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Single crystalline cylindrical 
nanowires – toward dense 3D 
arrays of magnetic vortices
Yurii P. Ivanov1,2, Andrey Chuvilin3,4, Laura G. Vivas2,5, Jurgen Kosel1,  
Oksana Chubykalo-Fesenko2 & Manuel Vázquez2

Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; 
however, because lithography is typically used for their preparation, their low-cost, large-scale 
fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that 
have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale 
magnetic structures that can hold multiple stable magnetic vortex domains at remanence with 
different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires 
with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk 
between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and 
magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the 
vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here 
introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

Magnetic vortices are objects of rotational symmetry composed of a relatively small core (typically <  10 nm), 
where the magnetization points out of the sample plane, surrounded by in-plane (e.g., circumferential) mag-
netization1–2. The vortex state occurs in thin ferromagnetic square and disk-shaped elements (“dots”) that are 
micrometer-sized and smaller. The stability of the vortex in the disk depends substantially on the exchange length 
of the material and the aspect ratio (diameter/thickness)3. The vortex state is very stable against thermal fluctua-
tions because of the height of the energy barrier that separates the two states with opposite polarities and because 
it involves the Bloch point4. Meanwhile, the polarization of the vortex core can easily be controlled by its resonant 
excitation with small bursts of an alternating5 or in-plane rotating GHz magnetic field6 or by spin-polarized cur-
rents7. These properties suggest that magnetic dots could be appropriate as building blocks for new spintronic 
devices. The first device proposed was a memory cell, where data bits can be stored in spin directions in the 
nanometer-scale-sized core8–11. More recently, an application related to vortex-based nanooscillators working 
in the sub-gigahertz regime was suggested12,13. The practical realization of these applications will depend on the 
ability to create low-cost, large-scale media that have a high density of magnetic elements with dimensions down 
to a few 10ths of a nm and that have a stable vortex state. Such planar structures can be integrated into potential 
new spintronic devices using well-established electron beam lithography; however, this restricts structures to the 
existing 2-dimensional device paradigm. By developing 3-dimensional (3D) media14,15 that can maintain vortex 
states localized to a few 10ths of a nm, a new technological concept for high-density spintronic devices will be 
born. In 2014, we used simulations to propose16 that specifically oriented Co nanowires (NWs) in a crystal struc-
ture may maintain a vortex state along their entire length, making them an excellent candidate for vortex-based 
media. Shorter nanopillars could be prepared by either controlled deposition conditions17 or simply by etching 
the NW array.

Cylindrical NWs with diameters between 15–200 nm and high aspect ratios can be prepared by electrodeposi-
tion into templates. For instance, hexagonally ordered arrays of NWs with high packing density can be fabricated 
using anodic aluminum oxide (AAO) membranes17–19. Typically, polycrystalline, magnetically soft NWs (such as 
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a permalloy, fcc Co, Fe, or Ni) have shape anisotropy and remain at remanence in a near-single domain state when 
a field is applied parallel to their axes with an “open” vortex-like structure at their ends16,20. Although only recently 
studied experimentally, starting with these open vortex structures, a magnetization reversal occurs via propaga-
tion of a Bloch-point vortex domain wall (VDW)21, similar to micromagnetic modeling, which was proposed ten 
years earlier20. Thus, although vortices in NWs is not a novel concept, they are related with dynamic processes. To 
stabilize these VDWs, NWs can be pinned to the location of a defect, making them difficult to control. Our group 
only recently predicted the existence of stable magnetic vortices at remanence along the full length of cylindrical, 
single-crystal hcp Co NWs using micromagnetic simulations22; to date, no direct experimental evidence of their 
existence at remanence has been reported.

Here, we report the first direct experimental proof of the existence of stable magnetic vortex states at rema-
nence in cylindrical, single-crystal hcp Co NWs by Lorentz microscopy (LorTEM) and electron holography. 
Using this system, we are able to present a 3D concept of magnetic vortex media for multiple applications in 
nanotechnology.

Results and Discussion
Structural study. Self-assembled nanopores with long-range, hexagonal packing were grown by a controlled 
two-step anodization process of highly pure aluminum disks in oxalic acid23. Pore size varied between 45 and 
75 nm using an appropriate chemical etching time in phosphoric acid. The average pore center-to-center distance 
was measured at ~105 nm.

Pores were filled with Co by controlled electrodeposition in a suitable bath (see Supplementary Information). 
NWs were approximately 10-μm long. Supplementary Fig. S1a shows a typical cross-sectional image of a Co 
NW array embedded into an AAO membrane. For all samples, X-ray diffraction (XRD) with Cu Kα1 radiation 
(λ  =  1.54056 Å) identified hcp crystal phases with a pronounced peak at 41.63° and a small peak at 75.96°, corre-
sponding to (100) and (2–10) planes of hcp Co, respectively (Supplementary Fig. S1b). The absence of {00l}-type 
reflections indicates that the c-axis is oriented perpendicular to the NW axis24. Analyses of scanning electron 
microscopy (SEM) and transmission electron microscopy (TEM) images showed NWs with a straight, uniform 
diameter, a smooth surface, and a single-crystal structure along their full length. This was confirmed by conver-
gent beam electron diffraction patterns that were acquired sequentially along the length of randomly selected 
NWs (see Supplementary Fig. S3).

The hcp Co phase is characterized by strong uniaxial magnetocrystalline anisotropy in the direction of 
the c-axis. As shown by both the high-resolution TEM (HRTEM) and the selected-area electron diffraction 
(SAED) pattern in Fig. 1, the c-axis is almost perpendicular to the NW axis, in agreement with results from 
the XRD. Hence, as predicted by the magnetic state diagram in ref. 22 a strong competition between shape and 

Figure 1. (a) Scanning TEM image of 75-nm diameter single-crystal Co NWs. In the insert the HRTEM and 
corresponding SAED images are shown. (b–d) HRTEM images in the plane perpendicular to the NW axis for 
several nanowires inside the membrane. Red arrow show the orientation of the c-axis.
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magnetocrystalline anisotropies is expected and a magnetic vortex state should exist at remanence. Here, we 
should note that a comparative analysis of the hysteresis loops in Supplementary Fig. S1c, measured by vibrating 
sample magnetometry under parallel (||) and perpendicular (⊥) fields to the NW axis, showed no clear easy 
magnetization axis direction. In addition, remanence of arrays of NWs with a 45-nm diameter after saturation 
by the field parallel to the NW axis was only slightly higher than that for arrays of NWs with a 75-nm diameter.

Lorentz microscopy and electron holography study. The magnetic state of individual magnetic NWs 
can be assessed using magnetic force microscopy (MFM)24,25 or X-ray magnetic circular dichroism21. For NWs 
with diameters less than 100 nm, LorTEM and/or electron holography are an alternative suitable approach26. 
The Fresnel mode of LorTEM is achieved by observing the sample in a plane far from the ordinary image plane. 
Depending on their chirality, magnetic vortices act as convex or concave lenses, having either a real focus below 
or virtual focus above the sample. In the LorTEM image, this is visualized as bright spots in the center of the 
vortex either in over-focused or under-focused conditions27. The amount of defocusing should be selected with 
consideration for the intensity of the magnetic induction, specimen thickness, and coherency of electron waves. 
Electron holography, in turn, directly measures the phase shift of the electron wave passing through the sam-
ple28,29 by measuring the phase shifts on the interferogram. This technique can be used to obtain quantitative 
information about magnetic and electric fields in materials with nm-scale spatial resolution30. Both methods are 
sensitive only to in-plane (perpendicular to electron beam) components of the magnetic field.

We prepared parallel sections of the AAO membranes with embedded NWs using a focused ion beam 
(FIB) system to observe the magnetic structures by LorTEM and electron holography (see Supplementary 
Information). The sectional sample was prepared as a wedge with the thickness gradually increasing from 20 to 
200 nm. Increasing thickness along the wedge was measured using the images recorded at a sample tilt angle of 
30°. Consequently, we investigated segments of NWs from 20 to 200 nm in length. At selected positions, a ± 75° 
tomography series was acquired and reconstructed for a better estimation of NW shape. Figure 2 shows the 
bright-field TEM (BF-TEM) image (a) and a reconstructed tomography image (b) of the cross section of the array 
of Co NWs with a 45-nm diameter and an estimated length of 55 nm.

Although most NWs were nearly cylindrical in shape, such that they made circular cross-sections (see 
Figs 1b–d and 2b), we also observed some with an imperfectly circular shape, seemingly due to the presence of 
defects in AAO membranes formed during anodisation of the aluminum disk. We used one of these defects to 
identify an area of interest for correlating data obtained by different methods.

LorTEM images corresponding to the square region (marked in red in Fig. 2a) of the array of single-crystal 
hcp Co NWs are shown in Fig. 3a,b. We observed that most of the NWs with a circular cross section had a bright 
spot in the center either in over- or under-focused conditions, indicating the presence of vortices with different 
chirality. Some NWs had broader spots (Fresnel fringes due to differences in electrostatic potential in the Co and 
alumina), whose positions shifted slightly in over- and under-focused conditions. These shifts are indicative of 
the presence of a linear, in-plane magnetic-field component that is perpendicular to the shift vector. Thus, we 
concluded that some NWs were partly magnetized in plane of the section while others contained vortices of 
different chirality.

We confirmed these observations by holographic measurements. The phase gradient measured from the inter-
ferogram was directly proportional to the perpendicular component of the magnetic induction vector (B⊥) in the 
specimen, and a graphic representation of the strength and direction of the locally projected B⊥ can be obtained 
by simply adding contours to the recorded magnetic contribution of the phase image. The field lines in Fig. 3e, 
obtained from the hologram, reveal circular contours, which correspond to in-plane circularly magnetized vor-
tices. Some of the NWs show a magnetic state with a strong in-plane magnetization component, while a few are 
either nonmagnetic or have no in-plane component. Two color sequences in Fig. 3d were used to highlight the 

Figure 2. (a) BF-TEM and (b) reconstructed tomography image of an array of single-crystal hcp Co NWs with 
a 45-nm diameter and a 55-nm length.
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clockwise (red to yellow) and anticlockwise (green to blue) rotation of NW magnetization, which is also sche-
matically shown in Fig. 3a,b. Yellow arrows indicate the direction of the in-plane component for NWs without a 
vortex state.

Consequently, the remanent state of NWs with a 45-nm diameter and an aspect ratio (length/diameter) from 
0.5 (20-nm long NWs) to 5 (200-nm long NWs) is either a vortex or a single-domain magnetization perpen-
dicular to the NW axis. In comparison, the ground state of lithographically fabricated permalloy, disk-shaped 
elements with such dimensions is a single-domain magnetized in parallel with the NW axis3.

To stabilize the vortex state, we increased the diameter of NWs to 75 nm, as shown in Fig. 4. Figure 4b shows 
the mixed over- and under-focused images of the NW array presented in Fig. 4a (red and green spots correspond 
to NWs with opposite magnetization chirality). Only a few NWs exhibited a ground state different from the vor-
tex state, and as shown in the reconstructed hologram image in Fig. 4e, which is a magnetization in plane with 
NW diameter. Consequently, the number of NWs with a vortex state was much larger than that of those with an 
in-plane state.

The contours in Figs 3e and 4c provide a quantitative measure of the strength and direction of the local mag-
netic field. Two contour lines contain a particular magnetic flux: with a known distance between lines and sam-
ple thickness, the magnetic field at each point can be calculated. Taking into account the thickness of the NW 
cross-sections measured from the tomogram, the in-plane component of the magnetic induction calculated from 
the hologram in Figs 3e and 4c amounts to 1.28 T and 1.75 T for NWs with a vortex state and 45-nm and 75-nm 
diameters, respectively (see Supplementary Information). Considering a saturation magnetization of bulk hcp 
Co of 1.76 T, we can conclude that the magnetization lies completely in plane (i.e., in the vortex for NWs with 

Figure 3. LorTEM images in over- (a) and under-focused (b) conditions of an array of NWs 45 nm in 
diameter and 55-nm long at remanence. The arrows show the transverse direction and the clockwise (red) and 
anticlockwise (blue) rotation of NW magnetization. As (c) shows schematically, the magnetic vortex acts as a 
convex or a concave lens, depending on its chirality, which creates a focus above or below the sample. Looking at 
these planes, we could detect the presence of a vortex state and determine its chirality. On the hologram image 
(d) the high- and low-phase values are represented by two color sequences that correspond to the clockwise and 
anticlockwise rotation of NW magnetization and (e) shows the contour lines corresponding to the B⊥.
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a 75-nm diameter). However, the magnetization of the vortex shell for NWs with a 45-nm diameter contains a 
component parallel to the NW axis. Note that the very small value of the in-plane magnetic induction between 
45-nm NWs in the array suggests a nearly negligible dipole-dipole interaction in the array; 75-nm NWs also 
had very small stray fields when in a vortex state but had comparatively strong stray fields with a strong in-plane 
magnetization component.

Micromagnetic simulations. We performed micromagnetic simulations with the typical magnetic param-
eters of bulk hcp Co (saturation magnetization Ms =  1.76 T, exchange stiffness constant A =  1.3 ×  10−11 J/m and 
uniaxial magnetic anisotropy value K =  4.5 ×  105 J/m3) to understand the occurrence of different magnetic states 
and the magnetization process22. Following TEM measurements we have assumed that the nanowires are single 
crystalline with c-axis oriented at 88° with respect to the nanowire length. After saturation parallel to the NW 
axis by a 1 T magnetic field, the magnetization reversal started by the nucleation of the vortex at a still positive 
magnetic field. At a certain negative field, the vortex core irreversibly switches, and for the rest of the process, the 
spins in the vortex shell have a reversible rotation towards the negative magnetic field. Figure 5b shows the calcu-
lated nucleation field (Hn) and switching field (Hsw) versus NW length. Hn and Hsw drastically decrease as aspect 
ratio (l/d) increases up to 2, at which point their values saturate. A higher value of shape anisotropy, capable of 
competing with magnetocrystalline anisotropy for NWs with a 45-nm diameter, results in significantly smaller 
values of Hn compared with those for NWs with a 75-nm diameter, but practically does not show up in the Hsw 
dependence. Thus, the values of the critical fields of the vortex can easily be tuned by adjusting the aspect ratio of 
NWs. In Fig. 5c we present the minimum energy configurations for different NW aspect ratios.

Furthermore, simulations indicated that two stable magnetic states—the vortex state and the magnetic state—
with in-plane magnetization (perpendicular to the wire axis) coexist and have similar energies (see Fig. 5a). The 
calculations show that for NWs with a 45-nm diameter, the vortex state had the lowest energy for 100-nm NWs 
or longer, while for NWs with a 75-nm diameter the vortex state was most favorable at 50 nm in length. In a 
non-vortex state with in-plane magnetization, both diameters of NWs were favorable with lengths below 20-nm. 
For intermediate lengths (i.e., above the critical aspect ratio of 0.7 and 2.2 for NWs with 75-nm and 45-nm diam-
eters, respectively), the energy associated with a vortex structure was very similar to that needed to align the mag-
netization mostly in plane with the NW diameter. Thus, for a range of aspect ratios close to those values, we can 
expect the occurrence of one or another state in different NWs in the array to agree well with the experimental 
data in Figs 3 and 4. Simulations show that for aspect ratios > 2 the ground state may also include NWs separated 
along their length in two domains with two vortices with the same polarity and opposite chirality. For sufficiently 
long lengths, multiple vortices with alternative chirality will minimize the energy. Figure 6a,b show the MFM 
image of NWs with a 45-nm diameter and a 10-μm length at remanence. The alternating contrast corresponds to 

Figure 4. (a) BF-TEM and (b) mixed LorTEM images at over- (+ 200 μm, red spots) and under-focused 
(− 200 μm, green sports) conditions of an array of NWs with a 75-nm diameter at remanence (red and green 
spots correspond to NWs with opposite magnetization chirality). (c) The original interferogram, (d) the 
reconstructed image of an array of NWs with a 75-nm diameter at remanence (high- and low-phase values 
are represented by two color sequences corresponding to the clockwise and anticlockwise rotation of NW 
magnetization) and (e) shows the contour lines that correspond to the B⊥.
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a magnetic state consisting of vortices with alternating chirality, as confirmed by results from the micromagnetic 
simulation shown in Fig. 6c. Due to the presence of a strong magneto-crystalline anisotropy, these vortices are not 
axially symmetrical; therefore, they produce a stray field that is observable by MFM.

Furthermore, in agreement with electron holography studies, simulations show that the magnetization com-
ponent parallel to NW length is practically zero for NWs with a 75-nm diameter, while those with a 45-nm diam-
eter varied from 0.15 to 0.35 with increasing length (from 20 to 200 nm). This can be understood considering the 
increasing shape anisotropy for smaller diameter or longer NWs that eventually dominate the magnetocrystalline 
anisotropy. This also indicates that the vortex shell is not in plane according to typical planar dot geometry.

We used tomographic data (see Fig. 7a) to run micromagnetic simulations on the part of the array presented 
in Fig. 3 to account for the magnetostatic interaction between NWs in the array and to define the true shape of 
NWs. As shown in Fig. 7b, NWs can present either vortex or parallel magnetization states, which agrees well with 
experimental data (Fig. 3).

The spin configuration extracted from micromagnetic simulations was also used to simulate the LorTEM 
images for comparison with the experimental images shown in Figs 3a,b and 4a,b. This simulation clearly showed 
that NWs with vortices behave like a lens, focusing the electron beam (Figs 8a,c,e and 9a,c,e). Any other contrast 
in the LorTEM images can be attributed to inner electrostatic potential (Figs 8b,d and 9b,d).

Conclusion
Arrays of hexagonally ordered, magnetic vortices were created in monocrystalline hcp Co NWs grown using a 
simple electrochemical technique. This type of vortex structure is achieved by a competition between shape and 
crystalline anisotropies. We used holography and LorTEM studies to observe the results.

The vortex state is observed in arrays of NWs with diameters as small as 45 nm and lengths of 200 nm, for 
which cross talk between neighboring vortices was observed to disappear. This is an important difference com-
pared to permalloy dots and nanopillars, which show no vortex state at similar dimensions.

Simulations show that a stable vortex state is obtained for NWs with dimensions that exceed a critical aspect 
ratio. They also show that multiple vortices with different chirality can exist along NWs with higher aspect ratios. 
This intriguing quality for data storage media was confirmed by MFM measurements.

The simplicity and efficiency of the vortex structures fabricated in this study are motivation for the continued 
exploration into new opportunities for the use of an advanced 3D magnetic vortex memory system.

Figure 5. (a) Calculated dependence of the total energy of the vortex and non-vortex state on the length of 
NWs. (b) The nucleation field of the vortex and the switching field for the vortex core as a function of NW 
length after saturation in 1 T parallel to the NW axis. (c) Simulated magnetization of single-crystal hcp Co NW 
with a 75-nm diameter, depending on the length of the NW.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:23844 | DOI: 10.1038/srep23844

Methods
Growth of Co nanowires. AAO membranes with highly ordered, hexagonal, self-assembled nanop-
ore arrays were prepared by a two-step anodization process in oxalic acid23. Prior to anodization, high-purity 
(99.999%) aluminum disks were degreased in acetone by ultrasound and cleaned by electropolishing in a mix-
ture of perchloric acid and ethanol (HClO4:C2H5OH =  1:4 in volumetric ration) for 2 min at 6 °C with vigorous 
stirring. Afterwards, samples were rinsed in an ethanol solution and dried. The first anodization procedure was 

Figure 6. (a) A MFM image of a NW with a 45-nm diameter and a 10-μm length at remanence. (b) A close up 
of an area with five alternating vortices and (c) the corresponding results of a micromagnetic simulation. (The 
colors along the nanowire correspond to the MFM contrast obtained and the arrows show the clockwise and 
anticlockwise rotation of NW magnetization in adjacent vortices).

Figure 7. (a) A tomographic image of the section of the NW array presented in Fig. 3 and (b) the calculated 
ground state of magnetization (colors correspond to the in-plane component of magnetization and lines 
correspond to the B⊥).
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performed using a 0.3-M oxalic acid solution as an electrolyte at 3 °C and an anodization voltage of 40 V. After the 
first anodization, the sample was immersed in a chromic acid/phosphoric acid mixture at room temperature until 
the oxide layer was dissolved. The second anodization was performed for 20 h resulting in pore depths of up to 
40 μm. Next, time-controlled treatments in phosphoric acid increased pore diameters to 45 and 75 nm. Then, the 
non-oxidized Al and alumina layers at the bottom of the disk were chemically removed. A thin Au layer was then 
sputtered onto the open backside of the membrane to serve as an electrode for the subsequent Co electroplating. 
Cobalt NWs were grown at room temperature in an aqueous solution of 250 g/l CoSO4 and 40 g/l H3BO3. An 
Ag/AgCl reference electrode was combined into a three-electrode system in which a platinum electrode served 
as a counter electrode to conduct potentiostatic direct current electrodeposition. Electroplating was performed 
at −1 V. The pH of the solution was maintained at 3.5. The electroplating time was tuned such that the average 
length of the nanowires was approximately 10 μm.

Structural characterization. An X′ Pert PRO X-ray diffractometer was employed for the characterization 
of the crystal structure array of NWs. We performed θ –2θ  scans with a scattering vector parallel to NW axes 

Figure 8. (a) The ground magnetic state on the NW array presented in Fig. 3 (color corresponds to the 
magnetization component in plane with NW diameter). LorTEM images of (b,d) calculated electrostatic and 
(c,e) magnetic contributions. (b,c) show under- and (d,e) show over-focused images.

Figure 9. (a) The ground magnetic state on the NW array presented in the Fig. 4 (color corresponds to the 
magnetization component in plane with NW diameter). LorTEM images of (b,d) calculated electrostatic and 
(c,e) magnetic contributions. (b,c) show under- and (d,e) show over-focused images.
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(perpendicular to the plane of AAO membrane). Prior to the XRD measurements, the Au metallic contact layer 
was partially removed using ion milling.

As prepared membranes were broken, sharp cross-sections were used for characterization by SEM. Planar 
sections of arrays for tomography and holography studies were prepared by the FIB protocol (see Supplementary 
Fig. S2).

Electron microscopy studies were performed on a TEM Titan G2 60–300 (FEI, Netherlands) operated at 
300 kV. To study the crystal structure of individual NWs, the AAO membranes were dissolved in a Cr2O3/
H3PO4-H2O solution at 40 °C and the Co NWs were dispersed in ethanol.

Magnetic characterization. The magnetic properties of the nanowire arrays were studied using a vibrating 
sample magnetometer (EV7 KLA-Tencor). The magnetization curves were measured under magnetic fields up to 
17 kOe with the field applied parallel (||) and perpendicular (⊥) to the NW axis.

LorTEM images and holograms of the remanent magnetic states of the planar sections of arrays were acquired 
using the Lorentz mode of the microscope. The Lorentz mode allows the specimen to be imaged in a field-free 
environment with the main objective lens of the microscope turned off. Off-axis electron holograms were 
acquired with an electron biprism operated typically near + 200 V. Phase-shift reconstruction was done using a 
reference image. For the construction of magnetic induction maps, the cosine of the magnetic contribution to the 
phase shift was amplified to produce magnetic phase contours. Colors were added to show the direction of the 
magnetization rotation. The in-plane component of the magnetic induction was calculated from the holograms 
(see Supplementary Information for details).

MFM images were recorded in lift-off mode (100-nm distance) with an Agilent 5400 scanning probe micro-
scope using standard atomic force microscopy nanosensor probes with a magnetic coating. A drop of ethanol 
containing Co NWs was placed on a clean Si wafer and then dried. A single NW was selected using SEM and 
its position was marked by FIB setup. MFM measurements were done at the remanent state after saturation in a 
12-kOe magnetic field parallel to the NW axis.

Simulations. The minimum-energy magnetic states of single-crystal, cylindrical Co NWs with 45- and 
75-nm diameters and lengths between 20 and 1000 nm were simulated using the OOMMF package32; cell size was 
measured at 2 nm. The relative c-axis orientation with respect to the NW axis was chosen in plane with NW diam-
eter. The initial magnetization was varied from being in plane with the diameter of NWs to being in parallel with 
the NW axis; in addition, NWs were in a state of random spin orientation. The ground state of the array presented 
in Figs 3 and 4 are also simulations. Shapes for the simulations were extracted from the tomography data shown 
in Fig. 7a. For the initial state, a random orientation of the spins in each cell was chosen.

The demagnetization process of NWs was simulated by the MagPar package with finite element discretiza-
tion31. The average finite element discretization size was chosen to be 2 nm. The direction of the magnetocrys-
talline anisotropy was considered to be in agreement with TEM data (at 88° with respect to the NW axis). The 
simulated MFM image was evaluated from micromagnetic configurations as the divergence of the magnetization 
vector, which normally produces results that are indistinguishable from the evaluation of the magnetic force 
derivative.

LorTEM image simulations were performed by MALTS software33 using the following parameters: an accel-
erating voltage of 300 kV, a mean inner potential of hcp Co of − 29.6 V, and defocus values of − 200 and + 200 μm, 
which corresponded with the parameters of our LorTEM experiments. An induction map similar to the one from 
the electron hologram was simulated using an LLG micromagnetic simulator34.
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