Accepted Manuscript

Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits

Josué Delgado, Ana-Rosa Ballester, Félix Núñez, Luis González-Candelas

PII: S0740-0020(18)31071-2
DOI: https://doi.org/10.1016/j.fm.2019.103266
Article Number: 103266
Reference: YFMIC 103266

To appear in: Food Microbiology

Received Date: 9 November 2018
Revised Date: 3 July 2019
Accepted Date: 10 July 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Evaluation of the activity of the antifungal PgAFP protein and its producer mould against *Penicillium* spp postharvest pathogens of citrus and pome fruits

Josué Delgado\(^1\text{a}\), Ana-Rosa Ballester\(^2\), Félix Núñez\(^1\text{*}\), Luis González-Candelas\(^2\text{*}\)

\(^1\)Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain.

\(^\text{a}\)Present Address: UGC Corazón Hospital Clínico Universitario Virgen de la Victoria. IBIMA. CIBERCV. Universidad de Málaga (UMA), Spain. Campus de Teatinos S/N, 29010 Málaga, Spain.

\(^\text{*}\)corresponding authors: lgonzalez@iata.csic.es (L. González-Candelas);

fnunez@unex.es (F. Núñez)
ABSTRACT

Postharvest fungal diseases are among the main causes of fresh fruit losses. Chemical control is against claims for “natural” or “chemical-free” products. Biocontrol agents, such as antifungal proteins or their producing moulds, may serve to combat unwanted pathogens. Since the effectiveness of these bioprotective agents depends on the food substrate, their effect must be tested on fruits. The objective of this work was to study the effect of the antifungal protein PgAFP and its producer, *Penicillium chrysogenum*, against *Penicillium expansum* and *Penicillium digitatum* growth on apple and oranges respectively, and the PgAFP effect on eleven *P. expansum*, *Penicillium italicum*, and *P. digitatum* strains in vitro, and on patulin production on apple substrate. The sensitivity upon PgAFP was *P. digitatum* > *P. expansum* > *P. italicum*. In oranges, broadly, no inhibitory effect was obtained. PgAFP and *P. chrysogenum* did not inhibit the *P. expansum* CMP-1 growth on Golden Delicious apples, however, a successful effect was achieved on Royal Gala apples. On apple substrate, patulin production by *P. expansum* CMP-1 rose in parallel to PgAFP concentrations, linked with high reactive oxygen species levels. PgAFP cannot be proposed as a bioprotective agent on apple. However, *P. chrysogenum* is a promising agent to be used on Royal Gala apples.

Keywords: apple, blue mould, green mould, oranges, *Penicillium chrysogenum*, PgAFP
1. Introduction

Postharvest fungal diseases are among the main causes of fresh fruits losses during their
distribution worldwide (FAO, 2011). Chemical control of these postharvest diseases is
efficient and cost-effective, but they are against claims for “natural” or “chemical-free”
products. Biocontrol using antifungal proteins or their producer moulds provide a
valuable strategy against unwanted moulds.

Some moulds are able to produce antifungal proteins, which have been considered as an
ecological advantage in order to colonise a given niche (Marx, 2004). PgAFP is an
antifungal protein produced by *Penicillium chrysogenum* CECT 20922 (formerly
RP42C) isolated from dry-cured ham (Acosta et al., 2009; Rodríguez-Martín et al.,
2010). This protein efficiently retarded the growth of a wide variety of reference moulds
in vitro as well as reduced the counts of *Aspergillus flavus* and *Penicillium restrictum* in
dry-fermented sausages (Delgado et al., 2015a). Moreover, *P. chrysogenum* CECT
20922 used as protective culture limited the growth of aflatoxin-producing *A. flavus* and
ochratoxigenic moulds on dry-cured ham (Bernáldez et al., 2014; Rodríguez et al.,
2015). However, PgAFP did not inhibit *A. flavus* growth in cheese due to the calcium
content (Delgado et al., 2017).

The antifungal proteins produced by moulds have some common structural properties
such as being small, cationic and cysteine-rich. They cause an inhibitory effect on
sensitive moulds in a dose-dependent manner (Delgado et al., 2015a; Kaiserer et al.,
2003; Skouri-Gargouri et al., 2009). The mechanism of action of PgAFP has been
partially elucidated, being involved reactive oxygen species (ROS) induction, cell wall
integrity disturbance, membrane permeabilization, inhibition of metabolic activity, and
necrosis and apoptosis phenomena (Delgado et al., 2016). However, ROS can activate
mycotoxin production (Reverberi et al., 2012; Schmidt-Heydt et al., 2014), and the
oxidative stress is considered a prerequisite for aflatoxin production (Jayashree and Subramanyan, 2000). On the other hand, mycotoxin production can be reduced by antioxidants, such as butylated hydroxyanisole (Reverberi et al., 2006), β-glucans (Reverberi et al., 2005) or caffeic acid (Kim et al., 2008). In this sense, antioxidants such as phenolics naturally present on apples (Rana and Bhushan, 2016) could decrease the adverse effects of ROS in patulin synthesis. Thus, patulin production by *P. expansum* treated with PgAFP should be studied in apple substrate.

Therefore, these proteins and their producing moulds could be proposed to control some unwanted moulds in foods achieving products free of synthetic chemicals. The use of compounds produced by *P. chrysogenum* fulfills the food safety requirement, given that this species is used to obtain generally recognized as safe (GRAS) compounds. Thereby the application of these proteins as a biocontrol strategy deserves to be studied. However, given that the effectiveness of these bioprotective agents depends on the food substrate, considering antifungal effect must be tested on fruit matrix and fruits. There are also recent reports indicating the potential application of antifungal peptides and proteins to control postharvest pathogens (Garrigues et al., 2018; Wang et al., 2018).

Given the increasing interest in the use of alternative preservation methods based on natural products and the already proven control ability of both the antifungal PgAFP proteins as well as its producing fungus (Bernáldez et al., 2014; Delgado et al., 2015a; Rodríguez et al., 2015), we sought to evaluate the inhibitory activity of PgAFP and the producer *P. chrysogenum* against *P. expansum* and *P. digitatum* growth on apple and oranges, respectively. In addition, the antifungal effect of PgAFP on *P. expansum*, *P. italicum*, and *P. digitatum in vitro* and on patulin production on apple substrate by *P. expansum* was assessed.
2. Materials and Methods

2.1. Microorganisms and culture conditions

Penicillium chrysogenum CECT 20922 (formerly *P. chrysogenum* RP42C), isolated from dry-cured ham (Acosta et al., 2009), was used to produce PgAFP. Antimicrobial assays were conducted with eleven strains with sequenced genomes from the three major postharvest pathogenic species of citrus and apple fruits from the genus *Penicillium*. *P. digitatum* (Pers.:Fr.) Sacc. and *P. italicum* Wehmer are pathogens of citrus fruit and *P. expansum* Link is a pathogen of pome fruit. Details on these strains are given in Table 1. All strains were grown on potato dextrose agar (PDA, Difco-BD Diagnostics, Sparks, MD, USA) plates. Cultures were incubated at 24 °C for 7-10 days. Conidia were collected with sterile water, filtered through a nylon mesh and titrated with a haemocytometer.

2.2. PgAFP purification

ThePgAFP-producing *P. chrysogenum* CECT 20922 was inoculated into malt extract broth (20 g/L malt extract, 20 g/L glucose, and 1 g/L peptone; MEB), pH was adjusted at 4.5, and incubated up to 21 days at 25 °C. PgAFP was obtained from the cell-free medium by fast protein liquid chromatography with a cationic exchange column HiTrap SP HP (Amersham Biosciences, Uppsala, Sweden), further purified with a HiLoad 26/60 Superdex 75 gel filtration column for FPLC (Amersham Biosciences), and concentrated in 50 mM sodium phosphate buffer (pH 7.0) containing 0.15 M NaCl, as previously described (Acosta et al., 2009; Rodríguez-Martín et al., 2010).

PgAFP concentration in a pooled stock solution was measured by Lowry method (Lowry et al., 1951), sterilized through 0.22 µm acetate cellulose filters (Fisher Scientific, United Kingdom), and stored at -20 °C until use.

2.3. In vitro antimicrobial assays
Antimicrobial activity of PgAFP against a collection of different isolates from three *Penicillium* species was conducted in sterile 96-well flat-bottom microtiter plates (Nunc, Thermo Scientific, United Kingdom). Fungi were grown at 24 °C for seven days in a final volume of 100 µL of potato dextrose broth (PDB; Scharlau Chemie, S.A., Spain) containing 10⁴ conidia per well and different amounts of PgAFP protein, in two-fold serial dilutions ranging from 75 to 1.17 µg/mL (11.6 to 0.2 µM). In order to avoid evaporation, plates were incubated inside a box on top of water-saturated filter paper. Growth was followed by measuring the absorbance at 600 nm (A₆₀₀) with a FLUOstar Omega microplate reader (BMG LABTECH GmbH, Ortenberg, Germany). To minimize the effect of non-homogeneous fungal growth within the well, each A₆₀₀ value was the average of nine measurements regularly distributed within the well. Each treatment was conducted in triplicate within the same plate. Values given represent the mean ± standard deviation of the mean, after background subtraction, of these three replicates. IC₅₀ (the concentration required to obtain 50% inhibition of growth) values were determined at 4 days by adjustment of growth data to a four-parameter sigmoid curve. The minimum inhibitory concentration (MIC) is defined as the minimum concentration at which no growth was observed at the end of the incubation period.

2.4. Fruit pathogenicity tests

Experiments were conducted either with freshly harvested oranges (cv Navelina and Lanelate) or with apples (cv Golden Delicious and Royal Gala) obtained from a local grocery. Fruits were submerged for five minutes in a 5% commercial bleach solution, rinsed extensively with tap water and allowed to dry. Each fruit was wounded at four places across the equatorial axis with a nail (2 mm wide x 4 mm depth) and each wound was inoculated with a freshly made mixture containing 10 µL of a spore suspension (10⁴ conidia/mL for Navelina and Lanelate oranges and Golden Delicious apples, or 10⁵
conidia/mL in the case of Royal Gala apple fruits) and PgAFP at either 50 (Navelina
oranges and Golden Delicious and Royal Gala apples) or 100 µg/mL (Lanelate
oranges). We have also tested a pre-incubation of PgAFP at 100 µg/mL with *P. digitatum* spores for 5 hours before inoculation of Lanelate oranges.

The biocontrol capability of *P. chrysogenum* CECT 20922 was assayed by co-
incubation of 100-fold more spores than the pathogen: 10^6 conidia/mL in Navelina and
Lanelate oranges and Golden Delicious apples, and 10^7 conidia/mL in Royal Gala
apples. Fruits were placed in plastic boxes and incubated at 20 °C and 90% relative
humidity. Decay incidence (percentage of infected wounds) and severity (macerated
lesion diameter) were evaluated periodically. Five fruits constituted a replicate and there
were three replicates per experiment. Infection experiments were conducted at least
twice at different times.

2.5. *Patulin production*

For assays in solid media, apple agar was prepared using lyophilized apple powder (30
g/L) and bacteriological agar (20 g/L). Apple powder was achieved by cutting apples in
pieces, froze them at -80 °C for at least 3h and lyophilizing the pieces in a Bulk Tray
Dryer with a 6-Port Manifold coupled to a FreeZone 6 Liter Console Freeze Dry System
(Labconco, USA). The lyophilized pieces were then pulverized in a crusher. After
dissolving these ingredients by stirring, the medium was sterilized at 121 °C for 16 min.
To obtain the three batches with different PgAFP concentrations 0, 10 and 40 µg/mL,
melted apple agar (45 °C) was supplemented with a sterile solution of PgAFP prior to
being poured into Petri plates. They were stored at room temperature until agar
solidification. Then, plates were centrally inoculated with 2 µL from a spore suspension
of *P. expansum* CMP-1 (10^6 conidia/mL) and incubated for 15 days at 25 °C.

2.6. *Patulin extraction*
Around 1 g of apple agar where *P. expansum* CMP-1 was grown was placed into a test tube prior to ethyl acetate addition (2 mL). The test tube was vortexed for 2 min and centrifuged at 5000 rpm for 5 minutes. The supernatant was transferred to a new tube and evaporated to dryness under a gentle stream of nitrogen. Samples were kept at -20 °C until resuspension to be analysed.

2.7. Patulin detection

Patulin was analysed by an uHPLC system, Thermo Scientific (United Kingdom) Dionex UltiMate 3000 coupled to an Ion Trap Mass Spectrometer System amaZon SL (Bruker Daltonics Inc., Germany). The column was a reversed-phase column C18 (100 mm x 2.1 mm, 2 µm; Agilent Technologies, USA). The analysis was done in a linear gradient from 2 to 98%. The mobile phase consisted of 0.1% acetic acid-10 mM ammonium acetate (solvent A) and methanol (solvent B). The injection volume was 10 µL and the flow rate was set at 0.3 mL/min. MS detection of patulin was performed using the ions 153 in ESI ionization mode. The run time was 15 min, being the patulin detected at 3.0 ± 0.2 min. Signals were processed by Hystar 3.2 software (Bruker Daltonics Inc.).

2.8. ROS detection

Apple broth was prepared similarly to apple agar (section 2.5), except for the no addition of bacteriological agar. After sterilization, tubes containing the broth were centrifuged to discard any solid particle, which could interfere in the absorbance or fluorescence assays. This broth was poured into a 96-well plate and supplemented with PgAFP to obtain 0, 10 and 40 µg/mL. *P. expansum* CMP-1 was inoculated at 10⁵ conidia per well and incubated at 25 °C for 48 h. A parallel assay was performed using PDB instead of apple broth. Both assays were carried out in three biological replicates. Each well was supplemented with 2',7'-dichlorofluorescein diacetate (DCFDA,
Molecular Probes, Eugene, OR, USA) to get 25 µM. The DCFDA is not fluorescent, but when ROS are generated, DCFDA is oxidized to 2′,7′-dichlorofluorescein (DCF), generating green fluorescence. The amount of DCF formed is proportional to cellular oxidant production (Chen and Dickman, 2004). The samples were incubated in darkness for 45 min at 25 ºC. Then, measures of absorbance to obtain growth data, and fluorescence (Ex 485/Em 535) to obtain total ROS content, were carried out in a Varioskan LUX (Thermo Scientific, United Kingdom). Assays were carried out with six biological replicates.

2.9. Statistical analyses

Statistical analyses were performed with IBM SPSS v.22 (www03.ibm.com/software/products/es/spss-stats-standard). Data were tested for normality (Kolmogorov–Smirnov with Lilliefors correction) and homoscedasticity (Levene’s test). Given that patulin concentration and ROS data were non-normally distributed, median values were compared using the non-parametric Kruskal–Wallis test. Then, to compare treatments in pairs, the Mann–Whitney U test was applied ($p<0.05$). To study the relationship between patulin production and intracellular ROS, Spearman correlation was applied ($p<0.05$). Statistical analyses of pathogenicity assays were conducted by one-way ANOVA. Variance normality was checked according to Levene’s test. Data means were compared among treatments (F-test) and those showing differences were further categorized according to Fisher’s least significant difference test ($p<0.05$).

3. Results

3.1. PgAFP purification
PgAFP was purified from the supernatant of a twenty-one-day culture of *P. chrysogenum* CECT 20922 in MEB medium, following the procedure described in section 2.2. The yield of the purified protein was 585 µg/mL, very close to the 678 µg/mL concentration obtained in previous work (Delgado et al., 2015a).

3.2. In vitro antifungal activity of PgAFP

Antifungal activity of purified PgAFP was tested *in vitro* against a collection of isolates from the postharvest fungal pathogens *P. digitatum, P. expansum* and *P. italicum* whose genome sequences have been published (Table 1). This approach was used to determine possible intraspecific differences in antifungal susceptibility. Although growth curves of the different strains of the same species seemed similar (Fig. 1), some differences may be observed, which are reflected in the IC$_{50}$ and MIC values (Table 2). Thus, the four *P. digitatum* strains showed similar IC$_{50}$ values, in the range of 1.0-1.7 µg/mL. However, the highest dose of PgAFP (75 µg/mL) was not able to inhibit completely the growth of the strains Pd1 and Pd01 after 7 days of incubation, whereas the strains PHI26 and PDC102 showed MIC values of 9.4 and 37.5 µg/mL, respectively.

The five *P. expansum* strains were less sensitive to PgAFP than the *P. digitatum* strains, ranging their IC$_{50}$ values between 7.6 and 12.7 µg/mL. Among *P. expansum* strains, isolate d1 showed the lowest MIC value (37.5 µg/mL), followed by strain MD-8 (75 µg/mL). The three remaining *P. expansum* strains were not completely inhibited by PgAFP under the assayed conditions.

The two *P. italicum* strains were even more resistant to PgAFP than any of the *P. digitatum* or *P. expansum* strains, with IC$_{50}$ values of 12.4 and 39.7 µg/mL and MIC values >75 µg/mL. Moreover, the addition of PgAFP at 2.3 and 4.7 µg/mL led to a 40% increase in the growth of the strain B3.
The strain PgAFP-producing *P. chrysogenum* CECT 20922 was insensitive to PgAFP under the assay conditions. As noted in the *P. italicum* B3 strain, some concentrations of PgAFP resulted in up to 50% growth stimulation.

3.3. In vivo antifungal activity of PgAFP

The capability of PgAFP to protect citrus fruit against infection by *P. digitatum* was first assayed. *P. digitatum* Pd1 was chosen because represents the worse scenario since it was the most resistant strain to the antifungal protein *in vitro* test. In a first assay, Navelina oranges were co-inoculated with *P. digitatum* Pd1 conidia and PgAFP at 50 µg/mL, which is more than 25 fold the calculated *in vitro* IC$_{50}$ value. This treatment was compared with the co-inoculation of *P. chrysogenum* CECT 20922 at a 100-fold higher concentration than *P. digitatum* conidia (10^6 vs 10^4 conidia/mL). None of the treatments resulted in a statistically significant difference with respect to the control inoculation in disease incidence (Fig. 2A) or disease severity (Fig. 2B) by 5 days post-inoculation (dpi). Then, a second experiment was conducted with Lanelate oranges in which the concentration of PgAFP was increased to 100 µg/mL to see whether this higher dose could have an antifungal effect. This treatment did not alter the development of *P. digitatum* Pd1 within the fruit by 5 dpi. In this second experiment, the co-inoculation with *P. chrysogenum* CECT 20922 resulted in a delay in the development of green mould decay, which was reflected in a lower disease incidence (Fig. 2A), although no difference in the macerated area with respect to control fruits inoculated only with *P. digitatum* was observed (Fig. 2B). A 5 hours pre-incubation of PgAFP with *P. digitatum* spores before inoculation of Lanelate oranges did not reduce the incidence nor the severity of the green mould infection (Fig. 2).

The possible inhibitory activity of PgAFP during blue mould development in apple fruit was analyzed using the strain CMP-1, which is moderately resistant to PgAFP. Golden
Delicious apples were inoculated with 10^4 conidia/mL of CMP-1 either alone or in the presence of PgAFP at 50 µg/mL or *P. chrysogenum* CECT 20922 at 10^6 conidia/mL. By 5 dpi, there were no significant differences among treatments in disease incidence (Fig. 3A) or severity (Fig. 3B).

On the contrary, both purified PgAFP and *P. chrysogenum* CECT 20922 were able to delay blue mould development in Royal Gala apples (Fig. 3). As this variety is more resistant than Golden Delicious, a higher inoculum of *P. expansum* was used (10^5 conidia/mL). The highest effect was observed with *P. chrysogenum* CECT 20922, with a reduction by 5 dpi of 20% in disease incidence and up to 50% in the area of the macerated tissue. It should be noted that in this particular experiment the dose of *P. chrysogenum* was 10^7 conidia/mL, 10 fold higher than in the other experiments, in order to keep a 100-fold excess over the pathogen. PgAFP at 50 µg/mL also showed some efficacy by 5 dpi. It reduced disease incidence by 14% (Fig. 3A) and disease severity by 35% (Fig. 3B).

3.4. Patulin production

The patulin production by *P. expansum* CMP-1 grown on apple agar with different concentrations of PgAFP was determined by u-HPLC-MS (Fig. 4). Both PgAFP treatments, 10 and 40 µg/mL, induced a patulin overproduction by *P. expansum* CMP-1 ($p<0.05$). In the non-treated samples, the patulin concentration was around 280 ppb, whilst in the batch treated with 10 µg/mL of PgAFP was around 2500 ppb. The patulin concentration rose parallel to PgAFP concentration, reaching 8500 ppb in the samples treated with 40 µg/mL of PgAFP.

3.5. ROS detection

PgAFP both in PDB (Fig. 5A) and apple broth (Fig. 5B), increased intracellular ROS on *P. expansum* CMP-1 at 48 h of incubation ($p<0.05$). Both PgAFP concentrations tested
equally increased the intracellular ROS in PDB (p<0.01, Fig. 5A). However, in apple broth (Fig. 5B) 10 µg/mL provoked a lower rise in ROS (p<0.05) than 40 µg/mL (p<0.01). The parallel inhibition assay showed that at 48 h, both PgAFP concentrations tested (10 and 40 µg/mL) provoked a remarkable inhibition of *P. expansum* CMP-1 in the two tested media (p<0.01).

Additionally, a significant correlation was found between patulin production and intracellular ROS (p<0.05), being the Spearman's ρ coefficient of 0.75.

4. Discussion

P. chrysogenum CECT 20922 isolated from dry-cured ham produces the antifungal protein PgAFP (Acosta et al., 2009; Rodríguez-Martín et al., 2010) active against toxigenic moulds, thus opening the possibility to be used as a biocontrol agent in dry-cured meat products. Several filamentous fungi showed different sensitivity profiles to PgAFP, from highly susceptible species with IC$_{50}$ values as low as 1.2 µg/mL to non-sensitive species (Delgado et al., 2015a).

In this work, we have extended this previous study to analyze the antifungal activity of PgAFP against eleven different isolates from three *Penicillium* species that are major postharvest pathogens of citrus (*P. digitatum* and *P. italicum*) and pome (*P. expansum*) fruits. Our results show the importance of using different isolates from the same species when analyzing the antifungal activities of different compounds, either of chemical or biological origin.

The five *P. expansum* strains were more resistant to PgAFP than the *P. digitatum* strains. This result agrees with the *P. expansum* strain analyzed in a previous study and classified as a low sensitive mould (Delgado et al., 2015a). MIC values were also higher than in *P. digitatum* whilst the two *P. italicum* strains were even more resistant.
There are three major classes of fungal antifungal proteins (AFPs) (Garrigues et al., 2015), although a fourth one has been recently proposed (Tóth et al., 2016). PgAFP belongs to class B, which also contains other proteins from different *Penicillium* species, such as *P. digitatum* AfpB and *P. expansum* PeAfpB. The mature PgAFP protein shows an identity of 88% and 77% with AfpB and PeAfpB, respectively. Taking into account the differences in the protocols followed to conduct the antimicrobial assays, the inhibitory activity of PgAFP against *P. digitatum* PHI26 is similar to those described for AfpB from *P. digitatum* (Garrigues et al., 2017) and PeAfpB from *P. expansum* (Garrigues et al., 2018) against the same strain of *P. digitatum*. Thus, after 72 h of growth in 5% PDB, the MIC value of AfpB and PeAfpB against *P. digitatum* PHI26 were 3.2 µg/mL and 12 µg/mL, respectively, whilst PgAFP showed a MIC value of 4.7 µg/mL at 72 h of growth in full strength PDB medium. It should be noted that the antifungal activity of PgAFP could be underestimated with respect to AfpB and PeAfpB by the use of complete PDB medium rather than 5% PDB, as the antifungal effect is greatly influenced by the culture medium nutrient composition. Both *P. digitatum* AfpB and *P. expansum* PeAfpB showed the same MIC values against *P. digitatum* and *P. expansum* (3.2 µg/mL and 12 µg/mL, respectively). However, PgAFP showed lower activity against *P. expansum*, with MIC values ≥18.8 µg/mL after 72 of growth.

On the other hand, the antifungal activity of PgAFP against the three *Penicillium* species is much higher than that of *P. chrysogenum* PAF (Garrigues et al., 2017), which showed a MIC value of 50 µg/mL against *P. digitatum* and ≥200 µg/mL against *P. expansum* and *P. italicum*. The fact that *P. chrysogenum* AFP belongs to class A AFPs does not explain its much lower antifungal activity against these three species, since PeAfpA from *P. expansum* (Garrigues et al., 2018), which also belongs to class A, shows MIC values between 1 and 2 µg/mL against these Penicillia.
In view of the high antifungal activity of PgAFP against *P. digitatum* and *P. expansum*, we conducted fruit inoculation assays to evaluate its potential as postharvest treatment and to compare its activity with that of the producer fungus, *P. chrysogenum* CECT 20922. As differences in antifungal susceptibility among isolates from the same species were observed, the less favorable scenario was chosen by including in the assays the relatively resistant isolates *P. digitatum* Pd1 and *P. expansum* CMP-1 for citrus and apple assays, respectively. For citrus fruit assays, two orange varieties that differ in maturity along the season were used. Navelina is an early harvest variety, while Lanelate is a late harvest variety. For both varieties, no significant reduction in disease incidence of *P. digitatum*, determined as the percentage of infected wounds, or disease severity, measured as the macerated area, was observed with PgAFP treatment at either 50 or 100 µg/mL. The co-inoculation of a 100-fold excess of *P. chrysogenum* CECT 20922 conidia only led to a slight reduction in disease incidence in Lanelate fruits. This lack of *in vivo* antifungal activity of PgAFP was also observed when the protein was co-incubated with conidia for up to 5 hours before inoculation. A similar lack of *in vivo* control of *P. digitatum* has been described for *P. digitatum* AfpB when applied up to 15 µM (Garrigues et al., 2018), which corresponds to 100 µg/mL. In the same study, PeAfpA was shown to have a potent *in vivo* activity against *P. digitatum*, being able to reach a high control of disease incidence even at low concentrations. It would be interesting to analyze the antifungal activity of this protein against *P. digitatum* under conditions more closely resembling those found in real practice, where the standard application of fungicides takes place once the fruits are in the packinghouse and infection may already be incipient. In this context, it is interesting to note the marked effect that the co-incubation of the antifungal protein with conidia before inoculation has on disease development. Thus, the synthetic peptide BP21 applied at 8 µM was able
to reduce *P. digitatum* development from 100% to 3% when it was co-incubated with the conidia for 16 h prior to fruit inoculation (Wang et al., 2018). However, when fruit inoculation was done without any pre-incubation step, disease control was much lower, being disease incidence 87%. Similarly, the successful control of blue mold development in Golden apples by the antifungal peptide BP76 was highly dependent on the inoculation protocol (Badosa et al., 2009). A ten-hour pre-incubation step of the peptide at 500 μM with *P. expansum* conidia, led to a drastic reduction in lesion diameter, whereas there was no effect on disease development when the mixture of spores and peptide was applied immediately onto the wounds.

The potential of PgAFP against blue mould development in apple fruits was also checked. For this, two different varieties that differ in susceptibility to *P. expansum* infection were used. In Golden Delicious apples, the most susceptible variety, no disease control by applying either PgAFP or *P. chrysogenum* was observed. However, with the less susceptible variety Royal Gala, the application of PgAFP at 50 μg/mL resulted in a significant reduction in disease severity, although the effect on disease incidence was not significant. On the other hand, the application of *P. chrysogenum* CECT 20922 at 10⁷ conidia/mL vs 10⁵ conidia/mL of the pathogen was more effective than the antifungal protein, with a 50% reduction in disease severity. As far as we know, there are no published data on the control of blue mold development on apples by fungal AFPs, so we cannot compare the performance of PgAFP with other AFPs. The antagonistic effect of *P. chrysogenum* CECT 20922 could be attributed to the production of PgAFP (Rodríguez et al., 2015), but the competition for nutrients and space may be considered, as it has been described for *Penicillium frequentans* in the biocontrol of brown rot in stone fruit (Guijarro et al., 2017).
Although a relatively successful *in vitro* and *in vivo* inhibition by PgAFP was achieved on *P. expansum* CMP-1, an increase of patulin production was observed in parallel to PgAFP concentrations on apple agar. This stimulating effect on mycotoxin production has also been observed for *Aspergillus parasiticus* grown in calcium-free culture medium treated with 10 µg/mL PgAFP, although the addition of calcium caused the opposite effect on the mycotoxin production (Delgado et al., 2018). Additionally, a similar concentration of PgAFP was able to lower the ochratoxin A production by two *Aspergillus carbonarius* strains grown on simulating raisin media (Fodil et al., 2018), and the concentration of three mycotoxins produced by *Alternaria tenuissima* on the wheat matrix (da Cruz Cabral et al., 2019). The effect of antifungals on patulin production has not been investigated in previous works that have evaluated the antifungal effect of several compounds or microorganisms on the growth of *P. expansum* in apples (Calvo et al., 2019, 2017; Cerioni et al., 2013). According to our results, the possible increase in mycotoxin production needs to be taken into account in these biocontrol studies. In fact, it has been highlighted that the efforts in biocontrol have been focused on achieving mould growth inhibition instead of reducing mycotoxin production (Medina et al., 2017).

The very different behaviour found in different systems regarding the induction of mycotoxins should be a consequence both of the variety of species and substrates used in the different studies. This makes necessary the test of the PgAFP activity combining fungal strains of interest as well as substrates where the moulds grow in their usual environment. The use of model media is a first simplified step for this kind of studies, allowing to discern the implied mechanisms under highly controlled conditions, which could be hidden in natural systems (Crowther et al., 2018). Then, the apple agar is likely
the best possible approximation to apple, given that the substrate is very similar and no other microorganisms interfere in the results.

The mechanism of action of antifungal proteins in general and PgAFP, in particular, is multifactorial, involving cell wall integrity disturbance, membrane permeabilization, inhibition of metabolic activity, ROS and necrosis and apoptosis phenomena (Delgado et al., 2016). The ability of PgAFP for provoking intracellular ROS has been previously observed (Delgado et al., 2015b), whilst the ROS and the higher mycotoxin production mediated by β-oxidation has also been reported (Reverberi et al., 2012). This study displays a clear correlation between ROS levels and patulin production, then a relationship between PgAFP concentration, ROS quantity and patulin production can be set. It is interesting to highlight that the same factor, which seems to contribute to the fungal inhibition in the short term, provokes a mycotoxin overproduction if the mould survives this antifungal under the tested conditions, as occurs with the fungistatic effect of PgAFP.

Interestingly, PgAFP caused a dramatic ROS increase in *P. expansum* grown in PDB, whilst this ROS induction was much lower when the fruit pathogen grew in apple broth. This difference might be due to the higher antioxidant content in apple broth (Lu and Yap Foo, 2000). The antioxidant effect of several compounds diminishes mycotoxin production (Kim et al., 2008; Reverberi et al., 2006, 2005). However, the high antioxidant content seems not to be enough to completely counteract the stimulation effect of PgAFP on mycotoxin production. Therefore, taking together the results from the fruit assays and the mycotoxin production, PgAFP does not seem to be adequate as a bioprotective agent on apple.
5. Conclusions

The analysis of the antifungal activity of *P. chrysogenum* PgAFP against a group of isolates from the three major *Penicillium* species that cause postharvest diseases in citrus and pome fruits revealed that *P. digitatum* is the most susceptible species, followed by *P. expansum* and *P. italicum*. Interestingly, we have found intraspecific differences in susceptibility toward PgAFP, a fact that deserves to be taken into account in future studies aimed at the development of AFPs as alternative control treatments.

Besides the good *in vitro* antifungal activity, the *in vivo* fruit assays with oranges showed poor antifungal activity when PgAFP, or the producing fungus. In apple fruits, we observed some control on Royal Gala, but not in Golden Delicious, being better the application of the fungus than the antifungal protein. Nevertheless, the stimulation of patulin production by *P. expansum* in the presence of PgAFPs, probably as a consequence of a ROS stress, points to a new overlooked risk.

Acknowledgments

Work in LGC’s lab has been partially co-funded by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (AGL2014-55802-R and AGL2017-88120-R) and the Generalitat Valenciana (PROMETEOII/2014/027).

Work in the University of Extremadura lab was supported by the Spanish Ministry of Economy and Competitiveness, Government of Extremadura and FEDER (AGL2013-45729-P, AGL2016-80209-P, GR15108).

6. References

Figure captions

Figure 1. Growth curves of *P. digitatum* (strains Pd1, PHI26, Pd01-ZJU and PDC 102), *P. expansum* (strains MD-8, CMP-1, d1, T01 and NRRL 62431), *P. italicum* (strains PHI-1 and B3) and *P. chrysogenum* CECT 20922 in medium PDB supplemented with different amounts of PgAFP. Strains were inoculated in 96-well microtiter plates and incubated at 24 °C. Absorbance at 600 nm was recorded daily. Values are the means and standard deviation of three replicates.

Figure 2. Effect of PgAFP and *P. chrysogenum* CECT 20922 on the infection of citrus fruits by *P. digitatum* Pd1. Assays were conducted with Navelina and Lanelate oranges. A) Incidence of infection B) Macerated area. Wounds were inoculated with 10 µL of a spore suspension of *P. digitatum* Pd1 at 10^4 conidia/mL, either alone (white bars) or in the presence of PgAFP (striped bars) at either 50 µg/mL (Navelina) or 100 µg/mL (Lanelate) or *P. chrysogenum* CECT 20922 at 10^6 conidia/mL (black bars) or PgAFP at 100 µg/mL and pre-incubated for 5 hours (grey bars). Bars represent the mean value and SD of the percentage of infected wounds (A) or the area of macerated tissue (B) at 5 five days post-inoculation (dpi) of three replicates of five fruits with four inoculated wounds per fruit. Values with the same letter are not statistically different according to Fisher’s least significant difference test ($p<0.05$).

Figure 3. Effect of PgAFP and *P. chrysogenum* CECT 20922 on the infection of apple fruits by *P. expansum* CMP-1. Assays were conducted with Golden Delicious and Royal Gala apples. A) Incidence of infection B) Macerated area. Wounds were inoculated with 10 µL of a spore suspension of *P. expansum* CMP-1 at 10^4 or 10^5
conidia/mL in Golden Delicious or Royal Gala, respectively, either alone (white bars) or in the presence of PgAFP at 50 µg/mL (striped bars) or *P. chrysogenum* CECT 20922 at 10^6 or 10^7 conidia/mL in Golden Delicious or Royal Gala, respectively (black bars). Bars represent the mean value and SD of the percentage of infected wounds (A) or the area of macerated tissue (B) at 5 five days post-inoculation (dpi) of three replicates of five fruits with four inoculated wounds per fruit. Values with the same letter are not statistically different according to Fisher’s least significant difference test (*p*<0.05).

Figure 4. Patulin production by *P. expansum* CMP-1 strain on apple agar supplemented with two PgAFP concentrations (10 and 40 µg/mL) and a control with no addition of PgAFP, at 25 ºC for 15 days. Bars indicate standard deviation of the means. Significant differences between groups are noted with different letters (*p*<0.05)

Figure 5. ROS production measured through fluorescence (striped bars) and mould growth measured through absorbance (dotted bars) from *P. expansum* CMP-1 grown in PDB (A) or apple broth (B). Bars indicate standard deviation of the means. Asterisks mean significative differences with their control *(p*<0.05) and ***(p*<0.01).
Table 1. Fungal strains used in the PgAFP in vitro susceptibility analyses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Origin</th>
<th>GenBank acc. No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. digitatum</td>
<td>Pd1 (CECT 20795)</td>
<td>Spain</td>
<td>AKCU000000000.1</td>
<td>(Marcet-Houben et al., 2012)</td>
</tr>
<tr>
<td>P. digitatum</td>
<td>PHI26 (CECT 20796)</td>
<td>Spain</td>
<td>AKCT000000000.1</td>
<td>(Marcet-Houben et al., 2012)</td>
</tr>
<tr>
<td>P. digitatum</td>
<td>Pd01-ZJU</td>
<td>China</td>
<td>ANGJ000000000.1</td>
<td>(Sun et al., 2013)</td>
</tr>
<tr>
<td>P. digitatum</td>
<td>PDC 102</td>
<td>Israel</td>
<td>LHSL010000000.1</td>
<td>(Julca et al., 2016)</td>
</tr>
<tr>
<td>P. expansum</td>
<td>d1 (CECT 20907)</td>
<td>Israel</td>
<td>JQFY000000000.1</td>
<td>(Ballester et al., 2015)</td>
</tr>
<tr>
<td>P. expansum</td>
<td>CMP-1 (CECT 20906)</td>
<td>Spain</td>
<td>JQFX000000000.1</td>
<td>(Ballester et al., 2015)</td>
</tr>
<tr>
<td>P. expansum</td>
<td>MD-8 (CECT 20908)</td>
<td>USA</td>
<td>JQFZ000000000.1</td>
<td>(Ballester et al., 2015)</td>
</tr>
<tr>
<td>P. expansum</td>
<td>T01</td>
<td>China</td>
<td>AYHP000000000.1</td>
<td>(Li et al., 2015)</td>
</tr>
<tr>
<td>P. expansum</td>
<td>NRRL 62431*</td>
<td>USA</td>
<td>ALJY000000000.1</td>
<td>(Yang et al., 2014)</td>
</tr>
<tr>
<td>P. italicum</td>
<td>PHI-1 (CECT 20909)</td>
<td>Spain</td>
<td>JQGA000000000.1</td>
<td>(Ballester et al., 2015)</td>
</tr>
<tr>
<td>P. italicum</td>
<td>B3</td>
<td>China</td>
<td>JMDK000000000.1</td>
<td>(Li et al., 2015)</td>
</tr>
<tr>
<td>P. chrysogenum</td>
<td>RPC42 (CECT 20922)</td>
<td>Spain</td>
<td>Not sequenced</td>
<td>(Rodríguez-Martín et al., 2010)</td>
</tr>
</tbody>
</table>

*This strain was previously classified as P. aurantiogriseum.
<table>
<thead>
<tr>
<th></th>
<th>P. digitatum</th>
<th>P. expansum</th>
<th>P. italicum</th>
<th>P. chrysogenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd1</td>
<td>1.2</td>
<td>7.6</td>
<td>11.8</td>
<td>12.7</td>
</tr>
<tr>
<td>PHI26</td>
<td>1.0</td>
<td>8.2</td>
<td>9.1</td>
<td>12.4</td>
</tr>
<tr>
<td>Pd01-ZJU</td>
<td>1.7</td>
<td>11.8</td>
<td>9.1</td>
<td>39.7</td>
</tr>
<tr>
<td>PDC 102</td>
<td>1.4</td>
<td>>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>d1</td>
<td>37.5</td>
<td>>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>CMP-1</td>
<td>37.5</td>
<td>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>MD-8</td>
<td>37.5</td>
<td>>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>T01</td>
<td>37.5</td>
<td>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>NRRL 62431</td>
<td>37.5</td>
<td>>75</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>PHI-1</td>
<td>12.7</td>
<td>12.4</td>
<td>39.7</td>
<td>N.I.</td>
</tr>
<tr>
<td>B3</td>
<td>12.4</td>
<td>39.7</td>
<td>N.I.</td>
<td></td>
</tr>
<tr>
<td>CECT 20922</td>
<td>N.I.</td>
<td>N.I.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.I. No inhibition at the highest assayed concentration
Figure 1. Delgado et al., 2018
Figure 2. Delgado et al., 2018
Figure 3. Delgado et al., 2018
Figure 4. Delgado et al., 2018
Figure 5. Delgado et al., 2018
The sensitivity upon PgAFP was \textit{P. digitatum} \textgreater \textit{P. expansum} \textgreater \textit{P. italicum}.

Both agents reduced disease incidence and macerated area on Royal Gala apples.

PgAFP provoked a patulin overproduction on \textit{P. expansum} on apple substrata.

The patulin overproduction is linked with risen ROS levels in \textit{P. expansum}.

\textit{P. chrysogenum} is a promising biocontrol agent to be used on Royal Gala apples.
The authors declare no conflict of interest. The funders had no role in the design, collection of data, and its interpretation; in the writing of the manuscript; and in the decision to publish the manuscript.