Postprint of Food Chemistry Volume 141, Issue 2, 15 November 2013, Pages 1273-1280 DOI: https://doi.org/10.1016/j.foodchem.2013.03.080

Accepted Manuscript

On the glucoside analysis: simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step

Raquel B. Gómez-Coca, María del Carmen Pérez-Camino, Wenceslao Moreda

PII:	S0308-8146(13)00405-6
DOI:	http://dx.doi.org/10.1016/j.foodchem.2013.03.080
Reference:	FOCH 13888
To appear in:	Food Chemistry
Received Date:	18 December 2012
Revised Date:	12 February 2013
Accepted Date:	25 March 2013

Please cite this article as: Gómez-Coca, R.B., Pérez-Camino, a.d.C., Moreda, W., On the glucoside analysis: simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step, *Food Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.foodchem.2013.03.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	On the glucoside analysis: simultaneous determination of free and
2	esterified steryl glucosides in olive oil. Detailed analysis of standards as
3	compulsory first step.
4	Raquel B. Gómez-Coca ^a *, María del Carmen Pérez-Camino ^a , Wenceslao
5	Moreda ^a
6	^a Instituto de la Grasa –CSIC-, Avda. Padre García Tejero 4, E-41012-Sevilla,
7	Spain
8	
9	* Corresponding author. Tel.: +34 954 611 550 (ext. 251); fax: +34 954 616 790
10	Postal address: Avda. Padre García Tejero 4, 41012 Sevilla - Spain
11	E-mail address: raquel.coca@ig.csic.es (R. B. Gómez-Coca)
12	
13	
14	ABSTRACT
15	This work covers two important gaps in the field of micronutrient databases:
16	herein we describe a short and easy protocol that allows the analysis of both
17	free and esterified steryl gulcosides in olive oil. By utilizing accurate
18	quantitative methods we achieve a better understanding of olive oil composition
19	and health promoting properties. The procedure consists of isolating the fraction
20	of interest through solid phase extraction, and using gas chromatography-flame
21	ionization detection for both identification and quantification of the derivatised
22	species. Additionally, mass-spectrometry detection has been utilized for
23	confirming the identity of the individual esterified steryl glucosides in some
24	cases.

25	The method's limit of detection has been set at 0.37 mg/kg for each free
26	steryl glucoside and 0.20 mg/kg for each esterified steryl glucoside, whereas
27	the recoveries are around 96% and 77%, respectively.
28	Finally, we provide a complete analysis of the commercial standard for
29	esterified steryl glucosides, since such information was not yet available.
30	
31	Keywords: edible oils, olive oil, Solid Phase Extraction (SPE), steryl glucosides,
32	esterified steryl glucosides, acylated steryl glucosides.
33	
34	1. Introduction
35	Plant glycolipids form a group of compounds consisting mainly of steryl
36	glucosides, sphingoglycolipids and glyceroglycolipids (Sugawara, & Miyazawa,
37	1999). Those steryl glucosides can be found either as free molecules or as
38	esterified compounds (Grille, Zaslawski, Thiele, Plat, & Warnecke, 2010).
39	Free steryl glucosides (SG) are phytosterol conjugates where one glucose
40	moiety binds at the C3 position of the sterol residue via an acetyl bond. When
41	this kind of sterol is esterified to a fatty acid at the C6 position of the sugar
42	moiety, it gives rise to esterified (also named as acylated) steryl glucosides
43	(ESG).
44	The positive effects of plant sterols regarding their cholesterol lowering ability
45	have been known for almost more than sixty years and this drove the use of
46	free sterol solutions for the treatment of pathologies related to elevated
47	cholesterol in blood (Pollak, 1953). Later on margarine spreads, cheese,
48	chocolates, etcmuch taster than the former pharmaceutical formulations-
49	were manufactured as functional foods where the added free sterols (FS) had

50	been substituted by esterified sterols (ES) by means of increasing their solubility
51	in the lipidic matrices (MacKay, & Jones, 2011). Interestingly, the observed
52	positive effects were not only due to the added phytosterols, but also due to
53	sterols naturally occurring in the food (Ostlund, 2002).
54	Concerning phytosterol conjugates (SG and ESG), the lack of knowledge
55	about steryl glucosides and their metabolism in humans has resulted in them
56	being cast aside in the field of food enrichment. However, between 2009 and
57	2011 Lin and co-workers demonstrated the potential health benefits of
58	glucosylated phytosterols both in their free and esterified forms (Lin, Ma,
59	Racette, Anderson Spearie, & Ostlund, 2009; Lin, Ma, Moreau, & Ostlund,
60	2011). For instance, reductions of around 37% in cholesterol absorption were
61	observed in the gut of human subjects thanks to the action of SG; this decrease
62	was comparable to 30% obtained with ES (Lin, Ma, Racette, Anderson Spearie,
63	& Ostlund, 2009).
64	Although it is well known that the richest natural sources of dietary
65	phytosterols are edible vegetable oils, like those from corn, palm, rapeseed or
66	sunflower (Piironen, Lindsay, Miettinen, Toivo, & Lampi, 2000), relatively little
67	information is available regarding their glycosylated sterol content. In this sense,
68	Nyström et al. published detailed data on the content and sterol composition of
69	glycosylated sterols in more than forty plant matrices. This was to facilitate
70	comparisons of the potential contribution of different foods as sources of steryl
71	glucosides when included in the diet (Nyström, Schär, & Lampi, 2012).
72	Regarding the methods of analysis, research on this field has been constant
73	since ipuranol –the first steryl glucoside relative- was isolated in 1908 (Power, &
74	Salway, 1913). We have summarized the progression of such work in a

75 previous publication, where we have described the development of a specific

protocol for the characterization of the SG fraction in olive oil (Gómez-Coca,

77 Pérez-Camino, & Moreda, 2012).

The aim of this work is to cover two important gaps: to provide a short and easy protocol that allows the analysis of both SG and ESG directly, and to provide a methodology that allows greater understanding of the chemical compositions of olive oil and other edible oils. Besides, it will contribute to set up nutrient databases of specific bioactive compounds, present in edible matrices.

84 2. Experimental

85 2.1. Reagents

The internal standard cholesterol β-D-glucoside (ChSG) was purchased from 86 Sigma-Aldrich Co. LLC (St. Louis, Missouri, USA). The commercial mixtures of 87 88 ESG and SG used as references were purchased from Matreya LLC (Pleasant Gap, Pennsylvania, USA). Chlorotrimethylsilane, hexamethyldisilazane, iodine, 89 pyridine and sulfuric acid were from Fluka (Buchs, Switzerland). Ethanol and 90 methanol were supplied by Romil Ltd. (Waterbeach, Cambridge, GB), formic 91 acid, heptane and hexane by VWR International, LLC (West Chester, 92 93 Pennsylvania, USA), sodium chloride and trichloromethane by Panreac 94 (Montcada I Reixac, Barcelona, Spain), sodium methoxide by Acros Organics (Thermo Fisher Scientific, Geel, Belgium), and *tert*-butyl methyl ether by 95 96 Scharlau Chemie SA (Barcelona, Spain). Talc was from Talcoliva (Boñar León, 97 Spain). All chemical reagents were analytical grade. 98

99 2.2. Samples and standard solutions

Samples of blended olive oils were purchased from local markets. These
samples belonged to the extra virgin olive oil (EVOO) and virgin olive oil (VOO)
categories, and were named as EVOO blend I to VI, and VOO blend I to V,
respectively. Varietal EVOO (arauco, arbequina, coratina, cornicabra,
hojiblanca, and picual cv.) was obtained directly from producers, who also
provided us with chemically refined olive oil, chemically refined olive-pomace
oils, and oils at different stages of a physical refining process -lampante (crude,
virgin olive oil not fit for consumption without further processing), bleached and
deodorized olive oils. Varietal EVOO of blanqueta, frantoio, karolla, uovo di
pichone, and verdial cultivars were directly prepared in the laboratory using an
Abencor® system (Section 2.3).
Blended EVOO, blended VOO and five out of the eight samples of lampante
olive oil (LOO) analysed in this study were classified accordingly by a panel of
tasters from the Instituto de la Grasa in Seville, Spain. This institution is
recognized by the IOC (International Olive Council, 2004), and the panel
followed the methodology on sensory analysis of olive oil provided by IOC
(International Olive Council, 2011) and EU Regulation (European Commission
Regulation, 1991) and also applied in other studies (Gómez-Coca, Moreda, &
Pérez-Camino, 2012). The oil was graded by comparing the median value of
the defects and the median for the fruity attribute with reference ranges.
According to the European reference ranges (European Commission
Regulation, 1991) the category EVOO refers to crude, virgin olive oil in which
the median of the defects is 0, and the median of the fruity attribute is above 0;
the category VOO refers to crude, virgin olive oil in which the median of the
defects is above 0 but not higher than 3.5 and the median of the fruity attribute

is above 0; finally, the category LOO refers to crude, virgin olive oil in which the

median of the defects is above 3.5.

127 Crude oil chemical refining consists of degumming (for the removal of phospholipids), neutralization with hot caustic soda (for the removal of free fatty 128 acids), bleaching, and deodorization. Crude oil physical refining consists of 129 degumming, bleaching and steam stripping to remove free fatty acids, odour 130 131 and volatile organic compounds, all in one step. Stock solutions of ESG were prepared by dissolving the standard mixture in 132 chloroform. Stocks solutions of SG and ChSG were made with a 133 134 chloroform:methanol 2:1 (v/v) blend. In all cases the concentration was 100 135 µg/ml. Samples were prepared just before the analysis in the following way: 100 µl 136 of ChSG stock solution were introduced into a 25 ml flask and evaporated to 137 dryness in a current of nitrogen. Then 2 g of oil were weighed into the same 138 flask and dissolved in 4 ml chloroform. 139 To derivatise the hydroxyl groups, solutions consisting of 140 pyridine:hexamethyldisilazane:chlorotrimethylsilane 9:3:1 (v/v/v) were prepared 141 periodically and let to decant at 13 °C before use. Once the samples had been 142 extracted, they were dried under a gentle flux of nitrogen, dissolved with 200 µl 143 of the aforementioned mixture, and kept for one hour at 60 °C before taking 144 145 them to the gas chromatograph. Complete silvlation was monitored as 146 described previously (Gómez-Coca, Pérez-Camino, & Moreda, 2012). 147

148 2.3. Oil extraction

Olive fruits were obtained from an irrigated orchard (drip irrigation) in the 149 southern part of Spain, under optimal cultivation parameters. In this region 150 151 winters are mild, January being the coldest month with temperatures between 5 and 16 °C, and 179 sunshine hours. Precipitations vary from 400 to 800 mm per 152 year, and they concentrate from October to April, with December being the 153 wettest month (95 mm). The olive plantation was in classical frame with 300 154 155 trees per hectare. Fruits from five different cultivars (blangueta, frantoio, karolla, uovo di pichone, and verdial) were hand-picked in January, 2012. To assure 156 157 maximum quality oil was extracted, an Abencor® system and a small-quantity 158 mill simulating commercial oil-extraction system (MC2 Ingeniería de Sistemas, 159 Sevilla, Spain) were used. The olives were crushed with an Abencor® hammer mill equipped with a 4 mm sieve. 700 g of paste were processed using the 160 system's malaxer and centrifuge with the conditions: malaxation temperature, 161 30 °C; malaxation time, 20 min, plus 10 min after water addition; amount of 162 distilled water added to the paste, 100 ml; amount of talc added, 40 g. The 163 mixtures were left to decant before proceeding to oil separation. 164

165

166 2.4. Instrumentation

Gas chromatography (GC) analyses of the sterol glucosides were carried out
with an Agilent 6890N Gas Chromatograph (Agilent Technologies, Santa Clara,
California) equipped with an Agilent 7683B Automatic Liquid Sampler and a
flame ionization detector (FID). Data was acquired with the Agilent ChemStation
for GC System program. The conditions for the GC assays were: TRB-5HT
column (5% diphenyl-95% dimethylpolysiloxane; 30 m x 0.32 mm ID x 0.10 µm
film; Teknokroma, Sant Cugat del Vallés, Barcelona, Spain), 1.0 µl injection

174	volume, hydrogen carrier gas at 3 ml/min and ECP cool on-column injection.
175	The oven temperature program was: 80 $^{\circ}$ C (1 min), 50 $^{\circ}$ C/min to 320 $^{\circ}$ C (12
176	min), and 40 °C/min to 360 °C (19 min). The detector temperature was 360 °C.
177	GC analyses of the fatty acids at the C6 position of the ESG were carried out
178	under the following conditions: SP2380 column (poly 90% biscyanopropyl/10%
179	cyanopropylphenyl siloxane), 60 m x 0.25 mm ID x 0.20 μ m film (Sigma-Aldrich
180	Co. LLC, St. Louis, Missouri, USA), 4.0 μ l injection volume and split injection.
181	The oven temperature program was: 170 $^{\circ}$ C (10 min), and 2 $^{\circ}$ C/min to 200 $^{\circ}$ C
182	(10 min). The injector and detector temperatures were 210 °C and 240 °C,
183	respectively.
184	An Ultimate 3000 LC System (Thermo Scientific, Vertex Technics S.L.,
185	Hopitalet de Llobregat, Barcelona, Spain) equipped with an Ultimate 3000 NS
186	pump and an Ultimate 3000 NS autosampler, was also used during the analysis
187	of the ESG. A first stage separation of the ESG was performed on a
188	LiChrospher Si60 column (250 x 4 mm ID, 5 μ m; Merk Chemicals Spain, Mollet
189	del Vallès, Barcelona, Spain), using an isocratic mode of 80% chloroform-20%
190	methanol for 15 min. The flow rate was 0.4 ml/min and the column temperature
191	was kept at 30 $^{\mathrm{o}}\mathrm{C}.$ The injection volume was 30 µl. This system was coupled to
192	a micrOTOF II mass spectrometer paired to an APCI source (Bruker Daltonics,
193	Bruker Corporation in Spain, Rivas-Vaciamadrid, Madrid, Spain). The APCI inlet
194	conditions were: heated vaporization temperature 400 °C; curtain gas 2 bar, 8
195	ml/min; dry temperature 200 °C. Further separation of the individual ESG was
196	performed on a Kinetex C18 column (50 x 2.10 mm ID, 2.6 μ m; Phenomenex,
197	Torrance, California, USA). The elution solvent was a mixture of water+1%
198	formic acid: methanol+1% formic acid, beginning with a 50:50 solution (10 min),

- then 15:85 (10 min) and finally 0:100 (11 min). The flow rate was 0.8 ml/min and
- the column temperature was 30 °C. The injection volume was 30 μl. Here the
- APCI inlet conditions were: heated vaporization temperature 300 °C; curtain
- 202 gas, 2.5 bar, 4 l/min; dry temperature 230 °C.
- 203
- 204 2.5. Analysis of standards
- 205 2.5.1. Purity of the commercial products
- According to the manufacturers, the standards for both SG and ESG were of
- 207 natural origin, whereas ChSG was a synthetic product.
- The determination of the purity (and composition) of the SG mixture had
- 209 been done in previous work (Gómez-Coca, Pérez-Camino, & Moreda, 2012).
- 210 We applied the same procedure to the ChSG and ESG standards. In short, we
- 211 carried out thin layer chromatography (TLC) tests in chloroform:methanol:water
- 212 70:15:2 (v/v/v), spraying with concentrated sulfuric acid and developing at 190
- ²13 ^oC. We repeated the tests eluting with chloroform:methanol:water 80:20 (v/v),
- and developing in a chamber containing l₂.
- 215

216 2.5.2. Determination of the molecular composition of the individual ESG

The commercially available standard for ESG consisted of a mixture of

218 esterified phytosterol glucosides. To identify those glucosides, two approaches

- 219 were carried out: hydrolysis of the ESG with GC-FID analysis of the fatty acids
- and SG released, and direct analysis of the individual molecular species by
- 221 normal phase (NP) and reverse phase (RP) high performance liquid
- chromatography (HPLC) with MS detection.

223	Hydrolysis of the ESG was achieved according the following procedure: 3 ml
224	of a 100 μ g commercial ESG/ml solution were evaporated to dryness under
225	nitrogen flux. We added 3 ml of a 0.119 M CH $_3$ NaO solution, and incubated for
226	one hour at 50 °C. Next we added 3 ml of heptane and shook cautiously. After
227	phase separation, the upper layer was evaporated until a 200 μ l volume was
228	reached. The unbound fatty acids as fatty acid methyl esters (FAME's) were
229	chromatographed according to the conditions given in Section 2.4.
230	Isolation of the resulting SG was carried out following the procedure
231	published by Breinhölder and coworkers (Breinhölder, Mosca, & Lindner, 2002),
232	with some modifications. After removing the upper layer, to the lower layer we
233	added 4 ml water, 0.5 ml saturated sodium chloride solution and 5 ml
234	chloroform. The mixture was shaken vigorously for one minute, 0.5 ml ethanol
235	was added and centrifuged at 2000 rpm for 10 minutes. Immediately afterwards
236	the lower phase was evaporated to dryness under nitrogen flux. We
237	chromatographed the trimethyl silyl (TMS) ether derivatives of the SG (Section
238	2.2) according to the conditions given in Section 2.4.
239	In parallel we also chromatographed an ESG solution identical to the starting
240	one (3 ml of a 100 $\mu\text{g/ml}$ solution evaporated and derivatised) by means of
241	control.
242	HPLC-MS analysis was carried out as described in Section 2.4, by direct
243	injection of the ESG standard solutions.
244	
245	2.5.3. Composition of the ESG mixture
246	The composition of the ESG mixture was determined by 13 doubled runs of
247	GC analysis (Section 2.4) of the TMS ether derivatives of the standard at three

248	different concentrations (10, 20, and 25 mg commercial mixture/kg oil). The
249	relative amount of each peak was calculated on the basis of the corresponding
250	area as a percentage of the area equivalent to the total ESG.
251	The ESG peaks were identified by their absolute and relative retention time
252	(Rt), which were the result of fourteen injections of standard solutions at three
253	different concentrations (3.92, 7.84, and 9.80 mg ESG/kg oil). The changes in
254	the chromatographic conditions, with respect to those applied previously
255	(Gómez-Coca, Pérez-Camino, & Moreda, 2012), made us also recalculate the
256	absolute and relative Rt of SG. In this case, the values given are the result of
257	seven injections of standard solutions at two different concentrations (9.80 and
258	24.50 mg SG/kg). The absolute Rt was always measured to three decimal
259	places.
260	The Rt window for each target analyte was established by multiple GC
261	injections of the blank sample (Section 2.7) spiked with ChSG, SG and ESG
262	standard solutions (4.90 mg ChSG/kg; 2.45, 4.90, 7.35, 9.80, and 24.50 mg
263	SG/kg, and 3.92, 7.84, 9.80, 11.76, and 15.68 mg ESG/kg) to compensate for
264	shifts in absolute Rt as a result of chromatographic variability.
265	
266	2.6. Evaluation of the method

Recovery tests to assess the reproducibility of the method, and trials to establish the limit of detection (LOD) and the limit of quantitation (LOQ) were performed using in-house blank oil labelled as *refined olive-pomace oil* (oil comprising exclusively olive-pomace oils that have undergone classical refining), which had showed no chromatographic peaks within the Rt windows of any of the glucosides under study.

273 The sensitivity (the minimum concentration of analyte that could be measured and reported with an acceptable confidence that it was higher than 274 275 zero) was determined by spiking six samples of refined olive-pomace oil with 276 SG and ESG standard solutions at increasingly lower concentrations. The accepted concentration values were those that produced sharp, symmetrical 277 analyte peaks with a signal-to-noise ratio of at least 2 and with no tailing or 278 279 shoulders. To obtain recovery values, fourteen more samples of refined olive-pomace oil 280 were spiked with the standard mixtures at different concentrations (1.43, and 281 282 2.86 mg β -sitosteryl glucoside/kg, and 4.13, and 8.26 mg esterified β -sitosteryl 283 glucoside/kg). 284 2.7. Extraction procedure and steryl glucoside quantification 285 286 The SPE procedure developed previously to isolate SG (Gómez-Coca, Pérez-Camino, & Moreda, 2012) was utilized, with some modifications. The 287 cartridges (ExtraBond Si-1 g; Scharlab S.L., Barcelona, Spain) were 288 conditioned with 5 ml tert-butyl methyl ether, 5 ml hexane, 5 ml chloroform, and 289 10 ml of a newly prepared blend consisting of chloroform:methanol 4:1 (v/v). 290 Samples were then guantitatively transferred to the cartridges using 1 ml 291 292 chloroform to wash the walls of the containers. The loaded cartridges were 293 washed with 10 ml hexane, 10 ml tert-butyl methyl ether and 10 ml chloroform, 294 applied one after the other. The adsorbed SG (including the internal standard) 295 and ESG were eluted with 5 ml of the chloroform:methanol 4:1 (v/v) solution. 296 The procedure was carried out under negative pressure (1 in.Hg). The eluted

- ²⁹⁷ fractions were evaporated to dryness under nitrogen flux, derivatised and
- 298 chromatographed using cool on-column injection.
- The quantitative evaluation of the SG was carried out using ChSG as internal
- standard. The response coefficient for ChSG equalled 1. Once the areas of the
- 301 ChSG and SG peaks had been determined using the integrator, we calculated

390

the concentration of each individual SG in mg/kg oil as follows:

$$303 \qquad SG x = A_x \cdot m_{IS} \cdot 1000/A_{IS} \cdot m_S$$

- 304 Where:
- A_x is the peak area for steryl glucoside x,
- 306 A_{IS} is the area of the ChSG peak,
- 307 m_{IS} is the mass of the ChSG added, in milligrams,
- $m_{\rm S}$ is the mass of the sample used for the determination, in grams.
- 309 Regarding the ESG, the composition of the commercially available standard
- 310 was a mixture of the same ESG expected in the real samples, therefore
- 311 confirming the need to use external standardization during the quantification
- stage. The calibration curves were carried out by progressively diluting one
- ESG standard solution. The final derivatised volumes were of 500 µl. These
- 314 critical volumes were measured with a calibrated 200-1000 µl precision pipette
- 315 (-1.00 µl systematic error). The curves consisted of three points that
- encompassed the range from 15.36 to 59.09 mg ESG mixture/kg
- 317 corresponding, i.e. to 3.17 to 12.20 mg esterified β -sitosteryl glucoside/kg. One
- 318 specific calibration curve was prepared for each ESG.
- Two separately prepared standard solutions of ESG (corresponding to 3.92
- and to 7.84 mg ESG/kg) were also analysed in each GC run to check the
- suitability of quantitation by the external calibration curve (data not shown).

322	
323	3. Results and discussion
324	3.1. Analysis of standards
325	3.1.1 Purity of the commercial products
326	TLC analysis reported that the ChSG standard contained 98% ChSG
327	minimum, whereas in the case of the ESG commercial mixture, analysis
328	showed only 39% purity, which was in agreement with the results observed
329	during the chromatography analysis (data not shown).
330	
331	3.1.2 Determination of the molecular composition of the individual ESG
332	ESG are bulky molecules whose complexity deserves some considerations.
333	From a structural point of view one can split the moiety in two parts, an SG
334	fragment and a fatty-acyl residue. According to the manufacturer, the ESG
335	mixture purchased was based on β -sitosteryl (6'-O-palmitoyl)- β -D-glucoside,
336	and its origin was natural (from soybean extract). Therefore it was reasonable to
337	assume that not only β -sitosteryl (6'-O-palmitoyl)- β -D-glucoside was to be
338	expected in the commercial product. This was supported by observing not only
339	one, but up to three (even four), GC-peaks (Figure 1). If one analyses the sterol
340	composition and content of soybean oil (Moreda, Pérez Camino, & Cert, 2004),
341	the following desmethylsterols are mainly present: β -sitosterol (35-72%),
342	campesterol (16-34%) and stigmasterol (10-28%). There may also be small
343	quantities of Δ 7-stigmastenol (1-5.2%), Δ 7-avenasterol (1-5%), and Δ 5-
344	avenasterol (1-4%). When these sterols carry a sugar residue attached at the
345	C3 position, the order of elution from a GC column is the same as when free
346	sterols are injected (Gómez-Coca, Pérez-Camino, & Moreda, 2012). However,

in the case of ESG, one could expect some changes depending on the fatty-347 acyl residue esterifying the C6 position. On the other hand, the fatty acid 348 content of soybean oil consist of 50-62% linoleic acid (C18:2), 17-26% oleic 349 acid (C18:1), 8-13% palmitic acid (C16:0), 4-10% linolenic acid (C18:3), and 3-350 5% stearic acid (C18:0) (Zamora, & Hidalgo, 2004), thus the number of possible 351 ESG combinations. 352 353 After hydrolysing the ESG present in the standard mixtures, it was clear that under the working conditions, the molecules broke at the ester bond formed 354 355 between the fatty acid at C6 position and the sugar residue. Actually, GC-356 results showed four unique SG peaks and four major fatty acid signals. 357 The profile of the released SG corresponded to that obtained previously in the analysis of the SG standards (Gómez-Coca, Pérez-Camino, & Moreda, 358 2012) therefore, we concluded that the sterol residues of the ESG commercial 359 360 mixture were campesterol, stigmasterol, β -sitosterol and Δ 5-avenasterol. On the other hand, the relative proportions of the four SG released after hydrolysis 361 were the same, within the error limits, to those of the four ESG showed in the 362 gas chromatograms; that is ca. 25%, 20%, 52% and 3% for (esterified) 363 campesteryl glucoside ((E)CSG), (esterified) stigmasteryl glucoside ((E)SSG), 364 (esterified) β -sitosteryl glucoside ((E)BSSG), and esterified Δ 5-avenasteryl 365 glucoside ((E)AvSG), respectively. This indicates that the ESG elute in the 366 same order as the free sterols and SG, and that there is no influence (beyond 367 368 that of increasing the temperature of evaporation) of the attached C6-fatty acid 369 under the applied GC conditions. 370 Regarding the analysis of the fatty-acyl residues, four fatty acids were

predominantly present: linoleic acid (30.44 \pm 0.22%), palmitic acid (28.76 \pm

372	0.05%), stearic acid (12.40 \pm 0.34%) and oleic acid (12.96 \pm 0.39%). Small
373	amounts of linolenic acid and of behenic acid (C22:0) were also detected.
374	These results are the average of three independent measures.
375	To confirm the identity of the four GC peaks corresponding to the esterified
376	steryl glucosides in the standard mixture, a 39.19 μ g ESG/ml solution was taken
377	to both NP and RP HPLC-MS, where all spectra were acquired by APCI in the
378	positive ion mode (Section 2.4).
379	In NP HPLC-MS the predominant ions in the mass spectra were $[M-H_2O+H]^+$.
380	In these spectra five major ions (those with intensity higher than $5 \cdot 10^{-5}$) could be
381	identified, which were tentatively assigned to: β -sitosteryl (6'-O-linoleoyl)- β -D-
382	glucoside, (m/z = 821), β-sitosteryl (6'- <i>O</i> -palmitoyl)-β-D-glucoside (m/z = 797),
383	stigmasteryl (6'- <i>O</i> -linoleoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 819), campesteryl (6'- <i>O</i> -
384	linoleoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 807) and stigmasteryl (6'- <i>O</i> -stearoyl)- β -D-
385	glucoside ($m/z = 823$). The ions with intensities between 5.10 ⁻⁵ and 2.5.10 ⁻⁵
386	were: campesteryl (6'- <i>O</i> -palmitoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 783), stigmasteryl (6'-
387	<i>O</i> -palmitoyl)-β-D-glucoside (m/z = 795), β-sitosteryl (6'- <i>O</i> -stearoyl)-β-D-
388	glucoside, ($m/z = 821$), and campesteryl (6'- <i>O</i> -oleoyl)- β -D-glucoside ($m/z =$
389	807). The presence of Δ 5-avenasteryl (6'- <i>O</i> -palmitoyl)- β -D-glucoside (<i>m</i> / <i>z</i> =
390	795) and of Δ5-avenasteryl (6'- <i>O</i> -oleoyl)-β-D-glucoside ($m/z = 821$) could be, so
391	far, neither confirmed nor rejected. These ions have been given in decreasing
392	order of signal intensity.
393	In RP HPLC-MS we scanned the $[M+H_2O]^+$ and the $[aglycone-H_2O+H]^+$ ions
394	from those ESG which were to be present according to the preliminary results.
395	Those ESG may consist by different combinations between CSG, SSG and
396	BSSG, and stearic acid, oleic acid and linoleic acid. We assumed the presence

397	of EAvSG, since this has the same molecular weight as the corresponding
398	ESSG. This analysis showed that our commercial standard had the following
399	composition for the ECSG: 7.0% campesteryl (6'- O -stearoyl)- β -D-glucoside (m/z
400	= 818 and m/z = 383, respectively), 10.9% campesteryl (6'- <i>O</i> -oleoyl)- β -D-
401	glucoside ($m/z = 844$ and $m/z = 383$, respectively) and 7.4% campesteryl (6'-O-
402	linoleoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 842 and <i>m</i> / <i>z</i> = 383, respectively); for the ESSG
403	(and EAvSG): 7.8% stigmasteryl (6'- <i>O</i> -stearoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 830 and
404	$m/z = 395$, respectively), 4.7% stigmasteryl (6'- <i>O</i> -oleoyl)- β -D-glucoside ($m/z =$
405	856 and $m/z = 395$, respectively), and 11.7% stigmasteryl (6'-O-linoleoyl)- β -D-
406	glucoside ($m/z = 854$ and $m/z = 395$, respectively); finally, the EBSSG is a
407	mixture of: 15.8% β -sitosteryl (6'- <i>O</i> -stearoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 832 and <i>m</i> / <i>z</i>
408	= 397, respectively), 3.4% β -sitosteryl (6'- <i>O</i> -oleoyl)- β -D-glucoside (<i>m</i> / <i>z</i> = 858
409	and $m/z = 397$, respectively), and 31.2% β -sitosteryl (6'- <i>O</i> -linoleoyl)- β -D-
410	glucoside ($m/z = 856$ and $m/z = 397$, respectively).
411	

412 3.1.3 Composition of the ESG mixture

413 From HPLC-MS results we could only be sure of the presence of three ESG (ECSG, ESSG and EBSSG)whereas the GC-FID analysis might show four 414 peaks, which we identified as ECSG, ESSG, EBSSG and EAvSG based on the 415 results obtained with the SG standard mixture (Figure 1). The proportions 416 417 (taking into account 39% purity) were: 9.97% (2.03% Relative SD), 7.09% 418 (8.46% Relative SD), 20.64% (7.49% Relative SD) and 1.49% (10.37% Relative 419 SD), respectively. These quantities were utilized to calculate the concentration of each glucoside in the standard solutions and to build the calibration curves. 420

The relative Rt values were kept constant all over the study. Those values and the Rt windows for both SG and ESG are shown in Table1 and Table 2, respectively.

424

425 *3.2. Evaluation of the method*

In previous work we proved that, in olive oil, the lowest concentration of 426 BSSG detectable to fulfil a number of predetermined conditions was 0.37 mg/kg 427 (Gómez-Coca, Pérez-Camino, & Moreda, 2012). Consequently we focused on 428 429 BSSG as it was the only SG present in olive oil, but the same limit has proven 430 to be true for CSG and SSG (present in other edible oils such as soybean), 431 which was to be expected since all three different SG should have the same response factor. In this way, hundred per cent of the samples (n = 6) spiked 432 with such SG concentration gave signals within the acceptance criteria. In the 433 cases of the ESG, LOD was 0.20 mg/kg for the three species tested (ECSG, 434 ESSG, and EBSSG). That concentration always (n = 6) gave signals clearly 435 distinguishable from the background. 436 We set the empirical LOQ for the ESG at 0.37 mg/kg. According to the 437

definition of empirical LOQ (Armbruster, Tillman, & Hubbs, 1994), 0.37 mg/kg
will be the lowest concentration at which the acceptance criteria are met, and
the lowest analyte concentration (0.46 mg/kg) is (at the minimum) 20% above
such limit. Following the same reasoning, the LOQ for SG was established at
0.49 mg/kg (Gómez-Coca, Pérez-Camino, & Moreda, 2012).

The global recovery of the method was assessed with fourteen samples of refined olive-pomace oil spiked with SG (Table 3) and ESG (Table 4) standard solutions at different concentrations. In the cases of SG there was an improved

recovery with respect to that obtained previously: $96.33 \pm 2\%$ (3SD) vs. $90.13 \pm$ 6% (3SD) (Gómez-Coca, Pérez-Camino, & Moreda, 2012), probably due to the optimization of the extraction procedure and the use of internal standardization. However, recoveries of the ESG do not reach 80%, the actual value being 76.58 ± 0.21% (3SD). This recovery was independent of the presence of the SG in the media, and it did not seem related to incomplete silylation.

452

453 3.3. Extraction procedure and steryl glucoside quantification

454 The procedure for isolating SG from olive oil samples had been previously 455 developed. Initially the method had been applied to a small number of olive oil 456 samples of different categories and origin, the conclusion reached was that the only SG present was BSSG, whose concentration in olive oil was never higher 457 than 3 mg/kg. It was also clear that in olive oil, there was no correspondence 458 459 between the FS profile and its SG composition (Gómez-Coca, Pérez-Camino, & Moreda, 2012), as Nyström and colleagues had pointed out in the cases of 460 other matrices (Nyström, Schär, & Lampi, 2012). 461

In olive oil, the FS profile and content is of the upmost importance since both
are species-characteristic. The lack of a direct and clear relationship between
FS composition and SG content is of the utmost importance, as this kind of oil is
constantly under surveillance due to the economic repercussions that fraud may
cause.

A second point of interest was the presence of those SG in which the C6 of the glucose moiety had been esterified to a fatty acid. If there was not parallelism between FS and SG contents and compositions, why should one expect such relationship between any of them and the ESG profile? Besides,

471	was such profile specific of a particular cultivar or olive oil category? If so, were
472	the predominant defects in the lowest categories related to a specific steryl
473	glucoside composition? How were they affected during the refining processes?
474	And, finally, were SG and ESG affected in the same way?
475	In order to answer all these questions we analysed the steryl glucoside
476	content of olive oil samples from different origins and cultivars, classified under
477	different categories and treated with two different refining processes.
478	Table 5 shows the results of the analysis. In the case of the SG, figures are
479	due to BSSG, although the presence of AvSG is also possible. However, the
480	same is not true for the ESG counterparts. Mass spectrometry results confirmed
481	that in most of the samples, the only ESG present was that corresponding to β -
482	sitosterol (possibly with Δ 5-avenasterol derivatives), but in some cases (e.g.
483	VOO cv. uovo di pichone) ECSG and ESSG may also contribute to the total
484	ESG content. When considering mono-varietal oils, that is those oils made just
485	from olives from one cultivar, the content of SG in EVOO ranged from 1.68 \pm
486	0.08 mg/kg to 2.95 \pm 0.14 mg/kg, and in VOO from 1.05 \pm 0.01 mg/kg to 2.14 \pm
487	0.10 mg/kg, meaning that they are almost the same within the error limits. As far
488	as the ESG are concern, the concentration ranges are from 2.54 \pm 0.04 mg/kg
489	to 9.20 \pm 0.36 mg/kg for EVOO, and from 3.14 \pm 0.06 mg/kg to 11.95 \pm 2.75
490	mg/kg for VOO, showing their similarity.
491	As far as the blends are concerned, the glucoside content depends on the
492	oils of origin.

Interestingly, there is no relationship between the SG content and the ESGconcentration. In this way, for instance, the oil with the lowest SG concentration

is not the one with the lowest ESG content, and vice versa. The ESG:SG ratio is
not always above 1, although it seems to be the usual trend.

Among all samples analysed, those of LOO exhibited (again) the highest SG 497 contents, although we could not find a relationship with the different defect. 498 Finally, we found the effect of the physical refining processes, whose main 499 difference with the classical (chemical) refining is that there is no treatment with 500 501 hot caustic soda. The sample labelled as 'LOO III' had been subjected to deodorization and bleaching by the manufacturer. After analysing the steryl 502 503 glucosides in each of the stages, we saw the drastic effect that physical refining 504 has on SG, whereas such an effect is much softer on the ESG. Actually, there is a decrease of around 88% in the case of SG and of 18-28% in the ESG. 505 However, the effect of the chemical treatment is drastic in all cases, making all 506 glucosides disappear. From this data it was clear to us that it is the acidic media 507 508 created during the decolourization step that is responsible for the acetyl bond breakage, and therefore for the SG decrease. There seems to be a protective 509 effect of the fatty-acyl residue at the C6 position of the ESG over the acetyl 510 bond, probably due to specific molecule folding, although more studies in this 511 area must be done. 512

513

514 **4. Conclusion**

515 The steryl glucoside composition and content may be utilized as a further 516 chemical characterization parameter in olive oil. These glucoside compositions 517 may help explain in more detail, the beneficial health properties of olive oil.

518	The only free steryl glucoside clearly present in olive oil is that derived from
519	β -sitosterol: BSSG, whereas in the cases of ESG, other glucosides may
520	contribute to the global content.
521	There is no direct relationship between the FS profile and the composition
522	and content of SG and of ESG. The FS profile does not reflect the ESG
523	composition.
524	There is no relationship between olive oil category and origin, and the ESG
525	profile.
526	Refining process, especially classical refining, destroys ESG.
527	There are still some unanswered questions:
528	a) Is there any relationship between the ESG composition and content of
529	olive oil, and any of the other legislated parameters? (e.g. free fatty acid, wax
530	content, etc.)
531	b) How is it possible that the acetyl bond between the sterol moiety and the
532	sugar residue gets hydrolysed under in vitro conditions but resists the extreme
533	media of the gastro-intestinal tract? It is clear that studies on steryl glucoside
534	metabolism remains a gap in this field.
535	
536	Acknowledgements
537	The Spanish Ministry of Science and Innovation funded this work (ref.
538	AGL2009-07618). The technical expertise of Mr. José Luis Ríos is
539	acknowledged for the performance of the mass spectrometry analyses. The
540	authors would also like to thank Ms Cristina Mingorance and Ms Diana Gómez
541	for their assistance in the laboratory, and Ms Marta Cruz for the very interesting

542 discussions.

543	
544	The authors have declared no conflict of interests.
545	
546	References
547	AOAC (1998). Association of Official Analytical Chemists Guidelines for single
548	laboratory validation of chemical methods for dietary supplements and
549	botanicals. In: AOAC peer-verified methods program, manual on policies and
550	procedures (1-38). Arlington, Va.
551	Armbruster, D. A., Tillman, M. D., & Hubbs, L. M. (1994). Limit of detection
552	(LOD)/limit of quantitation (LOQ): comparison of the empirical and the
553	statistical methods exemplified with GC-MS assays of abused drugs. Clin.
554	Chem., 40, 1233-1238.
555	Breinhölder, P., Mosca, L., & Lindner, W. (2002). Concept of sequential analysis
556	of free and conjugated phytosterols in different plant matrices. J. Chromatogr.
557	<i>B</i> , 777, 67-82.
558	European Commission Regulation (1991). EEC 2568/91 of 11 July 1991 on the
559	characteristics of olive oil and olive-residue oil and on the relevant methods
560	of analysis, and subsequent amendments. Off. J. Eur. Commun., L248, 1-
561	102.
562	Gómez-Coca, R. B., Pérez-Camino, M. C., & Moreda, W. (2012). Specific
563	procedure for analysing steryl glucosides in olive oil. Eur. J. Lipid Sci.
564	Technol. DOI:10.1002/ejlt.201200181.
565	Gómez-Coca, R. B., Moreda, W., & Pérez-Camino, M. C. (2012). Fatty acid
566	alkyl esters presence in olive oil vs. organoleptic assessment. Food Chem.,
567	<i>135,</i> 1205-1209.

568	Grille, S., Zaslawski, A., Thiele, S., Plat, J., & Warnecke, D. (2010). The
569	functions of steryl glycosides come to those who wait: recent advances in
570	plants, fungi, bacteria and animals. Prog. Lipid Res., 49, 262-288.
571	International Olive Council (2004). IOOC recognition of laboratories undertaking
572	the sensory analysis of virgin olive oil. RES-2/90-IV/04, 1-3.
573	International Olive Council (2011). Sensory analysis of olive oil. Method for the
574	organoleptic assessment of virgin olive oil. COI/T. 20/Doc. No 15/Rev. 4, 1-
575	14.
576	Lin, X., Ma, L., Moreau, R. A., & Ostlund R. E. Jr. (2011). Glycosidic bond
577	cleavage is not required for phytosteryl glycoside-induced reduction of
578	cholesterol absorption in mice. Lipids, 46, 701-708.
579	Lin, X., Ma, L., Racette, S. B., Anderson Spearie, C. L., & Ostlund R. E. J.
580	(2009). Phytosterol glycosides reduce cholesterol absorption in humans. Am.
581	J. Physiol. Gastrointest. Liver Physiol., 296, G931-G935.
582	MacKay, D. S., & Jones, P. J. H. (2011). Phytosterols in human nutrition: type,
583	formulation, delivery, and physiological function. Eur. J. Lipid Sci. Technol.,
584	<i>113,</i> 1427-1432.
585	Moreda, W., Pérez Camino, M. C., & Cert, A. (2004). Analysis of neutral lipids:
586	unsaponifiable matter. In: L. M. L. Nollet (Ed.), Handbook of food analysis:
587	physical characterization and nutrient analysis 2nd ed. (pp. 313-348). New
588	York-Basel: Marcel Dekker, Inc.
589	Nyström, L., Schär, A., & Lampi, AM. (2012). Steryl glycosides in plant foods
590	reflect unique sterol patterns. Eur. J. Lipid Sci. Technol., 114, 656-669.

- 591 Ostlund, R. E. (2002). Phytosterols in human nutrition. Annu. Rev. Nutr., 22,
- 592 533-549.

- 593 Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., & Lampi, A.-M. (2000).
- 594 Plant sterols: biosynthesis, biological function and their importance to human
- 595 nutrition. J. Sci. Food Agric., 80, 939-966.
- Pollak, O. J. (1953). Reduction of blood cholesterol in man. Circulation, 7, 702-
- 597 **706**.
- 598 Power, F. B., & Salway, A. H. (1913). The identification of ipuranol and some
- allied compounds as phytosterol glucosides. *J. Chem. Soc.*, *103*, 399-406.
- Sugawara, T., & Miyazawa, T. (1999). Separation and determination of
- 601 glycolipids from edible plant sources by high-performance liquid
- 602 chromatography and evaporative light-scattering detection. *Lipids, 34*, 1231-
- 603 **1237**.

- Zamora, R., & Hidalgo, J. H. (2004). Fatty acids. In: L. M. L. Nollet (Ed.),
- 605 Handbook of food analysis: physical characterization and nutrient analysis
- 2nd ed. (pp. 221-274). New York-Basel: Marcel Dekker, Inc.
- 607

608 LEGEND

- **Figure 1.** GC-FID chromatograms for steryl glucosides in spiked chemically
- refined olive pomace oil. This chromatogram has been obtained after analysing
- 611 the sample according to the proposed method.
- I. S. Internal standard Cholesterol glucoside, 1. Campesteryl glucoside, 2.
- 613 Stigmasteryl glucoside, 3. β-Sitosteryl glucoside, 4. (presumptive) Δ^5 -
- 614 Avenasteryl glucoside, 5. Esterified campesteryl glucoside, 6. Esterified
- stigmasteryl glucoside, 7. Esterified β -sitosteryl glucoside, 8. (presumptive)
- Esterified Δ^5 -avenasteryl glucoside.

Table 1. Relative retention time (Rt) values of cholesterol glucoside (ChSG), 617

campesteryl glucoside (CSG), stigmasteryl glucoside (SSG), and $\Delta 5$ -618

avenasteryl glucoside (AvSG), with respect to β -sitosteryl glucoside (BSSG), 619

with three times their SD. The corresponding Rt windows (Rt ± 3SD) are also 620

given. 621

	ChSG	CSG	SSG	BSSG	AvSG
Relative Rt	1.201 ± 0.002	1.095 ± 0.002	1.064 ± 0.001	-	0.990 ± 0.002
Rt window [min]	12.274 ± 0.260	13.926 ± 0.100	14.338 ± 0.100	15.244 ± 0.102	15.423 ± 0.080
622					

Table 2. Relative retention time (Rt) values of cholesterol glucoside (ChSG), 623 esterified campesteryl glucoside (ECSG), esterified stigmasteryl glucoside 624 (ESSG), and esterified Δ5-avenasteryl glucoside (EAvSG), with respect to 625 esterified β -sitosteryl glucoside (EBSSG), with three times their SD. The 626 corresponding Rt windows (Rt ± 3SD) are also given. 627

	ChSG	ECSG	ESSG	EBSSG	EAvSG
Relative Rt	2.342 ± 0.011	1.052 ± 0.001	1.037 ± 0.001	-	0.993 ± 0.001
Rt window [min]	12.274 ± 0.260	28.127 ± 0.100	28.535 ± 0.100	29.533 ± 0.135	29.703 ± 0.114
628					

- Table 3. Assessment of the recovery of β -sitosteryl glucoside (BSSG) in olive
- oil. Samples of chemically refined olive-pomace oil were spiked with standard
- 631 solutions at the concentrations indicated in each case.

Sample + Sample + Sample + 1.43 mg/kg BSSG 2.86 mg/kg BS	
BSSG [mg/kg] Trial 1 1.43 2.72	
Trial 2 1.51 [#] 2.79	
Trial 3 1.30 2.81	
Trial 4 1.39	2
Trial 5 1.47 [#] -	
Trial 6 1.28 -	
Trial 7 1.39 -	
Trial 8 1.21	
Mean value 1.37 2.77 [mg/kg]	
SD 0.01 0.01	
RSD [%] 0.73 0.36	
Recovery [%] 95.80 96.85	

Recoveries of 107% and 103% (Trials 2 and 5, respectively) are within the

AOAC accepted limits according to which concentrations of the order of

magnitude of ppm must show recovery values between 80% and 115% (AOAC,

1998)

Table 4. Assessment of the recovery of esterified β -sitosteryl glucosides (EBSSG) in olive oil. Samples of chemically refined olive-pomace oil were spiked with standard solutions at the concentrations indicated in each case.

		Sample + 4.13 mg/kg EBSSG	Sample + 8.26 mg/kg EBSSG	
EBSSG [mg/kg]	Trial 1	3.12	6.30	
	Trial 2	3.13	6.32	
	Trial 3	3.30	6.33	
	Trial 4	3.23	6.30	
	Trial 5	3.20		
	Trial 6	3.03	~ -	
	Trial 7	2.55	-	
	Trial 8	3.40	-	
	Trial 9	3.38	-	
	Trial 10	3.38		
Mean value [mg/kg]		3.17	2.77	
SD		0.06	0.01	
RSD [%]		1.89	0.36	
Recovery [%]		76.76	76.39	

Table 5. Steryl glucoside (SG) and esterified steryl glucoside (ESG) contents in mg/kg of olive oil from different cultivars and categories (extra virgin, virgin, and lampante olive oils: EVOO, VOO, and LOO, respectively). Three times the standard deviation is also given.

Oil	SG	3SD (<i>n</i>)§	ESG	3SD (<i>n</i>) [§]
	[mg/kg]		[mg/kg]	
EVOO blend I	1.77	0.06 (2)	6.16	0.29 (2)
EVOO blend II	2.06	0.01 (3)	2.73	0.15 (3)
EVOO blend III	1.38	0.04 (3)	4.28	0.01 (2)
EVOO blend IV	1.91	0.01 (3)	5.16	0.09 (3)
EVOO blend V	1.28	0.03 (4)	3.64	0.30 (3)
EVOO blend VI	2.08	0.01 (2)	4.94	0.03 (2)
EVOO cv. Arauco	1.68	0.08 (2)	4.90	0.33 (2)
EVOO cv. Arbequina	2.15	0.02 (2)	9.20	0.36 (2)
EVOO cv. Coratina	1.73	0.04 (2)	2.54	0.04 (2)
EVOO cv. Cornicabra	2.95	0.14 (2)	2.67	0.19 (3)
EVOO cv. Hojiblanca	1.88	0.01 (2)	3.79	0.01 (2)
EVOO cv. Picual	1.97	0.01 (2)	2.78	0.01 (2)
VOO blend I	2.60	0.03 (3)	4.17	0.30 (2)
VOO blend II	2.37	0.04 (2)	3.09	0.01 (2)
VOO blend III	1.67	0.01 (2)	2.42	0.01 (2)
VOO blend IV	0.90	0.01 (2)	1.91	0.01 (2)
VOO blend V	2.09	0.07 (3)	5.87	0.91 (3)
VOO cv. Blanqueta	1.34	0.01 (2)	9.63	0.71 (2)
VOO cv. Frantoio	1.47	0.01 (2)	4.32	0.07 (2)
VOO cv. Karolla	2.14	0.10 (4)	3.14	0.06 (4)
VOO cv. Uovo di Pichone	1.96	0.04 (3)	11.29	2.75 (2)
VOO cv. Verdial	1.05	0.01 (2)	4.34	0.13 (2)
LOOI	2.12	0.25 (2)	3.44	0.39 (2)
LOO II	2.23	0.01 (2)	8.50	1.35 (2)
LOO III	3.23	0.01 (3)	6.40	1.02 (3)
Deodorized OO III	0.36	0.01 (2)	5.24	0.28 (2)
Decolorized OO III	0.39	0.01 (2)	4.64	0.31 (2)
LOO (brine: 3.5) [#]	3.66	0.06 (4)	1.61	0.19 (2)
LOO (burnt: 7.0) [#]	1.95	0.01 (2)	1.19	0.05 (2)
LOO (muddy sediment: 7.4) #	1.52	0.04 (2)	2.05	0.02 (2)
LOO (rancid: 4.2) $\frac{4}{3}$	2.08	0.03 (3)	2.36	0.05 (3)
LOO (winey: 4.5) [#]	2.76	0.02 (3)	5.40	0.01 (2)
Refined olive-pomace oil	0.00	0.00 (3)	0.00	0.00 (3)
Chemically Refined Olive Oil	0.00	0.00 (5)	0.00	0.00 (5)

n = number of independent measurements [#] The main negative attributes are named according to the IOC vocabulary for sensory analysis (IOC, 2011)

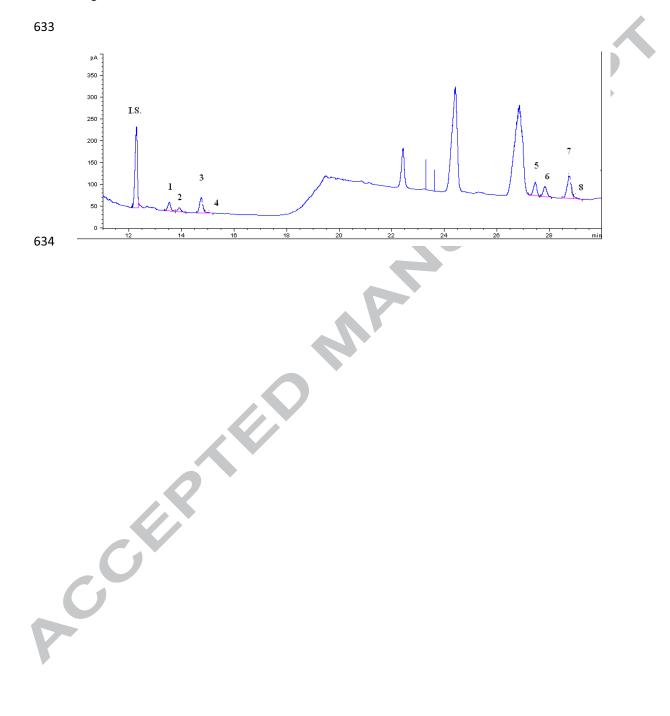


Figure 1, Gómez-Coca et al.

- 635 Highlights
- 636 Olive oil's free and esterified steryl glucosides can be analyzed
- 637 simultaneously
- 638
- 639 Commercial standards of esterified steryl glucosides were analysed by
- 640 HPLC-MS in detail
- 641
- 642 Free sterol composition and steryl glucoside profiles are independent
- 643 from each other
- 644
- 645 Olive oil (esterified) steryl glucoside content isn't cultivar- neither quality-
- 646 dependent

647