Pt₂Tl Building Blocks for 2D Extended Solids:

Synthesis, Crystal Structures and Luminescence

Sara Fuertes, Andrés J. Chueca, Antonio Martín, and Violeta Sicilia*

a Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza (Spain)

b Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, 50018, Zaragoza (Spain). E-mail: sicilia@unizar.es

ABSTRACT

The β-diketonate compounds of Pt(II), [Pt(R-C^C*)(acac)] (acacH = acetylacetone, R-CH^C* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene (NC-CH^C*) 1A, 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene (CO₂Et-CH^C*) 1B, 1-(3,5-dichlorophenyl)-3-methyl-1H-imidazol-2-ylidene (Cl-CH^C*) 1C) containing cyclometalated N-heterocyclic carbenes were synthesized from compounds [{Pt(µ-Cl)(R-C^C*)}]₂ (R = CN A, CO₂Et B, Cl C). Compound C was prepared for the first time following the step by step protocol used to synthesize A and B. The X-ray structures of complexes 1B and 1C show that only in 1B the molecules stack in pairs through intermolecular Pt···Pt (3.370 Å) and π - π (~ 3.43 Å) interactions between the NHC ligand and the acac. The reaction of compounds 1A–1C with TlPF₆ (2:1 molar ratio) leads to the
clusters [{Pt(R-C^C*)(acac)}_2Tl]^+ (R = CN 2A, CO_2Et 2B, Cl 2C), which exhibit a "Pt_2Tl" sandwich structure, where two slightly distorted square planar “Pt(R-C^C*)(acac)” subunits are bonded to a Tl(I) center through donor-acceptor Pt-Tl bonds. Compounds 2A and 2B show an extended 2D lattice in the solid state through intermolecular Pt-·Pt and Tl-E (E = N, O) interactions, meanwhile 2C forms discrete molecules without any kind of intermolecular interaction among them. The effects of the R substituent and the Pt-Tl interactions on the crystal structures and the photophysical properties have been investigated.

INTRODUCTION

The Lewis basic properties of transition metals play an important role for catalytic cycles and also lead to metal clusters through the formation of metal–metal dative bonds. The high electron density of Pt (II) in square-planar complexes has been demonstrated many times by their role as the Lewis base unit in unsupported metal-only Lewis pair (MOLP) compounds. Among Pt(II) → M (M = Cu^I, Ag^I, Au^I, Cd^II, Hg^II, Tl^I, Sn^II, Pb^II) MOLP complexes, the silver-containing ones are still the most numerous, but examples of Pt(II) (d^8) → Tl(I) (d^10s^2) clusters are increasing since A. L. Balch published [Tl_2Pt(CN)_4], the first blue-luminescent columnar compound containing Pt-Tl bonds. In this field have been reported luminescent Pt^{II}-Tl^{I} MOLP clusters showing diverse structural configurations, including dinuclear (PtTl), trinuclear (Pt_2Tl, PtTl_2, Pt_3Tl_3), tetranuclear (Pt_3Tl) or infinite networks, many of them containing C,N-cycloplatinated compounds as Lewis base unit. In many cases their luminescent properties have been demonstrated to depend on the Pt-Tl interactions. Moreover, the formation of the metal-metal bond
affects the crystal packing allowing or hindering the molecular assembly through π-π interactions, with the subsequent effect on the emitting properties.11, 13

The use of N-heterocyclic carbenes (NHCs) as cyclometalated ligands has been revealed as a key to get stable and very efficient Pt(II) phosphorescent emitters.24-27 Compared to C,N-cycloplatinated compounds, the even greater heightening of the d-d energy levels on the metal center, enlarging the energy gap with the emissive excited states, avoids the thermal quenching and improves the emission quantum yields. Examples of phosphorescent compounds of platinum(II) containing C^C*-cyclometalated NHCs ligands are still fairly limited and the effect of metallophilic interactions on the emission properties have been barely investigated.28 Because of that our task in this work was to prepare unsupported PtII-TlI MOLP structures, containing cyclometalated N-heterocyclic carbene complexes of Pt(II) as Lewis base units to gauge for the first time the ability of this kind of Pt(II) complexes to act as Lewis bases for this kind of interactions, the stability of these interactions and the effect of them in the photophysical properties of the mononuclear Pt(II) complexes.

With this purpose we prepared the β-diketonate compounds [Pt(R-C^C*)(acac)] (acacH = acetylacetone, R-CH^C* = 1-(4-cyanophenyl)-3-methyl-1\textsubscript{H}-imidazol-2-ylidene (CN-CH^C*) \textbf{1A}, 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1\textsubscript{H}-imidazol-2-ylidene (CO\textsubscript{2}Et-CH^C*) \textbf{1B}, 1-(3,5-dichlorophenyl)-3-methyl-1\textsubscript{H}-imidazol-2-ylidene (Cl-CH^C*) \textbf{1C}) and the Pt\textsubscript{2}Tl clusters derived from them. In this way we have been able to compare first the effect of the R-C^C group on the luminescent properties of the mononuclear Pt(II) complexes and in their ability to form Pt\textsubscript{2}Tl clusters. The luminescence of these mononuclear compounds has been explained considering the TD- DFT calculations and X-ray diffraction studies.
The synthesis of 1A–1C was carried out using compounds [\{\text{Pt}(\mu-\text{Cl})(\text{C}^\text{C}*)\}_2] (\text{CN-C}^\text{C}* A, \text{CO}_2\text{Et-}\text{C}^\text{C}* B, \text{Cl-C}^\text{C}* C) as starting materials, like in a previous work.26 Compound C was prepared for the first time following our stepwise protocol for this kind of complexes and has been fully described in the Supporting Information.

EXPERIMENTAL SECTION.

General Comments. Instrumental methods used for characterization and spectroscopic studies, DFT computational details, X-ray structures, stepwise synthesis of compound [\{\text{Pt}(\mu-\text{Cl})(\text{Cl-C}^\text{C}*)\}_2] (C) and spectroscopic data for 1A–1C and 2A–2C are contained in the Supporting Information. All chemicals were used as supplied and [\{\text{Pt}(\mu-\text{Cl})(\text{NC-C}^\text{C}*)\}_2] (A)29 and [\{\text{Pt}(\mu-\text{Cl})(\text{EtO}_2\text{C-C}^\text{C}*)\}_2] (B)25 were prepared following the literature procedures.

Synthesis and characterization.

\[\text{Pt(\text{NC-C}^\text{C}*)(\text{acac})} \] (1A). Tlacac (146.2 mg, 0.48 mmol) was added to a yellow suspension of A (207.2 mg, 0.25 mmol) in dichloromethane (40 mL) at r.t. After 4 h stirring, the resulting mixture was filtered through Celite, washed with dichloromethane (120 mL) and evaporated to dryness. Addition of methanol (3 x 5 mL) to the residue rendered a solid which was recrystallized by redissolving in 15 mL of dichloromethane/diethyl ether (3:1), filtering through Celite and evaporating to dryness. Addition of methanol (3 x 5 mL) to the residue rendered 1A as a pure white solid. Yield: 178.2 mg, 78%. Elemental analysis Calcd (%) for C\textsubscript{16}H\textsubscript{13}N\textsubscript{3}O\textsubscript{2}Pt: C 40.34, H 3.17, N 8.82; found: C 40.20, H 3.43, N 8.78. MS MALDI (+): m/z: 476.1 [\text{M}]^+.
\([\text{Pt}(\text{EtO}_2\text{C}-\text{C}^\text{C}*\text{C})(\text{acac})]\) (1B). It was prepared following the method described for 1A. Tlacac (63.4 mg, 0.21 mmol) and B (100.1 mg, 0.11 mmol). 1B: white solid, yield: 80.4 mg, 71%. Elemental analysis Calcd (%) for C\textsubscript{18}H\textsubscript{20}N\textsubscript{2}O\textsubscript{4}Pt: C 41.30, H 3.85, N 5.35; found: C 41.04, H 3.90, N 5.32. MS MALDI (+): m/z: 523.2 \([M]^+\).

\([\text{Pt}(\text{Cl}-\text{C}^\text{C}*)(\text{acac})]\) (1C). It was prepared following the method described for 1A. Tlacac (98.2 mg, 0.32 mmol) and C (153.9 mg, 0.17 mmol). 1C: white solid, yield: 120.2 mg, 72%. Elemental analysis Calcd (%) for C\textsubscript{15}H\textsubscript{14}N\textsubscript{2}Cl\textsubscript{2}O\textsubscript{2}Pt: C 34.63, H 2.71, N 5.39; found: C 34.29, H 2.70, N 5.36. MS MALDI (+): m/z: 520.1 \([M]^+\).

\([\{\text{Pt}(\text{NC}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}]\text{PF}_6\) (2A). TlPF\textsubscript{6} (26.6 mg, 0.074 mmol) was added to a solution of 1A (70.3 mg, 0.15 mmol) in a mixture of dichloromethane and acetone (20 mL/5 mL). After 2.5 h stirring in the dark, the solvent was removed under reduced pressure and the residue was treated with diethyl ether (20 mL) and filtered, to give 2A as a yellow solid. Yield: 73.4 mg, 76%. Elemental analysis Calcd (%) for C\textsubscript{32}H\textsubscript{30}F\textsubscript{6}N\textsubscript{6}O\textsubscript{4}PPt\textsubscript{2}Tl: C 29.52, H 2.32, N 6.45; found: C 29.63, H 2.43, N 6.60. MS MALDI (+): m/z: 680.2 \([\text{Pt}(\text{NC}-\text{C}^\text{C}*)(\text{acac})\text{Tl}]^+\).

\([\{\text{Pt}(\text{EtO}_2\text{C}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}]\text{PF}_6\) (2B). It was prepared following the method described for 2A. TlPF\textsubscript{6} (27.7 mg, 0.077 mmol) and 1B (80.4 mg, 0.15 mmol). 2B: bright yellow solid, yield: 84.1 mg, 78%. Elemental analysis Calcd (%) for C\textsubscript{36}H\textsubscript{40}F\textsubscript{6}N\textsubscript{4}O\textsubscript{8}PPt\textsubscript{2}Tl: C 30.97, H 2.89, N 4.01; found: C 30.64, H 2.71, N 4.21 MS MALDI (+): m/z: 1251.6 \([\text{Pt}(\text{EtO}_2\text{C}-\text{C}^\text{C}*)(\text{acac})\text{Tl}]^+\);

727.2 \([\text{Pt}(\text{EtO}_2\text{C}-\text{C}^\text{C}*)(\text{acac})\text{Tl}]^+\).

\([\{\text{Pt}(\text{Cl}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}]\text{PF}_6\) (2C). It was prepared following the method described for 2A. TlPF\textsubscript{6} (29.7 mg, 0.083 mmol) and 1C (86.0 mg, 0.17 mmol). 2C: pale yellow solid, yield: 85.8 mg, 75%. Elemental analysis Calcd (%) for C\textsubscript{30}H\textsubscript{28}Cl\textsubscript{4}N\textsubscript{4}O\textsubscript{4}PPt\textsubscript{2}Tl: C 25.92, H
2.03, N 4.03; found: C 25.66, H 1.82, N 4.21. MS MALDI (+): m/z: 1245.2 [M]+, 725.0 [Pt(Cl-C^C*)(acac)Tl]+.

RESULTS AND DISCUSSION

Stepwise synthesis of compounds [Pt(R-C^C*)(acac)] (R = CN 1A, CO2Et 1B, Cl 1C)
The β-diketonate compounds [Pt(R-C^C*)(acac)] (1A–1C) were synthesized by reaction of the corresponding chlorine bridged compounds [{Pt(µ-Cl)(R-C^C*)}2] (R = CN A, CO2Et B, Cl C) with Tl(acac) in 1:2 molar ratio (see Experimental Section and Scheme 1, path a), which led to the precipitation of TlCl and formation of the neutral complexes 1A–1C. This procedure was reported by us for the synthesis of the analogous compound derived from 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene, although compound 1A was already reported and prepared by Egen et al following a different procedure.

The synthetic procedure of 1A–1C requires the availability of the dichloro bridged complexes A–C. Then, the new compound C was prepared following the step by step method used previously for A and B (see SI: description, Scheme S1 and Figures S1-S4). The IR spectra of compounds 1A–1C show two υ(C=O) stretching vibrations at significantly lower energies than those found for the free ligand (ca.1720 cm^-1) which are indicative of the diketone chelation to the metal center.

Their 1H and 13C NMR spectra show the expected signals for the cyclometalated NHC group and evidence the non-equivalence of the two halves of the β-diketone ligand, as correspond for a chelate coordination, (see NMR data and Figure S5 in the SI). The 195Pt NMR spectra exhibit the corresponding singlets at about –3400 ppm for 1A and 1B and at –3167 ppm for 1C. As shown in Figure S6, the platinum signal is less shielded in 1C...
(downfield shift of ~ 300 ppm) when compared with the others, probably due to the more electron-withdrawing character of the Cl-C\(^{\text{C}^*}\) ligand.

Scheme 1. Synthesis of compounds and numerical scheme for NMR purposes.

The molecular structures of 1B and 1C were determined by single-crystal X-ray diffraction (Figures 1 and S7). In both the two complexes, the platinum(II) center exhibits a distorted square-planar environment due to the small bite angle of the NHC cyclometalated ligand (C\(^{\text{C}^*}\)) \([\text{ca. } 80.0^\circ]\). A chelate diketonate ligand, with O-Pt-O angle close to 90°, completes the coordination sphere of Pt(II). The Pt-C\(^*\) bond length \([1.945(6) \ 	ext{Å}\ 1B, 1.946(3) \ 	ext{Å}\ 1C]\) is shorter than the Pt-C\(_\text{Ph}\) one \([1.976(5) \ 	ext{Å}\ 1B, 2.015(3) \ 	ext{Å}\ 1C]\), as usual in compounds with cyclometalated NHCs groups.\(^{25-26, 29, 31-35}\) Also, the Pt-O distances are similar to those found in related complexes.\(^{26-27}\) In the solid state, complex 1B arranges together in pairs, in a head to tail fashion through intermolecular Pt\(\cdots\)Pt (3.370 Å) and \(\pi - \pi\) (~ 3.43 Å) interactions between the NHC ligand and the acac (see Figure 1b).\(^{26}\) However, in 1C, neither, Pt\(\cdots\)Pt nor \(\pi - \pi\) intermolecular interactions were observed in the crystal, but C-H\(\cdots\)Cl short contacts, as can be seen in SI (Figure S8).
Figure 1. a) Molecular structure of 1B. Selected bond lengths (Å) and angles (deg): Pt01-C(1) 1.945(6); Pt01-C(6) 1.976(5); Pt01-O(1) 2.046(4); Pt01-O(2) 2.075(4); C(1)-Pt01-C(6) 80.4(2); O(1)-Pt01-O(2) 91.39(16); C(1)-Pt01-O(2) 97.1(2); C(6)-Pt01-O(1) 90.98(19). b) Dimer-like stacking view of 1B (d Pt-Pt = 3.370 Å). Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Synthesis and characterization of the clusters \([\{\text{Pt}(\text{R}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}\}(\text{PF}_6)\) (R = CN 2A, CO$_2$Et 2B, Cl 2C)

Treatment of the \(\beta\)-diketonate compounds [Pt(R-C^C*)(acac)] (R = CN 1A, CO$_2$Et 1B, Cl 1C) with TlPF$_6$ (2:1 molar ratio) in CH$_2$Cl$_2$/acetone led to the clusters \([\{\text{Pt}(\text{R}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}\}\text{PF}_6\) (R = CN 2A, CO$_2$Et 2B, Cl 2C), which were obtained as analytical pure solids in good yield and characterized by 1H NMR, IR, mass spectrometry (see Experimental Section, Scheme 1 (path b) and SI) and X-ray crystallography. Their MALDI(+) spectra show the molecular peaks associated with \([\{\text{Pt}(\text{R}-\text{C}^\text{C}*)(\text{acac})\}_2\text{Tl}\]^+ and [Pt(R-C^C*)(acac)Tl]^+, which might suggest the integrity of the trimetallic species. However, in solution at room and low (-80ºC) temperatures, the 1H and 195Pt{1H} NMR
spectra of 2A–2C fit to those of their corresponding starting materials (see 195Pt{1H} NMR spectra of 2A in Figure S9), indicating the breakdown of the Pt-Tl bonds. The photophysical data (see below) of all of these compounds were investigated and are in agreement with the rupture of the Pt-Tl bonds in solution.

The X-ray crystal structures of 2A, 2B and 2C were performed on single crystals obtained from solutions of them in acetone (2A, 2B) or CH2Cl2 (2C) (Table 1 and Figures 2–4). As can be seen, compounds 2A–2C show a "Pt2Tl" sandwich structure, where two slightly distorted square planar “Pt(R-C^C*)(acac)” subunits are bonded to a Tl(I) center through Pt-Tl bonds. In each complex, the two Pt→Tl bonds exhibit intermetallic distances slightly different from one to another (3.0499(3) Å, 3.2164(3) Å 2A; 2.9431(4) Å, 3.0758(3) Å 2B; 2.9962(2) Å, 3.0230(2) Å 2C) but all of them are in the range of those observed in complexes containing Pt(II)-Tl(I) donor-acceptor bonds with no bridging ligands between the metal centers.10

In case of 2A and 2B, the Pt-Tl vectors are almost perpendicular to the Pt coordination planes (angles with the normal: 18.9(1)° Pt1A, 5.7(1)° Pt1B, 2A; 11.4(2)° Pt1A, 10.8(1)° Pt1B, 2B), which reveal an almost square pyramidal environment around the platinum center with the thallium atom being located on the apical position shared by both the two pyramids with a Pt-Tl-Pt angle of 169.813(9)° 2A and 144.512(18)° 2B.

In these compounds the platinum coordination planes are almost parallel (interplanar angle: 14.8(1)° 2A, 34.8(2)° 2B) but lie somewhat staggered [torsion angle O1A-Pt1A-Pt1B-O1B: 40.6° 2A, 90.7° 2B]. In case of 2A an additional acetone molecule interacts with the Tl(I) center through a weak Tl-O bond (2.7692(42) Å). The Tl-O separation is comparable to
those in other complexes10, 15, 19, 36 but significantly longer than the sum of the covalent radii (2.21 Å).23
Figure 2. a) Molecular structure of 2A. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms and PF₆ have been omitted for clarity. b, c) Supramolecular structure views.

The trinuclear “Pt₂Tl” units rearrange in the crystal generating 2D networks through additional stabilizing contacts. On one hand, the "Pt₂Tl" units stack through intermolecular Pt⋯Pt (3.340 Å, 3.310Å 2A; 3.401 Å, 3.240Å 2B) interactions³⁷-⁴³ and weak π - π contacts between the NHC and the acac ligands²⁶ (the shortest atomic separation between two neighboring units is 3.467 Å 2A; 3.429 Å 2B, see Figures 2b and 3b), giving rise to almost linear PtB-Tl-PtA··PtA-Tl-PtB···PtB wires in 2A [angles: PtB-Tl-PtA: 169.813º, Tl-PtA··PtA: 158.77º, Tl-PtB···PtB: 165.32º] and zig-zag chains in 2B [angles: PtB-Tl-PtA: 145.512º, Tl-PtA··PtA: 177.80º, Tl-PtB···PtB: 160.07º]. These chains appear linked together through two additional Tl-E (E') (E, E' = N 2A, O 2B) bonds with the R substituents of the R-C^C* groups (R= CN 2A, CO₂Et 2B) belonging to the two adjacent chains (see Figures 2c and 3c). The Tl-N (NC-C^C*) and Tl-O (CO₂Et-C^C*) distances are longer than expected for covalent bonds but shorter than the sum of the covalent radii of Tl¹ (1.55 Å) and the van der Waals radii of N (1.55 Å) and O (1.52 Å).⁴⁴ The Tl⋯N separations are comparable to those found in derivatives containing Tl⋯N interactions, such as [PtTl(C^N)(CN)₂](C^N = 7,8-benzoquinolinate (bzq), 2-phenylpyridinate (ppy)) or [{PtTl(bzq)(CC-C₂H₄N-2)₂}₁₃ and [trans,trans,trans-Tl₂{Pt(C₆F₅)₂(CN)₂} (CH₃COCH₃)₂]ₙ.¹⁹ Then, the five-coordinated Tl(I) center in 2A is located in the middle of the base of a square-pyramid with bond angles around the Tl(I) center close to 90º [angles: Pt1A-Tl-N3B: 92.0º, Pt1B-Tl-N3B: 95.0º, Pt1A-Tl-N3A: 81.2º, Pt1B-Tl-N3A: 93.3º, O3-
Tl-N3B: 89.5°, O3-Tl-N3A: 101.6°, Pt1A-Tl-O3: 86.2°, Pt1B-Tl-O3: 86.5°]. Single crystals of 2B were also obtained from an acetone solution, however in this case the Tl(I) center does not coordinate any acetone molecule and exhibits a distorted tetrahedral coordination environment [angles: Pt1A-Tl-O3A: 108.5.0°, Pt1A-Tl-O3B: 110.8°, Pt1B-Tl-O3A: 93.1°, Pt1B-Tl-O3B: 87.8°, O3A-Tl-O3B: 107.6°].
Compound 2C, unlike 2A and 2B, is a discrete molecule and not a 2D lattice, because of the absence of intermolecular or packing interactions (see Figure S10). In compound 2C, the Tl(I) in addition to the two Pt-Tl bonds (d Pt-Tl: 3.0230(2) Å, 2.9962(2) Å; Pt-Tl-Pt: 119.475(8)°), establishes two intramolecular Tl···Cl contacts (d Tl···Cl = 3.3237(1) and 3.5717(4) Å), one with each of the “Pt(Cl^-C^\text{C})(acac)” fragments, a Tl···F contact (d Tl···F = 3.063 Å) with the anion and a Tl···Cl contact (d Tl··Cl = 3.497 Å) with a CH\textsubscript{2}Cl\textsubscript{2} molecule, to complete a distorted octahedral coordination environment (Figure 4b). All the Tl-E (E = Cl, F) distances are rather long, but lower than the sum of the van der Waals radii of Tl(I) (1.96 Å), and F (1.47 Å) or Cl (1.75Å).44 In this molecule, the Pt-Tl vectors are further away from the perpendicular to the Pt coordination planes (angles: 25.2(1)° Pt1A, 19.6(1)° Pt1B) than in compounds 2A and 2B and the angle Pt-Tl-Pt (119.475(8)°) is far
away from the ones observed in 2A and 2B, probably forced by the existence of the two intramolecular Tl···Cl contacts.

Table 1. Selected bond lengths (Å) and angles (º) for complexes 2A–2C

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1A)-C(1A)</td>
<td>1.947(5)</td>
<td>1.953(9)</td>
<td>1.958(5)</td>
</tr>
<tr>
<td>Pt(1A)-C(6A)</td>
<td>1.979(5)</td>
<td>1.994(8)</td>
<td>2.023(4)</td>
</tr>
<tr>
<td>Pt(1A)-O(1A)</td>
<td>2.050(3)</td>
<td>2.059(5)</td>
<td>2.042(3)</td>
</tr>
<tr>
<td>Pt(1A)-O(2A)</td>
<td>2.069(4)</td>
<td>2.073(6)</td>
<td>2.051(4)</td>
</tr>
<tr>
<td>Pt(1B)-C(1B)</td>
<td>1.939(5)</td>
<td>1.956(8)</td>
<td>1.951(4)</td>
</tr>
<tr>
<td>Pt(1B)-C(6B)</td>
<td>1.988(5)</td>
<td>1.993(8)</td>
<td>2.010(4)</td>
</tr>
<tr>
<td>Pt(1B)-O(1B)</td>
<td>2.058(3)</td>
<td>2.069(6)</td>
<td>2.052(3)</td>
</tr>
<tr>
<td>Pt(1B)-O(2B)</td>
<td>2.075(3)</td>
<td>2.063(6)</td>
<td>2.054(3)</td>
</tr>
<tr>
<td>Pt(1A)-Tl</td>
<td>3.2164(3)</td>
<td>3.0758(4)</td>
<td>3.0230(2)</td>
</tr>
<tr>
<td>Pt(1B)-Tl</td>
<td>3.0499(3)</td>
<td>2.9431(4)</td>
<td>2.9962(2)</td>
</tr>
<tr>
<td>Tl-E (E=N3A)</td>
<td>2.8970(51)</td>
<td>2.7715(67)</td>
<td>3.3237(1)</td>
</tr>
<tr>
<td>Tl-E’ (E=N3B)</td>
<td>2.9942(48)</td>
<td>2.8419(77)</td>
<td>3.5717(4)</td>
</tr>
<tr>
<td>Tl-E'' (E=O3)</td>
<td>2.7692(42)</td>
<td>3.0633(4)</td>
<td></td>
</tr>
<tr>
<td>Tl-E''' (E=Cl1A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1A)···Pt(1B)</td>
<td>3.340(1)</td>
<td>3.401(1)</td>
<td></td>
</tr>
<tr>
<td>Pt(1B)···Pt(1B')</td>
<td>3.310(1)</td>
<td>3.240(1)</td>
<td></td>
</tr>
<tr>
<td>Pt(1A)-Tl-Pt(1B)</td>
<td>169.813(9)</td>
<td>144.512(18)</td>
<td>119.475(8)</td>
</tr>
<tr>
<td>C(1A)-Pt(1A)-C(6A)</td>
<td>80.0(2)</td>
<td>80.2(3)</td>
<td>80.04(19)</td>
</tr>
<tr>
<td>O(1A)-Pt(2A)-O(2A)</td>
<td>90.20(14)</td>
<td>90.5(2)</td>
<td>89.34(15)</td>
</tr>
<tr>
<td>C(1B)-Pt(1B)-C(6B)</td>
<td>79.8(2)</td>
<td>80.6(3)</td>
<td>80.07(18)</td>
</tr>
<tr>
<td>O(1B)-Pt(2B)-O(2B)</td>
<td>91.04(13)</td>
<td>91.2(2)</td>
<td>89.09(13)</td>
</tr>
</tbody>
</table>
Figure 4. (a) Molecular structure of 2C. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. (b) Structure view of the Tl⋯E interactions.

It should be noted that in 1B, the molecules arrange themselves in dimers through Pt⋯Pt interactions, not giving rise to 1D wires, as observed in 2B and 2A. Presumably, the Pt-Tl donor acceptor bond decreases the electron density on the platinum, playing a similar role to that of π-acceptor ligands, thereby reducing electronic repulsions between the Pt centers and favoring the 1D chain formation through Pt⋯Pt interactions.45-47

Photophysical properties of compounds [Pt(R-C^C*)(acac)] (R = CN 1A, CO₂Et 1B, Cl 1C) and the corresponding clusters [{Pt(R-C^C*)(acac)}₂Tl]PF₆ (2A–2C).

The photophysical properties of 1A were previously described by Da Como et al48 but we have included them in this discussion with comparative purposes.
Absorption spectra.

UV-Vis spectroscopic data of compounds 1A–1C and 2A–2C have been listed in Table S1. The spectra of 1A–1C in solution of CH$_2$Cl$_2$ (see Figure S11) display low intensity absorptions ($\varepsilon > 10^3$ M$^{-1}$ cm$^{-1}$) at low energies ($\lambda > 290$ nm). In case of 1C, they appear clearly shifted to higher energies with respect to those of 1A and 1B, indicating the participation and the effect of the R-C^C* (R = CN, CO$_2$Et, Cl) group in these absorptions. In case of 1A, these absorptions are very similar to those of 1B in energy and profile, in agreement with the similar electronic features observed previously for the R-C^C* (R = CN, CO$_2$Et) groups.24

The solid-sate diffuse reflectance UV-Vis spectra (Figure S12) show additional broad bands at low energy when compared with those observed in dichloromethane solution, which can be tentatively attributed to the existence of intermolecular Pt-Pt interactions, on the light of the X-ray structure of 1B and those of other related complexes.26

DFT and TD-DFT calculations in solution of CH$_2$Cl$_2$ for 1B and 1C have been carried out to provide correct assignments for the UV-Vis absorptions and also to evaluate the effect of the cyclometalated R-C^C* group (see full data in SI). Considering the composition of the frontier molecular orbitals (FOs), the calculated allowed absorptions, which are in good agreement with the experimental UV-vis spectra (Figure S14), and the origin of calculated S$_1$, which arises mainly from a HOMO to LUMO transition (79% 1B, 62% 1C), the lowest energy absorption band can be attributed basically to L’LCT [\(\pi(\text{acac}) \rightarrow \pi^*(\text{NHC})\)] transitions for 1C, and mixed L’LCT [\(\pi(\text{acac}) \rightarrow \pi^*(\text{NHC})\)] / MLCT [\(5d(\text{Pt}) \rightarrow \pi^*(\text{NHC})\)] transitions for 1B. Although S$_2$ arises mainly from an H-1 to LUMO transition, it is very similar in nature to S$_1$. Taking into account the similarities in the electronic features of the
R-CNC* (R = CN, CO\textsubscript{2}Et) groups observed in the absorption spectra of 1\textbf{A} and 1\textbf{B} as well as in those of other compounds reported previously,24 the nature of the lowest energy absorptions of 1\textbf{A} are expected to be quite similar in nature to those of 1\textbf{B}.

The absorption spectra of complexes 2\textbf{A}–2\textbf{C} in 2-MeTHF solutions (10-4 M) are all identical to those of their respective precursors, 1\textbf{A}–1\textbf{C} (see Figure S15), which match with the rupture of the Pt-Tl bonds in solution, as deduced from their NMR spectra. Similar behavior was previously observed in related extended structures with M–Tl bonds [M(CN)(CN)\textsubscript{2}Tl] (M = Pt,13 Pd,26 CN = 7,8-benzoquinolinate, 2-phenylpyridinate). The absorption spectra of powdery solid samples of 2\textbf{A}–2\textbf{C} basically fit with those of the starting materials (Figure S16). In the low-energy region just 2\textbf{B} displays and additional absorption with respect to its precursor, with \(\lambda_{\text{max}}\) at 400 nm (see Figure 5). Keeping in mind the shorter Pt-Tl and Pt\cdotsPt distances in the network of 2\textbf{B} compared to those of 2\textbf{A}, this absorption could be attributed to metal-metal-to ligand charge transfer (\(1\textsuperscript{\text{MMLCT}}\) [d\textgreek{p}*(Pt-Pt)\rightarrow \pi^{*}(\text{NHC})]) transitions likely to have been affected by the Pt-Tl bonds.

![Normalized Diffuse Reflectance spectra of powdery solid samples of 1B and 2B at r.t.](image)

Figure 5. Normalized Diffuse Reflectance spectra of powdery solid samples of 1\textbf{B} and 2\textbf{B} at r.t.
Emission Spectra. Emission data are summarized in Table 2. In diluted glassy solutions of 2-MeTHF (10⁻⁵ M, 77 K), compounds 1A–1C show blue well resolved vibronic emissions (see Figure S17) that do not change at higher concentration (10⁻³ M, Figure S18). Their vibrational spacings [1367–1406 cm⁻¹] correspond to the C=C/C=N stretches of the cyclometallated NHC ligand (C^C*), suggesting their involvement in the excited state. The emissions of 1A and 1B (λ_max ~ 440 nm) are red shifted with respect to that of 1C (λ_max = 417 nm), probably due to the participation of the R-substituent in the stabilization of the LUMO, as revealed by the DFT studies. Emissions and lifetime decays of 1A and 1B are identical to those observed in [(R-C^C*)Pt(py)(PPh₃)]PF₆²⁴ and very similar [(R-C^C*)Pt(CNR')]PF₆²⁵ which contain the same “(R-C^C*)Pt” fragments. Thus, taking into account all this and the TD-DFT calculations, the phosphorescent emissions of 1A–1C can be mainly ascribed to transitions of monomeric species derived from ³ILCT [(NHC)] transitions mixed with some, if any, ³L’LCT [π(acac) → π*(NHC)] / ³MLCT [5d(Pt) → π*(NHC)] in the case of 1A and 1B and with ³L’LCT [π(acac) → π*(NHC)] for 1C.

Emission spectra for the 5 wt% films of complexes 1A–1C in poly(methyl methacrylate) (PMMA) are wavelength dependent, as can be shown in Figure 6. Upon excitation at λ = 330 nm, all the three compounds show a phosphorescent emission in the blue to green region of the visible spectrum, like in glassy 2-MeTHF, with quantum yields up to 0.93 (1B), very similar to that of 1A (0.98), while just 0.04 for 1C (Table 2). However, upon excitation at λ > 390 nm, there is a dramatic change in the emission profiles whereby a low-energy (LE) structureless band with maxima at ca. 540 nm becomes predominant while the HE is still observed but as a low intensity shoulder.
Table 2. Emission data for complexes 1A–2C.

<table>
<thead>
<tr>
<th>C.</th>
<th>Medium (T/K) [wt%]</th>
<th>λ_{em}/nm</th>
<th>λ_{em}/nm</th>
<th>τ/µs [λ$_{max}$]a</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>PMMA film [5 wt%]b</td>
<td>330</td>
<td>441, 470max, 503, 536sh</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>390</td>
<td>443, 474, 535max</td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>PMMA film [40 wt%]b</td>
<td>330</td>
<td>443, 474, 535max</td>
<td></td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Solid (298 K)</td>
<td>400</td>
<td>462sh, 479max, 513, 555</td>
<td>0.28 (77%), 0.65 (23%)</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>400</td>
<td>451, 477, 512max</td>
<td>0.78 (70%), 3.1 (30%) [451], 0.35 (55%), 1.2 (45%) [512]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>332</td>
<td>439max, 468, 500, 523sh</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>PMMA film [5 wt%]b</td>
<td>330</td>
<td>446, 474max, 502, 536sh</td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>390</td>
<td>452, 484sh, 532max</td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>PMMA film [40 wt%]b</td>
<td>330</td>
<td>452, 484sh, 532max</td>
<td></td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Solid (298 K)</td>
<td>400</td>
<td>485max, 519, 550</td>
<td>2.1 (60%), 1.0 (40%) [485]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>400</td>
<td>461, 495, 554max</td>
<td>1.5 (83%), 2.8 (17%) [519]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>332</td>
<td>442max, 472, 502, 536sh</td>
<td>2.6 [461], 3.8 [554]</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>PMMA film [5 wt%]b</td>
<td>330</td>
<td>425, 450max, 475</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>540</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Solid (298 K)</td>
<td>380</td>
<td>433, 452max, 476, 516</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>380</td>
<td>432, 456max, 482, 515sh</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>320</td>
<td>417max, 443, 472, 500sh</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>Solid (298 K)</td>
<td>380</td>
<td>450, 478max, 506</td>
<td>0.64 [450]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>500</td>
<td>0.43 (80%), 1.44 (20%) [478]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>380</td>
<td>500</td>
<td>0.44 (77%), 1.8 (23%) [506]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>330</td>
<td>439max, 469, 500, 524sh</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Solid (298 K)</td>
<td>474</td>
<td>580</td>
<td>0.31 (67%), 1.15 (33%)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>474</td>
<td>561</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>332</td>
<td>443max, 473, 505, 534sh</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>Solid (298 K)</td>
<td>351</td>
<td>425, 450max, 480, 514</td>
<td>1.3 (54%), 2.4 (46%) [450]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid (77 K)</td>
<td>343</td>
<td>421sh, 448sh, 494max</td>
<td>1.8 [480], 1.9 [514]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Me-THF (77 K)c</td>
<td>320</td>
<td>417max, 444, 472, 501sh</td>
<td>3.3 (44%), 8.6 (56%) [494]</td>
<td></td>
</tr>
</tbody>
</table>

a = Lifetime measured at the λ_{max}. b = 298 K. c = 10^{-5} M; at 10^{-3} M, the same emission and τ were obtained.
Figure 6. Normalized emission spectra of 1A–1C in 5 wt % PMMA film

Intrigued by this behavior, we carried out further experiments only focused on 1A and 1B since 1C is barely emissive. Therefore, their emission spectra were registered in PMMA coated films at different weight concentration ranging from 0.5 wt% to 40 wt%. As can be seen in Figure 7 (1B) and Figure S19 (1A), pure highly structured emissions were found at concentration 0.5 wt%. When increasing the weight percentage of the complex in the PMMA film, the intensity of the LE increases and that of the HE band decreases, resulting in a green emission as much for 20 wt% as for 40 wt% films. At 40 wt%, the green emission shows no dependence with the λex (see Figure S20).

At 40 wt% concentration the QY values of the green emission kept fairly high for 1B (0.82) while the emission of 1A (QY = 0.46) became slightly self-quenched. In all likelihood, the LE bands can be attributed to metal-metal-to ligand charge transfer (3MMLCT) [dσ*(Pt-Pt) → π*(NHC)] transitions, generated by the existence of aggregates in the ground state through Pt–Pt interactions, as observed in the X-ray structure of 1B. The excimeric nature
of this LE emission is discarded since the excitation spectrum of 1B in PMMA film at 40 wt% is very similar to that obtained for the solid state one (see Figure S21). Therefore, the dual emission observed in PMMA films of 1A–1C is likely due to a relatively slow internal conversion between the two emissive states 3ILCT(NHC)/3MMLCT at 298 K.11

![Normalized emission spectra of 1B at $\lambda_{ex} = 360$ nm. Pictures under UV light ($\lambda_{ex} = 365$ nm).](image)

Figure 7. Normalized emission spectra of 1B at $\lambda_{ex} = 360$ nm. Pictures under UV light ($\lambda_{ex} = 365$ nm).

In solid state, powdery samples of 1A–1C display bright blue and greenish blue emissions ($\lambda_{max} \sim 480$ nm for 1A and 1B; $\lambda_{max} = 452$ nm for 1C) with the emission of compound 1C located further into the blue region of the spectrum than the others (Figure S22). Upon cooling to 77 K, the emission of 1C appears a bit more structured and with a longer
lifetime, being quite similar to the one obtained in 2-MeTHF solution (Figure 8).

![Figure 8](image)

Figure 8. Normalized excitation (—) and emission (▬) spectra of 1A–1C in solid state at 77 K.

However, both 1A and 1B (see Figure 8), regardless the excitation wavelength (350 to 450 nm), display broad bands with $\lambda_{\text{max}} = 512$ and 554 nm, respectively, accompanied by high energy (HE) structured emissions at 451 (1A) and 461 (1B) nm. These HE bands resemble to those obtained in PMMA films with a low doping concentration (< 5 wt%) and in solution of 2-MeTHF. Likewise, the LE bands of 1A (512 nm) and 1B (554 nm) are closely related to those obtained in PMMA films (> 10 wt% and $\lambda_{\text{ex}} > 360$ nm). Therefore, these dual emissions (HE and LE bands) may come from the excited states discussed above (3ILCT [(NHC)] and 3MMLCT, respectively).

The emissive behavior of the Pt$_2$Tl clusters, 2A–2C, was investigated to compare it with that of 1A–1C. As expected, in glassy solutions of 2-MeTHF compounds 2A–2C give the same emission bands and lifetime decays than 1A–1C either at diluted (10^{-5} M) or
concentrated solutions (10⁻³ M), which once again, evidences the rupture of the M–Tl bonds in solution even at 77 K (Figure S23). Emission spectra of 2A–2C in 5 wt% PMMA films closely resemble those of their corresponding precursors, 1A–1C (see Figure S24), which pointed us to consider that in PMMA films, the Pt-Tl bonds, if present, are negligible.

In solid state at room temperature, the Pt₂Tl complexes display vibronic bands like their corresponding starting materials except 2B, which shows a structureless broad band considerably shifted to lower energies (Figures 9 and 10), in line with the features observed in the absorption spectra of powdery samples of them (Figures 5 and S16). At 77 K the emission of 2B becomes a narrow unstructured band at 561 nm (Figure 9).

Figure 9. Normalized excitation (—) and emission (▬) spectra of 2B in solid state. Picture under UV light (λ_ex = 365 nm) at 298 K.
Considering that the excitation spectra match the absorption one, the short lifetime decay and the X-ray structure, the emission of 2B could be mainly attributed to 3MMLCT $[d\sigma^*(Pt-Pt) \rightarrow \pi^*(NHC)]$ transitions somewhat disturbed by the Pt-TI bonds.

Upon cooling to 77 K the emission profile of 2A retains a minor contribution of the HE band but displays a predominant unstructured LE emission band at ca. 500 nm (Figure 10). This LE band appears just slightly blue-shifted with respect to the LE band of 1A but it shows similar lifetime and excitation spectrum so the same 3MMLCT nature can be presumed for it. It should be stressed that even though the crystal structures obtained for 2A and 2B show similar 2D networks, in 2A, the presence of an extended metallic [Pt–Pt–Tl–Pt–Pt–] chain is not reflected in its absorption or emissive properties at room temperature (see Figure S25). However, at 77 K the emission of 2A also depends on the intermolecular Pt···Pt interactions.

For 2C, consisting of Pt₂Tl discrete molecules, the emission profile and its bi-exponential decay differ from those of the starting complex as much at 298 K as at 77 K, indicating that it is affected by the Pt-Tl bonds. At 77 K the mayor LE band appears slightly red-shifted in relation to those of other trinuclear derivatives (NBu₄)₃[\{Pt(C₆F₅)₄\}₂Tl] (450 nm, 298 K; 445 nm, 77 K),¹⁶ [Tl₂Pt(CN)₄] (448 nm),¹² which were attributed to a metal-centered phosphorescence process [Pt(5dz²) → Tl(6pz)] (3MM’CT) within the trinuclear entity. The observed shift in 2C might be attributed to the contribution of the planar and low-lying C^C* and acac ligands to the frontier orbitals, which likely reduces the gap of the transition, more than to the existence of stronger Pt–Tl bonds, as deduced by comparing intermetallic distances (2.9962(2), 3.0230(2) Å, 2C – vs 2.9777(4), 3.0434(4) Å [\{Pt(C₆F₅)₄\}₂Tl]₃). Therefore, the emission can be tentatively ascribed to charge transfer
from the platinum fragments to the thallium $[^3(L+L')MM'CT]$, with some contribution of $[^3MM'LCT/[^3IL \ [d/s] \ \sigma^*(Pt-Tl) \rightarrow \pi^*(C\-C*)]$ excited states. For powdery samples of $2C$ at 77 K the existence of close excited states generated by small differences in the molecular arrangement can be not excluded, which could explain the huge width of the emission band.

Figure 10. Normalized excitation (right) and emission (left) spectra of $2A$ and $2C$ in solid state at 298 K (---) and 77 K (----). Pictures under UV light ($\lambda_{ex} = 365$ nm) at 298 K.

CONCLUSIONS

The new cyclometalated NHC compound $[\{Pt(\mu-Cl)(R-C\-C*)\}_2]$ ($R = \text{Cl, C}$) was successfully prepared following our stepwise protocol. From C and the related ones A ($R = \text{CN}$) and B ($R = \text{CO}_2\text{Et}$) the mononuclear complexes $[\text{Pt}(R-C\-C*)(\text{acac})]$ ($R = \text{CN} \ 1A$, $\text{CO}_2\text{Et} \ 1B$, $\text{Cl} \ 1C$) were obtained. They reacted with TIPF_6 in a 2:1 molar ratio to give the corresponding heterotrinuclear cluster $[\{\text{Pt}(R-C\-C*)(\text{acac})\}_2\text{Tl}]^+$ ($2A$, $2B$, $2C$) which are held together by donor–acceptor Pt–Tl bonds, confirming the ability of this kind of Pt(II)
complexes to act as Lewis bases for this kind of interactions. These metal-metal bonds present in the solid state, break down in solution even at low temperatures (~80°C).

The crystallographic, spectroscopic and photophysical study of 1A–1C and their corresponding Pt₂Tl clusters discovered that electron withdrawing substituents, such as CN and CO₂Et, in the 4-position of the cyclometalated ring confer very high PLQY to the mononuclear complexes and enable the Pt₂Tl clusters to self-assemble in 2D extended lattice through intermolecular Pt−Pt, π−π, Tl−N or Tl−O interactions. By contrast, the presence of two Cl substituents in positions 3 and 5 of the cyclometalated ring severely reduces the emission efficiency of the mononuclear 1C compared to those of 1A and 1B and also leads to discrete Pt₂Tl cluster (2C) because allows the Tl center to satisfy its electronic demand through intramolecular Tl-Cl contacts.

Complexes 1A and 1B show in 5wt% films in PMMA dual emissions, blue (HE) and green-yellow (LE) bands, attributed to 3ILCT and 3MMLCT excited states, respectively. By controlling the excitation wavelength and the concentration of the complex in the film the blue or green emissions could be finely tuned with very high PLQY (0.98–0.72). The inclusion of Tl into these systems does not improve the quantum efficiency, instead the emission of 2B resulted to be quenched because of the existence of weakly emissive 3MMLCT [dσ*(Pt-Pt) → π*(NHC)] excited states, due to the strong Pt···Pt interactions in the extended metallic [Pt−Pt−Tl−Pt−Pt−] chain.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website.

General procedures and instrumentation, crystallographic and computational details; spectroscopic data, NMR spectra; X-ray crystallographic data and structures; UV-Vis data
and figures; DFT and TD-DFT calculations and emission spectra (PDF); Crystallographic data for compounds 1B, 1C and 2A–2C (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: sicilia@unizar.es

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO)/FEDER (Project CTQ2015-67461-P led by Dr. Babil Menjón) and the Departamento de Industria e Innovación del Gobierno de Aragón and Fondo Social Europeo (Grupo Consolidado E21: Química Inorgánica y de los Compuestos Organometálicos led by Dr. José M. Casas). The authors thank the Centro de Supercomputación de Galicia (CESGA) for generous allocation of computational resources. A. C. acknowledges the support of a FPI grant from the Spanish government.
REFERENCES

Synopsis

New β-diketonate compounds of Pt(II) containing several cyclometalated NHC ligands (R-C^C*) have been prepared and reacted with TlPF₆ to reach the Pt₂Tl clusters, [{Pt(R-C^C*)(acac)}₂Tl]PF₆, held together by Pt-Tl bonds. The nature and position of the R substituents determine the efficiency of the emission and the ability of the clusters to self-assemble in 2D extended lattices through intermolecular interactions.