Solvent-Driven P-S vs P-C Bond Formation from a Diplatinum(III) Complex and Sulfur-Based Anions

Consuelo Fortuño* and Antonio Martín
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain.

Piero Mastrorilli*, Vito Gallo and Stefano Todisco
DICATECh, Politecnico di Bari, I-70125 Bari, Italy

Dedicated to Prof. Juan Fornies, on occasion of his 70th birthday

ABSTRACT

The outcome of the reaction of the Pt(III),Pt(III) complex \([(C_6F_5)_2Pt^{III}(\mu-PPh_2)Pt^{III}(C_6F_5)_2](Pt–Pt) \) (1) with the S-based anions thiophenoxide \((\text{PhS}^-)\), ethyl xanthogenate \((\text{EtOCS}^-)\), 2-mercaptopyrimidinate \((\text{pymS}^-)\) and 2-mercaptopyridinate \((\text{pyS}^-)\) was found dependent on the reaction solvent. The reactions carried out in acetone led to the formation of \([\text{NnBu}_4][(\text{RF})_2Pt^{II}(\mu-\text{PhS–PPh}_2)(\mu-\text{PPh}_2)Pt^{II}(\text{RF})_2] \) (2), \([\text{NnBu}_4][(\text{RF})_2Pt^{II}(\mu-\text{EtOCS}_2–\text{PPh}_2)(\mu-\text{PPh}_2)Pt^{II}(\text{RF})_2] \) (3), \([\text{NnBu}_4][(\text{RF})_2Pt^{II}(\mu-\text{pymS–PPh}_2)(\mu-\text{PPh}_2)Pt^{II}(\text{RF})_2] \) (4) or \([\text{NnBu}_4][(\text{RF})_2Pt^{II}(\mu-\text{pyS–PPh}_2)(\mu-\text{PPh}_2)Pt^{II}(\text{RF})_2] \) (5), respectively \((\text{RF} = C_6F_5)\). Complexes 2-5 display new \(\text{Ph}_2P(S\text{L})\) ligands exhibiting a \(\kappa^2-P,S\) bridging coordination mode, which derive from a reductive elimination of a PPh\(_2\) group and the S-based anion. Carrying out the reaction in dichloromethane afforded, in the cases of EtOCS\(_2\)\(^-\) and pymS\(^-\) monobridged complexes \([\text{NnBu}_4][(\text{PPh}_2\text{RF})(\text{RF})_2Pt^{II}(\mu-\text{PPh}_2)Pt^{II}(\text{EtOCS}_2)(\text{RF})]\) (6) and \([\text{NnBu}_4][(\text{PPh}_2\text{RF})(\text{RF})_2Pt^{II}(\mu-\text{PPh}_2)Pt^{II}(\text{pymS})(\text{RF})]\) (7), respectively, which derive from a reductive elimination of a PPh\(_2\) group with a pentafluorophenyl ring. The reaction of 1 with EtOCS\(_2\)K in acetonitrile yielded a mixture of 3 and 6 as a consequence of the concurrence of two processes: a) the formation of 3 by a reaction that parallels the formation of 3 by 1 plus EtOCS\(_2\)K in acetone; b) the transformation of 1 into the neutral complex \([(\text{PPh}_2\text{RF})(\text{CH}_3\text{CN})(\text{RF})Pt^{II}(\mu-\text{PPh}_2)Pt^{II}(\text{RF})_2(\text{CH}_3\text{CN})]\) (8), which, on turn, reacts with EtOCS\(_2\)K to give 6. The 1 to 8 transformation was found to be fully reversible. In fact, dissolving 8 in acetone or dichloromethane afforded pure 1 after solvent evaporation or
crystallisation with n-hexane. The XRD structures of 2, 3, 4, 6, 7 and 8 were determined and the behaviour in solution of the new complexes is discussed.

INTRODUCTION

The chemistry of Pd and Pt in high oxidation states (III and IV) has attracted much attention in the last years. The synthesis of these derivatives is usually achieved through oxidation of M(II) (M = Pd, Pt throughout this paper) centres to six-coordinate octahedral M(III) or M(IV) complexes. The reactivity of these oxidised species is almost invariably dominated by reductive elimination processes involving the coupling of two anionic ligands, rendering new square planar M(II) complexes. This M(II)/M(IV)/M(II) strategy is exploited both in stoichiometric synthesis and in catalytic transformations.1-8

In the course of our research on diphenylphosphanido derivatives of palladium and platinum we have described, along with several examples of M(II) based species, a number of complexes in which the formal metal oxidation states are III and IV (Scheme 1).9-15 Such M(III),M(III) and M(II),M(IV) complexes represent, to the best of our knowledge, the only examples of phosphanido complexes with Pd and Pt in high oxidation state reported to date.

Scheme 1. Diphenylphosphanido complexes in which the formal metal oxidation state are III and IV.

In particular, we have prepared the mixed valence dinuclear Pt(II),Pt(IV) complexes $[\text{N}^\text{Bu}_4][(R_F)_2Pt^{\text{II}}(\mu-\text{PPh}_2)_2Pt^{\text{IV}}(L_2)(I)_2]$ (R$_F$ = C$_6$F$_5$) where L$_2^-$ is an anionic bidentate
ligand such as benzoquinolinate (C^N), 8-hydroxyquinolinate (N^O), o-picolinate (N^O) and acetylacetonate (O^O).13-16 Among these derivatives, only the benzoquinolinate complex [N^nBu4][Rf2Pt^II(µ-PPh2)2Pt^IV(C^N)(I)2] was stable enough to be isolated and characterized by XRD.13 All these dinuclear Pt(II),Pt(IV) complexes evolve through the coupling of two formally anionic ligands bonded to the platinum(IV) centre with formation of new P–C or P–O bonds.13-16

The first phosphanido platinum(III) complex, [(Rf)2Pt^III(µ-PPh2)2Pt^III(Rf)2](Pt–Pt) (RF = C6F5),1 was isolated in our laboratory and reported in 1999.9 This complex is quite remarkable since, differently from the majority of other Pt(III) complexes which are octahedral, displays a square planar geometry around platinum. In I both metals are joined by two PPh2 bridging groups and a platinum-platinum bond, as expected for a 30 VEC compound.

In order to explore the possibility of synthesizing Pt(II),Pt(IV) mixed valence dinuclear phosphanido complexes with a six-coordinate octahedral platinum(IV) centre we have reacted halides or pseudohalides with complex 1. However, such reactions led to new dinuclear platinum(II) complexes which are the products of the reductive coupling between: a) a PPh2 group and a C6F5 group bonded to the metal centre in the starting material; or b) a PPh2 ligand and the incoming pseudohalides N3– or OH–, i.e., with formation of P–C bond or P–N and P–O bond, respectively.17 It is noteworthy that in these reductive eliminations the P atom forms a bond with a second period element (C, N or O).

In order to investigate the reactivity of high oxidation state Pt species with bidentate ligands able to coordinate to the platinum centre as chelating ligands, thus potentially facilitating the stabilization of six-coordinate Pt(IV) complexes, we have studied the reaction of the Pt(III),Pt(III) complex 1 with the S-based anions thiophenoxide (PhS–), ethyl xanthogenate (EtOCS2–), 2-mercaptopurimidinate (pymS–) and 2-mercaptopuridinate (pyS–). The reactions carried out in acetone led to the formation of a new P–S bond between a PPh2 group and the S-based reactant. Carrying out the reaction in dichloromethane afforded, in the cases of EtOCS2– and pymS–, monobridged complexes in which a PPh2 group was involved in a P–C bond formation reaction with a pentafluorophenyl ring and no P–S bond formation reaction took place.
RESULTS

Reaction of \([\text{Pt}^{\text{III}}(\mu-\text{PPh}_2)\text{Pt}^{\text{III}}(\text{RF})_2]\) (1) with \(\text{C}_6\text{H}_3\text{S}^–\) (PhS\(^–\)), \(\text{CH}_3\text{CH}_2\text{OCS}_2^–\) (EtOCS\(^–\)), \(\text{C}_4\text{H}_3\text{N}_2\text{S}^–\) (pymS\(^–\)) and \(\text{C}_5\text{H}_4\text{NS}^–\) (pyS\(^–\)) in acetone. The addition of \([\text{NBu}_4][\text{PhS}]\) (1:1 mixture of \(\text{NBu}_4\text{OH}\) and \(\text{C}_6\text{H}_5\text{SH}\) in methanol) to a yellow acetone solution of the Pt(III),Pt(III) complex 1 (1:1 molar ratio) resulted, after work up of the mixture, in the isolation of the platinum(II) derivative \([\text{NBu}_4][(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{PhS–PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{RF})_2]\) (2) (Scheme 2). The synthesis of 2 entails the formation of a P–S bond through the reductive coupling of the coordinated diphenylphosphanide and phenylsulfide.

\[\text{Pt}^{\text{III}}\text{Ph}_2\text{Pt}^{\text{III}} + \text{L}^\text{S}^– \rightarrow \text{Pt}^{\text{II}}\text{Ph}_2\text{Pt}^{\text{II}}\text{L}^\text{S}^-\]

Scheme 2. Reaction of 1 with S-based anions in acetone solution.

The addition of potassium ethyl xanthogenate, KEtOCS\(_2\), tetra-\(^n\)butylammonium 2-mercaptopyrimidinate ([\(\text{NBu}_4]\)[pymS], 1:1 mixture of \(\text{NBu}_4\text{OH}\) and \(\text{C}_4\text{H}_3\text{N}_2\text{SH}\) in methanol) or tetra-\(^n\)butylammonium 2-mercaptopyridinate ([\(\text{NBu}_4]\)[pyS], 1:1 mixture of \(\text{NBu}_4\text{OH}\) and \(\text{C}_5\text{H}_4\text{NSH}\) in methanol) to an acetone solution of the Pt(III),Pt(III) complex 1 (1:1 molar ratio) gave rise to the analogous platinum(II) derivatives \([\text{NBu}_4][(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{EtOCS}_2–\text{PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{RF})_2]\) (3), \([\text{NBu}_4][(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{pymS–PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{RF})_2]\) (4) or \([\text{NBu}_4][(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{pyS–PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{RF})_2]\) (5), respectively (Scheme 2) isolated as pale yellow (3) or white (4, 5) crystals. In all cases the two metal centres exhibit a +2 formal oxidation state and are bridged by a phosphanido and a new neutral thiodiphenylphosphane ligand, PPh\(_2\)SL, formed as a consequence of the coupling between a bridging phosphanido and the anion of the added salt. It is apparent that the reactivity of acetone solutions of 1 with either monodentate (PhS\(^–\)) or bidentate (EtOCS\(^–\), pymS\(^–\), pyS\(^–\)) S-donor ligands is the same, pointing out that the L part of the L\(^<\text{S}^–\) reactant behaves as a spectator.
The elimination reduction processes in hexa-coordinate Pt(IV) complexes, as well as in Pd(IV) ones, are known to pass through the loss of a ligand to generate a five-coordinate intermediate as preliminary step18-24 and five-coordinate Pt(IV) complexes are now well recognized species.25-32 The synthesis of complexes 2-5 can be envisaged to start with the coordination of a good nucleophile, the L\(^{\text{S}^-}\) anion, to one of the Pt(III) centres affording a formally Pt(II),Pt(IV) unsaturated complex in which the L\(^{\text{S}^-}\) ligand is terminally bonded to Pt(IV). The reductive coupling between a bridging diphenylphosphanido and the organic sulfide on the Pt(IV) centre (breakdown of Pt\(^{\text{IV}–\text{P}}\) and Pt\(^{\text{IV}–\text{S}}\) bonds) can form the new PPh\(_2\)SL group while one of the initial two pairs of non-bonding electrons of the S centre can give rise to a new Pt\(^{\text{II}–\text{S}}\) bond.

The formation of P–S bond from coordinated diorganophosphanide and an S based reactant is well known.33,34 Recently, a reversible intramolecular P–S bond formation/cleavage mediated by a Ni(0)/Ni(II) system has been reported.35 However, to the best of our knowledge, all described cases result in complexes featuring a terminally bonded thiophosphane. On the contrary, reaction of 1 with L\(^{\text{S}^-}\) anions affords complexes in which the formed Ph\(_2\)P(SL) ligands exhibit a \(\kappa^2\)-P,S bridging coordination mode. A complex featuring a \(\mu_3\)-SPPh\(_2\) ligand has been proposed, on the basis of spectroscopic data as the product of treatment of [Co\(_2\)Fe(\(\mu_3\)-S)(\(\mu\)-PPh\(_2\))\(_2\)(CO)\(_6\)] with 70 atm of CO at 423 K.36

Complexes 2-5 were characterized by elemental analysis, HRMS, XRD, IR and multinuclear NMR spectroscopy. The HRMS(–) analysis of the anionic complexes 2-5 showed the expected peaks with an isotope pattern superimposable to that calculated on the basis of the proposed formula. Figure 1 shows the HRMS(–) spectrogram of 4.
Figure 1. HRMS(−) spectrogram of 4 in acetonitrile showing the peak corresponding to the anion \([(C_{6}F_{5})_{2}Pt(µ-PPPh_{2})\{κ^{2}P,S-µ-P(S-pym)Ph_{2}\}Pt(C_{6}F_{5})_{2}]^{-}\). The error between calculated and observed isotopic patterns is 9.3 ppm.

The IR spectra of complexes 2-5 in the solid state confirm the presence of the relevant ligands and, although they are not particularly informative, it is to note that the band of the C_{6}F_{5} group which appears at 964 cm\(^{-1}\) for the Pt(III) precursor 1, is shifted toward lower wavelengths in the spectra of 2-5, as consequence of the decrease of the formal oxidation states of the metal centres.\(^{11,37}\)

The \(^{31}\text{P}\{^{1}\text{H}\}\) NMR spectra of 2-5 in deuteroacetone solution showed two broad singlets flanked by \(^{195}\text{Pt}\) satellites. The broadness of the signals is mainly due to unresolved coupling with \(^{19}\text{F}\) atoms, as is common in this type of complexes.\(^{12,38,39}\) The signals of the bridging P\(^1\) showed the expected two sets of \(^{195}\text{Pt}\) satellites. The correct attribution of the \(^{1}J_{\text{P,Pt}}\) coupling constants was made comparing \(^{31}\text{P}\) and \(^{195}\text{Pt}\) NMR features. The chemical shift of the of phosphanido-bridged P atom in the starting material 1 (δ 281.7) decreased significantly in 2-5 (δ from −12 to −21) due to the change from a “Pt\(^{11}\)(µ-
PPh$_2$)$_2$PtIII(Pt-Pt) system (two condensed three-membered rings) to a “PtII(κ^2P,S-μ-PS)(μ-PPh$_2$)PtIII fragment (a five-membered ring). $^{39-42}$ The P signals of the κ^2P,S-thiophosphanoligands in 2-5 were found between δ 101 and δ 107. The 195Pt NMR features were obtained by carrying out 19F-195Pt HMQC experiments, exploiting the couplings between pentafluorophenyl 19F atoms and each of the 195Pt atoms. Figure 2 shows the 19F-195Pt HMQC of complex 2. In all cases, for complexes 2-5, Pt1 resonance fell at ca. δ –4500 while Pt2 resonance was found at ca. δ –4300. Specific 195Pt NMR chemical shifts are reported in the experimental part. The Pt1 chemical shift of 2-5 is almost identical to that found for Pt1 in the analogous complex [(C$_6$F$_5$)$_2$Pt1(μ-PPh$_2$)$\{\kappa^2P,O$-μ-P(O)Ph$_2$)Pt2]C$_6$F$_5$)$_2$]$_2^–$ (δ$_{Pt1}$ = –4498), while the Pt2 resonance of 2-5 was found significantly high-field shifted respect to Pt2 of [(C$_6$F$_5$)$_2$Pt1(μ-PPh$_2$)$\{\kappa^2P,O$-μ-P(O)Ph$_2$)Pt2]C$_6$F$_5$)$_2$]$_2^–$ (δ$_{Pt2}$ = –3719), 17 as a consequence of the lower electronegativity of S compared to O. It is interesting to note that the chemical shift of S-bound 195Pt nuclei for dinuclear complexes of general formula [(Pt$_2$$\{\kappa^2P,S$-$\mu$-P(S)R$_2$}$\{\mu-L’$)$_2$](Pt-Pt), in which the Pt atoms are linked by a covalent bond, range from –5128 to –5216. $^{43-46}$ Such values, similar to those of 1, (δ –5298) are consistent with the theory that 195Pt chemical shifts are sensitive to the geometry around the metal more than to the Pt formal oxidation state. 41

![Figure 2](image_url)

19F-195Pt HMQC of complex 2 (acetone-d_6, 298 K)
The 19F NMR spectrum of 2-5 showed clear signals of the fluorine atoms of the C$_6$F$_5$ moieties. Due to slow rotation of the pentafluorophenyl rings, the ortho-F and meta-F nuclei give rise to two (overlapped) signals for each ring. The attributions of the 19F nuclei to the appropriate C$_6$F$_5$ ring reported in the experimental part were made on the basis of 19F-195Pt HMQC as well as of 19F-NOESY experiments.

The 1H NMR spectrum of 2-5 showed, beside those of the [NnBu$_4$]$^+$ cation, the expected signals for the protons of the coordinated PPh$_2$ and L$^\Lambda$S$^-$ ligands. The attribution of all protons for complexes 2-5 was made by combining information deriving from 1H COSY, 1H-31P HMQC and 1H NOESY experiments at 298 K. Interestingly, the 1H NOESY spectrum of 4 and 5 (but not of 2 and 3) showed the presence of positive cross peaks indicative of chemical exchanges. Such cross peaks correlated all aromatic signals with signals barely detectable in the 1H spectrum, suggesting the occurrence of an equilibrium between 4 (or 5) and an isomer, present in solution in very low amount. The absence of this equilibrium in the cases of complexes 2 and 3 suggests that the equilibrium indicated by 1H NOESY experiments of 4 and 5 could involve the decooordination of S and the coordination of N of the thiopyridine or thiopyrimidine ligands, respectively (Scheme 3). Figure 3 shows a portion of the 1H NOESY spectrum of 5.

![Diagram of the complexes](image)

P^* = PPh$_2$
R_F = C$_6$F$_5$

Scheme 3. A plausible equilibrium explaining the exchange cross peaks detected in the 1H NOESY experiments of 4 and 5.
The structures of complexes 2-4 were established by X-ray diffraction studies. Crystal data and refinement parameters are given in Table S1 (See Supporting Information). Structures of the complex anions of 2-4 together with the atom-labelling scheme are shown in Figures 4-6. Selected bond distances and angles are listed in Table S2. 3 presents two complex units in the asymmetric part of the unit cell with very similar structural parameters, and for discussion purposes only the data corresponding to one of them are mentioned here. The three anions of 2-4 are dimetallic complexes in which the two Pt atoms are bridged by diphenylphosphanide and thiophosphano ligands and two pentafluorophenyl groups are bonded as terminal ligands to each metal centre. The Pt atoms lie in the centre of square-planar environments and show in the three anions of 2-4 very similar bond distances and angles as well as an analogue not planar core. The dihedral angle between the best planes around the two Pt atoms is 28.51(3)° in 2, 26.57(6)° in 3 and 28.51(3)° in 4. The Pt(1)–P(1)–Pt(2) angles are broader, 114.19(5)° in
2, 118.46(7)° in 3 and 117.45(4)° in 4, than in the Pt(III)-Pt(III) starting material 1, 73.47(5)°, which reflects in longer intermetallic separations: 3.910(1), 4.036(1) and 4.024(1) Å, respectively (2.7245(7) Å in 1). These parameters agree with the change from a dinuclear complex with 30 valence electron count to saturated dinuclear species with 32 valence electron count. The “Pt(1)–P(1)–Pt(2)” fragment has been usually found in our complexes but the “Pt(1)–P(2)–S–Pt(2)” one requires a special attention. The new thiophosphano groups Ph₂P–SL (L = Ph, 2; CSOC₂H₅, 3; CN₂C₃H₅, 4) are neutral ligands bonded to two platinum centres in a bridging mode through the P and S atoms. These kind of complexes containing a neutral tertiary thiophosphano ligand, R₂P–SR’ with a “M–P–S–M’” skeleton (M, M’ = any transition metal) has not previously been characterized structurally by X-ray diffraction (CSD version 5.38, updated May 2017). Three entries were found in the CSD for the “Pt–P–S–Pt” skeleton if the two metal centres are linked by a bridging R₂P–S- thiophosphinate anion. The sulfur atom in 2-4 can be regarded as forming single covalent bonds with a phosphorous and a carbon atoms and donating formally two electrons to the platinum atom, resulting in a pyramidal coordination in agreement with the existence of a lone pair. Nevertheless, the Pt(2)–S distances, as well as the P–S ones, in 2-4 (see Table S2) are not very different from those observed in the reported thiophosphinate complexes in which the sulfur atom establishes two chemical bonds. The pyramidal geometry of the sulfur bridging atom bonded to three different substituents renders such atom chiral.

Figure 4. Crystal structure of the anion of complex [N⁵Bu₄][(R₆)₂Pt®(μ-PhS–PPh₂)(μ-PPh₂)Pt®(R₆)₂] (2). Ellipsoids are drawn at their 50% probability level. Hydrogen atoms have been omitted for clarity.
Figure 5. Crystal structure of the anion of complex \([\text{N}^n\text{Bu}_4][\text{R}_2\text{Pt}^{\text{II}}(\mu-\text{EtOCS}_2^-\text{PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{R}_2)]\cdot1.35\text{CH}_2\text{Cl}_2 (3\cdot1.35\text{CH}_2\text{Cl}_2). Ellipsoids are drawn at their 50% probability level. Hydrogen atoms have been omitted for clarity.

Figure 6. Crystal structure of the anion of complex \([\text{N}^n\text{Bu}_4][\text{R}_2\text{Pt}^{\text{II}}(\mu-\text{pymS}^-\text{PPh}_2)(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{R}_2)]\cdot1.25\text{Me}_2\text{CO} (4\cdot1.25\text{Me}_2\text{CO). Ellipsoids are drawn at their 50% probability level. Hydrogen atoms have been omitted for clarity.}

Reaction of \([\text{R}_2\text{Pt}^{\text{III}}(\mu-\text{PPh}_2)_2\text{Pt}^{\text{III}}(\text{R}_2)]\ (1) with \text{C}_6\text{H}_5\text{S}^- (\text{PhS}^-), \text{CH}_3\text{CH}_2\text{OCS}_2^- (\text{EtOCS}_2^-), \text{C}_4\text{H}_3\text{N}_2\text{S}^- (\text{pymS}^-) and \text{C}_5\text{H}_4\text{NS}^- (\text{pyS}^-) in dichloromethane.

The addition of the monodentate thiophenoxide anion as the \([\text{N}^n\text{Bu}_4][\text{PhS}] salt (1:1 mixture of \text{N}^n\text{Bu}_4\text{OH and C}_6\text{H}_5\text{SH in methanol) to a CH}_2\text{Cl}_2 solution of 1 (1:1 molar ratio) afforded complex 2, the same obtained in acetone solution, as described above. However, the addition of the bidentate anions EtOCS$_2^-$ and pymS$^-$ (1:1 mixture of NnBu$_4$OH and C$_4$H$_3$N$_2$SH in methanol) to yellow CH$_2$Cl$_2$ solutions of 1 yielded the
monobridged diplatinum(II) complexes $[\text{N}^\text{nBu}_4][(\text{PPh}_2\text{RF})(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{EtOCS}_2)(\text{RF})]$ (6) and $[\text{N}^\text{nBu}_4][(\text{PPh}_2\text{RF})(\text{RF})_2\text{Pt}^{\text{II}}(\mu-\text{PPh}_2)\text{Pt}^{\text{II}}(\text{pymS})(\text{RF})]$ (7), respectively (Scheme 4). When $[\text{N}^\text{nBu}_4][\text{pyS}]$, (1:1 mixture of $\text{N}^\text{nBu}_4\text{OH}$ and $\text{C}_5\text{H}_4\text{NSH}$ in methanol) was added to a CH$_2$Cl$_2$ solution of 1 (1:1 molar ratio), a complex mixture of products was obtained (NMR analysis), which was no further characterised.

Scheme 4. Reaction of 1 with S-based anions in dichloromethane solution.

Complexes 6-7 were characterized by elemental analysis, HRMS, IR and multinuclear NMR spectroscopy. The structures of complexes 6 and 7 were established by X-ray diffraction studies. Drawings of the complex anions of 6 and 7 together with the atom-labeling scheme are shown in Figures 7 and 8. Crystal data and refinement parameters are given in Table S1 (See Supporting Information). Selected bond distances and angles are listed in Table S3.

In complexes 6 and 7 the two metal centres with formal oxidation state +2 are singly joined by a phosphanido bridging ligand while the added bidentate anion is coordinated to a metal centre as a chelate ligand. The other platinum(II) centre is bonded to a (pentafluorophenyl)diphenylphosphanide group, PPh$_2$RF, produced by reductive coupling between a bridging PPh$_2$ and a pentafluorophenyl group on the Pt(IV) metal centre of the alleged Pt(II),Pt(IV) intermediate.$^{11,12,14,50-53}$ The anions of 6 and 7 are bimetallic complexes formed by two fragments: “(PPh$_2$RF)(RF)$_2$Pt” and “Pt(EtOCS$_2$-κ^2-S,S')(RF)” in 6, or “Pt(Spy-κ^2-N,S(RF)” in 7, joined through the two platinum centres by a single bridging diphenylphosphanide group. The platinum(II) centres in both fragments lie in distorted square planar environments. The value of P(1)–Pt(1)–P(2) is large, 118.44(3)$^\circ$ (6) and 117.11(4)$^\circ$ (7), and the small values of S(1)–Pt(2)–S(2) in 6, 73.91(3)$^\circ$, and S–
Pt(2)–N(1) in 7, 68.91(10)°, are the expected ones for the bite angle of the chelating xanthogenate and pyrimidine-2-thiolate ligands.54-61 The dihedral angle between the best coordination planes of the two Pt atoms in each complex is 59.56(3)° and 62.62(3)° respectively.

Figure 7. Crystal structure of the anion of complex [NBu₄][(PPh₂RＦ)(RＦ)₂PtII(μ-PPh₂)PtII(EtOCS₂)(RＦ)] (6). Ellipsoids are drawn at their 50\% probability level. Hydrogen atoms have been omitted for clarity.
Figure 8. Crystal structure of the anion of complex [NnBu\textsubscript{4}]\textit{ff}(PPh\textsubscript{2}R\textsubscript{F})(R\textsubscript{F})\textit{fl}(\mu-PPh\textsubscript{2})Pt\textit{fl}(pymS)(R\textsubscript{F})\textcdot0.5n-C\textsubscript{6}H\textsubscript{14} (\textbf{7}·0.5n-C\textsubscript{6}H\textsubscript{14}). Ellipsoids are drawn at their 50% probability level. Hydrogen atoms have been omitted for clarity.

The 1H NMR spectrum at 298 K of \textbf{6} shows, beside signals due to the [NnBu\textsubscript{4}]+ cation, sharp signals due to aromatic PPh\textsubscript{2} and aliphatic OEt protons of the coordinated xanthogenate ligand. Conversely, the 1H NMR spectrum of the anion of \textbf{7} appeared at 298 K as a very broad signal ranging from 9.0 to 6.0 ppm, from which only two signals emerge, at δ 8.19 and δ 6.39, ascribable to the pyrimidine protons. On lowering the temperature (Figure 9) the signals progressively sharpen and at 198 K the spectrum displays the signals of two interconverting conformers (1H EXSY at 198 K), one of which (labelled \textit{A} in Figure 9) much more abundant than the other (\textit{B}). In the 1H NMR spectrum of the anion of \textbf{7} at 198 K were found, beside weak signals attributable to the minor conformer (labelled \textit{B} in Figure 9), fifteen signals attributable to: the P2Ph\textsubscript{2} (ten signals), the pyrimidine rings (three signals), and only two of the ten signals deriving from P(C\textsubscript{6}F\textsubscript{5})Ph\textsubscript{2} (presumably the para-H of the two phenyl rings) with the remaining eight signals of the P(C\textsubscript{6}F\textsubscript{5})Ph\textsubscript{2} ligand giving an extremely broad peak ranging from 8.0 to 5.5 ppm (see Figure 9).
Figure 9. VT 1H NMR spectrum of 7 (acetone-d_6). Only signals of conformer B which are not overlapped with those of A are labelled.
A behaviour similar to that observed for 1H NMR was observed in 19F NMR experiments: the 19F NMR spectrum at 298 K was extremely broad, while the 19F NMR spectrum at 198 K showed the signals of two conformers, in a 1.0 to 5.0 molar ratio.

It is well established in the 19F NMR spectroscopy that signals due to o-F atoms of the C$_6$F$_5$ groups bonded to a PPh$_2$ fragment are more shielded than the o-F atoms of the C$_6$F$_5$ groups bonded to a Pt centre, while m- and p-F atoms of PPh$_2$C$_6$F$_5$ groups are deshielded with respect to the corresponding Pt–C$_6$F$_5$ ones.$^{11,12,14,50-53}$ This means that the fluorine signals due to the PPh$_2$C$_6$F$_5$ group are not overlapped with the fluorine signals of the Pt-C$_6$F$_5$ groups and that the presence of the PPh$_2$R$_F$ group in 6 and 7 (at low T) can be unequivocally inferred by 19F NMR analysis.

The 31P{1H} NMR spectra of 6 and 7 in deuteroacetone solution show two singlets flanked by 195Pt satellites. The 31P chemical shifts of the singly phosphanido bridged ligands fall at δ –20.7 and δ –18.5, respectively, in the same region of the phosphanido bridged ligands of 2-5, as expected.$^{39-41}$ The signals due to the P2 atoms of the PPh$_2$C$_6$F$_5$ groups appear at lower fields, at δ 10.4 and δ 10.8, respectively.

VT 31P{1H} NMR experiments on a deuteroacetone solution of 7 (Figure 10) showed a progressive broadening of the 31P NMR signals (more marked in the case of the P2 nucleus) which coalesce at around 233 K. As the temperature decreased further, decoalescence occurred and at 198 K the signals of two conformers (labelled as A and B in Figure 10) were observed. One conformer, A, constituting ca. 83% in mol, was characterised by signals at δ 10.2 (P2) and δ –18.5 (P1) while the other one, B, ca. 17% in mol, displaying signals at δ 14.0 (P2) and δ –19.2 (P1).
Figure 10. VT 31P(1H) NMR spectrum of 7 (acetone-d_6)
The main molecular motions that can explain the dynamic behaviour observed in 1H, 19F and 31P NMR experiments are the hindered rotation of the pentafluorophenyl rings about the C–P or C–Pt bonds, the rotation of the P(C$_6$F$_5$)Ph$_2$ ligand about the P–Pt bond and the rotations of the Pt$^{1/2}$ coordination planes about the Pt$^{1/2}$–P1 bonds. A plausible explanation of the observed dynamic NMR is that at room temperature the rotation of the Pt$^{1/2}$ coordination planes about the Pt$^{1/2}$–P1 bonds and the rotation of the P(C$_6$F$_5$)Ph$_2$ ligand about the P–Pt bond are fast, while the rotation of the pentafluorophenyl rings about the C–P or C–Pt bonds are slow, determining the broadness of the 1H and 19F signals. At very low T, rotation of pentafluorophenyl rings, as well as that of the Pt2 coordination plane about the Pt2–P1 bond are blocked, and the only possible molecular motions are the slow rotation of the Pt1 coordination plane about the Pt1–P1 bond and the rotation of the P(C$_6$F$_5$)Ph$_2$ ligand about the P2–Pt1 bond. That the rotation of the Pt2 coordination plane about the Pt2–P1 bond is blocked at 198 K is indicated by intense NOE contact62 detected in the 1H NOESY spectrum of 7 at 198 K between the C49–N1–CH proton at δ 5.27 and the ortho protons of one of the phenyl ring bound to the bridging phosphane (δ 9.36 and δ 8.2, Figure 11). A clue of the hindered rotation of the P(C$_6$F$_5$)Ph$_2$ ligand about the P2–Pt1 bond at 198 K is the fact that P2Ph$_2$ and pyrimidine protons are detected as clear signals in the 1H NMR spectrum at 198 K (see above).
Figure 11. Portion of 1H NOESY spectrum of 7 (acetone-d_6, 198 K). Exchange cross peaks are circled in blue, while NOE contacts are circled in red.

These data suggest that the molecular motion responsible for the presence of two conformers at 198 K is the slow rotation of the Pt1 coordination plane about the Pt1–P1 bond. Thus, we propose that the most abundant conformer detectable in solution (conformer A) is the one preserving the structure observed in the solid state, being conformer B the one obtained by 180°C rotation of the Pt1 coordination plane about the Pt1–P2 bond (Scheme 5).

![Scheme 5](image)

Scheme 5. Proposed molecular motion of the anion of complex 7 resulting, at low T, in the freezing of conformers A (major) and B (minor).

The 195Pt NMR signals of 6 at 298 K were found at δ –4427 (Pt1) and –4302 (Pt2), while those of complex 7 were detected (at 203 K) at δ –4449 (Pt1) and –4431 (Pt2). No differentiation between the signals of the two conformers could be achieved in the 19F-195Pt HMQC spectrum of 7 at 203 K, due to low resolution.

The IR spectra of 6 and 7 in the solid state provide additional information that unambiguously indicates the presence of the PPh$_2$(C$_6$F$_5$) group. Besides the strong signals around 1500 and 950 cm$^{-1}$ always observed in all pentafluorophenyl derivatives with M-C$_6$F$_5$ bond, two absorptions of low intensity at higher frequencies, ca. 1580 and 980 cm$^{-1}$, assignable to the PPh$_2$(C$_6$F$_5$) ligand11,14,50,53 are present in the IR spectra of 6 and 7.
DISCUSSION

The oxidative addition and the reductive elimination are fundamental steps in the study of transition-metal chemistry of platinum and palladium in high oxidation states.1-8 Direct reductive coupling processes from 18-electron octahedral M(IV) derivatives are rare, and the dissociation of one of the ligands affording 16-electron unsaturated derivatives with subsequent reductive coupling forming the M(II) complex is the usually proposed path.21,22,63-67 It is to note that complexes 3 and 6, as well as 4 and 7, constitute two examples of constitutional isomers. The synthesis of 3 and 4 (complexes with P–S bond) or 6 and 7 (complexes with P–C bond) originates from the same starting materials, same reaction conditions but with different solvent: acetone or dichloromethane, respectively. Scheme 6 shows a process that could explain the formation of our isomers.

Scheme 6. Plausible processes explaining the syntheses of 2-5 in acetone and 6-7 in dichloromethane.

The nucleophilic sulfur centre of the mono- (PhS-) or bidentate (EtOCS₂-, pymS- and pyS-) fragments coordinates easily to one platinum(III) centre of the symmetrical complex 1 affording a new anionic unsymmetrical Pt(II),Pt(IV) intermediate that contains a 16-electron unsaturated Pt(IV) centre. It is noteworthy that this unsaturated metal centre is formed by addition of the S-based anion to the starting platinum(III)
centre, not by a dissociation of a ligand from an 18-electron octahedral saturated platinum(IV). In a coordinating solvent such as acetone (path a), a solvent molecule could favour the stabilization of the five-coordinated Pt(IV) intermediate which, by reductive elimination of the PPh₂ and LS fragments, originates new neutral Ph₂P–SL ligands and a platinum(II) centre. One lone pair of the sulfur atom coordinates this platinum(II) centre (complexes 2-5).

In CH₂Cl₂ solution and in presence of a bidentate ligand (path b), the intermediate containing a Pt(II) and a five-coordinated Pt(IV) could be stabilized by a chelate coordination of the bidentate ligand affording an intermediate containing an octahedral platinum(IV) species. Partial dissociation of the Pt–L (L = S or N) bond trans to the C₆F₅ group would be an easy process in these four member rings and thus the reductive elimination of the of PPh₂ and C₆F₅ fragments on the unsaturated Pt(IV) can form the neutral Ph₂P–C₆F₅ ligand along with the new Pt(II) centre which satisfies its electronic requirements by the coordination of the bidentate groups as chelating ligands (complexes 6 and 7).

With the aim of gaining insights into the role of the solvent in the reaction of 1 with S-based anions, we carried out the reaction between KEtOCS₂ (methanol solution) and 1 in toluene, a poorly coordinating solvent and in acetonitrile, a good coordinating solvent. The reaction carried out in toluene afforded smoothly complex 6, while the reaction conducted in acetonitrile yielded a mixture of 3 and 6. The results obtained in toluene parallels that obtained in dichloromethane, thus reinforcing our hypothesis on the role of the solvent in this reaction. However, the formation of 6 together with 3 (the expected product) seems to put into question the mechanism proposed in Scheme 4.

In order to clarify this unexpected result, a sample of the yellow complex 1 was dissolved in acetonitrile (or in CH₂Cl₂ plus few drops of acetonitrile) at room temperature (Scheme 7). The yellow solutions progressively cleared and became colourless in ca. half an hour. Work up of the colourless solution afforded in high yield a white solid which was characterized as the neutral complex [(PPh₂R₂)(CH₃CN)(R₂F)Ptᴵᴵ(μ-PPh₂)Ptᴵᴵ(R₂F)₂(CH₃CN)] (8, Scheme 7).
Scheme 7. Behaviour of 1 in acetonitrile.

Formation of complex 8 can thus explain the unexpected formation of 6 in the reaction of 1 with EtOCS$_2^-$ in MeCN. In fact, the addition of KEtOCS$_2$ to a colourless solution of 8 in acetonitrile in 1:1 molar ratio gave, as the only product, complex 6.

The characterization of complex 8 was carried out by elemental analysis, HRMS, XRD, IR and multinuclear NMR spectroscopy.

A drawing of the XRD structure of complex 8, together with the atom-labelling scheme, is shown in Figure 12. Selected bond distances and angles are listed in Table S4. Crystal data and refinement parameters are given in Table S1.

Figure 12. Crystal structure of complex [(PPh$_2$R$_F$)(R$_F$)(CH$_3$CN)Pt$_{II}$(μ-PPh$_2$)Pt$_{II}$(CH$_3$CN)(R$_F$)$_2$$\cdot$1.5CH$_3$CN (8$\cdot$1.5 CH$_3$CN). Ellipsoids are drawn at their 50% probability level. Hydrogen atoms have been omitted for clarity.
The 31P1H NMR spectrum of 8 consists of the superimposition of four isotopologues corresponding to: an AB (45%), two ABX (22% each), and an ABXY (11%) spin systems, where A and B are 31P, while X and Y are 195Pt. The whole spectrum was calculated (Figure 13) and the spectroscopic features reported in the experimental part were obtained. The chemical shift of the bridging PPh$_2$ is at δ 1.8 while that of the terminal PPh$_2$(C$_6$F$_5$) is at δ 4.2. The 1H NMR spectrum of 8 in acetone-d_6 at 298 K showed, beside well resolved signals attributable to aromatic protons, two singlets at δ 2.33 and δ 2.16 ascribable to coordinated MeCN molecules. The 19F NMR signals of the terminal PPh$_2$(C$_6$F$_5$) ligand11,50 were found at δ –125.3 (ortho-F), δ –149.7 (para-F), δ –162.0 (meta-F) while the 195Pt NMR signals fell at δ –4104 (Pt1) and –4414 (Pt2).

![Figure 13. Experimental (bottom) and calculated (top) 31P1H NMR spectra of 8 in acetone-d_6 at 298 K.](image)

The synthesis of 8 resembles the reaction between 1 and I$^-$ which led to the isolation of the anion [(PPh$_2$R$_f$)(R$_f$)PtII(μ-PPh$_2$)(R$_f$-I)PtII(μ-R$_f$)$_2$]$^{-50}$ with the difference that CH$_3$CN do not bridge the Pt atoms in the reaction product. The formation of 8 can be explained by initial coordination of the neutral acetonitrile ligand to one of the platinum centres of 1, forming a Pt(II),Pt(IV) intermediate which would undergo a reductive coupling between the two formally anionic fragments (PPh$_2$ and C$_6$F$_5$) coordinated to the unsaturated
platinum(IV) intermediate forming PPh$_2$R$_F$. Coordination of a second molecule of acetonitrile would afford complex 8. It is to note that in all our earlier reported reductive processes affording the PPh$_2$R$_F$ ligand, the reactions were facilitated by an anionic fragment as nucleophile. In the present case, the nitrogen atom of the neutral acetonitrile molecule is able to coordinate to the platinum(III) centre and trigger the reaction, indicating a very electrophilic character of the platinum(III) centre in complex 1.

Complex 8 deserves some attention. Solutions of 8 in CH$_2$Cl$_2$ and few drops of acetonitrile remain colourless indefinitely but the solutions of 8 in pure CH$_2$Cl$_2$ or in toluene become yellow. These solutions were layered with n-hexane and left to crystallize at room temperature. In the first case (CH$_2$Cl$_2$ plus few drops of acetonitrile) only colourless crystals of 8 were obtained. Nevertheless, in the other two solutions (CH$_2$Cl$_2$ or toluene) some yellow-orange crystals were observed along with the colourless crystals. A manual separation of the two types of crystals permitted to identify them (IR spectroscopy) as 1 (yellow crystals) and 8 (colourless crystals). This indicates that, dissolving 8 in poorly coordinating solvents triggers an equilibrium between 1 and 8 making the oxidative addition/reductive elimination with formation of a Ph$_2$P–C$_6$F$_5$ bond a reversible process in smooth conditions (Scheme 7). Consistently with this, slow evaporation of acetone solutions of 8 afforded pure 1 as a yellow solid.

It is noteworthy that although some examples of this transformations between bridging phosphanides and tertiary phosphanes or diphosphanes have been reported, the reversibility observed between the yellow Pt(III) complex 1 and the colourless Pt(II) complex 8 is actually a quite unusual process.

CONCLUDING REMARKS

The oxidative addition/reductive elimination process makes the platinum centres to shift between II and IV oxidation states, or III for dinuclear complexes such as in the diplatinum(III) derivative 1. The reductive elimination chemistry of organoplatinum(IV) complexes usually forms C-X bonds and many studies have been focused on finding conditions for selective formation of some specific bonds. In our research on the perfluorophenyl- and diphenylphosphanido derivative of diplatinum(III), 1, the complex shows Pt(III)–C and Pt(III)–P bonds. In the reductive coupling processes from this
oxidised specie, the formation of the P–X (X = S, C) bond is always observed instead of the C–X (X = S, C) one.

The synthesis of the thiophosphane complex 2 in acetone as well as in dichloromethane demonstrates that when the monodentate ligand is added to 1, the reductive coupling of the bridging diphenylphosphanido group with the added ligand is observed. The formation of a P–S bond (PPh₂SR) is preferred to the formation of a P–C one (PPh₂C₆F₅). The addition of bidentate anionic groups to 1 proves that both reductive processes, formation of P–S or P–C bonds, are possible. The reaction in acetone proceeds by reductive coupling of bridging diphenylphosphanido and thiolate groups and it can be seen as a metal assisted way to synthesise new specific thiophosphane ligands through the adequate choice of the RS⁻ reagent.

The addition of RS⁻ anions to complex 1 did not afford stable platinum(IV) complexes since a reductive coupling takes place probably through an unsaturated five-coordinated 16-electron Pt(IV). It is to note that the unsaturated intermediates have been usually formed by dissociation of a ligand from the octahedral Pt(IV) system but in our work these intermediates are proposed to be formed by addition of a ligand to the square-planar Pt(III) system.

Although phosphanido groups are classically used for maintaining the molecular architecture of polynuclear transition metal complexes, mainly due to their great flexibility and to the strong P–M bonds, it is now well established that bridging phosphanido groups can act as reaction centres. This work demonstrates that the oxidation of the metal centres in platinum(II) complexes is a way to efficiently trigger an often a priori unpredictable reactivity of bridging phosphanido ligands.

EXPERIMENTAL SECTION

General Procedures and Materials. C, H, and N analyses were performed with a Perkin-Elmer 2400 CHNS analyser. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer (ATR in the range 250-4000 cm⁻¹). NMR spectra in solution were recorded on a Bruker AV-400 spectrometer with SiMe₄, CFCl₃, H₂PtCl₆ and 85% H₃PO₄ as external references for ¹H, ¹⁹F, ¹⁹⁵Pt and ³¹P, respectively. The signal attributions and coupling constant assessment was made on the basis of a multinuclear NMR analysis including ¹H-³¹P HMQ, ¹⁹F-¹⁹⁵Pt HMQ, COSY and NOESY
experiments. High Resolution Mass Spectrometry (HR-MS) analyses were performed using a time-of-flight mass spectrometer equipped with an electrospray ion source (Bruker micrOTOF II). The sample solutions were introduced by continuous infusion with the aid of a syringe pump at a flow-rate of 180 μL/h. The instrument was operated at end plate offset –500 V and capillary –4500 V. Nebulizer pressure was 0.3 bar (N₂) and the drying gas (N₂) flow 4.0 L/min. Capillary exit was 170 V. Drying gas temperature was set at 180°C. The software used for the simulations is Bruker Daltonics Data Analysis (version 4.0). Literature method was used to prepare the starting material [(R_F)₂Pt^{III} (μ-PPPh₂)₂Pt^{III} (R_F)₂](Pt–Pt).⁹

[NanBu₄][(C₆F₅)₂Pt(μ-PPPh₂){κ²P,S-μ-P(Ph)Ph₂}Pt(C₆F₅)₂] (2)

To a yellow solution of 1 (0.133 g, 0.093 mmol) in CH₂Cl₂ (25 mL) 0.094 mmol of NanBu₄SPh methanol solution (the solution was prepared through the addition of MeOH to equimolar amounts of PhSH and of a commercial NanBu₄OH 1.0 M methanol solution) were added. The solution was stirred at room temperature for 20 h and the resulting colourless solution was evaporated to ca. 1 mL. NanPrOH (5 mL) was added and 2 crystallised as a white solid which was filtered, washed with NanPrOH (2 × 0.5 mL) and dried in vacuum. Yield: 0.074 g, 45% Anal. Found (calcd for C₇₀F₂₀H₆₁NP₂Pt₂S): C, 47.01 (47.22); H, 3.45 (3.45); N, 0.61 (0.79); S, 1.64 (1.80). HRMS(–), exact mass for the anion [M]⁻: 1537.0126 Da; measured: m/z: 1537.0233 (M)⁻.

IR (cm⁻¹): 952 and 799, 789, 777 (X-sensitive), C₆F₅.⁷³ ¹H NMR (acetone-d₆, 298 K, 400 MHz), δ: 7.79 (dd, 3J_H,P = 9.8 Hz, 3J_H,H = 8.2 Hz, 4 ortho-H of Ph₂P¹), 7.72 (dd, 3J_H,P = 10.7 Hz, 3J_H,H = 8.2 Hz, 4 ortho-H of Ph₂P²S), 7.58 (m, 3J_H,H = 7.5 Hz, 2 para-H of Ph₂P²S), 7.41 (pseudo td, 3J_H,H ≈ 7.8 Hz, 4J_H,P = 2.5 Hz, 4 meta-H of Ph₂P²S), 7.20 (m, overlapped 2 para-H of Ph₂P¹ + 1 para-H of PhS), 7.14 (pseudo td, 3J_H,H ≈ 7.8 Hz, 4J_H,P = 1.5 Hz, 4 meta-H of Ph₂P¹) 6.87 (m, 3J_H,H = 7.6 Hz, 2 meta-H of PhS), 6.72 (d, 3J_H,H = 7.6 Hz, , 2 ortho-H of PhS), 3.50 (m, 8 H, NBu₄⁺), 1.88 (m, 8 H, NBu₄⁺), 1.49 (pseudo sextet, 3J_H,H = 8 Hz, 8 H, NBu₄⁺), 1.03 (t, 3J_H,H = 7.2 Hz, 12 H, NBu₄⁺).¹⁹F NMR (acetone-d₆, 298 K, 376.5 MHz), δ: –115.2 (m, 3J_F,F = 345 Hz, 2 ortho-F), –116.1 (3J_P,F = 262 Hz, 3J_P,F = 280 Hz, 4 ortho-F of a C₆F₅ bonded to Pt¹ and of a C₆F₅ bonded to Pt²), –116.5 (m, 3J_P,F = 466 Hz 2 ortho-F of the C₆F₅ trans to S), –165.1 (t, 3J_F,F = 19.7 Hz, 1 para-F), –165.5 (t, 3J_F,F = 19.9 Hz, 1 para-F), –165.8 (pseudo td, 3J_F,F = 21.0
Hz, \(^5J_{F,P} = 7.7\) Hz, 2 meta-F), –166.2 (dd, \(^3J_{F,F} = 21.7\) Hz, \(^3J_{F,F} = 19.9\) Hz, \(^5J_{F,P} = 7.9\) Hz, 2 meta-F), –166.8 (m, overlapped 2 meta-F + 1 para-F), –167.5 (m, \(^3J_{F,F} = 19.6\) Hz, \(^3J_{F,P} = 110\) Hz, 2 meta-F of the C\(_6\)F\(_5\) trans to S), –167.7 (t, \(^3J_{F,F} = 19.6\) Hz, 1 para-F of the C\(_6\)F\(_5\) trans to S). \(^{31}\)P{\(^1\)H} NMR (acetone-d\(_6\)), 298 K, 162.0 MHz, \(\delta\): 106.5 (\(^1J_{P2,Pt1} = 2673\) Hz, \(P_2\)), –13.1 (\(^1J_{P1,Pt1} = 1841\) Hz, \(^1J_{P1,Pt2} = 1893\) Hz, \(P_1\)) ppm. \(^{195}\)Pt NMR (acetone-d\(_6\)), 298 K, 86 MHz, \(\delta\): –4466 (Pt\(^1\)), –4331 (Pt\(^2\)).

\[\text{[NnBu}_4\text{][}(\text{C}_6\text{F}_5)_2\text{Pt(µ-PPh}_2\text{)(µ-Ph}_2\text{P–SCSOEt})\text{Pt(C}_6\text{F}_5)_2\text{]} \quad (3)\]

To a yellow suspension of 1 (0.240 g, 0.168 mmol) in acetone (15 mL) 0.028 g (0.174 mmol) of KEtOCS\(_2\) in methanol (3 mL) were added. The suspension was stirred at room temperature for 2 h and the resulting pale yellow solution was evaporated to dryness. The residue was treated with CH\(_2\)Cl\(_2\) (5 mL), N\(^{n}\)Bu\(_4\)ClO\(_4\) (0.058 g, 0.169 mmol) and the resulting mixture was filtered through celite. The solution was evaporated to ca. 2 mL, \(^{1}\)PrOH (15 mL) was added and complex 3 crystallized as a pale yellow solid which was filtered, washed with \(^{1}\)PrOH (3 × 0.5 mL) and dried in vacuum.

Yield: 0.236 g, 77%. Anal. Found (calcd for C\(_{67}\)F\(_{20}\)H\(_{61}\)NOP\(_2\)Pt\(_2\)S\(_2\)): C, 44.64 (44.90); H, 3.60 (3.43); N 0.65 (0.78); S, 3.85 (3.58). HRMS(–), exact mass for the anion [M]^{-}: 1548.9795 Da; measured: \(m/z\): 1548.9916 (M)^{-}.

IR (cm\(^{-1}\)): 953 and 799, 790, 777 (X-sensitive), C\(_6\)F\(_5\).\(^{73}\)\(^1\)H NMR (acetone-d\(_6\)), 298 K, 400 MHz, \(\delta\): 8.27 (dd, \(^3J_{H,P} = 11.5\) Hz, \(^3J_{H,H} = 8.0\) Hz, 4 ortho-H of Ph\(_2\)P\(^2\)S), 7.64 (m, \(^3J_{H,H} = 7.1\) Hz, 2 para-H of Ph\(_2\)P\(^2\)S), 7.57 (m, \(^3J_{H,H} = 7.4\) Hz, \(^4J_{H,P} = 2.2\) Hz, 2 meta-H of Ph\(_2\)P\(^2\)S), 7.52 (m, 4 ortho-H of Ph\(_2\)P\(^1\)), 7.16 (pseudo td, \(^3J_{H,H} = 7.3\) Hz, \(^4J_{H,P} = 1.7\) Hz, 2 para-H of Ph\(_2\)P\(^1\)), 7.04 (pseudo td, \(^3J_{H,H} = 7.3\) Hz, \(^4J_{H,P} = 1.5\) Hz, 4 meta-H of Ph\(_2\)P\(^1\)), 3.95 (q, 2 H, OCH\(_2\)CH\(_3\)), 3.51 (m, 8 H, N\(^{n}\)Bu\(_4\)), 1.88 (m, 8 H, N\(^{n}\)Bu\(_4\)), 1.48 (pseudo sextet, \(^3J_{H,H} = 8\) Hz, 8 H, N\(^{n}\)Bu\(_4\)), 1.02 (t, \(^3J_{H,H} = 7.2\) Hz, 12 H, N\(^{n}\)Bu\(_4\)), 0.87 (t, 3 H, OCH\(_2\)CH\(_3\)). \(^{19}\)F NMR (acetone-d\(_6\)), 298 K, 376.5 MHz, \(\delta\): from –115.2 to –115.6 (m, overlapped 6 ortho-F of C\(_6\)F\(_5\) rings trans to Pt atoms), –116.7 (d, \(^3J_{Pt,F} = 442\) Hz, \(^3J_{F,F} = 21.7\) Hz, 1 ortho-F of the C\(_6\)F\(_5\) trans to S), –116.8 (d, \(^3J_{Pt,F} = 442\) Hz, \(^3J_{F,F} = 20.7\) Hz, 1 ortho-F of the C\(_6\)F\(_5\) trans to S), –164.5 (t, \(^3J_{F,F} = 19.8\) Hz, 1 para-F), –164.8 (t, \(^3J_{F,F} = 19.8\) Hz, 1 para-F), –165.7 (pseudo td, \(^3J_{F,F} = 21.4\) Hz, \(^5J_{F,P} = 7.8\) Hz, 2 meta-F), –166.0 (ddd, \(^3J_{F,F} = 21.3\) Hz, \(^5J_{F,P} = 7.8\) Hz, 2 meta-F), –166.5 (m, overlapped 2 meta-F + 1 para-F), –166.5 (m, overlapped 2 meta-F + 1 para-F). \(^{31}\)P{\(^{1}\)H} NMR (acetone-d\(_6\)), 298
K, 162.0 MHz), δ: 104.7 (1JP_{2,Pt_1} = 2632 Hz, P2), -20.9 (1JP_{1,Pt_1} = 1JP_{1,Pt_2} = 1858 Hz, P1) ppm. 195Pt NMR (acetone-\textit{d}_6, 298 K, 86 MHz), δ: -4478 (Pt1), -4323 (Pt2).

\[\text{[NnBu}_4\text{][}(\text{C}_6\text{F}_5)_2\text{Pt}(\mu-\text{PPh}_2)(\mu-\text{Ph}_2\text{P–SC}_4\text{H}_3\text{N}_2)\text{Pt}(\text{C}_6\text{F}_5)_2\text{]} \text{ (4)}\]

To a yellow solution of 1 (0.150 g, 0.105 mmol) in acetone (25 mL) 0.105 mmol of NnBu4SC6H3N2 in methanol solution (the solution was prepared through the addition of MeOH to equimolar amounts of C4H3N2SH and of a commercial NnBu4OH 1.0 M methanol solution) were added. The solution was stirred at room temperature for 20 h and the resulting colourless solution was evaporated to ca. 1 mL. 'PrOH (5mL) was added and 4 crystallised as a white solid which was filtered, washed with 'PrOH (2 x 0.5 mL) and dried in vacuum. Yield: 0.123 g, 65% Anal. Found (calcld for C68F20H59N3P2Pt2S): C, 45.63 (45.82); H, 3.33 (3.34); N, 2.41 (2.36); S, 1.98 (1.80). HRMS(–), exact mass for the anion [M]=: 1539.0031 Da; measured: m/z: 1539.0182 (M). IR (cm-1): 953 and 797, 786, 777 (X-sensitive), C\textsubscript{6}F\textsubscript{5}.73 1H NMR (acetone-\textit{d}_6, 298 K, 400 MHz), δ: 8.30 (d, 3JH,H = 4.8 Hz, 2 m-H of C\textsubscript{4}H\textsubscript{3}N\textsubscript{2}), 8.13 (dd, 3JH,H = 10.8 Hz, 3JH,\textit{H} = 7.8 Hz, 4 ortho-H of Ph\textsubscript{2}P2S), 7.54 (m, overlapped 4 ortho-H of Ph\textsubscript{2}P2S), 7.41 (pseudo td, 3JH,H = 7.8 Hz, 4JH,\textit{H} = 2.0 Hz, 4 meta-H of Ph\textsubscript{2}P2S), 7.21 (t, 3JH,H = 4.8 Hz, 1 p-H of C\textsubscript{4}H\textsubscript{3}N\textsubscript{2}), 7.15 (t, 3JH,H = 7.0 Hz, 2 para-H of Ph\textsubscript{2}P1), 7.03 (t, 3JH,H = 7.0 Hz, 4 meta-H of Ph\textsubscript{2}P1), 3.51 (m, 8 H, N\textsubscript{Bu\textsubscript{4}}+), 1.88 (m, 8 H, N\textsubscript{Bu\textsubscript{4}}+), 1.49 (pseudo sextet, 8 H, 3JH,H = 7.2 Hz, N\textsubscript{Bu\textsubscript{4}}+), 1.03 (t, 12 H, 3JH,H = 7.2 Hz, N\textsubscript{Bu\textsubscript{4}}+). 19F NMR (acetone-\textit{d}_6, 298 K, 376.5 MHz), δ: -115.3 (d, 3JF,F = 334 Hz, 2 ortho-F), -115.5 (m, overlapped 4 ortho-F of C\textsubscript{6}F\textsubscript{5} rings \textit{trans} to P atoms), -116.4 (m, 3JF,\textit{F} = 448 Hz, 2 ortho-F of the C\textsubscript{6}F\textsubscript{5} \textit{trans} to S), -165.3 (t, 3JF,F = 19.8 Hz, 1 para-F), -165.8 (t, 3JF,F = 19.8 Hz, 1 para-F), -165.9 (pseudo td, 3JF,F = 19.8 Hz, 5JF,\textit{F} = 6.8 Hz, 2 meta-F), -166.5 (pseudo td, 3JF,F = 21.6 Hz, 5JF,F = 8.5 Hz, 2 meta-F), from -166.7 to -166.9 (m, overlapped 2 meta-F + 1 para-F), -167.5 (t, 3JF,F = 21.8 Hz, 4JF,\textit{F} = 120 Hz, 2 meta-F of the C\textsubscript{6}F\textsubscript{5} \textit{trans} to S), -167.8 (t, 3JF,F = 21.8 Hz, 1 para-F of the C\textsubscript{6}F\textsubscript{5} \textit{trans} to S). 31P{1H} NMR (acetone-\textit{d}_6, 298 K, 162.0 MHz), δ: 101.0 (1JF_{2,Pt_1} = 2684 Hz, P2), -18.9 (1JF_{1,Pt_1} = 1846 Hz, 1JF_{1,Pt_2} = 1898 Hz, P1). 195Pt NMR (acetone-\textit{d}_6, 298 K, 86 MHz), δ: -4491 (P1), -4290 (P2).

\[\text{[NnBu}_4\text{][}(\text{C}_6\text{F}_5)_2\text{Pt}(\mu-\text{PPh}_2)(\mu-\text{Ph}_2\text{P–SC}_5\text{H}_4\text{N})\text{Pt}(\text{C}_6\text{F}_5)_2\text{]} \text{ (5)}\]
To a yellow solution of 1 (0.140 g, 0.098 mmol) in acetone (25 mL) 0.100 mmol of N+Bu\textsubscript{4}SC\textsubscript{6}H\textsubscript{4}N in methanol solution (the solution was prepared through the addition of MeOH to equimolar amounts of C\textsubscript{5}H\textsubscript{4}NSH and of a commercial N+Bu\textsubscript{4}OH 1.0 M methanol solution) were added. The solution was stirred at room temperature for 20 h and the resulting colourless solution was evaporated to ca. 1 mL. 1PrOH (3 mL) was added and 5 crystallised as a white solid which was filtered, washed with 1PrOH (3 \times 0.5 mL) and dried in vacuum. Yield: 0.115 g, 66% Anal. Found (calcd for C\textsubscript{6}H\textsubscript{2}F\textsubscript{2}O\textsubscript{H}N\textsubscript{2}P\textsubscript{2}Pt\textsubscript{2}S): C, 46.48 (46.16); H, 3.53 (3.42); N, 1.48 (1.58); S, 2.14 (1.81). HRMS(–), exact mass for the anion [M]–: 1538.0079 Da; measured: m/z: 1538.0019 (M)–.

IR (cm–1): 952 and 799, 776 (X-sensitive), C\textsubscript{6}F\textsubscript{5}.73 1H NMR (acetone-d\textsubscript{6}, 298 K, 400 MHz), δ: 8.13 (dd, 3J\textsubscript{H,H} = 4.5 Hz, 4J\textsubscript{H,H} = 1.8 Hz, 1 meta-H [NCH] of C\textsubscript{5}H\textsubscript{4}N), 7.76 and 7.73 (m, partially overlapped 4 ortho-H of Ph\textsubscript{2}P\textsubscript{2}S + 4 ortho-H of Ph\textsubscript{2}P1), 7.55 (pseudo td, 3J\textsubscript{H,H} = 7.5 Hz, 2 para-H of Ph\textsubscript{2}P2S), 7.39 (pseudo td, 3J\textsubscript{H,H} = 7.5 Hz, 4J\textsubscript{H,P} = 2.8 Hz, 4 meta-H of Ph\textsubscript{2}P\textsubscript{2}S), 7.22 (partially overlapped pseudo td, 3J\textsubscript{H,H} = 7.6 Hz, 4J\textsubscript{H,H} = 1.8 Hz, 1 meta-H [CCH] of C\textsubscript{5}H\textsubscript{4}N), 7.19 (m, overlapped 2 para-H of Ph\textsubscript{2}P1+ 1 para-H of C\textsubscript{5}H\textsubscript{4}N), 7.11 (pseudo td, 3J\textsubscript{H,H} = 7.6 Hz, 4J\textsubscript{H,P} = 1.6 Hz, 4 meta-H of Ph\textsubscript{2}P1), 6.70 (d, 3J\textsubscript{H,H} = 7.6 Hz, 1 ortho-H of C\textsubscript{5}H\textsubscript{4}N), 3.51 (m, 8H, NBu\textsubscript{4}+), 1.88 (m, 8 H, NBu\textsubscript{4}+), 1.49 (pseudo sextet, 8 H, 3J\textsubscript{H,H} = 7.6 Hz, NBu\textsubscript{4}+), 1.03 (t, 12 H, 3J\textsubscript{H,H} = 7.2 Hz, 12 H, NBu\textsubscript{4}+).19F NMR (acetone-d\textsubscript{6}, 298 K, 376.5 MHz), δ: −115.4 (m, 3J\textsubscript{F,F} = 348 Hz, 2 ortho-F), −115.9 (m, satellite signals appear overlapped and 3J\textsubscript{P,F} is not measured, 2 ortho-F),−116.1 (m, satellite signals appear overlapped and 3J\textsubscript{P,F} is not measured, 2 ortho-F),−116.4 (m, 3J\textsubscript{P,F} = 462 Hz, 2 ortho-F of the C\textsubscript{6}F\textsubscript{5} trans to S), −165.0 (t, 3J\textsubscript{F,F} = 19.9 Hz, 1 para-F), −165.3 (t, 3J\textsubscript{F,F} = 19.6 Hz, 1 para-F), −165.8 (pseudo td, 3J\textsubscript{F,F} = 21.3 Hz, 5J\textsubscript{F,P} = 7.8 Hz, 2 meta-F), −166.0 (pseudo td, 3J\textsubscript{F,F} = 21.0 Hz, 5J\textsubscript{F,P} = 8.0 Hz, 2 meta-F), from −166.5 to −166.9 (m, overlapped 2 meta-F + 1 para-F), −167.4 (t, 3J\textsubscript{F,F} = 19.9 Hz, 4J\textsubscript{F,P} = 116 Hz, 2 meta-F of the C\textsubscript{6}F\textsubscript{5} trans to S), −167.7 (t, 3J\textsubscript{F,F} = 19.9 Hz, 1 para-F of the C\textsubscript{6}F\textsubscript{5} trans to S). 31P (1H) NMR (acetone-d\textsubscript{6}, 298 K, 162.0 MHz), δ: 107.0 (1J\textsubscript{P2,P1} = 2693 Hz, P2), −12.5 (1J\textsubscript{P1,P1} = 1838 Hz, 1J\textsubscript{P1,P2} = 1893 Hz, P1) ppm. 195Pt NMR (acetone-d\textsubscript{6}, 298 K, 86 MHz), δ: −4467 (Pt1), −4319 (Pt2).

\([\text{N}^+\text{Bu}_4][\text{C}_{6}H_{2}F_{2}(\text{C}_{6}F_{5})_{2}\text{Pt}(\mu-\text{PPh}_{2})\text{Pt}(\text{S}_{2}\text{COEt})(\text{C}_{6}F_{5})]\) (6)
To a yellow solution of 1 (0.130 g, 0.091 mmol) in CH₂Cl₂ (20 mL) 0.015 g (0.093 mmol) of KEtOCSe₂ in methanol (2 mL) were added. The solution was stirred at room temperature for 20 h and N⁴Bu₄ClO₄ (0.031 g, 0.091 mmol) was added. The mixture was evaporated almost to dryness and MeOH (2 mL) was added. A pale yellow solid crystallized that was filtered and washed with MeOH (2 × 0.5 mL). The solid was treated with CH₂Cl₂ (8 mL) and the resulting suspension was filtered through celite. The filtrate was evaporated to ca. 2 mL and added of n-hexane (15 mL). Complex 6 crystallized as a yellow solid which was filtered, washed with n-hexane (3 × 0.5 mL) and dried in vacuum. Yield: 0.090 g, 55%. Anal. Found (calcd for C₆₇F₂₀H₆₁NOP₂Pt₂S₂): C, 44.81 (44.90); H, 3.35 (3.43); N 0.54 (0.78); S, 3.77 (3.58). HRMS(–), exact mass for the anion [M]–: 1548.9795 Da; measured: m/z: 1548.9754 (M)–.

IR (cm⁻¹): 1520, 980 (PPh₂C₆F₅); 952 and 792, 779 (X -sensitive), C₆F₅. ¹H NMR (acetone-d₆, 298 K, 400 MHz), δ: 7.84 (dd, ³JH,P = 12.0 Hz, ³JH,H = 8.8 Hz, 4 ortho-H of Ph₂(C₆F₅)P₂), 7.65 (t, ³JH,H = 9.0 Hz, 4ortho-H of Ph₂P), 7.38 (t, ³JH,H = 7.6 Hz, 2 para-H of Ph₂(C₆F₅)P₂), 7.22 (td, ³JH,H = 7.6 Hz, 4 meta-H of Ph₂(C₆F₅)P₂), 4.39 (q, 2 H, OCH₂CH₃), 3.51 (m, 8H, NBu₄⁺), 1.88 (m, 8 H, NBu₄⁺), 1.49 (pseudo sextet, 8 H, ³JH,H = 7.2 Hz, 12 H, NBu₄⁺). ¹⁹F NMR (acetone-d₆, 293 K, 376.5 MHz), δ: –112.9 (m, 2 ortho-F of the C₆F₅ bonded to Pt¹), –115.8 (m, overlapped, ³JPF = 412 Hz, ³JJF,P = 290 Hz, 4 ortho-F), –122.6 (d, ³JJF,P = 18 Hz, 2 ortho-F of the Ph₂(C₆F₅)P₂), –154.0 (t, ³JJF,P = 20.0 Hz, 1 para-F of the Ph₂(C₆F₅)P₂), –164.1 (pseudo t, ³JJF,P = 19.6 Hz, 2 meta-F of the Ph₂(C₆F₅)P₂), –165.8 (t, ³JF,P = 19.9 Hz, 1 para-F), –166.1 (pseudo td, ³JJF,P = 22.0 Hz, 5JF,P = 8.3 Hz, 2 meta-F), –167.0 (pseudo td, ³JJF,P = 20.9 Hz, 5JF,P = 9.4 Hz, 2 meta-F), –167.3 (pseudo td, ³JJF,P = 112 Hz, 5JF,P = 20.9 Hz, 2 meta-F of the C₆F₅ trans to S), –167.8 (t, ³JJF,P = 19.5 Hz, 1 para-F of the C₆F₅ trans to S), –168.0 (t, ³JF,F = 19.5 Hz, 1 para-F). ³¹P{¹H} NMR (acetone-d₆, 298 K, 162.0 MHz), δ: 9.7 (¹JJP,F₁,F₂ = 2565 Hz, P²), –20.7 (¹JJP,F₁,F₂ = 2003 Hz, ¹JJP,F₁,F₂ = 2972 Hz, P¹) ppm. ¹⁹⁵Pt NMR (acetone-d₆, 298 K, 86 MHz), δ: –4427 (Pt¹), –4310 (Pt²).

\([\text{N}^4\text{Bu}_4]\)[(PPh₂C₆F₅)(C₆F₅)₂Pt(μ-PPh₂)Pt(pymS)(C₆F₅)] (7)

To a yellow solution of 1 (0.150 g, 0.105 mmol) in CH₂Cl₂ (25 mL) 0.105 mmol of N⁴Bu₄SC₄H₃N₂ in methanol solution (the solution was prepared through the addition of
MeOH to equimolar amounts of C₄H₃N₂SH and of a commercial N°Bu₄OH 1.0 M methanol solution) were added. The solution was stirred at room temperature for 20 h and the resulting pale yellow solution was evaporated to dryness. After addition of n-hexane (30 mL) to the yellow residue, the resulting suspension was stirred for 15 h, then the formed yellow solid, complex 7, was filtered out and dried under vacuum. Yield: 0.164 g. Anal. Found (calcd for C₆H₂₀F₄N₉P₂Pt₂S): C, 46.21 (45.82); H, 3.73 (3.34); N, 2.44 (2.36); S, 2.22 (1.80). HRMS(–), exact mass for the anion [M]⁻: 1539.0031 Da; measured: m/z: 1539.001 (M⁻).

IR (cm⁻¹): 1521, 980 (PPh₂C₆F₅); 955 and 802, 791, 778 (X-sensitive), C₆F₅.⁷³ ¹H NMR (acetone-d₆, 298 K, 400 MHz), δ: 8.20 (dd, ³J_H,H = 4.7 Hz, ⁴J_H,H = 2.3 Hz, H of C₄N₂ ring in para position to N¹), 7.44 (broad), 7.29 (broad), 6.38 (dd, ³J_H,H = 4.7 Hz, H of C₄N₂ ring in para position to C³⁹), 3.51 (m, 8 H, NBu₄⁺), 1.88 (m, 8 H, NBu₄⁺), 1.49 (pseudo sextet, 8 H, ³J_H,H = 7.6 Hz, NBu₄⁺), 1.03 (t, 12 H, ³J_H,H = 7.2 Hz, 12 H, NBu₄⁺).

¹H NMR (acetone-d₆, 198 K, 400 MHz): conformer A: 9.36 (broad, 1 ortho-H of the PPh₂), from 8.3 to 8.18 (overlapped, 1 H C⁴⁹-N²-CH + 1 ortho-H of the PPh₂), 7.86 (broad, 1 para-H of the PPh₂(C₆F₅)), 7.65 (broad and partially overlapped, 1 meta-H of the PPh₂), 7.55 (broad, 1 para-H of the PPh₂) 7.36 (broad and partially overlapped, 1 meta-H of the PPh₂), 7.25 (broad, 1 para-H of the PPh₂(C₆F₅)), 6.77 (broad, 1 para-H of the PPh₂), 6.67 (broad, 1 meta-H of the PPh₂), 6.39 (broad, 1 H, C⁴⁹-N-CH-CH), 6.34 (broad, 1 overlapped ortho-H of the PPh₂), 6.23 (broad, 1 ortho-H of the PPh₂), 6.00 (broad, 1 meta-H of the PPh₂), 5.27 (broad, 1 H, C⁴⁹-N¹-CH), 3.45 (m, 8 H, NBu₄⁺), 1.78 (m, 8 H, NBu₄⁺), 1.36 (pseudo sextet, 8 H, ³J_H,H = 7.6 Hz, NBu₄⁺), 0.93 (t, 12 H, ³J_H,H = 7.2 Hz, 12 H, NBu₄⁺). The remaining 8 protons of the PPh₂(C₆F₅) give an unresolved very broad signal ranging from 8.0 to 5.5 ppm. The unequivocal attribution of the ¹H NMR signals of conformer B was hampered by their relatively low intensity and high broadness. ¹⁹F NMR (acetone-d₆, 298 K, 376.5 MHz), δ:−105.3 (very broad, 2 ortho-F of the C₆F₅ bonded to Pt¹ and trans to P²) from −113 to −119 (broad overlapped signals of 2 ortho-F of the C₆F₅ ring bonded to Pt¹ and trans to P¹ + 2 ortho-F of the C₆F₅ ring bonded to Pt²) −122.8 (very broad, 2 ortho-F of the Ph₂(C₆F₅)P). ¹⁹F NMR (acetone-d₆, 198 K, 376.5 MHz), δ:−102.3 (broad, ³J_Pt,F = ca. 340 Hz, 1 ortho-F of the C₆F₅ bonded to Pt¹ and trans to P² of conformer A), −102.5 (broad, ³J_Pt,F = ca. 340 Hz, 1 ortho-F of the C₆F₅ bonded to Pt¹ and trans to P² of conformer A), −105.4 (broad, ³J_Pt,F = ca. 340 Hz, 2 ortho-F of the C₆F₅ bonded to Pt¹ and trans to P² of conformer B) from
–113 to –120 (broad overlapped signals of 2 ortho-F of the C₆F₅ ring bonded to Pt₁ and trans to P¹ + 2 ortho-F of the C₆F₅ ring bonded to Pt² of conformers A and B) –122.4 (broad, 1 ortho-F of the Ph₂(C₆F₅)P of conformer B), –124.1 (broad, 2 ortho-F of the Ph₂(C₆F₅)P of conformer A), –128.2 (broad, 1 ortho-F of the Ph₂(C₆F₅)P of conformer B).

31P{¹H} NMR (acetone-d₆, 298 K, 162.0 MHz), δ: 9.7 (¹J_P₂,Pt₁ = 2602 Hz, P²), –17.7 (¹J_P₁,P₁ = 1957 Hz, ¹J_P₁,P₂ = 2729 Hz, P¹) ppm. 31P{¹H} NMR (acetone-d₆, 198 K, 162.0 MHz), δ: 10.2 (¹J_P₂,Pt₁ = 2599 Hz, P² of conformer A), 14.0 (¹J_P₂,Pt₁ = 2613 Hz, P² of conformer B), –18.5 (¹J_P₁,P₁ = 1964 Hz, ¹J_P₁,P₂ = 2773 Hz, P¹ of conformer A) –19.2 (¹J_P₁,P₁ = 2015 Hz, ¹J_P₁,P₂ = 2671 Hz, P¹ of conformer B) ppm. 195Pt NMR (acetone-d₆, 198 K, 86 MHz), δ: –4449 (Pt₁), –4431 (Pt²).

To a yellow suspension of 1 (0.100 g, 0.074 mmol) in CH₂Cl₂ (2 mL) 0.5 mL of CH₃CN was added. The mixture was stirred for 2 h, during which it became a colourless solution. Addition of n-hexane (30 mL) caused the precipitation of white crystals, which were filtered, washed with n-hexane (3 × 1 mL) and dried under vacuum. Yield: 0.093 g, 88%. Anal. Found (calcd for C₅₂F₂₀H₂₆N₂P₂Pt₂): C, 40.97 (41.34); H, 1.44 (1.73); N 1.82 (1.85). HRMS(–), exact mass for the anion [M – CH₃CN]–: 1492.0162 Da; measured: m/z: 1492.0099 (M – CH₃CN)–. IR (cm⁻¹): 1519, 982 (PPh₂C₆F₅); 954 and 805, 781 (X-sensitive), C₆F₅. 2323, 2296 (C≡N). ¹H NMR (acetone-d₆, 298 K, 400 MHz), δ: 7.90 (dd, ³J_H,P = 11.0 Hz, ³J_H,H = 7.9 Hz, 4 ortho-H of Ph₂(C₆F₅)P²), from 7.73 to 7.58 (m, overlapped, 2 para-H of Ph₂(C₆F₅)P² + 4 meta-H of Ph₂(C₆F₅)P² + 4 ortho-H of Ph₂P¹), 7.25 (t, ³J_H,H = 7.3 Hz, 2 para-H of Ph₂P¹), 7.16 (t, ³J_H,H = 7.3 Hz, 4 meta-H of Ph₂P¹), 2.33 (s, 3 H of CH₃CN), 2.16 (s, 3 H of CH₃CN). ¹⁹F NMR (acetone-d₆, 293 K, 376.5 MHz), δ: –118.1 (d, ³J_F,P = 502 Hz, ³J_F,F = 20 Hz, 2 ortho-F of the C₆F₅ trans to a MeCN), –118.6 (m, ³J_F,P = 358 Hz, 2 ortho-F of the C₆F₅ trans to P¹), –118.8 (d, ³J_F,P = 445 Hz, ³J_F,F = 23 Hz, 2 ortho-F of the C₆F₅ trans to a MeCN), –125.3 (d, ³J_F,F = 20 Hz, 2 ortho-F of the Ph₂(C₆F₅)P²), –149.7 (tt, ³J_F,F = 20.0 Hz, ⁴J_F,F = 4.3 Hz, 1 para-F of the Ph₂(C₆F₅)P²), –162.0 (m, ³J_F,F = 19.6 Hz, ⁴J_F,F = 4.7 Hz, 2 meta-F of the Ph₂(C₆F₅)P²), –164.8 (t, ³J_F,F = 19.7 Hz, 1 para-F), –165.4 (tt, ³J_F,F = 19.5 Hz, ⁴J_F,F = 2.5 Hz, 1 para-F), –165.8 (overlapped, 4 meta-F), –167.5 (t, ³J_F,F = 19.5 Hz, 1 para-F, – 167.7 (t, ⁴J_F,P = 120 Hz, ³J_F,F = 19.5 Hz, 2 meta-F). ³¹P{¹H} NMR (acetone-d₆, 298 K,
162.0 MHz), δ: 4.2 ($^1J_{P2,P1} = 2084$ Hz, $^2J_{P1,P2} = 313$ Hz, P2), 1.8 ($^1J_{P1,P1} = 2110$ Hz, $^1J_{P1,P2} = 2090$ Hz, $^2J_{P1,P2} = 313$ Hz, P1) ppm. 195Pt NMR (acetone-d_6, 298 K, 86 MHz), δ: –4104 (Pt1), –4414 (Pt2) ppm.

X-ray structure determinations. Crystal data and other details of the structure analyses are presented in Table S1 (Supporting Information). Suitable crystals for X-ray diffraction studies were obtained by slow diffusion of n-hexane into concentrated solutions of the complexes in 2 mL of Me$_2$CO (4), CH$_2$Cl$_2$ (2, 3, 6 and 7) or CH$_2$Cl$_2$ plus a few drops of CH$_3$CN (8). Crystals were mounted at the end of quartz fibres. The radiation used in all cases was graphite monochromated Mo K$_\alpha$ ($\lambda = 0.71073$ Å). X-ray intensity data were collected on an Oxford Diffraction Xcalibur diffractometer. The diffraction frames were integrated and corrected from absorption by using the CrysAlis RED program. The structures were solved by Patterson and Fourier methods and refined by full-matrix least squares on F^2 with SHELXL. All non-hydrogen atoms were assigned anisotropic displacement parameters and refined without positional constraints, except as noted below. All hydrogen atoms were constrained to idealized geometries and assigned isotropic displacement parameters equal to 1.2 times the U_{iso} values of their attached parent atoms (1.5 times for the methyl hydrogen atoms). For 2, the structure showed packing problems and voids (about 545.4 Å$^{-3}$) were present. These voids contain very diffuse electron density, most likely corresponding to crystallization solvent. All the attempts to model it as discrete molecules failed and thus, the SQUEEZE procedure, as implemented in PLATON, was used to deal with it. As an additional symptom of the deficient packing, the tetrabutyl ammonium cation is badly disordered, with three of its four “legs” disordered over two sets of positions that were refined with 0.5/0.5 partial occupancy. Restraints in the geometry and anisotropic thermal parameters were used of these disordered carbon atoms. For 3·1.35CH$_2$Cl$_2$, one of the tetrabutyl ammonium cations has two of their Bu chains disordered over two positions, and their C atoms were refined with partial occupancy 0.5. The geometry between these disordered atoms was constrained to sensitive values. One diffuse dichloromethane solvent molecule was found to be disordered over the same area, and their two components were refined with 0.35 partial occupancy. Constrains were used in the geometry of these moieties. For 6, the methyl end of the S$_2$OEt ligand was disordered over two positions which were refined with 0.5 partial occupancies. For 7·0.5n-C$_6$H$_{14}$, soft restraints were used in the geometry of the solvent n-hexane.
molecule. For $8\cdot1.5$ CH$_3$CN one of the crystallization acetonitrile moiety lies near an inversion center and is refined with 0.5 partial occupancy. Soft restraints were used in the geometry of this. Full-matrix least-squares refinement of these models against F^2 converged to final residual indices given in Table S1 (Supporting Information).

ASSOCIATED CONTENT

Supporting Information

Table S1. Crystal data and other details of the structure analyses.

Table S2. Selected bond distances (Å) and angles (°) for complexes $[N^nBu_4][(RF)_2Pt^{II}(\mu-PhS-PPh_2)(\mu-PPh_2)Pt^{II}(RF)_2]$ (2), $[N^nBu_4][(RF)_2Pt^{II}(\mu-EtOCS_2-PPh_2)(\mu-PPh_2)Pt^{II}(RF)_2]\cdot1.35CH_2Cl_2$ (3·1.35CH$_2$Cl$_2$) and $[N^nBu_4][(RF)_2Pt^{II}(\mu-pymS-PPh_2)(\mu-PPh_2)Pt^{II}(RF)_2]\cdot1.25Me_2CO$ (4·1.25Me$_2$CO).

Table S3. Selected bond distances (Å) and angles (°) for complexes $[N^nBu_4][(PPh_2RF)(RF)_2Pt^{II}(\mu-PPh_2)Pt^{II}(EtOCS_2)(RF)]$ (6) and $[N^nBu_4][(PPh_2RF)(RF)_2Pt^{II}(\mu-PPh_2)Pt^{II}(pymS)(RF)]\cdot0.5n-C_6H_{14}$ (7·0.5n-C$_6$H$_{14}$).

Table S4. Selected bond distances (Å) and angles (°) for complex $[(PPh_2RF)(RF)(CH_3CN)Pt^{II}(\mu-PPh_2)Pt^{II}(CH_3CN)(RF)_2]\cdot1.5CH_3CN$ (8·1.5 CH$_3$CN).

Crystallographic data in CIF format for compounds 2, 3, 4, 6, 7 and 8.

AUTHOR INFORMATION

Corresponding Authors:

*E-mail: efortuno@unizar.es

*E-mail: p.mastrorilli@poliba.it

ORCID

Consuelo Fortuño: 0000-0002-6061-0431

Antonio Martín: 0000-0002-4808-574X

Piero Mastrorilli: 0000-0001-8841-458X
Vito Gallo: 0000-0003-2926-3106
Stefano Todisco: 0000-0001-7863-3105

Notes
The authors declare no competing financial interest

ACKNOWLEDGMENTS
This work was supported by the Spanish MINECO/FEDER (Proyect CTQ2015-67461-P), and the Gobierno de Aragón and Fondo Social Europeo (Grupo Consolidado E21: Química Inorgánica y de los Compuestos Organometálicos).
REFERENCES AND NOTES

(22) Crosby, S. H.; Clarkson, G. J.; Rourke, J. P. *Organometallics* 2012, 31, 7256-7263.

(27) Zhao, S.-B.; Cui, Q.; Wang, S. Organometallics 2010, 29, 998-1003.

(43) Boag, N. M.; Browning, J.; Crocker, C.; Goggin, P. L.; Goodfellow, R. J.; Murray, M.; Spencer, J. L. Journal of Chemical Research-S 1978, 228-&.

(62) At low T, NOE contacts have the same sign of exchange cross peaks. In this experiment we discriminated exchange cross peaks from NOE contacts by comparing the 1H EXSY data with 1H COSY spectrum at 198 K.

Reactivity of the Pt(III),Pt(III) complex $[(C_6F_5)_2Pt^{\text{III}}(\mu-PPh_2)_{2}Pt^{\text{III}}(C_6F_5)_2](Pt-Pt)$ (1) with didentate S-based anions (L$^S^-$) was found dependent on the reaction solvent. The reductive coupling between the PPh_2 and L$^S^-$ (acetone) or C_6F_5 (dichloromethane) groups produces Pt(II) complexes with new Ph_2P–SL (acetone) or Ph_2P–C_6F_5 (dichloromethane) ligands.