Thermally Driven Out-of-Equilibrium Two-Impurity Kondo System

Miguel A. Sierra,1 Rosa López,1 and Jong Soo Lim2

1Institut de Física Interdisciplinària i de Sistemes Complexos IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
2School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 13 February 2018; published 29 August 2018)

The archetypal two-impurity Kondo problem in a serially coupled double quantum dot is investigated in the presence of a thermal bias θ. The slave-boson formulation is employed to obtain the nonlinear thermal and thermoelectrical responses. When the Kondo correlations prevail over the antiferromagnetic coupling J between dot spins, we demonstrate that the setup shows negative differential thermal conductance regions behaving as a thermal diode. In addition, we report a sign reversal of the thermoelectric current $I(\theta)$ controlled by t/T (t and T denote the interdot tunnel and reservoir-dot tunnel couplings, respectively) and θ. All these features are attributed to the fact that at large θ both $Q(\theta)$ (heat current) and $I(\theta)$ are suppressed regardless of the value of t/T because the double dot decouples at high thermal biases. Finally, for a finite J, we investigate how the Kondo-to-antiferromagnetic crossover is altered by θ.

DOI: 10.1103/PhysRevLett.121.096801

Introduction.—The richness of the single-impurity Anderson model has been nicely exhibited in singly occupied quantum dots (QDs) attached to electronic reservoirs, in which the Kondo effect is its most prominent feature [1–3]. Such artificial systems allow us an unprecedented benefit to investigate out-of-equilibrium many-body effects with the additional intriguing possibility of tuning the parameters controlling its physics [4–7]. The Kondo effect is built from the antiferromagnetic (AFM) correlations between the delocalized electrons at the reservoirs and the localized spin in the QD [8]. It is reflected in the differential conductance as a peak of height $2e^2/h$ [9] and width $\approx k_B T_K$ at zero applied voltage called the zero bias anomaly ($k_B = 1$ is the Boltzmann constant and T_K corresponds to the Kondo temperature). Importantly, the recent experimental boost on quantum transport through correlated quantum systems has opened a new arena: the out-of-equilibrium Kondo physics in more intricate nanostructures such as artificial coupled Kondo systems [10–15]. The paradigmatic two-impurity Kondo system (2IKS) [16–22] possesses a quantum phase transition (QPT) in which the critical point is a two-channel Kondo fixed point [23–26] recently observed in QDs [27,28]. Such a QPT is, indeed, the competition between the Kondo effect and the spin-to-spin interaction, the latter attributed to the Ruderman-Kittel-Kasuya-Yosida interaction [29,30], which couples two localized spins through its interaction with the delocalized electrons. Therefore, for an antiferromagnetic exchange coupling $J > 0$ the spins exist in a singlet state [31–34]. In a Kondo dominant regime $T_K \gg J$, each localized spin exhibits a Kondo singularity, whereas for $J \gg T_K$ the spins are locked into a singlet state with suppressed Kondo correlations. In the context of artificial Kondo molecules, the antiferromagnetic interaction is generated via a super-exchange mechanism with $J \approx 4t^2/U$, with t the interdot tunneling coupling and U the interdot Coulomb repulsion strength. Now, the connection between both reservoirs transforms the QPT into a crossover [31–33,35–39]. Different theoretical techniques, like numerical renormalization group [34,40–42] and others [32,33,43], have been applied to a deeper understanding of the 2IKS; most of them are applicable at equilibrium and only a few are focused on the nonequilibrium configuration [29,35,37–39,44,45]. Experimentally, the behavior of the 2IKS has been probed in tunnel-coupled QDs [10–15].

However, out-of-equilibrium physics in the 2IKS has been analyzed only with electric fields. A much less investigated situation is when a thermal gradient $\theta = T_L - T_R$ (T_L (T_R) is the temperature of the left (right) reservoir) is applied. Strong thermoelectrical response has been demonstrated to occur in confined nanostructures such as QDs [46–51]. These systems allow us to partially convert electricity into heat, and vice versa, with large Seebeck coefficients [52]. In particular, the case of a thermally biased QD in the Kondo regime has been investigated recently, mostly in the linear regime [53]. In Ref. [54] it was shown that Kondo correlations are destroyed with θ, but more slowly than with the applied voltage V_{sd}. Additionally, it was found that the thermoelectric current $I(\theta)$ exhibits a nontrivial zero in the Kondo regime at a critical thermal bias $\theta_c \approx T_K$. Consequently, the sign of $I(\theta)$ can be controlled externally by varying θ. A sign reversal of $I(\theta)$ is a very unusual phenomenon that has been recently reported to happen in single quantum dots in the Coulomb blockade regime [55] and in tubular nanowires in the presence of a magnetic field as its sign control parameter [56].
In this work, we focus on the nonlinear response of a thermally biased 2IKS (see Fig. 1). Remarkably, with $T_K \gg J$, we find that a thermal bias perturbs our serial double quantum dot (DQD) differently depending on the ratio between the dot-lead (Γ) and interdot tunneling (t) couplings. We report situations where the DQD setup operates as a thermal diode [57] exhibiting a region of negative differential thermal conductance for sufficiently large temperature biases. Thermal diodes are of great importance for their potential applications as coolers [58], energy harvesters [59], or thermal memory storage [60], and in the emergent field of coherent caloritronics [61].

In contrast, when $J > T_K$, the dependence of T_K for each dot on θ has a strong impact on the Kondo-to-antiferromagnetic crossover.

Model Hamiltonian and theoretical approach.—Our system illustrated in Fig. 1 consists of a tunnel-coupled DQD where each dot is connected to an electronic reservoir acting as an artificial Kondo molecule. The Hamiltonian describing this system reads

$$\mathcal{H} = \mathcal{H}_C + \mathcal{H}_D + \mathcal{H}_T. \quad (1)$$

$\mathcal{H}_C = \sum_{\sigma \alpha, \lambda, \kappa} \epsilon_{\alpha \kappa} c_{\alpha \kappa}^{\dagger} c_{\alpha \kappa}$ describes the fermionic reservoirs. $c_{\alpha \kappa}^{\dagger}$ (c_{\alpha \kappa}) creates (annihilates) an electron of energy $\epsilon_{\alpha \kappa}$ with wave number k and spin $\sigma = \{\uparrow, \downarrow\}$ in the reservoir $\alpha = \{L, R\}$. The dot Hamiltonian is expressed in the form

$$\mathcal{H}_D = \sum_{\alpha} \epsilon_{\alpha} d_{\alpha}^{\dagger} d_{\alpha} + U n_{\uparrow} n_{\downarrow} + \sum_{\alpha} t d_{\alpha}^{\dagger} d_{\alpha} + \text{H.c.} \quad (d_{\alpha})$$

creates (annihilates) an electron of energy ϵ_{α} with spin σ in the dot α and $n_{\alpha} = d_{\alpha}^{\dagger} d_{\alpha}$ denotes the dot occupation operator. Electrons hop between dots with a tunnel amplitude t. Two electrons located in the same dot feel the on-site Coulomb interaction U. $\mathcal{H}_T = \sum_{\alpha} V_{\alpha} d_{\alpha}^{\dagger} d_{\alpha} + \text{H.c.}$ connects each dot to its respective reservoir with tunneling amplitude V_{α}.

To observe thermal and thermoelectric effects, we raise the temperature of the left reservoir by an amount of $\theta > 0$ with respect to the background temperature such that $T_L = T_b + \theta$ and $T_R = T_b$. With this configuration, our analysis proceeds in two directions: (i) the Kondo dominant case with a negligible $J \approx 0$ and (ii) the crossover from Kondo-to-AFM phases for $J \neq 0$.

We consider the infinite-U limit, thereby each dot is singly occupied for $\epsilon_{\alpha} < 0$. Then, at very low temperatures, we can adopt a Fermi liquid description [62]. In such a case the Hamiltonian is reformulated employing the slave-boson representation. The dot operators become $d_{\alpha}^{\dagger} = f_{\alpha}^{\dagger} b_{\alpha}$.

The bosonic operator b_{α} annihilates an empty state, while the auxiliary fermion operator f_{α}^{\dagger} creates the singly occupied state with spin σ at the dot α. The single occupancy constraint $b_{\alpha}^{\dagger} b_{\alpha} + \sum_{\sigma} f_{\alpha \sigma}^{\dagger} f_{\alpha \sigma} = 1$ is enforced by introducing Lagrange multipliers Λ_{α}. We apply a $1/N$ expansion, with N as the level degeneration of the dot angular momentum, here $N = 2$, and keep the leading order. Then, the bosonic operators are replaced by their mean-field (MF) values $\langle b_{\alpha} \rangle \rightarrow \sqrt{N} b_{\alpha}$, neglecting the fluctuations around its expectation value. The MF approach has been successfully applied to a number of Kondo-related problems [21,31,33,62], such as double-dot systems driven out of equilibrium [29,38,44,45]. We obtain a set of MF equations, where, the boson equation of motion and the Lagrange condition. By solving these equations, we determine the Kondo impurity parameters $(\Lambda_{\alpha}, \bar{b}_{\alpha})$ that renormalize the system parameters as $\bar{\epsilon}_{\alpha} = \epsilon_{\alpha} + \Lambda_{\alpha}$ and $\bar{\Gamma}_{\alpha} = \Gamma_{\alpha} |\bar{b}_{\alpha}|^2$ with $\Lambda_{\alpha} = \pi \rho_a |V_{\alpha}|^2$ and ρ_a as the density of states of the reservoir α considered constant in a bandwidth D. Additionally, $\bar{\Gamma}_{\alpha L/R}$ and $\bar{\epsilon}_{\alpha L/R}$ represent the effective Kondo temperatures $T_{KL/R}$ and the Kondo resonance positions within this approach. The details of the calculation of $\bar{\epsilon}_{\alpha}$ and $\bar{\Gamma}_{\alpha}$ can be found in the Supplemental Material [63].

The electric and heat current flowing out of the left reservoir ($I = I_L$ and $Q = Q_L$) are obtained by applying the commutator with \mathcal{H}_L, giving the result

$$I = \frac{e}{\hbar} \int d\omega \langle f_{\alpha}^{\dagger}(\omega) - f_{\alpha}(\omega) \rangle T(\omega), \quad (2)$$

and

$$Q = \frac{1}{\hbar} \int d\omega \langle f_{\alpha}^{\dagger}(\omega) - f_{\alpha}(\omega) \rangle |\omega - \mu_a| T(\omega), \quad (3)$$

where $e > 0$. The Fermi-Dirac distribution of the reservoir α with the chemical potential μ_a is denoted as $f_{\alpha}(\omega) = 1/\{1 + \exp[(\omega - \mu_a)/k_B T(\omega)]\}$. The analytical expressions for the transmission $T(\omega)$ and derivations for charge and heat flows are given in the Supplemental Material [63]. We emphasize that such currents have a nontrivial dependence on θ through the MF parameters.

Results (I): Thermally driven Kondo regime.—At this stage we focus on a negligible $J \approx 0$ value. Hereafter, we consider a symmetric double-dot system: $\epsilon_0 = \epsilon_\uparrow = \epsilon_\downarrow = -3.5 \Gamma$ and $\Gamma_L = \Gamma_R = \Gamma$. We set $D = 100 \Gamma$ with a background temperature $T_b = 10^{-3} \Gamma$, thereby, $T_b \ll T_{K0}$, where $T_{K0} = D \exp[\pi \epsilon_0/\Gamma]$ denotes the Kondo temperature for a single dot [8], where $T_{K0} = 0.0016 \Gamma$ for the chosen bare system parameters. For a serial DQD, the characteristic
Kondo temperature is normalized by the tunneling amplitude accordingly to $T_K = T_{K0} \exp\left[1/(t/\Gamma) \right] / \sqrt{1 + (t/\Gamma)^2}$ [33]. First, we explore in Fig. 2 the behavior of the MF parameters $\tilde{\Gamma}_a$ and $\tilde{\varepsilon}_a$ when a thermal gradient θ is applied. We distinguish three different scenarios, namely, (i) the weakly coupling regime $t/\Gamma < 1$, (ii) the intermediate regime $t/\Gamma \sim 1$, and (iii) the strong coupling regime $t/\Gamma > 1$. Then, when $t/\Gamma < 1$ [see Fig. 2(a)] we observe that $\tilde{\Gamma}_L(\theta)$ and $\tilde{\Gamma}_R(\theta)$ behave very differently with θ. Here, $\tilde{\Gamma}_L$ (hot reservoir) decreases rapidly as θ increases, whereas $\tilde{\Gamma}_R$ remains almost unaffected by θ. Each dot develops an independent Kondo resonance with its own reservoir that yields a much lower Kondo temperature for the hot reservoir than for the cold one. Eventually, for $t/\Gamma > 1$, the DQD behaves effectively as a Kondo coherent molecule exhibiting bonding and antibonding Kondo states. Here, $\tilde{\Gamma}_L$ and $\tilde{\Gamma}_R$ are similar when θ is tuned. However, at large θ, Kondo correlations disappear in the hotter side. In such a case, the right dot decouples completely from the left dot and $\tilde{\Gamma}_R$ approaches T_{K0}, as indicated by the dashed line in Fig. 2(c). Consequently, for very large θ values the transport through the double dot is blocked even though Kondo correlations in the right (cold) dot take place.

All previous features determine the characteristic behaviors of the heat $Q(\theta)$ and thermoelectric current $I(\theta)$. Figure 3(a) displays $Q(\theta)$ for different interdot tunnel couplings indicating the regimes (i) $t = 0.25\Gamma$, (ii) $t = \Gamma$, and (iii) $t = 1.5\Gamma$, 2.5Γ. $Q(\theta)$ is always positive as expected. We observe that $Q(\theta)$ presents a maximum at a certain critical θ_c. Then, a region of diminishing heat current appears for $\theta > \theta_c$ exhibiting a negative differential thermal conductance: the basis of a thermal diode. Here, the DQD system allows the heat flow to occur in one direction preferentially [57].

In the linear regime ($\theta \to 0$) the heat flow increases linearly with θ according to the Fourier law: $Q \approx K_0 \theta$, with K_0 the linear thermal conductance which, at low temperatures, follows $K_0 \approx k_0 T \varepsilon_F$, where k_0 is the thermal conductance quantum k_0 as a function of the tunnel amplitude t. This result is equivalent to the transmission function at the Fermi level, $K_0(t) = k_0 T (\omega = 0, t)$. Same parameters as in Fig. 2.

FIG. 2. $\tilde{\Gamma}_L/R$ as a function of the thermal bias θ. The left, middle, and right columns correspond to the weak ($t = 0.25\Gamma$), intermediate ($t = \Gamma$), and the strong coupling regimes ($t = 2.5\Gamma$), respectively. The parameters are $K_0 = 1$, $L_R = \Gamma$, $L_L = \varepsilon_R = -3.5\Gamma$, $T_b = 10^{-3}\Gamma$, $D = 100\Gamma$, $\mu_{L,R} = \varepsilon_F = 0$.

FIG. 3. (a) Heat current $Q(\theta)$ for different values of the tunnel coupling t. (b) Differential thermal conductance $K(\theta) = dQ/d\theta$ for different values of the tunnel coupling t. (c) Linear thermal conductance $K_0(t)$ normalized with the thermal conductance quantum k_0 as a function of the tunnel amplitude t. This result is equivalent to the transmission function at the Fermi level, $K_0(t) = k_0 T (\omega = 0, t)$. Same parameters as in Fig. 2.
Notice that the transmission has more weight located at the negative frequency side in $T(\omega)$ causing a holelike flow which gives negative $I(\theta)$. By increasing $\theta \approx T_K$, the weight on the positive frequency side in $T(\omega)$ starts to contribute, adding an electronlike flow to $I(\theta)$. Therefore, there is a temperature θ^* where the hole and electron contributions to $I(\theta)$ compensate each other, yielding a vanishing thermoelectric current. Eventually, when $\theta > \theta^*$, the weights on positive frequencies in $T(\omega)$ dominate and therefore $I(\theta) > 0$. Eventually at large θ, $I(\theta)$ vanishes again since Kondo correlations on the hot dot are fully suppressed and hence left and right reservoirs become uncoupled.

Results (II): Thermally driven Kondo-to-antiferromagnetic crossover.---In contrast to the results explained above, when T_K becomes smaller, the presence of J is unavoidable, inducing the Kondo-to-AFM transition. Therefore, we now include a non-negligible AFM interaction $J > 0$ between localized spins S_L/R by adding the following term to the general Hamiltonian $\mathcal{H}_J = 1/4JS_L \cdot S_R$ [31].

When J exceeds a critical value J_c, the localized dot spins favor the formation of an AFM spin singlet state that blocks the charge transport. In serially coupled dots, several works have reported a crossover from the Kondo regime towards an AFM single state between the dot spins [11,14,15]. Such an AFM singlet state is manifested in the nonlinear conductance G exhibiting a splitting of value $\delta \approx 2J$ [29,33,45]. Additionally, the critical value J_c has been demonstrated to take the value [29]

$$J_c/T_{KR} \approx \frac{4}{\pi} \left(1 + \frac{T_{KL}}{T_{KR}}\right).$$

where $T_{KR} > T_{KL}$. Previously, we showed that a thermal bias alters dramatically the behavior of the Kondo scales $T_{KL} (\approx \Gamma_{L})$ and $T_{KR} (\approx \Gamma_{R})$. Therefore, according to Eq. (4), θ affects the value of J_c. In Fig. 5, we depict J_c/T_{KR} when θ is tuned for different Γ. The overall tendency is a transition from $J_c/T_{KR} \approx 8/\pi$ towards $J_c/T_{KR} \approx 4/\pi$ at large θ due to the suppression of the Kondo correlations in the hot dot $T_{KL} \approx 0$. The inset of Fig. 5 displays the behavior of the critical value J_c/T_{KR} for a fixed $\theta = 3.25T_K$ as a function of t/Γ. J_c/T_{KR} increases with t/Γ because Kondo correlations (for low or moderate θ values) are reinforced when the interdot tunneling coupling t/Γ increases. Consequently, a stronger AFM coupling is needed to suppress Kondo correlations.

Summary.---Summarizing, the two-impurity Kondo system driven by a thermal bias θ has been examined. When Kondo correlations are dominant ($J = 0$), θ has a strong influence on the Kondo scales and consequently on the transport properties of the Kondo-based setups. Our findings indicate that for sufficiently large θ the Kondo correlations are destroyed for the dot coupled to the hot reservoir regardless of the interdot strength coupling. Since the interdot coupling is renormalized by the Kondo correlations for both dots, the DQD setup gets decoupled leading to suppressed electrical and heat flows. For non-negligible antiferromagnetic spin exchange coupling, we report the influence of θ on the Kondo-to-AFM crossover. For a finite J, we find that such a crossover takes place around a critical value that for a small θ takes the value $J_c/T_{KR} = 8/\pi$, whereas for a large θ, J_c reaches the value of $\approx 4/\pi$. This result is due to the quenching Kondo correlations on the hot reservoir when θ augments. Finally, we highlight that all our observations might be experimentally tested due to the huge progress on thermoelectrical transport through nanostructures.
We are grateful to D. Sánchez for helpful discussions. This work was supported by the MINECO Grants No. FIS2014-52564 and No. MAT2017-82639 and the predoctoral grant from the government of Balearic Islands (CAIB).