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Abstract  24 

Tuna are globally distributed species of major commercial importance and a major 25 

source of protein in many countries. Tuna are characterized by dynamic distribution 26 

patterns that respond to climate variability and long-term change. Here we investigated 27 

the effect of environmental conditions on the worldwide distribution and relative 28 

abundance of six tuna species between 1958 and 2004 and estimated the expected end-29 

of-the-century changes based on a high carbon dioxide emission scenario (RCP8.5). We 30 

created species distribution models using a long-term Japanese longline fishery dataset 31 

and two-step Generalized Additive Models. Over the historical period, suitable habitats 32 

shifted poleward for 20 out of 22 tuna stocks, based on their gravity centre and/or one of 33 

their distribution limits. On average, tuna habitat distribution limits have shifted poleward 34 

6.5 km per decade in the northern hemisphere and 5.5 km per decade in the southern 35 

hemisphere. Larger tuna distribution shifts and relative abundance changes are expected 36 

in the future, especially by the end-of-the-century (2080-2099). Temperate tunas 37 

(albacore, Atlantic bluefin and southern bluefin) and the tropical bigeye tuna are expected 38 

to decline in the tropics and shift poleward. In contrast, skipjack and yellowfin tunas 39 

become more abundant in tropical areas as well as in most coastal countries’ Exclusive 40 

Economic Zones. These results provide global information on the potential effects of 41 

climate change in tuna populations and might assist countries seeking to minimize these 42 

effects via adaptive management.  43 

1. Introduction 44 

Fisheries contribute to subsistence and food security for many countries. They provide 45 

wild protein resources, generate employment, promote economic growth, and comprise 46 

important renewable resource (Bell et al., 2009; Gillett, 2000). Pelagic species, including 47 

both small pelagics and large tunas, consist of the largest proportion of the global marine 48 



3 
 

catches (21%, 19.6 million tons) (FAO, 2016). The annual catch of tuna and tuna-like 49 

species reached about 7.7 million tons in 2014 (FAO, 2016) and this is economically 50 

important to many nations (Brill &  Hobday, 2017). Furthermore, as widely distributed 51 

and highly migratory species (Arrizabalaga et al., 2015; FAO, 1994; FAO, 2011), tuna 52 

play ecologically important roles in many regions due to their top-down influence on the 53 

ecosystem structure (Cox et al., 2002; Sibert et al., 2006). The most economically 54 

important tuna species are referred to as principal market tunas, and are caught by 55 

industrial pelagic fisheries around the globe (FAO, 2011). These principal market tunas 56 

include albacore (Thunnus alalunga), Atlantic bluefin tuna (T. thynnus), bigeye tuna (T. 57 

obesus), Pacific bluefin tuna (T. orientalis), southern bluefin tuna (T. maccoyii), yellowfin 58 

tuna (T. albacares), and skipjack tuna (Katsuwonus pelamis). Catches of principal market 59 

tunas reached 4.9 million tons in 2016 (ISSF, 2018) and are considered fully utilized 60 

(ISSF, 2018). The total adult biomass of tuna has been estimated to decline by 49% 61 

between 1954 and 2006  (Juan-Jordá et al., 2011), and this decline has been attributed to 62 

intensified exploitation (Worm &  Tittensor, 2011).  63 

Climate change has a significant impact across all marine ecosystems, latitudes and 64 

trophic levels (Scheffers et al., 2016) with many studies showing global warming effects 65 

on species distribution and abundance (Burrows et al., 2011; Cheung et al., 2013; Pecl et 66 

al., 2017; Richardson et al., 2012), as well as phenology (Asch, 2015; Poloczanska et al., 67 

2013; Poloczanska et al., 2016). Climate change may redistribute the global catch 68 

potential with a 30–70% increase in high-latitude regions and a 40% decrease in the 69 

tropics (Cheung et al., 2009). Increases in the proportion of tropical tuna in sub-tropical 70 

regions between 1965 and 2011 were related to ocean warming (Monllor-Hurtado et al., 71 

2017). Due to the socio-economic value of tuna species, understanding and predicting 72 

responses to global climate change are a priority for the scientific community to design 73 
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effective fishery management to ensure the sustainability of tuna populations and, hence, 74 

human societies depending on them (Barange et al., 2018; Hobday et al., 2017). Recently, 75 

Arrizabalaga et al. (2015) described the global habitat preferences of commercially 76 

valuable tuna, but did not explore historical or future changes in these distributions. Other 77 

regional, single ocean, or single species projections have predicted tuna distribution and 78 

tuna population responses to climate change (Bell et al., 2013; Christian &  Holmes, 2016; 79 

Druon et al., 2017; Dueri et al., 2014; Lehodey et al., 2012; Michael et al., 2017). For 80 

example, studies on Pacific Ocean skipjack predict significant changes in their abundance 81 

and spatial distribution (reduction in most tropical waters and expansion in higher 82 

latitudes) in the future (Dueri et al., 2014; Dueri et al., 2016; Lehodey et al., 2012). It has 83 

also been predicted that the distribution of tuna will be affected by changes linked to 84 

physiological characteristics. For example, a decrease in oxygen concentration will 85 

compress the vertical habitat of tuna in the water column (Mislan et al., 2017). 86 

Despite of the relevance of tuna in the global economy and the future supply of food 87 

(Mullon et al., 2017), a global-scale study addressing the historical changes of the tuna 88 

habitat and providing future distributions based on climate change projections for all 89 

major commercial species is lacking. Here, we investigate the effect of environmental 90 

conditions on the worldwide distribution of six tuna species between 1958 and 2004 and 91 

estimate the expected changes by the mid and end of the century under climate change. 92 

We also analyze changes in tuna habitat within countries’ Exclusive Economic Zones 93 

(EEZ) to assess the potential impact for those countries.   94 

2. Material and Methods 95 

2.1 Fishery data 96 

Six of the seven most commercial tuna species were considered in this study (the 97 

temperate species - albacore, Atlantic and southern bluefin tunas, and the tropical 98 
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yellowfin, bigeye, and skipjack tunas). Japanese fleet pelagic longline fishing catch and 99 

effort data were used in developing the distribution models because of their extended 100 

spatio-temporal coverage. Atlantic (AO), Indian (IO) and Pacific (PO) Ocean Japanese 101 

longline catch and effort data were obtained from the five relevant tuna Regional Fishery 102 

Management Organizations (RFMOs), i.e. International Commission for the 103 

Conservation of Atlantic Tunas (ICCAT, www.iccat.int), Indian Ocean Tuna 104 

Commission (IOTC, www.iotc.org), Western and Central Pacific Fisheries Commission 105 

(WCPFC, www.wcpfc.int), Inter-American Tropical Tuna Commission (IATTC, 106 

www.iattc.org) and Commission for the Conservation of Southern Bluefin Tuna (CCSBT, 107 

www.ccsbt.org), with the exception of WCPFC where fleet-specific information and 108 

skipjack catches were not available (Arrizabalaga et al., 2015). Nominal Catch Per Unit 109 

Effort (CPUE, tuna tons per 1000 hooks) between 1958 and 2004 was calculated as the 110 

ratio of catch (tons) to the number of hooks, with the exception of SBT as catch data were 111 

in number of individuals rather than as biomass and only available from 1965 onwards. 112 

CPUE was assumed to be a proxy for fish relative abundance: we acknowledge potential 113 

issues with this assumption (e.g. Schirripa et al. (2017)), however, it remains the best data 114 

source for our analyses. Although the spatio-temporal resolution was heterogeneous 115 

between data sources, all CPUE were averaged by season and at 5ºx5º spatial resolution.  116 

2.2 Historical and future environmental data 117 

Historical environmental data (1958-2004) were obtained from the PISCES 118 

biogeochemical model (Pelagic Interaction Scheme for Carbon and Ecosystem Studies, 119 

Aumont and  Bopp (2006)). This model is derived from the Hamburg Model of Carbon 120 

Cycle version 5 (HAMOCC5) (Aumont et al., 2003) and simulates the lower trophic 121 

levels of marine ecosystems (plankton), the biogeochemical cycles of carbon and the main 122 

limiting nutrients (Aumont et al., 2015). Based on the analysis of Arrizabalaga et al. 123 
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(2015), the following variables were used to characterize the environmental preferences 124 

of tunas: sea surface temperature (SST in ºC), sea surface salinity (SSS in PSU), sea 125 

surface height (SSH, in m) and mixed layer depth (MLD, in m) as abiotic environmental 126 

variables, and phytoplankton (log(phyto) in log(mmol/m3)) as biotic factor. All 127 

environmental variables were averaged to the same spatial (5º x 5º) and temporal (season) 128 

resolution as the fishery data. 129 

Projections of oceanographic variables for the reference period (1980-1999), mid 130 

(2040-2059) and the end-of-the-21st-century (2080-2099) were extracted from the 131 

average of 16 IPCC AR5 (Fifth Assessment Report of the Intergovernmental Panel on 132 

Climate Change) models that contain a biological module (hereinafter Ensemble) with a 133 

mean ~1º spatial resolution (Cabré et al., 2014). We considered the highest-carbon-134 

emission scenario (RCP8.5 with 936 CO2 ppm by the end-of-the-century) of the IPCC 135 

AR5 (IPCC (2013)). By the end-of-the-century, this scenario projects global average 136 

increase of temperature and SSH (2.23ºC and 0.16 m, respectively), and decrease of 137 

MLD, SSS and phytoplankton (18.7 m, 0.24 psu and 0.16 mmol/m3, respectively). 138 

2.3 Tuna distribution models  139 

2.3.1 Generalized additive models  140 

Species distribution models (SDM) associate species occurrence or abundance 141 

with environmental conditions (Elith et al., 2006; Guisan &  Zimmermann, 2000). SDM 142 

of tuna was constructed by modelling tuna CPUEs in relation to environmental conditions 143 

using Generalized Additive Models (GAMs) (Hastie &  Tibshirani, 1990; Wood, 2012; 144 

Wood, 2017). GAMs were selected as they enable the fit of non-linear responses for a 145 

wide range of statistical distributions. The two-step methodology described in Borchers 146 

et al. (1997) for horse mackerel (Trachurus trachurus) and in (Erauskin-Extramiana et 147 

al., in press) for anchovy, was adapted here for tuna catch and effort data. Tuna catch data 148 
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are problematic for building reliable SDMs because the observed absences (strata with 149 

fishing effort but no catches) are restricted to the fishing area. Thus, our adapted 150 

methodology includes the generation of pseudo-absences ocean-wide depending on the 151 

range of environmental variables (Iturbide et al., 2015). Following the recommendations 152 

in Barbet‐Massin et al. (2012) to produce the most accurate predicted distributions, 153 

pseudo-absences were randomly generated ocean-wide excluding the yearly presence 154 

locations and balanced with the number of presences in each particular year (Iturbide et 155 

al., 2015). In the case of Atlantic bluefin tuna, pseudo-absences were limited to the 156 

Atlantic Ocean and the Mediterranean Sea, while in the case of southern bluefin tuna they 157 

were limited to the southern hemisphere. Due to the lack of fishery data in the western 158 

and central Pacific for skipjack, no pseudo-absences for this species were generated in 159 

this area. Then, the first step was to fit the presence/pseudo-absence (PA) model to the 160 

tuna occurrence assuming a binomial error distribution with a logit-link function. The 161 

second step was to fit the abundance model (AB) for non-zero observations using the log-162 

transformed Catch-Per-Unit-Effort (CPUE) as response variable assuming Gaussian error 163 

distribution and identity link. The expected CPUE was calculated as the product of the 164 

first and second models (PA * AB) after back-transforming the logarithm of the CPUE 165 

from the abundance model to the original CPUE scale. In order to fit unimodal response 166 

curves for the environmental variables (according to the ecological niche concept of 167 

Hutchinson (1957)) and avoid overfitting, degrees of smoothness (“k” values) were set 168 

equal or less than three. GAMs were built using the “mgcv” package in R-language 169 

(Wood, 2012) after removing all the records with missing values. 170 

Three fixed factors (Year, Season and Stock) and their interactions were also 171 

added to the full model to correct for the spatial and temporal changes in abundance 172 

and/or catchability. The Stock factor also corrects for potential differences in the way the 173 
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tuna RFMOs data are gathered, which might affect average CPUE values (Arrizabalaga 174 

et al., 2015; Schirripa et al., 2017).  175 

2.3.2 Model selection and validation 176 

The best model selection was conducted using the dredge function of the ‘MuMIn’ 177 

package (Barton, 2016). This function generates a subset of models with different 178 

combinations of variables of the global model and selects the one with the lowest AIC 179 

(Akaike Information Criterion) (Bruge et al., 2016; Guisan &  Zimmermann, 2000; 180 

Sakamoto et al., 1986).   181 

The presence/pseudo-absence model was validated using the cross-validation 182 

method (Burnham &  Anderson, 2003), with k-fold equally sized sub-datasets (Hijmans 183 

et al., 2013). We used k=5, i.e. 80% of randomly selected observations to validate the fit 184 

of the remaining (i.e. 20%). We followed the two threshold selection criteria of Jiménez-185 

Valverde and  Lobo (2007) to convert the species probability of presence to either 186 

presence (above the assigned value) or absence (below the threshold). The first criteria 187 

selected the threshold for which the sensitivity (true predicted presences) was equal to the 188 

specificity (true predicted absences). The second criteria followed the maximization of 189 

the sensitivity plus specificity.  190 

The confusion matrix accuracy assessment (VanDerWal et al., 2012) was used to 191 

evaluate how reasonable was the discrimination of the presences and absences in the PA 192 

model. Area Under the Curve (AUC) values range between 0.5 (random sorting) to 1 193 

(perfect discrimination) and was estimated over the presences and absences estimated by 194 

the model and the presences and pseudo-absences randomly generated. Accuracy in the 195 

abundance model was calculated by comparing predictions with observations using the 196 

R-squared value and contrasted with the overall explained deviance. A large difference 197 

between both values would indicate overfitting (Villarino et al., 2015).  198 
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2.4 Historical trend analysis 199 

In order to analyze the tuna species habitats’ changes between 1958 and 2004, we 200 

predicted the worldwide distribution annually according to the selected model and using 201 

the yearly aggregated environmental data for each particular year. The Gravity Center 202 

(GC) of the tuna distribution, as the mean location of the stock biomass (Bez &  Rivoirard, 203 

2001) and 5, 20, 80 and 95% percentiles (P5, P20, P80 and P95) of the location weighted 204 

by the relative abundance were calculated in order to identify changes in the distribution 205 

of tunas’ populations and their shifts. P5, P20, P80 and P95 provide information of the 206 

northern and southern distribution limits in both, past and future. Relative abundance 207 

changes were also estimated as the difference between the relative abundance average for 208 

the last and first five years of the time series in each latitude. 209 

2.4.1 Distribution and climatic indices 210 

The potential correlations between climatic indices and the distribution GC 211 

changes were studied to test the hypothesis that population distribution changes were due 212 

to oscillations of global climatic indices instead of climate change. The climatic indices 213 

used (from https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/) were: Southern 214 

Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific/North American 215 

teleconnection pattern (PNA), Artic Oscillation (AO), Southern Annular Mode (SAM), 216 

Trans Polar Index (TPI), Pacific Decadal Oscillation (PDO), Dipole Mode Index (DMI) 217 

and North Pacific Index (NP). The correlation between the GC and the yearly average of 218 

each climatic index was calculated in both spatial axes (latitudinal and longitudinal) but 219 

only with those indices considered to affect the distribution area of each stock. 220 

2.5 Future projections and changes 221 
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To study the future impact of climate change on tuna distribution and relative 222 

abundance, GAM predictions for the mid (2040-2059) and the end-of-the-21st-century 223 

(2080-2099) were compared with predictions for the reference period (1980-1999). For 224 

each species, model projections were performed at each level of each of the fixed factors 225 

and then averaged. These averages represent the spatial distribution and relative 226 

abundance of tuna at each location, given an average abundance and catchability 227 

condition. 228 

2.5.1 Expected changes in Exclusive Economic Zones (EEZs) 229 

The potential relative abundance changes for all the species under future climate 230 

change was estimated within the exclusive economic zones (EEZs) for all coastal 231 

countries. EEZ data (from http://www.marineregions.org) delimit the 200 nautical miles 232 

boundary from each coast (Flanders Marine Institute, 2018). As the spatial resolution in 233 

coastal areas was low in projection models, we only analyzed those countries with data 234 

in more than the 30% of the grid-cells inside the EEZ. The averaged relative abundance 235 

within EEZs was estimated for the reference period as well as the future, and changes 236 

were calculated as the difference between both periods. 237 

3. Results 238 

3.1. Tuna distribution models 239 

Selected tuna distribution models explained between 35.5% (southern bluefin 240 

tuna) and 62.4% (skipjack tuna) of the deviance during the reference period (S. Table 1). 241 

Most of the models included all the environmental and fixed factors but not all fixed 242 

factors interactions (S. Table 1, S. Fig. 1a, b). The models showed a good predictive 243 

power (S. Table 2) with an AUC between 0.784 (albacore tuna) and 0.838 (Atlantic 244 
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bluefin tuna) for PA model and R-squared values between 0.34 (Atlantic bluefin tuna) 245 

and 0.74 (yellowfin tuna).  246 

Global tuna relative abundance is represented in Fig. 1. Albacore tuna was 247 

distributed between 60 ºS to 60ºN worldwide with larger relative abundances in the 248 

temperate waters of Indian and Pacific oceans. Lower abundances were associated with 249 

high productive areas (such as main upwelling zones) or equatorial areas. Atlantic bluefin 250 

tuna mainly appeared north of 35ºN in the North Atlantic Ocean and in the Mediterranean 251 

Sea. Other areas in the south Atlantic off the west coast of South Africa and Namibia, and 252 

in the Southern Ocean show presence. The west Africa area was fished during the first 253 

years of the time series (mainly in the 1960’s), with the last observation in 1998. Since 254 

then, no Atlantic bluefin have been caught with longline in the southern hemisphere. 255 

Southern bluefin tuna appeared between 30 and 60ºS with the highest abundances south 256 

of Australia, New Zealand, and South America (Chile and Argentina). High abundances 257 

were predicted south of the East Pacific Ocean where there was absence of fishery data. 258 

Between Australia and some Indo-Pacific islands, where southern bluefin catch data were 259 

available, very low abundances were predicted by the model. Yellowfin and bigeye tunas 260 

were distributed between the equator and the subtropics in three main oceans (Pacific, 261 

Indian and Atlantic) with higher abundances of yellowfin in the equatorial areas and 262 

between 20ºS and 20ºN in the Atlantic Ocean for bigeye. Very low or null abundances 263 

were predicted in the central Indo-Pacific region. Potential presence of both species was 264 

predicted in the Mediterranean Sea although there were no catch data there. Skipjack tuna 265 

showed a similar distribution to yellowfin and bigeye tunas.  266 
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 267 

3.2. Past distribution and trend analysis 268 

Historic tuna habitat and relative abundance showed important changes between 269 

1958 and 2004 (Fig. 2, Fig. 3 and Table 1). Modeled albacore habitat gravity center (GC) 270 

showed significant (p-value < 0.05) poleward shifts in all the stocks (Fig. 2a, c, d, h, i, j 271 

and Table 1) with the highest change in North Atlantic Ocean (28.8 km per decade). The 272 

distribution limits shifted significantly poleward except in the south Pacific and in the 273 

Mediterranean Sea, which involves an expansion of the distribution area. Relative 274 

Figure 1: Global distribution of tuna species. a) Albacore tuna, b) Atlantic bluefin tuna, c) 

Southern bluefin tuna, d) Yellowfin tuna, e) Bigeye tuna and d) Skipjack tuna. Relative abundances 

(in tons/1000 hooks) are represented in a log-transformed scale. Notice the different scales for 

different species. The black circles represent the raw log-transformed CPUE data and the size is 

proportional to the value. Circles are not present in West Pacific due to the lack of catch data. 
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abundance in recent years decreased significantly (up to 50%) in the most productive area 275 

for longline between 10 and 30º N and slightly between the equator and 25º S (Fig. 3). A 276 

smaller increase occurred in the first 10º of the northern hemisphere and in the northern 277 

and southern boundaries (30-40º N and 25-35º S). The Atlantic bluefin tuna habitat GC 278 

shifted northward significantly in the West Atlantic Ocean (p-value<0.001) but this 279 

change was not significant in the East Atlantic Ocean (p-value=0.07) (Fig. 2e, g and Table 280 

1). In both stocks, the northern limit shift further north was highly significant which 281 

means that Atlantic bluefin habitat became more suitable at higher latitudes. The relative 282 

abundance of bluefin increased slightly in all the northern hemisphere (0-60º N) in recent 283 

years (Fig. 3). The southern bluefin tuna habitat GC shifted northward towards the equator 284 

significantly (p-value < 0.001) between 1965 and 2004. In the 1960’s and 1970’s, 285 

southern bluefin tuna GC shifted to the pole (southward) and it was not until the 1980’s 286 

when it started shifting towards the equator (Fig. 2k and Table 1). Both limits (northern 287 

and southern) shifted northward and hence, the relative abundance in recent years 288 

decreased south of 25ºS (Fig. 3). Yellowfin tuna habitat GC shifted significantly to the 289 

south in the Pacific and Indian Oceans (both p-value<0.001) but no trend was found in 290 

the Atlantic Ocean (p-value=0.87) (Fig. 2b, f, j, l and Table 1). The largest change 291 

occurred in the East Pacific Ocean at a rate of 26.6 km per decade. In general, both limits 292 

shifted southward in the Pacific and Indian Ocean but poleward in the Atlantic. The 293 

abundance in recent years increased in all latitudes except for a small decrease between 294 

6 and 10ºN (Fig. 3). In contrast to yellowfin, bigeye tuna habitat GC shifted significantly 295 

to the north in the Atlantic Ocean (p-value=0.019) and southward in the Indian Ocean. 296 

Pacific tuna stocks showed no significant trends (p-values=0.2 and 0.65 for east and west, 297 

respectively) (Fig. 2b, l and Table 1). The distribution limits shifted poleward in the 298 

Atlantic Ocean (but only significantly in the northern hemisphere), while no trends were 299 
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found in the Pacific. Bigeye tuna relative abundance increased in recent years through its 300 

distribution range, especially between the equator and 60ºN (Fig. 3). Skipjack tuna stocks 301 

showed different responses to environmental changes around the world: northward shift 302 

in the West Atlantic (p-value=0.006), southward shifts in the east and west Pacific and 303 

Indian stocks (p-value=0.046, <0.001 and <0.001 respectively), and no significant shift 304 

in the East Atlantic (p-value=0.29) (Fig. 2b, e, g, j, l and Table 1). The distribution limits 305 

did not show a trend, with a different pattern depending on the stock. Changes in the mean 306 

abundance per latitude were barely noticeable, varying between -4.3e-5 to 4.4e-5 tons/1000 307 

hooks CPUE change (Fig. 3).  308 

In summary, 20 out of 22 stocks have shifted poleward, either their gravity centre 309 

and/or one of their distribution limits. All temperate tuna habitats shifted significantly 310 

poleward (northward in the northern hemisphere and southward in the southern 311 

hemisphere), except southern bluefin tuna which moved to the north. Tropical tunas, 312 

distributed around the equator, showed opposing shifts in their distribution limits, hence, 313 

Figure 2: Historical trends for the habitat of 22 tuna stocks’ gravity center anomalies (in 

latitudinal degrees). 
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were less affected in their GC. They generally shifted southward in the Pacific and Indian 314 

Oceans but northward in the Atlantic Ocean. Overall, 91% of the stocks shifted poleward 315 

during the study period, representing 89% of the temperate and 92% of tropical tunas. On 316 

average, the distribution limits (P80) shifted poleward 6.5 km per decade in the northern 317 

hemisphere and 5.5 km per decade in the southern hemisphere.  318 

 319 

Table 1: Change in Gravity Center (GC, in latitudinal degrees per year), North (N) and South (S) limits 

estimated with percentiles 95 (P95), 80 (P80), 20 (P20) and 5 (P5) for the six-tuna species between 1958 

to 2004 except in the case of S. bluefin tuna which was between 1965 and 2004. P-value < 0.001 is 

represented by ‘***’, p-value between 0.001 and 0.01 with ‘**’, and p-value >0.01 and < 0.05 by ‘*’. 
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  320 

Figure 3:  Relative abundance changes (in tons/1000 hooks and 10 inds/1000 hooks in the case 

of S. bluefin) between past (1958-1963 and 1965-1970 for S. bluefin) and recent (1999-2004) 

period. a) Average abundance per latitude for the two periods; b) Abundance anomalies 

estimated as the difference between past and recent periods for six tuna species: alb=albacore 

tuna, bft=A. bluefin tuna, sbt=S. bluefin tuna, yft=yellowfin tuna, bet= bigeye tuna and 

skj=skipjack tuna. 
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3.2.1. Relation with climatic indices 321 

The analyses between latitudinal GC changes in tuna stocks and climatic indices 322 

showed very few significant correlations (S. Table 3). Only 20.5% of the latitudinal 323 

changes were related to climatic indices, and the percentage was reduced to 4.6% in the 324 

case of longitudinal shifts.  325 

3.3. Future tuna projections 326 

3.3.1. Distribution and relative abundance changes 327 

Future projections of tuna habitat under the RCP8.5 climate change scenario 328 

showed similar patterns for the mid- and the end-of-the-century but with higher changes 329 

expected by 2080-2099, with respect to the reference period (1980-1999). In general, 330 

most of the species are projected to expand their northern and southern boundaries (Table 331 

2) increasing the relative abundance in the limits of their distribution (Fig. 4) while 332 

tropical tunas as skipjack and yellowfin are expected to increase abundance in their core 333 

tropical areas and eastward in the Pacific Ocean.  334 

The relative abundance of albacore tuna increases in the distribution limits of the 335 

Indian and Pacific Oceans, but decrease in temperate areas around South Africa, south of 336 

Japan and Taiwan and northeast of Australia (Fig. 4). The gravity center for the future 337 

moves southward for the southern hemisphere stocks (South Atlantic, South Pacific and 338 

Indian) and northward for the northern hemisphere stocks (North Atlantic and North 339 

Pacific), except in the Mediterranean Sea where albacore do not show a clear trend (Table 340 

2). Albacore tuna expand their northern and southern limits and decrease in temperate 341 

areas (Fig. 4). Atlantic bluefin tuna decrease in most of the current North Atlantic 342 

distribution area and increase slightly in the most northern areas of the Atlantic Ocean 343 

such as around Svalbard and Jan Mayen Islands. The western Atlantic bluefin stock is 344 

impeded by land masses with regard to expansion northward, but the eastern bluefin stock 345 
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extends its northern distribution limit by the end-of-the-century. The model also projects 346 

that the habitat improves in high southern latitudes, where no occurrences have been 347 

observed, shifting the West Atlantic bluefin stock southward.  348 

Table 1: Gravity Center anomalies (GC, in latitudinal degrees), North (N) and South (S) limits 

estimated with percentiles 95 (P95) and 5 (P5) for the six-tuna species for mid- (2040-2059) and 

the end-of-the-century (2080-2099). 
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The relative abundance of the southern bluefin tuna increases in the southern limit 349 

by mid-century but it decreases in most of the reference distribution area. By the end-of-350 

the-century (2080-2099), the relative abundance decreases in most of the distribution area 351 

compared to the reference period. As a consequence of these changes, the GC shifts 352 

slightly southward by mid-century and northward by the end-of-the-century. The 353 

southern boundary shifts northward by 2080-2099. Yellowfin tuna increase in most of 354 

their distribution area, with the highest changes projected for the equatorial areas of the 355 

Atlantic, Indian and Central Pacific Oceans. However, the abundance is expected to 356 

decrease north of Papua New Guinea and east of the Philippines. The yellowfin tuna GC 357 

shifts southward in the West Pacific and Atlantic, while northward in the East Pacific and 358 

Indian Oceans. The spatial distribution of bigeye tuna is projected to change most in the 359 

Atlantic Ocean and less so in the Pacific and Indian Oceans. The relative abundance 360 

decreases in the equatorial and tropical areas, but increases in the subtropical zones, 361 

especially in the Northeast Atlantic and in the Southeast Atlantic off South Africa and 362 

Namibia. The GC for all bigeye stocks, except in the Atlantic Ocean in 2040-2059, shifts 363 

to the south and all the stocks expand their distribution areas. The relative abundance of 364 

skipjack tuna increases in most of the distribution area, especially in the West Atlantic 365 

Ocean, the Caribbean Sea, and the Bermuda region, similar to yellowfin. Southward shifts 366 

occur in the Pacific and Indian Oceans and northward in the Atlantic Ocean. Expansions 367 

of the eastern Pacific, western Pacific, Indian, and Eastern Atlantic stocks distribution 368 

area are projected to occur by the mid-century. A contraction of the distribution is 369 

predicted for the western Atlantic and western Pacific stocks by the end-of-the-century.  370 
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 371 

3.3.2. Tuna abundance changes in the Exclusive Economic Zones (EEZ)  372 

Important changes in tuna abundance are expected in EEZs in the future (Fig. 5). It is 373 

expected that northern countries such as Norway, Greenland, Iceland, Canada, United 374 

Figure 4:  Gains and losses of relative abundance (in tons/1000 hooks, except for SBT, in number 

of individuals/1000 hooks) for mid- (left column) and end-of-the-century (right column). 
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Kingdom, and Ireland have the greatest depletion in Atlantic bluefin tuna abundance in 375 

the future, with higher decreases by the end-of-the-century. Similarly, the abundance of 376 

southern bluefin tuna in the southern hemisphere countries EEZ decreases, with Chile and 377 

Argentina being the countries with the highest losses. Bigeye tuna decreases in all the 378 

countries EEZ, except in a few high latitude northern and southern hemisphere countries 379 

such as Norway, Iceland, Canada, Argentina, Chile, New Zealand, South Africa, and 380 

some Northeast Atlantic countries (e.g. Portugal, Spain, France) where the abundance 381 

Figure 5: Relative abundance changes (in CPUE units, tons per 1000 hooks or individuals per 

1000 hooks in the case of southern bluefin tuna) in different countries EEZs for mid- (2040-

2059) and end-of-the-century (2080-2099) compared with the reference period (1980-1999). 

Countries are ordered per mean latitude of the EEZ and dotted lines represent the equator (0º) 

and both 45º parallels (North and South). 
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increases marginally. Similar to bigeye tuna, the abundance of albacore tuna decreases in 382 

most EEZs, except for some countries located around its distributional limit. Skipjack and 383 

yellowfin tunas are the only species that are projected to significantly increase in the 384 

future, despite decreasing in a few countries such as Indonesia, Malaysia, Micronesia, 385 

Palau, Philippines, and Taiwan. 386 

4. Discussion  387 

Tuna habitat as modelled here, has shifted poleward over the 1958-2004 period and 388 

is projected to continue to shift under climate change, with potential important 389 

consequences for coastal fisheries and the countries that depend on them. We used 390 

Japanese longline fleet data because it has been the most consistent fleet fishing in all the 391 

oceans for the longest period of time. However, the catchability and availability of 392 

skipjack tuna for the Japanese fleet is very low, as seen in the low CPUE values, hence 393 

our model predicted very small differences between tropical, subtropical and temperate 394 

waters habitat for skipjack. Moreover, the Japanese longline fleet catch mostly large fish 395 

of all species and the predicted and projected distributions should thus be considered as a 396 

proxy for the adult population.  397 

Our method, based on the combination of presence/pseudo-absence and abundance 398 

models (AB), improved the prediction of the tuna habitat distribution and the relative 399 

abundances worldwide compared to the previous method by Arrizabalaga et al. (2015) 400 

although the deviance explained in the AB model is always a bit lower than in 401 

Arrizabalaga et al. (2015) due to the limitation that we imposed to the degree of 402 

smoothness (k=3). Particularly, our method has improved the species distribution models 403 

where presence data were not available (e.g. in areas where fish were not observed as 404 

poles). 405 
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4.1. Tuna distribution models and their reliability  406 

In recent decades, the increased use and species distribution model development has 407 

been applied to ecological problems on many species at different spatial and temporal 408 

scales (Robinson et al., 2011). However, there are still some limitations in the 409 

development of SDM. In order to avoid the assumption of a pseudo-equilibrium between 410 

the species and the environment in the short term studies (Guisan &  Theurillat, 2000) 411 

and, hence, to be able to detect long-term variations (Reygondeau et al., 2012), we used 412 

a long time-series dataset (47 years of tuna catch and effort data). Fixed factors and their 413 

interactions were included in the CPUE model to correct for changes in abundance and/or 414 

catchability of tuna by the Japanese fleet (Arrizabalaga et al., 2015). As in the study by 415 

Reygondeau et al. (2012), where tuna and billfishes were found rarely on continental 416 

shelves due to low spatial resolution (5 x 5 degree), coastal results need to be interpreted 417 

carefully in our worldwide study. We partially avoided this problem by using only those 418 

countries with more than 30% of the cells with data within their EEZs. In addition, our 419 

model is two-dimensional because it does not incorporate the depth distribution changes 420 

which could be important as fishes could change their vertical distribution, moving to 421 

deeper waters to adapt to ocean warming (Dueri et al., 2014; Dulvy et al., 2008; Perry et 422 

al., 2005). Although the reliability of our models is high (deviance explained vary 423 

between 34.5 and 74.1% and AUC values of 0.784 and 0.838), the predictions assume 424 

only the relationship between environmental variables and adult tuna distribution. 425 

Nevertheless, the geographic distribution of the species does not only depend on their 426 

environmental tolerance, but also on dispersal capacity and biological interactions 427 

(Peterson et al., 2011) such as predation (Guisan &  Thuiller, 2005), intraspecific or 428 

interspecific competition, trophic relationships and population dynamics. Furthermore, 429 
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different responses to climate change impacts can desynchronize ecological interactions 430 

(Thackeray et al., 2016). 431 

4.2. Past distribution and abundance changes 432 

We found a poleward shift in the suitable habitat of 89% of the temperate tuna stocks 433 

between 1958 and 2004. Southern bluefin tuna was an exception as it shifted equatorward 434 

after 1980. In the same period, 92% of the tropical tunas shifted poleward to the south in 435 

the Pacific and Indian Oceans and poleward to the north in the Atlantic Ocean, except for 436 

yellowfin and eastern skipjack where no significant trends were observed. Similarly, 437 

Monllor-Hurtado et al. (2017) observed that tropical tunas (bigeye, yellowfin and 438 

skipjack) longline catches decreased significantly in tropical waters and increased in sub-439 

tropical waters from 1965 to 2011 due to a poleward shift in response to ocean warming. 440 

For many other fish species, the latitudinal shift of their habitat in the last decades has 441 

been associated with the movement of the population (Beare et al., 2004; Bruge et al., 442 

2016; Montero-Serra et al., 2015; Perry et al., 2005). The species composition in 443 

worldwide marine fisheries has changed due to climate change; the dominance of warmer 444 

water species has increased at higher latitudes and the proportion of subtropical species 445 

has decreased in the tropics (Cheung et al., 2013). Range contractions and abundance 446 

declines have also been recorded for larger tuna and billfish species such as bluefins 447 

(Worm &  Tittensor, 2011). 448 

The species distribution models can predict occurrence probability in areas where 449 

the species has not been observed or caught. For example, a favorable habitat is predicted 450 

for Atlantic bluefin tuna in the South Atlantic Ocean (below 45º S), and likewise for 451 

yellowfin and bigeye tunas in the Mediterranean Sea. This suggests that the 452 

environmental conditions (limited to those studied in this paper) in these areas are 453 

favorable for those species, but for some reason they do not occupy them. In contrast, the 454 
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SDM models can also predict low occurrence or absence where species has been observed 455 

due to low longline CPUE (e.g. southern bluefin tuna) or cannot discriminate between 456 

areas of high/low habitat suitability due to low contrast in the CPUE signal (e.g. low 457 

skipjack catchability of the Japanese longline). In the case of southern bluefin tuna, for 458 

example, there has been little Japanese longline fishery in the spawning ground in tropical 459 

waters of south of Java and off the northwest coast of Australia since 1960s (Grewe et al., 460 

1997) which could have affected the relationship with the environment and subsequent 461 

habitat suitability predictions of the model (i.e. low suitability or absence whereas some 462 

catches are observed). We also found a poleward shift between 1965 and 1979 for 463 

southern bluefin tuna and a subsequent northward shift that is difficult to explain, as it is 464 

not related to climate variability (i.e. climate indices).  465 

Concerning habitat changes, less suitable habitat was found mainly for albacore and 466 

southern bluefin tunas over the last 50 years. Juan-Jordá et al. (2011) found the highest 467 

population declines for temperate tunas throughout the period 1954-2006 and these 468 

changes were attributed to their high exploitation level. However, the habitat losses 469 

described in this paper might have also contributed to these declines. We found an 470 

increase in suitable habitat for yellowfin, bigeye and Atlantic bluefin tunas and a small 471 

change in skipjack tuna between 1958 and 2004. Some studies estimated that the tropical 472 

tunas are fished down to approximately maximum sustainable levels, which prevents 473 

further sustainable expansion of catches in these fisheries (Juan-Jordá et al., 2011). 474 

However, a significant increase in tuna fisheries mainly occurred in the 1970’s due to the 475 

expansion of the fisheries and the development of new offshore fishing grounds (FAO, 476 

2011), and the improvement of the suitable habitat during the last decades for these 477 

species might have also partially contributed to this expansion.  478 

4.3. Future projections and implications for fishing countries 479 
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Future projections under different climate change scenarios are crucial to anticipate 480 

the impacts on populations of target species (Dueri et al., 2014; Lehodey et al., 2012), the 481 

changes in predator-prey relationships, the impacts on human services and fisheries (Bell 482 

et al., 2013; Cheung et al., 2013; Cheung et al., 2009; Dueri et al., 2016), and to identify 483 

the most vulnerable nations (Allison et al., 2009; Barange et al., 2018). 484 

Although models are useful tools to project future trends and expected impacts, they 485 

also have limitations. We are estimating future potential distribution and relative 486 

abundances solely due to environmental change, but other processes that are not included 487 

in the model such as population and fisheries dynamics and trophic interactions also shape 488 

their distribution. These components are important since they can amplify the warming 489 

signal throughout the food web (Chust et al., 2014). We only predicted changes in tuna 490 

habitat for RCP8.5 IPCC AR5 climate change scenario, but changes for other scenarios 491 

(RCP 2.6, 4.5 and 6.0) are expected to be similar until around 2050 when they diverge 492 

(Hoegh-Guldberg et al., 2014; IPCC, 2013). Tuna habitat predictions for the end-of-the-493 

century for other climate scenarios are likely to be between the values estimated for mid- 494 

and end-of-the-century in our models (Smith et al., 2011).  495 

Temperate tunas and bigeye are expected to decrease at low latitudes and shift 496 

poleward. Tropical tunas such as yellowfin and skipjack are projected to increase in 497 

relative abundance in the equatorial areas of the main oceans. Our results are in agreement 498 

with Lehodey et al. (2012) and Dueri et al. (2014) who predicted a slight increase of 499 

skipjack abundance in the Western Central Pacific Ocean until 2050 followed by a 500 

decrease after 2060. They also predicted that the habitat becomes more favorable in the 501 

Eastern Pacific Ocean and in higher latitudes, while the western equatorial warm pool 502 

would become less favorable for spawning.  503 
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According to our analysis, Atlantic bluefin tuna abundance is predicted to decrease 504 

across most of its geographical range and to expand northward by the end-of-the-century. 505 

This is in agreement with (Muhling et al., 2016) who predicted temperature-induced 506 

reductions in tropical and sub-tropical Atlantic and an improvement in subpolar habitat 507 

suitability, with implications for spawning and migratory behaviors, and availability to 508 

fishing. This northward shift might allow fishing in more northern latitudes (McKenzie 509 

et al 2014). In addition, the southern Atlantic habitat is predicted to improve. In the past, 510 

this species occurred also in the southern Atlantic, until the “habitat bridge” through the 511 

western equatorial Atlantic linking both hemispheres was interrupted in the late 1960’s 512 

(Briscoe et al., 2017; Fromentin et al., 2014). The predicted improvement in southern 513 

Atlantic habitat might only result in Atlantic bluefin tuna reappearance the tropical habitat 514 

bridge is restored. Similarly, southward shifts are expected for 14 other large pelagic 515 

species (including tunas) for the east and west Australian coast for the end-of-the-century 516 

with a decrease in their distribution area (Hobday, 2010).  517 

These shifts have implications for fishing countries. A redistribution of global catch 518 

potential is expected under climate change scenarios, increasing on average 30–70% in 519 

high-latitude regions and decreasing up to 40% in the tropics (Cheung et al., 2009). The 520 

strong interactions between fishing and climate require management to adapt the fishing 521 

mortality to guarantee sustainable populations, stabilize catches and profits, and reduce 522 

collateral impacts on marine ecosystems (Brander, 2007; Juan-Jordá et al., 2011). This 523 

occurs when only abundance is expected to decline in the future, but when future 524 

projections involve changes in distribution (with gains and losses in suitable habitat 525 

areas), there is also potential for increases in population size (Hobday, 2010). Many of 526 

the countries that are more vulnerable to the impacts of climate change on their fisheries 527 

are also the poorest and are located in the tropics (Allison et al., 2009). Catch composition 528 
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and catch potential changes have direct implications for coastal fishing communities and 529 

this emphasizes the need to develop adaptation plans to minimize the impacts of global 530 

climate change on the economy, local fisheries and food security in many countries 531 

(Barange et al., 2018; Cheung et al., 2013). Tuna are an important source of protein in 532 

many countries and the increasing availability for Pacific nations is a possible solution to 533 

fill the future gap of protein-rich food availability (Allison et al., 2009; Bell et al., 2015; 534 

Gillett et al., 2001).  535 

The average catches for all the temperate tuna species (albacore, Atlantic and southern 536 

bluefin) and the tropical bigeye are expected to decrease in the future in tropical EEZs, 537 

but to increase in the countries located in the boundaries of the suitable area. In contrast, 538 

catches for other tropical tuna species (yellowfin and skipjack) are expected to increase 539 

in most of the tropical EEZs. Our results support Bell et al. (2013), with 82.4% agreement 540 

in the results of the Pacific Island countries and territories (PICTs) having a change in 541 

skipjack catch within their EEZ (S. Table 4). They estimated changes for 2050 and 2100 542 

relative to the 20-years average from 1980-2000 under the A2 emissions scenario (slightly 543 

lower emissions levels than the RCP8.5 in IPCC AR5, Rogelj et al. (2012)). We projected 544 

a decrease in skipjack tuna in Palau EEZ for both periods, while Bell et al. (2013) 545 

expected an increase by 2050 and a decrease by 2100. The other exceptions were Solomon 546 

Islands and Papua New Guinea where our model projected an increase in abundance and 547 

Bell et al. (2013) foresaw a decrease. Changes in catch potential estimated by Cheung et 548 

al. (2009) based on >1000 species showed similar latitudinal patterns found for temperate 549 

tunas and bigeye in our study. They expected gains in some high-latitude 550 

countries/regions in the northern hemisphere while losses in many tropical and 551 

subtropical countries/regions. The highest catch potentials were projected for the northern 552 

Atlantic Ocean countries such as Norway, Greenland and Iceland with an increase of 18–553 
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45%, followed by the northern Pacific Ocean (Alaska and Russia) with 20%. In contrast, 554 

the catch potential from most other EEZ countries (most of them in tropical and 555 

subtropical regions) diminish, with the largest decrease projected in Indonesia (Cheung 556 

et al., 2009).  557 

Changes in the distribution of tuna in different countries may have implications for 558 

global food security and strongly impact many tropical communities, which are strongly 559 

dependent on local fishing resources (Allison et al., 2009; Bell et al., 2018; Cheung et al., 560 

2009). Thus, the generation of knowledge on the most vulnerable countries to climate 561 

change is an important research task. Further analysis should focus on the local impacts 562 

that the distribution and abundance changes of tunas have on small fisher communities 563 

and the adaptation mechanisms needed to diminish the impacts. Such adaptation 564 

strategies could involve shifts in fishing areas, changes in target species, and/or changes 565 

in fishing agreements (Barange et al., 2018) and must be developed in partnership with 566 

affected nations. 567 

Acknowledgements 568 

This research was funded by the Basque Government (Department Deputy of 569 

Agriculture, Fishing, and Food Policy) and Fundación Biodiversidad (Spanish Ministry 570 

of Agriculture and Fishing, Food and Environment; CLIREMAR project). M. Erauskin 571 

has benefited from a Basque Government scholarship through Economic Development 572 

and Infrastructures Department. We acknowledge the World Climate Research 573 

Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and 574 

we thank the climate modeling groups for producing and making available their model 575 

output. We thank O. Aumont and L. Bopp for providing access to the PISCES 576 

biogeochemical model environmental data used for Species Distribution Models building. 577 

A. Cabre is grateful for the ‘‘Beatriu de Pinos’’ fellowship and the program Marie Curie 578 



30 
 

Actions COFUND of the 7th Framework Program for Research and Technological 579 

Development of the European Union. This research was conducted as part of the 580 

CLIOTOP program.  This is contribution XXX from AZTI Marine Research Division.  581 

 582 

References 583 

 Allison EH, Perry AL, Badjeck M-C et al. (2009) Vulnerability of national economies 584 

to the impacts of climate change on fisheries. Fish and Fisheries, 10, 173-196. 585 
 Arrizabalaga H, Dufour F, Kell L et al. (2015) Global habitat preferences of 586 

commercially valuable tuna. Deep Sea Research Part II: Topical Studies in 587 

Oceanography, 113, 102-112. 588 
 Asch RG (2015) Climate change and decadal shifts in the phenology of larval fishes in 589 

the California Current ecosystem. Proceedings of the National Academy of 590 

Sciences, 112, E4065-E4074. 591 
 Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization 592 

studies. Global Biogeochemical Cycles, 20. 593 

 Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M (2015) PISCES-v2: an ocean 594 
biogeochemical model for carbon and ecosystem studies. Geoscientific Model 595 

Development Discussions, 8. 596 

 Aumont O, Maier‐Reimer E, Blain S, Monfray P (2003) An ecosystem model of the 597 

global ocean including Fe, Si, P colimitations. Global Biogeochemical Cycles, 17. 598 
Barange M, Bahri T, Beveridge MC, Cochrane KL, Funge-Smith S, Poulain F (2018) 599 

Impacts of climate change on fisheries and aquaculture: synthesis of current 600 

knowledge, adaptation and mitigation options, Rome, FAO. 601 

 Barbet‐Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo‐absences for 602 
species distribution models: how, where and how many? Methods in Ecology and 603 

Evolution, 3, 327-338. 604 
 Barton K (2016) MuMIn: Multi-Model Inference. R Package version 1.15.6. 605 

 Beare D, Burns F, Jones E et al. (2004) An increase in the abundance of anchovies and 606 
sardines in the north-western North Sea since 1995. Global Change Biology, 10, 607 

1209-1213. 608 
 Bell JD, Allain V, Allison EH et al. (2015) Diversifying the use of tuna to improve food 609 

security and public health in Pacific Island countries and territories. Marine 610 
Policy, 51, 584-591. 611 

 Bell JD, Cisneros-Montemayor A, Hanich Q et al. (2018) Adaptations to maintain the 612 

contributions of small-scale fisheries to food security in the Pacific Islands. 613 
Marine Policy, 88, 303-314. 614 

 Bell JD, Kronen M, Vunisea A et al. (2009) Planning the use of fish for food security in 615 
the Pacific. Marine Policy, 33, 64-76. 616 

 Bell JD, Reid C, Batty MJ et al. (2013) Effects of climate change on oceanic fisheries in 617 
the tropical Pacific: implications for economic development and food security. 618 
Climatic Change, 119, 199-212. 619 

 Bez N, Rivoirard J (2001) Transitive geostatistics to characterise spatial aggregations 620 
with diffuse limits, an application on mackerel ichtyoplankton. Fisheries 621 
Research, 50, 41-58. 622 



31 
 

 Borchers D, Buckland S, Priede I, Ahmadi S (1997) Improving the precision of the daily 623 

egg production method using generalized additive models. Canadian Journal of 624 
Fisheries and Aquatic Sciences, 54, 2727-2742. 625 

 Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci U S 626 
A, 104, 19709-19714. 627 

 Brill RW, Hobday AJ (2017) Tunas and their fisheries: safeguarding sustainability in the 628 
twenty-first century. Fish Biology and Fisheries, 27, 691–695. 629 

 Briscoe DK, Hobday AJ, Carlisle A et al. (2017) Ecological bridges and barriers in 630 

pelagic ecosystems. Deep Sea Research Part II: Topical Studies in 631 
Oceanography, 140, 182-192. 632 

 Bruge A, Alvarez P, Fontán A, Cotano U, Chust G (2016) Thermal Niche Tracking and 633 
Future Distribution of Atlantic Mackerel Spawning in Response to Ocean 634 
Warming. Frontiers in Marine Science, 3. 635 

Burnham KP, Anderson D (2003) Model selection and multi-model inference, Stringer. 636 
 Burrows MT, Schoeman DS, Buckley L et al. (2011) The pace of shifting climate marine 637 

and terrestrial ecosystems. Science, 334, 652-655. 638 
 Cabré A, Marinov I, Leung S (2014) Consistent global responses of marine ecosystems 639 

to future climate change across the IPCC AR5 earth system models. Climate 640 
Dynamics, 45, 1253-1280. 641 

 Cox SP, Essington TE, Kitchell JF, Martell SJ, Walters CJ, Boggs C, Kaplan I (2002) 642 
Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952 1998. II. 643 

A preliminary assessment of the trophic impacts of fishing and effects on tuna 644 
dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1736-1747. 645 

 Cheung WW, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries 646 

catch. Nature, 497, 365-368. 647 
 Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson REG, Zeller D, Pauly D 648 

(2009) Large-scale redistribution of maximum fisheries catch potential in the 649 
global ocean under climate change. Global Change Biology, 16, 24-35. 650 

 Christian JR, Holmes J (2016) Changes in albacore tuna habitat in the northeast Pacific 651 

Ocean under anthropogenic warming. Fisheries Oceanography, 25, 544-554. 652 
 Chust G, Allen J, Bopp L et al. (2014) Biomass changes and trophic amplification of 653 

plankton in a warmer ocean. Global Change Biology, 20, 2124-2139. 654 

 Druon J-N, Chassot E, Murua H, Lopez J (2017) Skipjack Tuna Availability for Purse 655 
Seine Fisheries Is Driven by Suitable Feeding Habitat Dynamics in the Atlantic 656 
and Indian Oceans. Frontiers in Marine Science, 4. 657 

 Dueri S, Bopp L, Maury O (2014) Projecting the impacts of climate change on skipjack 658 
tuna abundance and spatial distribution. Global Change Biology, 20, 742-753. 659 

 Dueri S, Guillotreau P, Jiménez-Toribio R, Oliveros-Ramos R, Bopp L, Maury O (2016) 660 
Food security or economic profitability? Projecting the effects of climate and 661 
socioeconomic changes on global skipjack tuna fisheries under three management 662 
strategies. Global Environmental Change, 41, 1-12. 663 

 Dulvy NK, Rogers SI, Jennings S, Stelzenmller V, Dye SR, Skjoldal HR (2008) Climate 664 

change and deepening of the North Sea fish assemblage: a biotic indicator of 665 
warming seas. Journal of Applied Ecology, 45, 1029-1039. 666 

 Elith J, Graham CH, P Anderson R et al. (2006) Novel methods improve prediction of 667 
species’ distributions from occurrence data. Ecography, 29, 129-151. 668 

 Erauskin-Extramiana M, Alvarez P, Arrizabalaga H et al. (in press) Historical trends and 669 
future distribution of anchovy spawning in the Bay of Biscay. Deep Sea Research 670 
(Part II, Topical Studies in Oceanography). 671 



32 
 

FAO (1994) World review of highly migratory species and straddling stocks., 70. FAO 672 

Fish. Tech. Pap., Rome. 673 
FAO (2011) Tuna and tuna-like species. In: Review of the state of world marine fishery 674 

resources, Food & Agriculture Org. 675 
 FAO (2016) The State of World Fisheries and Aquaculture 2016. Contributing to food 676 

security and nutrition for all. Rome. 200. 677 
Flanders Marine Institute (2018) Maritime Boundaries Geodatabase: Maritime 678 

Boundaries and Exclusive Economic Zones (200NM), version 10. 679 

 Fromentin JM, Reygondeau G, Bonhommeau S, Beaugrand G (2014) Oceanographic 680 

changes and exploitation drive the spatio‐temporal dynamics of Atlantic bluefin 681 

tuna (Thunnus thynnus). Fisheries Oceanography, 23, 147-156. 682 
 Gillett P (2000) The sustainable contribution of fisheries to food security. Sustainable 683 

contribution of fisheries to food security, 231. 684 
Gillett R, McCoy M, Rodwell L, Tamate J (2001) Tuna: a key economic resource in the 685 

Pacific Islands. A report prepared for the Asian Development Bank and the Forum 686 

fisheries agency. In: Tuna: a key economic resource in the Pacific Islands. A 687 
report prepared for the Asian Development Bank and the Forum fisheries agency. 688 

 Grewe P, Elliott N, Innes B, Ward R (1997) Genetic population structure of southern 689 

bluefin tuna (Thunnus maccoyii). Marine Biology, 127, 555-561. 690 
 Guisan A, Theurillat J-P (2000) Equilibrium modeling of alpine plant distribution: how 691 

far can we go? Phytocoenologia, 30, 353-384. 692 

 Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple 693 
habitat models. Ecology Letters, 8, 993-1009. 694 

 Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. 695 
Ecological Modelling, 135, 147-186. 696 

Hastie TJ, Tibshirani RJ (1990) Generalized additive models,. In: Monographs on 697 

Statistics and Applied Probability. Chapman & Hall, London. 698 
 Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) dismo: Species distribution modeling. 699 

R package version 0.8-17. 700 

 Hobday AJ (2010) Ensemble analysis of the future distribution of large pelagic fishes off 701 

Australia. Progress in Oceanography, 86, 291-301. 702 
 Hobday AJ, Arrizabalaga H, Evans K, Scales KL, Senina I, Weng KC (2017) 703 

International collaboration and comparative research on ocean top predators under 704 
CLIOTOP. Deep Sea Research II, 140, 1-8. 705 

Hoegh-Guldberg O, Cai R, Poloczanska ES et al. (2014) Chapter 30 The Ocean. In: 706 

Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional 707 
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 708 

Intergovernmental Panel on Climate Change. (eds Barros VR, C.B. Field, D.J. 709 
Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, . . . White LL), 1655-1731. 710 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, 711 

USA. 712 
 Hutchinson GE (1957) Cold spring harbor symposium on quantitative biology. 713 

Concluding remarks, 22, 415-427. 714 
IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science 715 

Basis. Contribution of Working Group I to the Fifth Assessment Report of the 716 
Intergovernmental Panel on Climate Change. (eds Stocker, T. F., D. Qin, G.-K. 717 
Plattner, M. Tignor, S. K. Allen, . . . Midgley PM), 3-29. Cambridge University 718 
Press, Cambridge, United Kingdom and New York, NY, USA. 719 

ISSF (2018) Status of the world fisheries for tuna. In: ISSF Technical Report 2018-02. 720 
Washington, D.C., USA. 721 



33 
 

 Iturbide M, Bedia J, Herrera S, del Hierro O, Pinto M, Gutiérrez JM (2015) A framework 722 

for species distribution modelling with improved pseudo-absence generation. 723 
Ecological Modelling, 312, 166-174. 724 

 Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of 725 
species presence to either–or presence–absence. Acta Oecologica, 31, 361-369. 726 

 Juan-Jordá MJ, Mosqueira I, Cooper AB, Freire J, Dulvy NK (2011) Global population 727 
trajectories of tunas and their relatives. Proceedings of the National Academy of 728 
Sciences, 108, 20650-20655. 729 

 Lehodey P, Senina I, Calmettes B, Hampton J, Nicol S (2012) Modelling the impact of 730 
climate change on Pacific skipjack tuna population and fisheries. Climatic 731 
Change, 119, 95-109. 732 

 Michael P, Wilcox C, Tuck G, Hobday A, Strutton P (2017) Japanese and Taiwanese 733 
pelagic longline fleet dynamics and the impacts of climate change in the southern 734 

Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 735 
242-250. 736 

 Mislan KAS, Deutsch CA, Brill RW, Dunne JP, Sarmiento JL (2017) Projections of 737 
climate-driven changes in tuna vertical habitat based on species-specific 738 
differences in blood oxygen affinity. Global Change Biology, 23, 4019-4028. 739 

 Monllor-Hurtado A, Pennino MG, Sanchez-Lizaso JL (2017) Shift in tuna catches due 740 

to ocean warming. PLoS One, 12, e0178196. 741 
 Montero-Serra I, Edwards M, Genner MJ (2015) Warming shelf seas drive the 742 

subtropicalization of European pelagic fish communities. Global Change Biology, 743 
21, 144-153. 744 

 Muhling BA, Brill R, Lamkin JT, Roffer MA, Lee S-K, Liu Y, Muller-Karger F (2016) 745 

Projections of future habitat use by Atlantic bluefin tuna: mechanistic vs. 746 
correlative distribution models. ICES Journal of Marine Science: Journal du 747 

Conseil, fsw215. 748 
 Mullon C, Guillotreau P, Galbraith E et al. (2017) Exploring future scenarios for the 749 

global supply chain of tuna. Deep Sea Research Part II: Topical Studies in 750 

Oceanography, 140, 251-267. 751 
 Pecl GT, Araújo MB, Bell JD et al. (2017) Biodiversity redistribution under climate 752 

change: Impacts on ecosystems and human well-being. Science, 355, eaai9214. 753 

 Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts 754 
in marine fishes. Science, 308, 1912-1914. 755 

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, 756 
Araújo MB (2011) Ecological niches and geographic distributions (MPB-49), 757 
Princeton University Press. 758 

 Poloczanska ES, Brown CJ, Sydeman W et al. (2013) Global imprint of climate change 759 
on marine life. Nature Climate Change, 3, 919. 760 

 Poloczanska ES, Burrows MT, Brown CJ et al. (2016) Responses of marine organisms 761 
to climate change across oceans. Frontiers in Marine Science, 3, 62. 762 

 Reygondeau G, Maury O, Beaugrand G, Fromentin JM, Fonteneau A, Cury P (2012) 763 

Biogeography of tuna and billfish communities. Journal of Biogeography, 39, 764 
114-129. 765 

 Richardson AJ, Brown CJ, Brander K et al. (2012) Climate change and marine life. 766 
Biology Letters, 8, 907-909. 767 

 Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, 768 
Richardson AJ (2011) Pushing the limits in marine species distribution modelling: 769 
lessons from the land present challenges and opportunities. Global Ecology and 770 
Biogeography, 20, 789-802. 771 



34 
 

 Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios 772 

using IPCC climate sensitivity range estimates. Nature Climate Change, 2, 248. 773 
 Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. 774 

Dordrecht, The Netherlands: D. Reidel, 81. 775 
 Scheffers BR, De Meester L, Bridge TCL et al. (2016) The broad footprint of climate 776 

change from genes to biomes to people. Science, 354, 7671-7671. 777 
 Schirripa MJ, Abascal F, Andrushchenko I et al. (2017) A hypothesis of a redistribution 778 

of North Atlantic swordfish based on changing ocean conditions. Deep Sea 779 

Research Part II: Topical Studies in Oceanography, 140, 139-150. 780 
 Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of 781 

top predators in the Pacific Ocean. Science, 314, 1773-1776. 782 
 Smith MS, Horrocks L, Harvey A, Hamilton C (2011) Rethinking adaptation for a 4ºC 783 

world. Philosophical Transactions of the Royal Society of London A: 784 

Mathematical, Physical and Engineering Sciences, 369, 196-216. 785 
 Thackeray SJ, Henrys PA, Hemming D et al. (2016) Phenological sensitivity to climate 786 

across taxa and trophic levels. Nature, 535, 241. 787 
 VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2012) Species Distribution 788 

Modelling Tools: tools for processing data associated with species distribution 789 
modelling exercises. Package SDMTools. 790 

 Villarino E, Chust G, Licandro P, Butenschön M, Ibaibarriaga L, Larrañaga A, Irigoien 791 
X (2015) Modelling the future biogeography of North Atlantic zooplankton 792 

communities in response to climate change. Marine Ecology Progress Series, 531, 793 
121-142. 794 

 Wood S (2012) mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML 795 

smoothness estimation. 796 
Wood SN (2017) Generalized additive models: an introduction with R, CRC press. 797 

 Worm B, Tittensor DP (2011) Range contraction in large pelagic predators. Proceedings 798 
of the National Academy of Sciences, 108, 11942-11947. 799 

 800 

 801 


