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Competing contagion processes: 
Complex contagion triggered by 
simple contagion
Byungjoon Min1,2 & Maxi San Miguel1

Empirical evidence reveals that contagion processes often occur with competition of simple and 
complex contagion, meaning that while some agents follow simple contagion, others follow complex 
contagion. Simple contagion refers to spreading processes induced by a single exposure to a contagious 
entity while complex contagion demands multiple exposures for transmission. Inspired by this 
observation, we propose a model of contagion dynamics with a transmission probability that initiates 
a process of complex contagion. With this probability nodes subject to simple contagion get adopted 
and trigger a process of complex contagion. We obtain a phase diagram in the parameter space of 
the transmission probability and the fraction of nodes subject to complex contagion. Our contagion 
model exhibits a rich variety of phase transitions such as continuous, discontinuous, and hybrid 
phase transitions, criticality, tricriticality, and double transitions. In particular, we find a double phase 
transition showing a continuous transition and a following discontinuous transition in the density of 
adopted nodes with respect to the transmission probability. We show that the double transition occurs 
with an intermediate phase in which nodes following simple contagion become adopted but nodes with 
complex contagion remain susceptible.

Models of social and biological contagion in general fall into two classes depending on the response to suc-
cessive exposures: simple and complex contagion1–12. Simple contagion, mainly inspired by disease spreading, 
stands for a contagion process with independent interaction between the susceptible and the infectious5,7,13–19. 
Typical compartment epidemic models such as the susceptible-infected-recovered model5,13,15,16 and the 
susceptible-infected-susceptible5,14,16 model belong to the class of simple contagion processes. Models of simple 
contagion are controlled by an infection probability independent of the number of exposures. Typically, a model 
of simple contagion exhibits a continuous phase transition between an epidemic phase and a disease free phase 
for a critical value of the infection probability. The other class of contagion processes is complex contagion repre-
senting spreading phenomena in which multiple exposures to a spreading entity are needed for changing agents’ 
state8,9. Models of complex contagion processes encompass a wide range of contagious models such as threshold 
model4,6,20, generalized epidemic model21–25, diffusion percolation26, threshold learning27,28, and bootstrap perco-
lation29. The spread of fads, ideas, and new technologies in our society is better described by complex contagion 
rather than by simple contagion due to a collective effect in social contagion30–35. The critical difference of the 
complex contagion as compared to the simple contagion processes is that the probability of adoption depends on 
the number of exposures. For instance, in the threshold model the adoption of a new innovation happens when 
the number of adopted neighbors is larger than a certain threshold4,6. Models of complex contagion often result 
in a discontinuous phase transition in contrast to the continuous phase transition of simple contagion6,33,36–39.

Classical contagion models assume that the contagious entity determines the type of contagion either simple 
or complex16,30. Recently, the comprehensive analysis of the spread of an equal-sign profile in a social network-
ing service (SNS)40–42 sheds light on the mechanisms of contagion processes between the susceptible and the 
adopted. The analysis of the empirical data shows that characteristics of the agents also affects the type of conta-
gion41. Specifically, it is observed that the number of successful exposures requiring for adoption is far different 
for different individuals41. In this observation, some agents change their profile in SNS just after the first expo-
sure to the meme (simple contagion), but the others need more exposures to be adopted (complex contagion).  

1IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat Illes Balears,  
E-07122, Palma de Mallorca, Spain. 2Department of Physics, Chungbuk National University, Cheongju, Chungbuk, 
28644, Korea. Correspondence and requests for materials should be addressed to B.M. (email: bmin@chungbuk.
ac.kr) or M.S.M. (email: maxi@ifisc.uib-csic.es)

Received: 15 December 2017

Accepted: 26 June 2018

Published: xx xx xxxx

OPEN

mailto:bmin@chungbuk.ac.kr
mailto:bmin@chungbuk.ac.kr
mailto:maxi@ifisc.uib-csic.es


www.nature.com/scientificreports/

2SCIentIFIC REPORtS |  (2018) 8:10422  | DOI:10.1038/s41598-018-28615-3

This implies a competition between simple and complex contagion depending on agents’ adoptability, deviating 
from the traditional view of contagion models. The heterogeneity of adoptability can be widespread for many 
spreading phenomena because of the individual diversity of stubbornness, creed, and preexisting information. 
These facts call for incorporating such heterogeneity when modelling contagion processes integrating simple and 
complex contagion43–47. Incorporating such heterogeneity, here we propose a contagion model that in addition 
considers a transmission probability in the contagion process acting like an infection probability in epidemic 
models or an occupation probability in bond percolation processes on a network. It represents a trial of transmis-
sion from adopted neighbors, prior to the subsequent adoption processes. Effectively the transmission probability 
acts as a simple contagion process triggering a process of complex contagion.

In our model of contagion processes with a transmission probability we unify simple and complex contagion 
by considering agents with heterogeneous adoptability. We assign explicitly a different level of adoptability for 
individuals to mimic the heterogeneity of adoptability observed in empirical data41. The transmission probability 
models a chance to transmit and to identify successful (active) connections for adoption processes. With these 
generalizations, our model includes a variety of contagion models such as the susceptible-infected-recovered 
model13, threshold model4,6, diffusion percolation26, and bootstrap percolation48. Our generalized contagion 
model exhibits a rich variety of phenomena including continuous, discontinuous, and hybrid phase transitions, 
criticality, tricriticality, and double transitions. We show that a double transition with an intermediate phase can 
happen when a system is composed of nodes with heterogeneous adoptability.

Generalized Contagion Model
We consider a network with N nodes that can be in a susceptible or adopted state. The adoptability θ of each node 
is randomly drawn from a distribution Q(θ). To be specific, θ represents the number of successful exposures 
required to change from susceptible to adopted. For example, when θ = 1, a node becomes adopted after a single 
successful exposure thus indicating simple contagion, while when θ > 1, it represents complex contagion node 
since multiple exposures are needed for adoption. Varying the adoptability θ, we can describe both simple and 
complex contagion processes. The chance of transmission is determined by a transmission probability λ. Each 
adopted node attempts to spread with the probability λ and hence we can identify active connections between the 
susceptible and the adopted. Introducing the distribution of adoptability Q(θ) and the transmission probability, 
we unify the two contagion mechanisms and suggest a generalized contagion model. It is worthwhile to note that 
heterogeneous adoptability but without a transmission probability was considered in the threshold model4,42, 
heterogeneous k-core percolation45,46, and a model of stochastic interacting particles49.

In our model, dynamics is in discrete time. Initially, all nodes are susceptible except a fraction ρ of seed 
nodes that are adopted. Newly adopted nodes attempt transmission with a probability λ to all of their susceptible 
neighbors in the same time step. In the next time step, each susceptible node updates the number of successful 
transmissions and becomes adopted if the number of successful exposures is the same or larger than its thresh-
old. In more detail: let us suppose that an adopted node i tries transmission to its susceptible neighbor j with a 
probability λ. If the transmission is successful, the link from i to j becomes active and with the complementary 
probability 1 − λ, the link remains inactive. Then, susceptible node j becomes adopted when the number of suc-
cessful exposures (equivalently the number of active links towards node j) exceeds or equates its adoptability θj. 
This process proceeds until there are no more newly adopted agents in a network.

The main parameters of our model are λ and Q(θ) which reflect respectively the extent of transmissibility of a 
contagious entity and the adoptability distribution of the nodes. Depending on these two parameters, our model 
becomes one of a wide range of contagion models. The susceptible-infected-recovered model13,15 is recovered 
when (λ, Q(θ)) = (λ, δθ,1) where δi,j represents the Kronecker delta function (the function is 1 if i = j and 0 other-
wise). Diffusion percolation26 corresponds to (λ, Q(θ)) = (1, δθ,n>1) where n is any integer larger than unity, while 
Watts’ threshold model6 corresponds to (λ, Q(θ)) = (1, )k T, i

δθ  where T is a threshold and ki is the degree of node i.
Figure 1 shows an example of our generalized contagion model with Q(θ) = (1 − p)δθ,1 + pδθ,2. A fraction 

(1 − p) of nodes denoted by circles follow simple contagion (θ = 1) and a fraction p of nodes denoted by squares 
follow complex contagion requiring multiple successful exposures to become adopted (θ > 1). Initially, all nodes 
are susceptible except a seed indicated with a star symbol [Fig. 1(a)]. Next, adopted nodes attempt to spread the 
contagious entity with a probability λ. If a trial is successful, a susceptible node is exposed to a contagious entity 
(denoted by thick line). Note that a single success of transmission does not always result in adoption because 
complex contagion requires multiple successful exposures. When the number of successful exposures exceeds or 
equates the adoptability θ of a node, a susceptible node turns to the adopted state (filled symbols) [Fig. 1(b–d)]. 
Eventually we measure the final fraction of adopted nodes R at the steady state.

Analytical Approach
To predict the final fraction of adopted nodes, we derive mean-field equations assuming a locally tree-like struc-
ture in the limit N → ∞. Our approximation is exact in a tree structure and it gives very good agreement with 
numerical simulations for sparse random graphs with only infinite loops. Our approach is based on recent theo-
retical developments for the threshold cascade model on networks36. A generating function technique developed 
for a model of percolation processes15 also shares the idea of our analytical treatment. Given a degree distribution 
P(k) and an adoptability distribution Q(θ), the expected final fraction of adopted nodes R from a fraction of initial 
seed nodes ρ (chosen randomly) can be expressed as15,36 [see details in Supplementary Information],
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Here q∞ is the steady state probability that a node is adopted by following a randomly chosen link, and λ is the 
transmission probability between the susceptible and the adopted. The term −∞ ∞

−( )k
m q q(1 )m k m corresponds to 
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the probability that the number of successful exposures with the transmission probability λ from m adopted 
neighbors exceeds or equates the adoptability θ. Overall, Eq. 1 corresponds to the probability that a randomly 
chosen node is either a seed node with probability ρ or is not a seed with the probability (1 − ρ) but it becomes 
eventually adopted in the dynamical process.

The probability q∞ can be obtained by solving a recursive equation. First we define qt as the probability that a 
node is adopted by following a randomly chosen link at level t. On a locally tree-like graph, qt can be obtained by 
(derivation in Supplementary Information)
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The fixed point of the above equation corresponds to q∞ starting from the initial value q0 = ρ. In general, we 
obtain q∞ by solving iteratively Eq. 2 and obtain R by replacing the value obtained for q∞ in Eq. 1.

We further develop the theory for an Erdös-Rényi (ER) graph with an average degree z as a simple example. 
ER graphs in the limit N → ∞ clearly satisfy the locally tree-like structure, and hence our theoretical calculation 
gives a good approximation. Using the degree distribution P(k) = e−zzk/k!, the final fraction of adopted nodes 
R becomes the same as q∞ since Eqs 1 and 2 become equivalent. Then, the self-consistency equation is simply 
expressed as
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where Γ(x) is the gamma function and Γ(x, y) is the incomplete gamma function. Thus, for ER networks, we can 
obtain the fixed point of R directly by solving the above self-consistency equation.

Results
Phase diagram. For the sake of simplicity, we consider a model with a bimodal distribution of the adoptabil-
ity Q(θ) = (1 − p)δθ,1 + pδθ,n on ER networks. In this setting, a fraction (1 − p) of nodes follows simple contagion 
with θ = 1 (simple nodes) and a fraction p of nodes follows complex contagion requiring n successful exposures 
to be adopted (complex nodes). We then have three parameters, p, n, and λ which respectively correspond to the 
fraction of complex nodes, the number of successful exposures required for complex nodes to adopt, and the 
probability of transmission. Further assuming that the initial density of seed nodes is negligible, i.e, ρ → 0, the 
self-consistency equation becomes,

λ
= − − +







−
Γ

Γ






.λ−R p e p n z R

n
(1 )(1 ) 1 ( , )

( ) (4)
z R

Figure 1. An example of our model of contagion processes with a transmission probability unifying simple 
and complex contagion. In this example, five nodes (circles) out of nine nodes follow simple contagion and 
three nodes (squares) follow complex contagion requiring two exposures to be adopted. Spreading starts from a 
seed (star symbol) and susceptible nodes (open symbols) become adopted (filled symbols) when the number of 
successful exposures exceeds or equates its assigned adoptability either 1 for simple contagion or 2 for complex 
contagion.
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The first term corresponds to the contribution of simple nodes and the second term corresponds to that of 
complex nodes.

In order to identify a fixed point of Eq. 4, we define f R R p e p( ) (1 )(1 ) 1z R n z R
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Then, the fixed points R* are given by the zeros of f(R*) = 0. We find that the trivial solution R* = 0 indicates adop-
tion free phase where adoption does not happen both for simple and complex nodes. Adoption phase showing 
non-zero density of adopted nodes (R > 0) appears at the point where the trivial solution R* = 0 becomes unstable. 
Linear stability analysis implies that the adoption free phase is stable when f ′(0) < 0 while it becomes unstable if 
f ′(0) > 0. Thus, the transition between the adoption free phase (R = 0) and the adoption phase (R > 0) occurs at 
f ′(0) = 0 where λ′ = − + − +λ λ λ−
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when n = 1, all nodes are simple nodes meaning that the model returns to an ordinary simple contagion, i.e., 
essentially the same as the susceptible-infected-recovered model13. Therefore, the threshold for simple contagion 
model 1/z is recovered15. When n > 1, we get an additional (1 − p) factor which corresponds to the fraction of 
simple nodes.

The nature of the transition at λ1 is determined by the second derivative of f(R). While the transition is contin-
uous if f ″(0) < 0, it becomes discontinuous if f ″(0) > 0. Applying this condition to f R p( ) (1 )″ = − −  

λ λ− − +λ λ λ−
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n n 2
, we find that f ″(0) < 0 for all values of p if n > 2. Therefore the tran-

sition at λ1 is always continuous if n > 2. However, when n = 2, f ″(0) < 0 for p < 0.5 and f ″(0) > 0 for p > 0.5, so 
that the transition is continuous if simple nodes hold a majority (p < 0.5) and discontinuous if complex nodes 
hold a majority (p > 0.5). In this case of n = 2, we can further identify a tricritical point (λtc, ptc) = (2/z, 1/2) by 
imposing the condition f ″(0) = f ′(0) = f(0) = 0 where the continuous and discontinuous transition lines meet. At 
the tricritical point, the size of the discontinuous jump for p < 0.5 reduces to zero.

In the phase diagram with n = 2 for ER networks with z = 10 [Fig. 2(a)], we find continuous (dashed) and 
discontinuous (solid) transition lines and a tricritical point (λtc, ptc) = (0.2, 0.5) at which the two lines meet 
[Fig. 2(a)]. For p < ptc, the transition at λ1 is continuous with the scaling behavior λ λ∼ − βR ( )1

1 and the expo-
nent β1 = 1 (derivation in Supplementary Information), the same as the mean-field exponent of an ordinary bond 
percolation15. Approaching the tricritical point, we obtain a different scaling R ( )tc

tcλ λ∼ − β  with βtc = 1/2 (der-
ivation in Supplementary Information). For p > ptc, the transition at λ1 becomes discontinuous. In the inset of 
Fig. 2(a), the graphical solution f(R) with respect to R at p = ptc with λ = 0.1, 0.2, 0.3 is shown. The zeroes of f(R) 
correspond to the fixed point and λ = 0.2 corresponds to the tricritical point λtc in our example with z = 10. In the 
adoption free phase, there exists only a trivial solution which is R* = 0. When λ is larger than the tricritical point 
value (λ > λtc), a new stable solution appears at a non-zero value of R* and R* = 0 solution becomes unstable.

For n > 2, in addition to the continuous transition at λ1 with the critical exponent β1 = 1 for all n > 2, there is 
another transition at λ n p

2
( , ) which is discontinuous, indicated by a solid line [Fig. 2(b)]. It is worthwhile to note 

that λ2 is larger than λ1 for any n > 2. The location of λ2 can be analytically identified from the condition f ′(R*) = 0 
with R* ≠ 0. When n > 2, the continuous transition line λ1 and the discontinuous line λ2 are separated and do not 
meet. Thus, the tricriticality at which the continuous and discontinuous transition lines meet is a peculiar behav-
ior only found in n = 2. The size of the discontinuous jump at λ2 decreases with decreasing p and goes to zero at a 

Figure 2. Phase diagram of a generalized contagion model with (a) n = 2 and (b) n > 2 for ER networks with 
z = 10. Continuous and discontinuous transition lines are respectively indicated as dashed and solid lines, and 
(tri)critical points are indicated by filled circles. Graphical solution of f (R) at p = ptc = 1/2 and λ = 0.1, 0.2(λtc), 
0.3 is shown in the inset of (a). (c) Graphical solution of f (R) with n = 4, p = 0.8 and λ = 0.4, 0.6, 0.723(λ2), 0.8 is 
shown.
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critical point (λc, pc) indicated by a filled circle, at which f ″(R*) = f ′(R*) = 0. Thus, the discontinuous transition 
line ends at the critical point and there is no the second phase transition when p < pc. In this regime (p < pc), R 
increases gradually without discontinuity when increasing λ with λ > λ1. In addition, the discontinuous jump and 
critical point can disappear as n increases for a given z, i.e, for z = 10, there is no second transition when n > 7.

When p > pc(n) with n > 2, the adoption phase is separated into two distinct phases by a boundary at λ2: sim-
ple adoption (low R) and complex adoption (high R) phases. In addition, the transition at λ2 has hybrid charac-
teristics showing both discontinuity and a scaling behavior, R R( ) ( )2 2

n
2
( 2)

λ λ λ− ∼ − β >
 with the exponent 

1/2n
2
( 2)β =>  for any n > 2 (derivation in Supplementary Information). In addition, when λ approaches the crit-

ical point a cube-root scaling appears as R R( ) ( )c c
cλ λ λ− ∼ − β  where βc = 1/3 (derivation in Supplementary 

Information). This is the same scaling found in heterogeneous k-core percolation46. Such hybrid phase transition 
also known as mixed phase transition has been observed widely in cooperative percolation in networks such as 
k-core percolation46,50,51, bootstrap percolation48, percolation of interdependent networks52–54, and cooperative 
epidemic processes22–25. A hybrid transition is also predicted in a model of spin chains with long-range interac-
tions55, DNA denaturation56, and jamming57,58, and recently observed experimentally in a colloidal crystal59.

An example of how to identify a phase transition is shown in terms of the graphical solution of f(R) with z = 10 
and n = 4 in the limit ρ → 0 [Fig. 2(c)]. The zeroes of f(R) give the fixed point values of R and their stability is given 
by the derivative of f(R). First, R remains zero for λ < λ1. When λ1 < λ < λ2, R increases gradually as λ increases 
until the second transition at λ = λ2. As λ increases further λ > λ2, a complex adoption phase (R ≈ 0.92) appears 
suddenly from the simple adoption phase (R ≈ 0.18). Therefore, our analysis predicts the emergence of a double 
transition showing a continuous and a subsequent discontinuous transition.

Continuous, discontinuous, and double phase transitions. We examine the phase diagram and the 
fraction of adopted nodes for two specific scenarios where n = 2 [Fig. 3(a)] and n = 4 [Fig. 3(b)] on ER networks 
with z = 10. For n = 2, when p < 0.5 a typical continuous phase transition occurs at λ1 [Fig. 3(a)]. But, when more 
than half of the nodes follow complex contagion (p > 0.5), the transition between the adoption free phase and 
the adoption phase becomes discontinuous. Such discontinuity disappears at a tricritical point at which (λtc, 
ptc) = (0.2, 0.5) with z = 10. Therefore, for n = 2 and varying λ there is a single transition at λ1 either continuous 
for p < ptc or discontinuous for p > ptc.

However, for n = 4, we find that the continuous and discontinuous transition lines are separated [Fig. 3(b)]. To 
be specific, at a given p > pc the location of the discontinuous transition λ2 appears at a value λ > λ1. The size of 
the jump decreases with decreasing p and the jump disappears at a critical point (λc, pc) = (0.59, 0.71). Therefore 
above the critical point (p > pc), the size of adopted nodes R abruptly changes from simple adoption phase (low 
R) to complex adoption phase (high R) at λ = λ2. In contrast, below the critical point (p < pc), R changes gradually 
without discontinuity, so that a sharp distinction between simple adoption phase and complex adoption phase 
does no longer exist.

The continuous and discontinuous transitions with n = 4 and z = 10 for p = 0.2, 0.4, 0.6, and 0.8 are shown 
in Fig. 3(c). We first note that the theory (line) and numerical simulations (symbol) of R for ER networks with 
N = 105 and 100 seed nodes show perfect agreement. In addition, the stark difference between a discontinuous 
jump for p > pc and a gradual increase of R for p < pc is highlighted. Note that the fraction of initial seed cannot 
be negligible in the finite size networks simulated while it becomes asymptotically small in the thermodynamic 
limit N → ∞.

Moreover, when p > pc, for instance p = 0.8, the system undergoes a double phase transition with increasing λ: 
a continuous transition from adoption free phase to simple adoption phase, followed by a following discontinu-
ous transition between the simple adoption phase and a complex adoption phase. Recently, multiple transitions in 
a percolation-type process have been observed in complicatedly designed networks such as clustered networks60 
and interdependent networks61, or with nontrivial percolation protocols such as explosive percolation62,63 and 
asymmetric percolation64. In this study, however we find a double transition on simple random networks as a 
result of competing contagion processes. It is worthwhile to note that in the limiting case λ = 1 our model shares 
a similarity to the heterogeneous k-core percolation which also shows a multiple transition46.

Figure 3. Phase diagram of a generalized contagion model with (a) n = 2 and (b) n = 4 showing the final 
fraction of adopted nodes R. Continuous and discontinuous transition lines are respectively indicated as dashed 
and solid lines, and (tri)critical points are indicated by filled circles. (c) The final fraction of adopted nodes 
R vs. λ with n = 4 for ER networks with N = 105 and z = 10, averaged over 104 independent runs. Numerical 
simulations (symbol) and theoretical calculation (line) are shown together. Error bars are smaller than symbols.
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Mechanism of double phase transition and mixed phase. The underlying mechanism of the double 
phase transition is illustrated in Fig. 4(a), for ER networks with z = 10, n = 4, and p = 0.8. In a adoption free phase 
(λ < λ1), most nodes, regardless of being simple or complex contagion nodes, remain susceptible except initial 
seeds. At λ1, simple nodes start to become adopted continuously and the system turns into the simple adoption 
phase (low R). As increasing λ above λ1, more and more simple nodes become adopted. But, complex nodes 
still remain susceptible until λ reaches the second transition λ = λ2. Therefore, in the simple adoption phase 
(λ1 < λ < λ2) simple contagion nodes are adopted while most of the complex contagion nodes are still susceptible. 
As λ increases further, at the second transition λ = λ2 a bunch of nodes with either simple or complex contagion 
become adopted abruptly. Thus, in the complex adoption phase (λ > λ2) most nodes are adopted, leading to high 
R. Our numerical simulations for the behavior of the susceptibility of R in the limit ρ → 0 are compatible with a 
double transition (see Supplementary Information).

The final fraction of adopted nodes with simple contagion Rs and complex contagion Rc clearly shows the dif-
ference between the simple adoption phase and the complex adoption phase as well as the different mechanisms 
leading to these two transitions [Fig. 4(b)]. In the simple adoption phase, some of simple nodes become adopted 
but complex nodes remain susceptible so that Rc remains zero and Rs has a finite value. However, in the complex 
adoption phase, both types of nodes are adopted, so that both Rs and Rc show a high value after a discontinuous 
jump at λ2. Note that the maximum of Rs is 0.2 and that of Rc is 0.8 because p = 0.8 in this example.

When p < pc, the discontinuous transition disappears and a single continuous transition exists at λ1 [Fig. 4(c)]. 
As an example, for p = 0.4 which is less than pc = 0.71 both simple nodes and complex nodes start to be adopted at 
λ1. And the fraction of adopted nodes with simple Rs and complex Rc adoption gradually increases [Fig. 4(d)]. In 
the network illustration for λ = 0.4 [Fig. 4(c)], we can observe simultaneously simple nodes and complex nodes 
that are in the adopted state. In this mixed phase, simple and complex nodes are strongly interrelated and a sharp 
distinction between a simple and a complex adoption phase is no longer possible.

Discussion
In this study, we have proposed a generalized model of contagion processes unifying simple and complex conta-
gion by introducing an heterogeneous adoptability Q(θ) together with a transmission probability, or link activa-
tion probability, that by a simple contagion mechanism triggers a cascading complex contagion. Our model gives 
rise to diverse phase transitions such as a continuous transition from adoption free phase to adoption phase, a 
discontinuous (hybrid) transition between low adoption and high adoption phase, tricriticality at which two lines 
of the continuous and discontinuous transitions meet, criticality where the discontinuous transition disappears, 
and a double transition showing successive occurrence of continuous and discontinuous phase transitions when 
varying the transmission probability λ. Specifically, when n = 2 a continuous transition becomes discontinuous 
at a tricritical point. In addition, when n > 2 continuous and discontinuous transition lines are separated and 
two transitions can happen sequentially with increasing λ, leading to a double transition. Our model provides a 
direction to study general contagion processes and shows that heterogeneity in agents’ response to adoption alters 
significantly the consequences of contagion processes. Further studies may be needed to confirm the finite size 
effect of the fraction of seed nodes, the effect of heterogeneity in network topology, and more general adoptability 
distributions, to name a few.

Figure 4. (a) Final fraction of adopted nodes R as a function of λ is shown for ER networks with N = 105, 
z = 10, n = 4, and p = 0.8 (p > pc). Network examples are obtained with the same parameters but for a small 
network N = 103 for illustration. Susceptible nodes with simple and complex contagion are indicated by light 
red and light blue symbols, respectively. Adopted nodes with simple and complex contagion are represented as 
dark red and dark blue, respectively. (b) Final fraction of adopted nodes with simple contagion Rs and complex 
contagion Rc is shown. (c) R and (d) Rs and Rc are shown for p = 0.4 (p < pc), disappearing the distinction 
between simple adoption phase and complex adoption phase.
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