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Appendices  
	
Appendix to Chapter 2  
Anisotropy in molecular magnets: the g-tensor 
A way to model the magnetic anisotropy of an ion is by defining the g-tensor: 

‚ =

p–– p–— p–œ

p—– p—— p—œ

pœ– pœ— pœœ

 

where ‚ is a real, symmetric 3×3 matrix and therefore p–— = p—–, p–œ = pœ–, pœ— = p—œ. 

The Zeeman Hamiltonian describing the interaction between the magnetic field and the effective spin 

operator ]′	can be modelled using the g-tensor:  

„‰ = no„‚Â′	 

where Ê is the magnetic field strength and µ. the Bohr magneton. 

When possible, the procedure to compute the anisotropy tensor of a magnetic ion is to diagonalise 

the g-tensor. The diagonal elements will then give the direction of the anisotropy axis. In very 

anisotropic Kramers ions, one of the diagonal elements is much larger than the other two (usually pœœ 

by convention): pœœ ≫ p––, p——. 

In this case, pœœ is known as “easy anisotropy axis” and a magnetic field applied in this direction 

would yield a much higher magnetisation than if applied in the p––, p—— directions. 

 

Paramagnetic relaxation 
Temperature dependence of the relaxation times for different processes 

The temperature dependence of the relaxation time in an Orbach relaxation process is: 

â = âL exp
ÈNÍÍ

ÖoÜ
 

where τL is the characteristic length parameter, UTÑÑ the anisotropy barrier, k. Boltzmann’s constant 

and T the temperature. Thus, if a magnetic molecule relaxes via Orbach relaxation, the anisotropy 

energy barrier can be determined. 

The temperature dependence of the relaxation time in a Direct relaxation process for a Kramers ion 

is: 

âO_ ∝ KEÜ 
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where	H is the applied magnetic field and T is the temperature. This formula is valid in the high 

temperature limit. 

The temperature dependence of the relaxation time in a Raman relaxation process for a Kramers ion 

is: 

âO_ ∝ ÜZ 

The derivation of the formulas in great detail can be found in reference [20]. 
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Appendix to Chapter 3  
Sample description 

Distances 

	
Figure A1. Definition of the distances Î_, Î?, Ï_, Ï?. 

	
Table A1. Molecule 2015. Distances Î_, Î?, Ï_, Ï? measured in Angstrom Å. The remaining distances are defined Î =

Î_ + Î?, Ï = Ï_ + Ï? and Ì = (Î + Ï)/2.  

	
Table A2. Molecule 2016. Distances Î_, Î?, Ï_, Ï? measured in Angstrom Å. The remaining distances are defined Î =

Î_ + Î?, Ï = Ï_ + Ï? and Ì = (Î + Ï)/2. Molecule 2015 has an extra Dy-Dy due to the single oxygen bridge. 
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The distances “D” are the average length of the double oxygen bridge from one Dy(III) ion to another. 

The distances range between 4,798 − 4,940 Å for molecule 2015 and 4,752 − 4,934 Å for molecule 

2016, which are similar values for both molecules. 

Angles 

 

	
Figure A2. Definition of the angle Dy-Dy-Dy, ”. 

 

	
Table A3. Angles Dy-Dy-Dy as defined in Figure A2. 

The angles for both molecules are similar but not identical. Molecule 2016 seems to be slightly more 

bent inwards than molecule 2015. The reason is thought to be the extra single oxygen bridge.  
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Equipment  

AC magnetisation two-point measurements 

In the first part of the measurement, the sample is positioned in point 

1 (Figure A3), that is, at the centre of the positively oriented bottom 

coil. An AC magnetic field is applied so that the AC signal coming 

from the sample and the signal coming from the AC field are 

suppressed. This magnetic field is called “nulling waveform”. The 

second part of the two-point measurement takes place at point 2 

(Figure A3), that is, at the centre of the two coils oriented in the 

opposite direction with respect to the coil in point 1 (negative 

orientation). The AC driving field and the nulling waveform are 

applied. The nulling waveform cancels the AC field as it did in point 

1. However, since the coils are negatively oriented, the sample 

produces an AC signal that interferes constructively with the nulling 

waveform. As a result, the AC signal of the sample is increased 3-

fold. Hence, the desired AC magnetisation of the sample is a third of 

the measured AC signal. 

A more thorough explanation can be found in reference [35].  

Figure A3. Depiction of the sample straw 
in the pickup coil. Points 1 and 2 are used 
in the AC measurements. 
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Appendix to Chapter 4  
 

DC measurements 

Derivation of the Curie-Weiss law  

The interaction between magnetic centres within a molecule to derive the Curie-Weiss law is 

modelled in the “molecular field approximation” by introducing a perturbation in the Zeeman 

interaction Hamiltonian. This perturbation reads – zα < J\ > c where z is the number of nearest 

neighbours around a magnetic centre, α is the strength of the exchange between magnetic centres and 

< J\ > is the mean value of the z-component of the total angular momentum operator. The Zeeman 

Hamiltonian then reads: 

„‰ = pnoÂÒK − Ú“ < vœ > qÒ 

where H is the magnetic field in the z direction, the g-tensor is assumed to be isotropic and µ. is the 

Bohr magneton. The eigenvalues are given by: 

Û = ys(pnoK − Ú“ < vœ >) 

where Mx is the spin quantum number associated with c. 

The magnetisation M of a system may be expressed: 

y = −«pno < vœ > 

where N is the number of magnetic centres. 

From statistical physics, the mean value of the z-spin operator can be expressed: 

< v >=

ysexp	(−
Û

ÖoÜ
)

s

ÙıˆOs	

exp	(−
Û

ÖoÜ
)

s

ÙıˆOs	

 

after solving substituting with the eigenvalues: 

< vœ >= −
v v + 1 pnoK

3ÖoÜ − Ú“v(v + 1)
 

Therefore: 

y = «
v v + 1 p?no

?K

3ÖoÜ − Ú“v(v + 1)
 

Since χ = dM/dH: 

Ç = «
v v + 1 p?no

?

3ÖoÜ − Ú“v(v + 1)
 

And therefore, the Curie-Weiss law: 
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Ç =
ø

Ü − Θ
 

 

with 

Θ =
Ú“v v + 1

3Öo
 

as seen in Chapter 4.  Experimental results and data treatment. 

 

Magnetisation 

Calculation of the g-tensors 

The g-tensor for Dy1	is: 

‚ ¯ =

0 0 0

0 0 0

0 0 19

 

The rotation matrices used to derive the rest g-tensors are: 

µ–
	 (¿) =

1 0 0

0 ∞±ñ¿ ñ∂z¿

0 −ñ∂z¿ ∞±ñ¿

													µ—
	 (¿) =

∞±ñ¿ 0 ñ∂z¿

0 1 0

−ñ∂z¿ 0 ∞±ñ¿

	 

The g-tensor for Dy7 was obtained by rotating p _  23° with respect to the x axis and 14 ° with respect 

to the y axis: 

‚ ˘ = µ– 23 µ— 14 p
_ µ—

O_ 14 µ–
O_(23) 

The anisotropy axis for Dy4 was observed to be very similar to that of Dy7 and therefore: 

‚ ˙ = p ˚  

The g-tensor for Dy2 was obtained by rotating p ˚  90° with respect to the x axis: 

‚ ¸ = µ– 90 p
˚ µ–

O_(90) 

The g-tensor for Dy5 was obtained by rotating p _  30° with respect to the x axis and 30° with respect 

to the y axis: 

‚ ˝ = µ– 30 µ— 30 p
_ µ—

O_ 30 µ–
O_(30) 

The g-tensor for Dy3 was obtained by rotating p _  40° with respect to the x axis and 45° with respect 

to the y axis: 

‚ ˛ = µ– 40 µ— 45 p
_ µ—

O_ 45 µ–
O_(40) 

The g-tensor for Dy6 was obtained by rotating p _  42° with respect to the x axis and 37° with respect 

to the y axis: 

‚ ˇ = µ– 42 µ— 37 p
_ µ—

O_ 37 µ–
O_(42) 
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The calculated g-tensors are presented in the following subsection (Table A4). 

Comparison of M(H) for both molecules 

	
Figure A4. Comparison of M(H) curves for both molecules. The black curves are the simulations. 

Table of anisotropy tensor elements 

 
Table A4. Calculated components of the g-tensor elements for each Dy(III) ion. The highlighted data are inputs to the 

simulation programme. 

 

How are the g-tensors affected by small variation in the rotation angles? 

The g-tensor for Dy1 is: 

‚ ¯ =

0 0 0

0 0 0

0 0 19
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If the anisotropy axis for Dy7 was rotated as little as 10° with respect to the y axis, ‚ ˘  would read: 

‚ ˘ =

0,55 0 3,1

0 0 0

3,1 0 18,2

 

which has non-negligible off-diagonal components: f,_
_ï,?

≈ 17%.  

This result implies that small inaccuracies in estimating the angles that the anisotropy axes of the 

Dy(III) ions form with the x, y and z axes will lead to big differences in the g-tensors. This is relevant 

since the programme used for the simulation of M(H) does not take off-diagonal components. 

 

AC susceptibility measurements 

Fitting comparisons: 1 relaxation time versus 2 relaxation times for molecule 2016 

An attempt to fit the data curves with two relaxation parameters was only possible for a DC field of 

H≈W = 1500 Oe; Figure A5: 

 
Figure A5. Molecule 2016. AC susceptibility curves for H≈W = 1500 Oe. The green fitting corresponds to 2 relaxation 

times and the blue to 1 relaxation time.   

The fitting to 2 relaxation parameters deviates more from the experimental data than the fitting for 

one relaxation parameter. Thus, the fitting to one relaxation time proves to be best. 
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Tables 

 
Table A5. Molecule 2016. Fitted values of τ and α with their respective fitting uncertainties ∆τ and ∆α for different DC 

fields at c. 

 

Table A6. Molecule 2016. Fitted values of τ and α with their respective fitting uncertainties ∆τ and ∆α at different 

temperatures for a fixed field of H≈W = 1500 Oe. 

 

Table A7. Molecule 2015. Relaxation times and their respective uncertainties for different DC fields at T	=	1,8	K. 
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Table A8. Molecule 2015. Fitted values of the Cole-Cole parameters and their uncertainties for the three relaxation 

mechanisms. 

 

 

 
 

 

 
Table A9. Molecule 2015. Temperature variation of the relaxation times and their uncertainty. 

	



	
	

	

	
	


