ( )

with the initial condition G G G P, , 0 0 , 0 dD = - Dw w w( ) ( ( )) ( ). To compute the noise average Gw⟪ ⟫, the
strategy is to convert the stochastic equation (21) into a set of ordinary differential equations for themarginal
averages g t G G G t, d , ,òD = Dw w w w( ) ( ), and from its solution obtain the total average as

G t g td ,ò= D Dw w⟪ ⟫( ) ( ). To do so, we insert equation (A.3)with A 2 i i0w wD = - G - - + D( ) [ ( ) ]and
B=1 in equation (A.3), multiply it by Gw and integrate it over G tw ( ), obtaining

g t

t
g t P t Lg t

,
2 i i , , , . A.40w w

¶ D

¶
= - G - - + D D + D + Dw

w w
( )

[ ( ) ] ( ) ( ) ( ) ( )

For the scattering problem in section 4.1, the differential equation (A.4)must be solvedwith the initial condition
g G P, , 0D -¥ = -¥ D -¥ =w w( ) ( ) ( ) , which effectively corresponds tofinding the steady state solution
g g t,ss D = D  ¥w w( ) ( ) or g t dtd , 0D =w ( ) . Finally, when having the steady statemarginal averages g ss Dw ( )
for each frequencyω and each noise realizationΔ, we obtain the average transmittance as
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t g1 d . A.5ssòg= - D Dw
m

m w⟪ ⟫ ( ) ( )

We see that computing the average transmittance tw
m⟪ ⟫ for themost general non-Gaussian, correlated,

stationary, andMarkovian noisemodel amounts to solve for the steady state of the partial differential
equation (A.4) and then to integrate it in equation (A.5) over all noise realizations.

To simplify this solution, we nowparticularize the analysis to discrete jumpnoisemodels, where the
stochastic processΔ(t) has a discrete number of realizations denoted byΔm. In this case, we can set
D1=D2=0 in equation (A.2), and the probability P(Δm, t) for the noise to be in the realizationΔ(t)=Δm at
time t, conditioned on being t m0 0

D = D( ) at t=t0 is governed by the time-local rate equation [51],

t
P t LP t W P t

d

d
, , , . A.6m m

n
mn nåD = D = D( ) ( ) ( ) ( )

Here, thematrix coefficientsW 0mn  for m n¹ describe transition rates of thenoise to jump from realizationΔn

toΔm—whichmust satisfy W 0m mnå = to ensure the conservationof total probability P t, 1m må D =( ) —.
Importantly, thepartial differential equation (A.4) reduces to a discrete set of ordinary differential equations for the
discrete number ofmarginal averages gω(Δm, t) as,

t
g t g t P t W g t

d

d
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2
i i , , , , A.7m m m m
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mn n0 åw wD = -

G
- - + D D + D + Dw w w
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⎝
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which now allows us for amuch simpler steady state solution. In fact, setting dgω(Δm, t)/dt=0 in
equation (A.7)we canmap the problem to a linear systemof equations,

J g P , with A.8
n

mn n m
ss

sså D = Dw ( ) ( ) ( )

J W2 i i . A.9mn m mn mn0w w d= G - - + D -[ ( ) ] ( )

Here, thematrix Jmn is of the same size asWmn, and P mss D( ) denotes the steady state solution of the rate
equations (A.6). Finally, solving this linear problem for different values of the input fieldω, we obtain the average
single-photon transmittance from the sum,

t g1 . A.10
m

m
ssåg= - Dw

m
m w⟪ ⟫ ( ) ( )

On the other hand, to obtain theRamsey envelopeCf(t) in equation (14), we can numerically extract it from
tw
m⟪ ⟫ via the inversion formula (37). Alternatively, we can also obtain it by calculating the average solution

C t X t=f ( ) ⟪ ( )⟫of the homogeneous stochastic differential equation,

t
X t t X t

d

d
i . A.11= - D( ) ( ) ( ) ( )

A set of differential equations for themarginal averages x t XXP X t, d , ,m mòD = D( ) ( ) can be derived from
equation (A.3)withA(Δ)=−iΔ,B=0, and the discrete rate equations (A.6),

t
x t x t W x t

d

d
, i , , , A.12m m m

n
mn nåD = - D D + D( ) ( ) ( ) ( )

whichmust be solved for the initial condition x(Δm,0)=Pss(Δm). Finally, we obtain theRamsey envelope
as C t X t x t,m m= = å Df ( ) ⟪ ( )⟫ ( ).

In the following three subsections, we evaluate tw
m⟪ ⟫ andCf(t) for different forms and sizes ofWmn

corresponding to correlated telegraph noise, andmore general non-Gaussian 1/fnoisemodels.

A.2. Telegraph correlated noise
Charges or impurities in thematerials of solid-state devices aremodeled inmany cases as localized double-well
potentials or TLFs [28, 63, 87, 88]. A strong resonant coupling between the qubit and an environmental TLS can
lead to the observation of resonances [40, 89, 90], but aweak off-resonant coupling can inducefluctuating Stark
shifts on the qubit and thus originate correlated dephasing as in equation (2). Although TLFs naturally appear in
large ensembles of them [68–70], the telegraph noise produced by a single TLS is an instructive and exactly
solvablemodel capturingmany features ofmore complex correlated non-Gaussian noises.

Telegraph noise is the simplest jumpmodel, where random variableΔ(t) can only take two possible values
Δ±=±σ [50, 52], corresponding to an increase or decrease of the qubit resonance asω0±σ. The dynamics of
this noise consists in random jumpswith rateκ between the two possible realizationsΔmwithm=±, as
depicted infigure A1(a). The probabilities P(Δm, t) of being inΔm at time t, conditioned of being in m0

D at an
initial time t0, are governed by theMarkovian rate equations,
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t
P t P t P t

d

d
,

2
,

2
, , A.13m m m

k k
D = - D + D-( ) ( ) ( ) ( )

which can be recast in the general form (A.6)with the transitionmatrixW mn 2mn k= - (m, n=±). The above
equations imply that in steady state the probabilities of being in either realization are equal Pss(Δm)=1/2, the
meanfluctuation vanishes t 0D =⟪ ( )⟫ , and the autocorrelation has the same form 0 e2t sD D = k t-⟪ ( ) ( )⟫ ∣ ∣

[50, 52] as the coloredGaussian noise in equation (16). Notice that this is just a coincidence since higher order
correlations highly differ due to the non-Gaussian character of the telegraph noise [52].

The simplicity of the telegraph noise allows us to analytically solve for the average transmittance tw
m⟪ ⟫ in

equation (A.10), since the linear system (A.8) is of size 2× 2with thematrix
J m mn2 i i 2mn mn0w w s d k= G - - + +[ ( ) ] (m, n=±), andPss(Δm)=1/2. For the steady statemarginal
averages we obtain

g
m2 i i

2 2 i 2 4
, A.14m

ss 0

0
2 2 2

w w k s
w w k s k

D =
G - - + -

G - - + + -w ( ) ( [ ] )
[( [ ] ) ]

( )

and using equation (A.10)wefind that tw
m⟪ ⟫ can be expressed in a form reminiscent to a Lorentzian,

t 1 2 i 0g g w w w= - G + - -w
m

m f⟪ ⟫ [ ( ) ( )], but with a frequency-dependent pure dephasing rate g wf ( )
given by

2 i
. A.15

2

0

g w
s

k w w
=

G + - -
f( )

( )
( )

The lineshape is thus not Lorentzian in general, except for thewhite noise limit, ( ,k s  ¥withσ2/κ constant)
where the dephasing rate (A.15) becomes the constant 2g w s k=f ( ) . This is illustrated by the blue/solid
transmittance infigure A1(b) for standardwaveguideQEDparameters. For a finite butmoderate correlation
time t,s k < ¥ w

m⟪ ⟫ gets broader than the Lorentzian (black/dashed–dotted), and in the quasi-static limit
of long correlation times t,k s < ¥ w

m ⟪ ⟫develops twowell separated dips centered at 0w w s»  whose
widths are proportional toσ (red/dashed).

To obtain the Ramsey envelopeCf(t) for the qubit under this telegraph noise, we can either use the inverse
relation equation (37) on our known tw

m⟪ ⟫or solve the differential equation (A.12), which gives

C t v v
1

2
1 e 1 e , A.16v t v t

0 0= + + -f + -( ) [( ) ( ) ] ( )

with v 40
2 2k k s= - and v 4 22 2k k s= -  - ( ) [51]. As shown infigure A1(c),Cf(t) is the

exponential decay in thewhite noise limit, and for afinite correlation time k < ¥, it shows damped oscillations
with frequency∼σ and damping rate∼κ.

A.3. Correlated dephasing noisewith tunable non-Guassianity
In this subsectionwe introduce amodel of non-Gaussian correlated noise, whose non-Gaussianity can be tuned
to describe situations such as the telegraph noise fromprevious subsection, all theway to the limit of colored
Gaussian noise in sections 3.2 and 4.2.

We follow [91] and construct a discrete noisemodel from the sumofM independent and identical TLFs,
t t Ml

M
l1D = å D=( ) ( ) (see figure A2(a)). Here, each noise componentΔl(t) corresponds to a

telegraph noise as in the previous subsection, which flips between the valuesΔl(t)=±σ at a rateκ and
independently satisfies theMarkovian rate equation (A.13). Since all noise components are identical and
uncorrelated, the autocorrelation of the total noiseΔ(t) coincides with the one of a single telegraph noise

0 e2t sD D = k t-⟪ ( ) ( )⟫ ∣ ∣, but higher ordermoments strongly depend onM. Due to the permutation symmetry
of the dephasing environment, there areM+1 distinguishable realizationsΔm of the total noise, labeled by

Figure A1. Single-photon scattering on a noisy qubit with random telegraph dephasing. (a) Scheme of two-levelfluctuator (TLF)
randomly changing the qubit resonance as 0w s with a rateκ. (b)Predictions for the average transmittance tw

m⟪ ⟫ forκ=5σ
(white noise, blue/solid),κ=σ (black/dashed–dotted), andκ=0.05σ (quasi-static, red/dashed). Other parameters areσ=2Γ,
γ±=γ/2, γ=0.9Γ, and γloss=0.1Γ. (c)Time-resolvedRamsey envelopeCf(t) corresponding to the same parameters and same
line-types as in (b).
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m=0,K,M, and given by

m M

M

2
. A.17m sD =

-( ) ( )

For instance, the realization M0 sD = - corresponds to the configurationwith all TLFs down,which vary
all theway to MM sD = where all TLFs are up. A given realization mD appears in the environment with a

multiplicity
M

m
M M m m= -⎜ ⎟⎛

⎝
⎞
⎠ ! [( )! !], and thus the probability P(Δm, t) tofind the global realizationΔm at

time t can be related to the probabilities of a single telegraph noise P t,D( ) by

P t
M

m
P t P t m M, , , , with 0, , . A.18m

M m mD = D D = ¼-
-

+⎜ ⎟⎛
⎝

⎞
⎠( ) [ ( )] [ ( )] ( )

Using equations (A.13) and (A.18), we can derive the rate equation forP(Δm, t), which takes the general form in
equation (A.6), with a transitionmatrixWnmwhose non-zero elements read [91],

W
M

W m W M m
2

,
2

1 ,
2

1 , A.19mm m m m m, 1 , 1k
k k

= - = + = + -+ -( ) ( ) ( )

form=0,K,M, and the boundary conditions P t P t, , 0M1 1D = D =- +( ) ( ) .
The steady state solution of the rate equation (A.6)with theWmn coefficients (A.19) is a binomial distribution

P
M

m
mss

1

2MD = ⎜ ⎟⎛
⎝

⎞
⎠( ) as can also be seen by setting P 1 2ss D =( ) in equation (A.18). Importantly, in the limit of an

infinitely large ensemble of TLFs, M  ¥, the binomial probability distribution P mss D( ) approaches a
continuousGaussian distribution P 2 eG

2 1 2 22 2psD = s- -D( ) ( ) ( ) as P P d M1mss G
1 2D = D D + -( ) ( ) [ ( )]and

we recover the coloredGaussian noise limit of sections 3.2 and 4.2. In fact, in the limit M  ¥, the rate
equation (A.6)with (A.19)becomes a continuous Fokker-Planckdifferential equation for theOrnstein–Uhlenbeck
process [91], which is given by equations (A.1)–(A.2)with D D, 21 2

2k ksD = - D =( ) , andW , 0D D¢ =( ) .
As a result of this connection,we conclude that by increasing thenumberMof independent telegraphnoises, we
can reduce the non-Gaussian character of thenoisemodel until reaching the limit of standard coloredGaussian
noise.

We exemplify this tuning of thenon-Gaussianity by computing the average transmittance tw
m⟪ ⟫ for a qubit in

dephasing environmentswith different values ofM. Todo so,wenumerically solve the linear system (A.8)–(A.9)by

using theWmn coefficients in equation (A.19), and the steady state binomial distribution P
M

m
mss

1

2MD = ⎜ ⎟⎛
⎝

⎞
⎠( ) . It is

computationally simple to reach theGaussian limitM?1 since the size of thematrix Jmn grows linearlywithM as
(M+1)×(M+1). The results are shown infigureA2(b) forM=[2, 3, 4, 5, 10],κ=0.1σ, and typical
waveguideQEDparameters. Thenon-Gaussianity of the dephasing ismanifested by themultiple dips in tw

m⟪ ⟫
which reducewith increasingM. Also notice that already forM=10 (red/dashed) theGaussian limit iswell-
establishedwith aGaussian-like transmittance as expected in the quasi-static limit k s < ¥ . In addition,we
compute theRamsey envelopesCf(t) for the parameters aboveby applying equation (37)on thenumerical data for

tw
m⟪ ⟫. The results are shown infigureA2(c), where thenon-Gaussinity of thedephasing noise ismanifested by the

multiple oscillations inCf(t) andwhose amplitude reducewithM. In theGaussian limit (red/dashed) there is only
theGaussian decay as expected in the quasi-static caseκ=0.1σ. Notice thatwedonot display the results in the
white noise limit, where thebehavior is independent ofM, the lineshapes are standard Lorentzians, andCf(t) are
exponential decayswith pure dephasing rateγf=σ2/κ.

A.4. Simulation of non-Gaussian 1/fnoise
The aimof this subsection is to construct amodel for 1/fnoise with tunable non-Gaussianity and showhow to
compute the non-Gaussian results for tw

m⟪ ⟫ infigures 4(b)–(c). To similate non-Gaussian 1/fnoise, we assume

Figure A2.Noisy qubit with non-Gaussian noise due to an ensemble ofM identical and independent two-level fluctuators (TLFs).
(a) Schemeof the dephasing environment, characterizedby jumps at rateκ and an average noise amplitudeσ. (b)Average transmittance

tw
m⟪ ⟫ forM=[2, 3, 4, 5, 10] (blue, orange, black, grey, red), and the parametersκ=0.1σ,σ=2Γ,γ±=γ/2,γ=0.9Γ, and

γloss=0.1Γ. (c)Time-resolvedRamsey envelopeCf(t) corresponding to the sameparameters and same line-types as in (b).
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that each noise componentΔj(t) for j=1,K,N in equation (29) is represented by an independent ensemble of
M identical TLFs as introduced in appendix A.3.We therefore need to construct amore general jumpmodel for
the total noise, t t Nj

N
j1D = å D=( ) ( ) , with permutation symmetry only within each ensembleΔj(t). As a

result, therewill be (M+1)N distinguishable global realizations of the total noiseΔ(t), which are given by

m M

M

2
. A.20m

j

N
j

j
1

å sD =
-

=


( )

( )

Here, we use the vectorial index m m m, , N1= ¼
 ( ), with componentsmj=0,K,M, to label the above

(M+1)N different realizations mD  . Then, by straightforwardly generalizing the procedure in appendix A.3, one
can show that probability P t,mD ( ) satisfies a rate equation of the form (A.6), with a transitionmatrixWmn

  of
size (M+1)N×(M+1)N and non-zeromatrix elements given by,

W
M

W m W M m
2

,
2

1 ,
2

1 , A.21mm
j

N

j m m e
j

j m m e
j

j
1

, ,j jå k
k k

= - = + = + -
=

+ -
       ( ) ( ) ( )

where e 0, , 1 , , 0j j= ¼ ¼
 ( ) is a unit vector in component j=1,K,N. Solving the corresponding rate equation

with boundary conditions P t, 0mD =( ) for m M1, 1j = - + , and j=1,K,N, wefind that the steady state
probability P mss D ( ) corresponds to a product of binomial distributions for eachΔj(t), which reads

P
M

m

1

2
. A.22m NM

j

N

j
ss

1
D =
=


⎛
⎝⎜

⎞
⎠⎟( ) ( )

Finally, we should evaluateWmn
  for the parametersκj andσj that simulate the desired 1/fnoisemodel as

stated in section 4.3, replace this and equation (A.22) in the linear system (A.8)–(A.9), and numerically solve for
the steady statemarginal averages.With that result we can evaluate tw

m⟪ ⟫ via equation (A.10), andCf(t) via
equation (37). The size of the linear system scales exponentially withN as (M+1)N, but as shown infigure 4(a),
already amoderateN=8 is enough to properly simulate the 1/fnoise spectrum.

Appendix B. Correlated dephasing noise in a qubitwith Fano resonance

SomewaveguideQED experiments are affected by input–output impedancemismatches or internal reflections
that impose a Fano resonance profile on the scattering experiment [59, 60].We briefly discuss how tomodify our
protocol and the scattering equations for reconstructing the powermeasurements and the noise correlations in
such complex environments.

Following [59, 60, 77], we see that a Fano resonance can bemodeled by a highly dissipative cavitymode that
mediates the coupling between the propagating photons and the qubit. In this case, the cavitymode can be
adiabatically eliminated [77] and the effective dynamics of the qubit is governed by quantumLangevin equations
with the same form as equations (6)–(7), but with amodified total decay zRelossg gG  + w{ } , amodified
qubit central frequency zIm 20 0w w g + w{ } , and amodified input operator a t z a tin inm

w
m( ) ( ). The

correction zw is the Fano resonance function, which depends on the frequency of the incident photonω and is
given by

z
1

1 2i
, B.1

cw w k
=

- -
w ( )

( )

withωc the resonance frequency andκ the decay of the localizedmode producing the Fano resonance. In
addition, the input–output relations (9) aremodified as [77]

a t a t z ti , B.2out inå w g s= L +m

l
ml

l
w m

-( ) ( ) ( ) ( ) ( )

with coefficients z2w d g g gL = -ml ml w m l( ) , and the indicesμ,λ=±corresponding to photons
propagating to the right (+) and left -( ) of thewaveguide.

B.1. Single-photon scatteringmatrix of a noisy qubit with Fano resonance
From themodified Langevin equations and input-output relation stated above, we can calculate the average
single-photon scatteringmatrix S Fanonw

lm⟨ ⟩ for a qubit with Fano resonance, using the same procedure and
definitions shown in section (4.1).We obtain

S z G , B.3Fano Fanow g g d n w= L + -nw
lm

ml w l m w⟪ ⟫ { ( ) ⟪ ⟫ } ( ) ( )

with

G C t z 2 i . B.4Fano loss 0 g g w w= + - -w f w⟪ ⟫ [ ( )]([ ] [ ]) ( )
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The average single-photon transmittance and reflectance in the presence of correlated noise then read,

t
z

z G r
z

G1
2

,
2

1
2

. B.5Fano Fano Fano Fano
g

g
g

g g
g

g
= - + = - -w

m w m
w m w w

m w
w

+ - ⎜ ⎟⎛
⎝

⎞
⎠⟪ ⟫ ⟪ ⟫ ⟪ ⟫ ⟪ ⟫ ( )

Notice that in the case of an exact Fano resonance (ωc=ω), the qubit effectively behaves as it would be directly
coupled to two independent waveguides on each side as treated in [1, 92]. This situation is known as a ‘direct-
coupled’ qubit in contrast to the ‘side-coupled’ qubit we consider throughout themain text. It is discussed
in [1, 92] that the results of both cases are related, up to a phase, by interchanging the roles of transmission
and reflection.Here, by setting zω=1 in equations (B.5), and considering a non-chiral case γμ=γ/2,
wefind that these relations are still valid in the presence of correlated noise, namely t rFano = -w

m
w
m⟪ ⟫ ⟪ ⟫,

and r tFano = -w
m

w
m⟪ ⟫ ⟪ ⟫.

B.2. Power and homodynemeasurements of a noisy qubit with Fano resonance
Using the replacements zRelossg gG  + w{ } , zIm 20 0w w g + w{ } , and zW  Ww in the optical Bloch
equations (38)–(39), we can generalize equations (34)–(36) and (D.1)–(D.3) for the homodyne or power
measurements, and obtain

a
z Q , B.6out ss 2

a
w g g

áá ññ
= L + á ñ

l

w
m ml w m l w( ) ( )

a a
Q2 Re , B.7out out ss

2
2 

a
w g g w

áá ññ
= L + á ñ

l l

w
m ml m l ml w∣ ∣

∣ ( )∣ { ( ) } ( )
†

Q d
Q

Im
1 Re

. B.8 


òw
p

w
w

w w
á ñ = - ¢

¢ á ñ

¢ -
ml w

ml w

-¥

¥ ¢{ ( ) }
{ ( ) }

( )

Here, Q sssá ñ = á ñ Ww
- , and the coefficients  wml( ) read

z
z

z
. B.92

4

2
loss

* w w
g g

g g
= L +

+
ml w ml

w m l

w
( ) ( )

∣ ∣
(∣ ∣ )

( )

The new equations (B.6)–(B.7) are valid formeasuring at both the transmission (l m= ) and the reflection
(l m= - ) output, and provide a robustmethod to infer Qá ñw , which is related to the average scattering overlap
G Fanoá ñw in equation (B.4) as

Q G , B.10Fano
2á ñ = á ñ + W Gw w [ ]∣ ∣ ( )/

in the limit W G∣ ∣ . Using equations (B.7)–(B.10)we can experimentally determine G Fanoá ñw and from there
obtain the single-photon transmission and reflection coefficients (B.5), in the case of a Fano resonance. Finally,
from the knowledge of G Fanoá ñw we can also invert equation(B.4), in analogy to equation (37), and recover the
Ramsey profile from the above spectroscopicmeasurements as

C t e e G t t
1

2
, for 0, B.11t z t2 1 2

Fanoloss 
p

= á ñ >f
g g

w
- w( ) [ ]( ) ( )

wherewe can use 1- instead of 1- due to the non-zero emission rates into guided g or unguided lossg modes.

AppendixC. Adding awhite noise background to the dephasingmodel

In this appendix, we use stochastic Ito calculus [50, 52] to include dephasing due to awhite noise background
ΔWB(t), in addition to the correlated noiseΔ(t) in the scattering differential equation (21).

The stochastic differential equation for scattering that includes both noise sources reads,

t
G t t t G t

d

d 2
i i 1, C.10 WBw w= -

G
- - + D + D +w w⎜ ⎟⎛

⎝
⎞
⎠( ) [ ] [ ( ) ( )] ( ) ( )

where thewhite noise background is specified by the autocorrelation function 0 2WB WB WBt g d tD D =⟪ ( ) ( )⟫ ( ),
with γWB its pure dephasing rate. Themultiplicative stochastic differential equation (C.1)must be physically
interpreted in the Stratonovich form [50, 52],

G t t G t t t G t W tS d
2

i i d d i 2 d , C.20 WBw w g= -
G

- - + D + +w w w⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )

with W t t td d 2WB WBg= D( ) ( ) theWiener increment. To solve the average over thewhite noise background
more easily, we use the Ito rules to convert equation (C.2) to the Ito form, obtaining
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G t t G t t t G t W tI d
2

i i d d i 2 d , C.3WB 0 WBg w w g= -
G

+ - - + D + +w w w⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )

where nowdW(t) is uncorrelatedwithGω(t) at equal times.We take the average over thewhite noise background
... WB⟪ ⟫ , which does not affectΔ(t) aswe assume it is uncorrelatedwithΔWB(t), i.e. t t 0WB WBD D =⟪ ( ) ( )⟫

and t G t t G tWB WBD = Dw w⟪ ( ) ( )⟫ ( )⟪ ( )⟫ . Additionally using the Ito property G t W td WB =w⟪ ( ) ( )⟫
G t W td 0WB WB =w⟪ ( )⟫ ⟪ ( )⟫ , we obtain a stochastic differential equation that depends on the correlated noise

Δ(t) only,

t
G t G t

d

d 2
i i 1. C.4WB WB 0 WBg w w= -

G
+ - - + D +w w⎜ ⎟⎛

⎝
⎞
⎠⟪ ⟫ [ ] ( ) ⟪ ⟫ ( ) ( )

Therefore, we can solve this stochastic differential equation instead of (21) if wewould like to include an extra
uncorrelatedwhite noise backgroundwith pure dephasing rate γWB. In practice it just amounts to perform the
replacement 2 2 WBgG  G + in equation (21), before starting to solve it.

AppendixD.Measurement of single-photon reflectance and conservation of average
photonflux

In this appendixwe complement the analysis from section 5, providing formulas for the average reflectance
rw
m⟪ ⟫, and aword of caution on the interpretation of the squares of the averages r 2

w
m∣⟪ ⟫∣ and t 2

w
m∣⟪ ⟫∣ , in the

presence of dephasing.
The average single-photon transmittance tw

m⟪ ⟫ can bemeasured via equations (34)–(36) in section 5when
performing homodyne or powermeasurements at the output of the same channelμ=±as theweak input
drive aw

m . If we instead perform themeasurements at the opposite channelλ=−μ, we access to the average
reflectance rw

m⟪ ⟫ via the relations,

a t
r , D.1out ss 2
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= + W G
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When a quantum emitter is affected by dephasing, the squares of the average transmittance and reflectances
do not add to one. This is because the dephasing environment exerts work, adding and subtracting energy on the
qubit in order to change its transition frequency. For stationary noise the averagework is zero, but still the
systemof qubit and photons is open due to the external stochastic fieldΔ(t). In the simple case of white noise
dephasing, we can evaluate equations (25) and (27) and obtain

t r r 1
2

, D.42 2 ,loss 2
2

0
2

g g
g w w

+ + = -
G + + -w

m
w
m

w
m f m

f
∣⟪ ⟫∣ ∣⟪ ⟫∣ ∣⟪ ⟫∣

( ) ( )
( )

with r t 1,loss
lossg g= -w

m
m w

m⟪ ⟫ (⟪ ⟫ ) thefluorescence reflectance into unguidedmodes, and γf the pure

dephasing rate.
Thismeans that the squares of the average transmittance or reflectance do not describe photon fluxeswhen

0g ¹f . The noisy qubit indeed conserves the total photonflux on average, in the case of stationary dephasing,
but this ismanifested in the sumof the average output power in all channels, i.e.transmission, reflection, and
fluorescence loss, as

a t a t a t a t a t a t
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