Sensitivity of olive leaf turgor to air vapour pressure deficit correlates with diurnal maximum stomatal conductance

C.M. Rodriguez-Dominguez, V. Hernandez-Santana, T.N. Buckley, J.E. Fernández, A. Diaz-Espejo

ARTICLE INFO

Keywords:
Plant water stress indicator
Leaf turgor pressure
Stomatal conductance
Olive
Drought
Moderate water stress

ABSTRACT

Effective study and management of crops and forests would benefit greatly from useful plant-based indicators of the biological controls on evapotranspiration, and particularly stomatal conductance (g_s). Given the strong influence of g_s on bulk leaf water potential and turgor pressure (P), in vivo measurement of P may provide useful information about diurnal or seasonal dynamics of g_s. Moderate plant water stress affects the diurnal dynamics of P as leaf-to-air vapour pressure deficit (D) varies, and these dynamics correlate to g_s. Here, we explored relative changes in P in response to changes in D under mild drought conditions, and how these changes are linked to stomatal behaviour, and specifically to diurnal maximum g_s ($g_{s,max}$), one of the best indicators of plant water stress. We monitored ecophysiological and environmental variables, as well as a relative proxy for P, during three consecutive seasons in a hedgerow olive orchard where trees were supplied with different irrigation treatments to create well-watered and moderately water-stressed conditions. Our results demonstrated that the sensitivity of P to D correlated well with $g_{s,max}$ reached by the trees within a range in which variations in g_s are the main diffusional limitation to photosynthesis. We further showed that this correlation held under a wide range of meteorological conditions and soil water availability. This turgor proxy measurement, which is much easier to measure than g_s, can facilitate the use of $g_{s,max}$ as an indicator of plant water stress and evapotranspiration in agriculture and plant science research.

1. Introduction

Drought intensification worldwide due to climate change has increased the necessity of understanding how water stress affects the dynamics of plant-atmosphere vapor and carbon exchange through its effects on stomatal conductance (g_s). Current models are reasonably accurate in predicting diurnal dynamics of g_s relative to its diurnal maximum ($g_{s,max}$), using formulations with varying degrees of empiricism and mechanistic detail. However, most models rely on empirical parameterizations to capture how water stress drives shifts in $g_{s,max}$ at longer time scales of weeks, months and beyond (Buckley, 2017; Buckley and Mott, 2013; Damour et al., 2010). Thus, a reliable and accurate indicator for stress-related shifts in $g_{s,max}$ would be invaluable for quantifying impacts of water stress on transpiration, for applications ranging from precision irrigation of crops (Hernandez-Santana et al., 2016) to modelling crop photosynthesis and yield (Hernandez-Santana et al., 2018), to improving large-scale models of plant-atmosphere gas exchange (Rogers et al., 2017). Because $g_{s,max}$ integrates numerous internal (hydraulic conductance, osmotic adjustment, phytobormones) and external (atmospheric demand, soil water content) factors related to drought and avoids complexities related to diurnal dynamics of g_s, it is also a useful indicator of water stress in its own right (Correia et al., 1995; Flexas et al., 2004; Medrano et al., 2002).

Stomatal behaviour is closely related to the dynamics of leaf turgor (P) during the day: stomatal opening in the morning increases transpiration and reduces leaf water potential and, hence, turgor pressure (Ache et al., 2010). Dynamics of P, in turn, affect g_s via feedback regulation (Buckley, 2005; McAdam and Brodribb, 2016). Thus, plant-based measurement of leaf turgor may provide information useful for quantifying g_s and $g_{s,max}$. Plant-based sensors have been extensively used for precision irrigation scheduling of horticultural crops (Conejero et al., 2007; Cuevas et al., 2013; Fernández, 2017; Fernández et al., 2011, 2008, 2001; Intrigliolo and Castel, 2006; Ortuño et al., 2010), for validating the use of simplified forms of mechanistic models (Buckley et al., 2012) and for unravelling physiological processes (Bauer et al., 2013). One such sensor, the leaf patch clamp pressure probe ("ZIM
A common challenge with plant-based sensors is to relate their output to physiologically meaningful parameters in a consistent manner (Fernández, 2017, 2014a; Jones, 2007). A qualitative classification of diurnal shape changes of ZIM probe outputs has proven useful as a plant water stress indicator under different plant water status and also under severe water stress (Marino et al., 2016; Martínez-Gimeno et al., 2017; Padilla-Díaz et al., 2018, 2016). Attempts to derive more meaningful water stress indicators for high plant water status and, hence, more related to stomatal function have been reported (Marino et al., 2016). However, a quantitative, physiologically based indicator of ZIM probe outputs has never been, to our knowledge, studied and demonstrated useful for studying regulation of plant water status under moderate stress.

Diurnal variations in turgor and \(g_s \) are driven by shifts in evaporative demand (leaf to air water vapor mole fraction difference, \(D \)), and, hence, the sensitivity of turgor to changes in \(D \) (\(dp/dD \)) should vary linearly with stomatal conductance (because \(P = \psi_{soil} + \pi - g_D/K \), where \(\psi_{soil} \) is soil water potential, \(\pi \geq 0 \) is leaf osmotic pressure, and \(K \) is plant hydraulic conductance). More specifically, if \(dp/dD \) is expressed instead as \(dp_{rel}/dD \), where \(P_{rel} \) is \(P \) normalized relative to its seasonal range, the resulting quantity should be approximately proportional to diurnal \(g_{s,max} \) and inversely proportional to the seasonal maximum of transpiration rate (\(E_{max} \)), i.e.,

\[
\frac{dp_{rel}}{dD} \propto \frac{g_{s,max}}{E_{max}}
\]

(1)

Eq. (1), which is derived in the Appendix as Eq. (A8), suggests that variations in leaf turgor with respect to \(D \) could serve as a sensor for changes in \(g_{s,max} \) under water stress.

The objective of this study was to test the hypothesis that the sensitivity of ZIM probe output \(Z \) to \(D \) (i.e., \(dZ/dD \)) can be used as a proxy for \(dp_{rel}/dD \) in order to detect variations in \(g_{s,max} \) and plant water stress during moderate soil water deficit in olive, a woody crop species. We quantified \(dZ/dD \) and compared it with two estimates of variation in \(g_{s,max} \) during water stress: (i) fortnightly measurements of \(g_{s,max} \) in well-watered and moderately water-stressed olive trees growing in a hedgerow orchard during three consecutive irrigation seasons, and (ii) daily \(g_{s,max} \) estimated from sap flux density data (Hernandez-Santana et al., 2016) recorded during an entire season.

2. Material and methods

2.1. Experimental design and water stress conditions

The present study was performed from 2010 to 2012 in a commercial hedgerow olive orchard (Olea europaea L., cv. Arbequina) near Seville, Spain (37°15′ N, 5°48′ W). The orchard was planted with 1667 trees ha\(^{-1}\) in 2007. The diverse objectives of the research projects based on this orchard allowed us to combine a range of data to test our hypothesis. From 2010–2012, different regulated deficit irrigation strategies and their effects on water productivity, fruit yield and oil production were tested (Fernández et al., 2018, 2013; Padilla-Díaz et al., 2016). Concomitantly, experiments exploring the use of plant water stress indicators for irrigation scheduling (Cuevas et al., 2013; Fernández, 2014a; Fernández et al., 2011; Hernandez-Santana et al., 2016; Padilla-Díaz et al., 2016; Rodriguez-Dominguez et al., 2012) and the application of mechanistic models to manage water use (Diaz-Espejo et al., 2012) were also conducted. The orchard characteristics, irrigation strategies and experimental design were explained in detail by these authors. Specifically for the present work, two regulated deficit irrigation (RDI) treatments were imposed in the orchard: 60RDI, scaled to a total irrigation amount of 60% of the irrigation needs (IN); and 30RDI, scaled to a total of 30% of IN, where IN = ET\(_c\) - \(P_e \), ET\(_c\) being the maximum potential crop evapotranspiration calculated with the crop coefficient approach (Allen et al., 1998) and \(P_e \), the effective precipitation calculated as 75% of the precipitation recorded in the orchard (Orgaz & Fereres, 2001). Control treatments for all the years aimed to replace 100% of IN. A randomized block design was used with four 12 m \(\times \) 16 m plots per treatment, with the exception of the Control treatment in 2010, for which only one plot was available. This design was based on previous measurements of the soil properties at the experimental site (Diaz-Espejo et al., 2012). Each plot contained eight central trees, where the measurements were made, surrounded by 24 border trees. For the present study, we only analysed the plots where plant-based sensors were installed; i.e., three out of the four plots per treatment. The irrigation seasons spanned from May to October.

The Control and RDI treatments generated well-watered and moderately water-stressed conditions, respectively, that allowed us to test our hypothesis within the water potential range of stomatal function of the plants. Threshold values for these olive trees of stem water potentials below \(-1.7 \) MPa (Fernández et al., 2011) and maximum stomatal conductance below 0.1 mol m\(^{-2}\) s\(^{-1}\), when biochemical limitations to photosynthesis start to occur (Flexas and Medrano, 2002), are considered severe water stress conditions. ZIM probe output has been classified qualitatively into three categories ('State I', 'State II' and 'State III'), see Fig. S3 for an example of each State), based on the shape of the diurnal curve of probe output. These 'States' have been related to ranges of stem water potential. Thus, in olive, shapes of diurnal curve of probe outputs likely identified as 'State I' were observed when stem water potential (\(\psi_{stem} \)) > -1.2 MPa, 'State II' when -1.2 MPa > \(\psi_{stem} \) > -1.7 MPa, and 'State III' when \(\psi_{stem} \) < -1.7 MPa (Fernández et al., 2011; Padilla-Díaz et al., 2016). However, our long experience working with ZIM probes (Breux et al., 2017; Ehrenberger et al., 2012b; Fernández, 2017, 2014a, Fernández et al., 2018, 2011, Padilla-Díaz et al., 2018, 2016; Rodriguez-Dominguez et al., 2012), showed us that some exceptions occur and some trees with slightly lower values than those threshold values still behave qualitatively as moderately water-stressed, and even well-watered, trees, based on leaf turgor measured with ZIM probes (i.e. 'State I'). The physiological basis behind these transitions between 'States' remains still unclear. Notwithstanding, what we already know is that in 'State II' and 'State III' the relationship between the probe output and leaf turgor pressure start to be or is completely lost, so any relationship with leaf water status appears to be inconsistent (Ehrenberger et al., 2012b), which may explain differences on the range of \(\psi_{stem} \), that lead to transitions between 'States' found in olive under different conditions (Marino et al., 2016). For this study, we decided to use only data from plants under moderate water stress, defined as stem water potentials above the turgor loss point ('State I') (Ehrenberger et al., 2012b) and within the range of stomatal function of the plants. The minimum values of stem water potential and maximum stomatal conductance from these plants were \(-2.11 \pm 0.06 \) MPa and \(0.07 \pm 0.01 \) mol m\(^{-2}\) s\(^{-1}\), respectively (means ± SE across three growing seasons).

Weather variables for all the experimental years were monitored by a Campbell weather station (GRWS100 System, Campbell Scientific Ltd., Shepshead, UK) installed in the centre of the experimental area. The meteorological sensors were installed at 3 m above the trees and average values of air temperature (\(T_a \)), photosynthetic photon flux density (PPFD) and relative humidity (RH) were recorded every 30 min. \(T_a \) and RH were used to estimate leaf to air water vapor mole fraction difference (\(D \)) (Buck, 1981).
Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Years</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ concentration (µmol mol⁻¹)</td>
<td>2010</td>
<td>381.3 ± 4.2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>386.4 ± 9.4</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>392.9 ± 6.4</td>
</tr>
<tr>
<td>Chamber radiation (µmol m⁻² s⁻¹)</td>
<td>2010</td>
<td>1288.4 ± 289.8</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1204.3 ± 292.1</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>1102.6 ± 370.6</td>
</tr>
<tr>
<td>Leaf temperature (°C)</td>
<td>2010</td>
<td>32.2 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>31.5 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>31.6 ± 3.8</td>
</tr>
</tbody>
</table>

2.2. Plant measurements

Once every two weeks during each irrigation season, plant water status and gas exchange were monitored. The midday stem water potential (ψff,leaf) was measured with a Scholander-type pressure chamber (PMS Instrument Company, Albany, Oregon, USA) on healthy, fully developed leaves from the inner part of the canopy wrapped in aluminium foil for ca. 2 h before the measurements. Maximum stomatal conductance to H₂O (gₐ,max) was measured fortnightly in all plots and treatments during each season between 0800 and 0930 Greenwich Mean Time (GMT), i.e. two hours less than the local time, using an open flow gas exchange system with a 2 cm x 3 cm chamber (IRGA Li-6400, LI-COR, Lincoln, NE, USA). Olive leaves did not fill the whole chamber, so the exact leaf area was drawn on acetates and measured later to correct the final measurement. Preliminary measurements demonstrated that stomatal conductance (gₐ) measured at these times of the day (during the morning and before midday) represented gₐ,max reliably (Diaz-Espejo et al., 2018; Fernández et al., 1997; Rodríguez-Dominguez et al., 2016). Chamber radiation, temperature and CO₂ concentration matched ambient conditions (Table 1). For both plant water status and gas exchange monitoring, we measured one leaf per tree in two trees per plot, near the instrumented tree, and averaged results within each plot (three plots per treatment).

Three diurnal measurement cycles were also conducted (one in 2011 and two in 2012), comprising instantaneous measurements of stomatal conductance to H₂O (gₐ) at 1.5–3 h intervals from dawn to sunset using the same gas exchange system as for gₐ,max measurements. Chamber radiation, temperature and CO₂ concentration matched ambient conditions. Measurements were completed within 1–2 min of enclosing the leaf in the chamber, to ensure measured gₐ was indicative of the value prevailing prior to measurements. Three leaves in two plots of the Control treatment for each point were measured on July 20th 2011, and four leaves in one Control plot were measured on June 25th and August 3rd 2012.

In 2012, plant hydraulic conductance (K) was calculated from fortnightly measurements of gₐ,max and soil-to-leaf water potential gradient as:

\[K = \frac{g_{a,max}D}{\psi_{soil} - \psi_{leaf}} \]

(2) where ψsoil is the soil water potential and ψleaf is the leaf water potential measured at midday. The use of ψleaf at midday was previously tested in our trees and conditions and did not present significant differences from ψleaf at the time of gₐ,max, agreeing with abundant literature in olive showing the same trend (Diaz-Espejo et al., 2018; Fernández et al., 1997; Rodríguez-Dominguez et al., 2016; Torres-Ruiz et al., 2013). Leaf water potential at predawn was used as an estimate of ψsoil. Leaves for both water potentials were sampled from representative current-year branches and measured with a Scholander-type pressure chamber.

In addition, pre-dawn leaf osmotic pressure (ψp) was measured on the same dates and using the same number of replicates (n = 3) as plant water status and gas exchange measurements in 2012. Mature, fully expanded leaves were cleaned, packed in aluminium foil and immediately frozen in liquid nitrogen. One 7-mm diameter disc per leaf was sampled between the midrib and margin with a cork borer, punctured 15–20 times with forceps to speed equilibration and immediately loaded in a C-52 thermocouple psychrometer chamber (Wescor Inc., Logan, UT, USA) connected to a datalogger (PSYPRO, Wescor). Equilibrium time in the chambers was ca. 30 min. ψp measurements were corrected by using the regression model proposed by Barlett et al. (2012) to account for apoplastic dilution and wall solute enrichment.

2.3. ZIM probes

Relative changes in leaf turgor pressure were recorded in situ with the non-invasive, online-monitoring leaf patch clamp pressure probe (“ZIM probe”, but also found in the literature as LPCP probe, YARA-ZIM probe or, recently, as YARA-Water sensor, YARA-ZIM Plant Technology GmbH, Hennigsdorf, Germany). The principle of the magnetic ZIM probe was described in detail by Westhoff et al. (2009) and Zimmermann et al. (2008). Briefly, a small patch of an intact leaf is used as a sensing element for measuring relative changes of turgor pressure in the entire leaf tissue. The leaf patch must be in hydraulic and osmotic equilibrium with its surrounding. The leaf is clamped between two metal pads in which two magnets are integrated. The lower pad contains a silicone-embedded temperature-independent pressure sensor chip. The magnetic pressure exerted on the leaf patch can be altered by changing the distance between the two magnets. Relative leaf turgor pressure is determined by measuring the pressure transfer function of the leaf patch, i.e., by measuring the leaf patch pressure output, Pp, upon application of a constantly kept external magnetic pressure (Pclamp). The attenuation of the applied external pressure and thus Pp depends on the magnitude of the turgor pressure of the leaf (P) which is opposed to Pclamp. That implies that Pp is low at high P and high at low P. Detailed analyses (Ehrenberger et al., 2012b; Westhoff et al., 2009; Zimmermann et al., 2008) showed that Pp is a power function of P, with a negative exponent. The signals are sent wirelessly by transmitters (connected by cable with the probe) to a controller which transfers the data to a GPRS modem linked to an Internet server. Pp was recorded every 5 min.

At the beginning of each irrigation season, three ZIM probes per treatment (one ZIM probe per tree and three plots, n = 3) were installed. In the Control plot of 2010, one representative tree was instrumented. Details on the clamping procedure are given by Fernández et al. (2011). The probes were clamped on the eastern leaves of the canopy at about 1.5 m above ground. Since initial Pclamp and thus initial Pp, in the turgescence state (early in the morning) can vary between leaves (10–25 kPa approx.), Pp, previously smoothed by using the 9-point FFT Filter routine in OriginPro 8.1 (OriginLab, Northampton, MA, USA), was normalized as shown in Eq. (3) below, to enable outputs to be averaged and compared between probes. Averages of the probe outputs were necessary in this study since the trees were not individually monitored, i.e. ecophysiological variables were not measured on the same trees with ZIM probes installed but on the same plot and treatment. Thus, normalization of Pp was compulsory to compare and average ZIM probe outputs. However, for further applications, trees can be individually monitored so the actual value of Pp can be used without the need of comparing with other probes and, in that case, no normalization would be needed. The normalized Pp calculation was:

\[Z = \frac{P_p - P_{p,min}}{P_{p,max} - P_{p,min}} \]

(3) where Pp is the actual value of the probe output. Pp,min and Pp,max are the seasonal minimum and maximum values (i.e. maximum and
minimum leaf turgor pressure, respectively) from periods of each season in which the diurnal patterns of ZIM probe outputs corresponded to well hydrated leaves or turgescence leaves, i.e., curves in which P_o increased during the morning (P decreased), reached the maximum peak at around midday and decreased (P increased) during the afternoon until the minimum peak at night, or ‘State I’. Unrealistic P_o peak values due to bad weather conditions and diurnal P_o curve shapes identified as ‘State II’ and ‘State III’ (see Section 2.1) were not considered. Thus, Z values captured the variation in P_o values but ranged between 0 and 1, meaning proportions of change in P_o.

2.4. Deriving the leaf turgor pressure-based indicator

The physiological plant-based indicator examined in this study is not P_o itself, but the sensitivity of its normalized value (Z) to D; i.e., dZ/dD. Supporting Information File Figure S4 contains a graphical representation of the calculation of dZ/dD. We excluded data for which PPFD was below 150 μmol m$^{-2}$ s$^{-1}$ to exclude nocturnal stomatal opening. As indicated by Eq. (1), dZ/dD is predicted to be proportional to g_{max}, dZ/dD may also vary as g fluctuates below g_{max}; preliminary work found that Z vs. D approximated a bi-linear relationship during the morning of each day, with one slope during early to mid-morning and a shift to a more shallow slope from mid-morning to midday or early afternoon, after which dZ/dD approximated or became negative (Fig. S4d). After g_{max} is reached in olive trees, which occurs during the morning (Diaz-Deespo et al., 2018; Fernández et al., 1997), g starts to oscillate (López-Bernal et al., 2018). Thus, to focus only on the moment of the day when g_{max} occurs and to avoid an influence of stomatal closure or oscillations on the dynamics of P_o, and hence of Z, which occur from the afternoon through the rest of the day (Fernández et al., 2011), we focused on a period from early morning (just after stomatal opening) to early afternoon, excluding the period of the day when dZ/dD became negative. We thus characterized dZ/dD by piecewise linear regression of Z vs. D for each day using the R (R Core Team, 2017) package ‘segmented’ (Muggeo, 2008, 2003), which gave the D values at which dZ/dD changed and the two values of dZ/dD for each experimental day and ZIM probe: one high (morning) value and one lower (mid-morning or early afternoon) value. dZ/dD values were then averaged per treatment (i.e., $n = 3$).

2.5. Sap flux density measurements

To test our hypothesis in a wider range of plant water status, we used a surrogate of g from sap flux density data of 2012. Sap flux density (J_f, mm h$^{-1}$) values were obtained using the Compensation Heat Pulse (CHP) method (Green et al., 2003). Details on the calibration and testing of the technique for the olive tree, as well as on data analysis, are given in Fernández et al. (2006, 2001). The same trees instrumented with ZIM probes, i.e., one tree per plot in three per treatment (Control, 60RDI and 30RDI), were instrumented at the beginning of the season with two sap flow probe sets, at the east and west facing sides of the trunk and at 0.3–0.4 m aboveground. Each probe set measured J_f at 5, 10, 15 and 20 mm depths below the cambium, every half hour for the entire experimental period. A CR10X datalogger connected to an AM25T multiplexer (Campbell, Campbell Scientific Ltd., Shepshed, UK) was used to release the heat pulses and collect the probe outputs. Hernandez-Santana et al. (2016) reported a good agreement between J_f (measured at 5 mm below the cambium) divided by D and g_{max}, both from the same time of day (between 8:00 and 9:30 GMT), measured fortnightly during the irrigation season. Thus, we used those data (J_f at 5 mm below the cambium divided by D) to extend the g_{max} derived from sap flux density ($g_{\text{max}(sap)}$) data to the entire season.

2.6. Statistics

To test whether the slope of dZ/dD vs. g_{max} was significantly different between seasons, we used the lm() function of R (R Core Team, 2017), treating dZ/dD as the response variable and the interaction g_{max} and season as the independent variable. In addition, one-way repeated measures analysis of variance (ANOVA) was used to determine the statistical significance among π values in 2012 across treatments and dates, i.e. the effect of treatments and different days on π. Mean comparisons were performed by post-hoc Tukey’s test ($P < 0.05$).

3. Results

Stomatal control at the hedgerow olive orchard during the three consecutive seasons in differently irrigated trees resulted in a highly scattered relationship between maximum stomatal conductance (g_{max}) and midday stem water potential (ψ_{stem}) measured in 2010, 2011 and 2012 at the olive hedgerow orchard. Black symbols correspond to 2010, grey symbols to 2011, white symbols to 2012, and different symbol types indicate different irrigation treatments (circles = Control, triangles up = 60RDI, triangles down = 30RDI). Each point represents a plot where these variables were measured in two trees and one leaf per tree close to the instrumented tree. The green dashed and orange solid reference lines correspond to $\psi_{\text{stem}} = -1.2$ MPa and $\psi_{\text{stem}} = -1.7$ MPa, respectively. These threshold values likely produce transitions to ‘State II’ (-1.2 MPa > ψ_{stem} > -1.7 MPa) and ‘State III’ ($\psi_{\text{stem}} > -1.7$ MPa) considering a qualitative classification of the diurnal curves of the ZIM probe outputs according to Fernández et al. (2011) and Padilla-Díaz et al. (2016). Smaller symbol sizes represent the dataset excluded from our analyses, and bigger symbol sizes represent the dataset used to test our hypothesis covering a range of ψ_{stem} down to -2.11 MPa and g_{max} down to 0.07 mol m$^{-2}$ s$^{-1}$. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 1. Relationship between maximum stomatal conductance (g_{max}) and midday stem water potential (ψ_{stem}) measured in 2010, 2011 and 2012 at the olive hedgerow orchard. Black symbols correspond to 2010, grey symbols to 2011, white symbols to 2012, and different symbol types indicate different irrigation treatments (circles = Control, triangles up = 60RDI, triangles down = 30RDI). Each point represents a plot where these variables were measured in two trees and one leaf per tree close to the instrumented tree. The green dashed and orange solid reference lines correspond to $\psi_{\text{stem}} = -1.2$ MPa and $\psi_{\text{stem}} = -1.7$ MPa, respectively. These threshold values likely produce transitions to ‘State II’ (-1.2 MPa > ψ_{stem} > -1.7 MPa) and ‘State III’ ($\psi_{\text{stem}} > -1.7$ MPa) considering a qualitative classification of the diurnal curves of the ZIM probe outputs according to Fernández et al. (2011) and Padilla-Díaz et al. (2016). Smaller symbol sizes represent the dataset excluded from our analyses, and bigger symbol sizes represent the dataset used to test our hypothesis covering a range of ψ_{stem} down to -2.11 MPa and g_{max} down to 0.07 mol m$^{-2}$ s$^{-1}$. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
P > 0.05; Fig. 3). The slope of \(\Delta Z / \Delta D \) vs. \(g_{\text{max}} \) was slightly, but not significantly, greater in 2012 (1.47) than in 2010 and 2011 (1.05 and 1.09, respectively; Fig. 3).

We used a sap flux-based surrogate of \(g_{\text{max}} \) (\(g_{\text{maxSF}} \)) to assess the relationship between \(\Delta Z / \Delta D \) and \(g_{\text{maxSF}} \) for an entire experimental season (2012), comprising a wider range of environmental and water soil conditions than possible with our gas exchange data. The resulting

\[\frac{dZ}{dD} = g_{\text{maxSF}} + 0.008. \]

This equation is consistent with the piecewise regression analyses performed (R package 'segmented'), which coincided with the slope changes of the Z vs. D relationships. When those D values were plotted as horizontal blue dashed lines on the panels at left, they agreed with the moment at which \(g_{\text{max}} \) occurred (horizontal blue dashed lines exactly crossed vertical dotted lines). Solid bold lines at right panels indicate the linear regressions used to derive the slopes from the Z vs. D relationships (\(\Delta Z / \Delta D \)) and the dashed bold lines show the second linear regressions that were not used. Breakpoints or D values derived from the piecewise regression analyses: July 20\(^{th}\) 2011 = 1.49 kPa (a, b); June 25\(^{th}\) 2012 = 1.62 kPa (c, d); August 3\(^{rd}\) 2012 = 2.16 kPa (e, f). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
exchange-based $g_{s,max}$ (1.50 and 1.47, respectively).

To gain insight into the reason for the slight differences in the slope of dZ/dD vs. $g_{s,max}$ between years (Fig. 3), we examined how that slope varied among months and irrigation treatments in the more intensive dataset based on sap flux-derived $g_{s,max}$ (Fig. 5). As predicted by Eqs A10 and A11, we found that the slope of dZ/dD vs. $g_{s,max}$ was significantly and negatively correlated with K (calculated using Eq. (2) considering fortnightly K values) (inset graph in Fig. 5). Although we did not measure seasonal variations in diurnal leaf water potential ($\psi_{leaf,min}$), we found that a proxy for $\psi_{leaf,min} - \text{leaf osmotic pressure (}\pi\text{)}$ – did not differ among months or treatments (Table 2).

4. Discussion

Stomata have the decisive role in controlling water loss and carbon gain at plant and global scales (Hetherington and Woodward, 2003). Thus, the ability to monitor stomatal conductance in vivo would be invaluable for understanding, monitoring and managing plant water stress. We hypothesized, based on a novel relationship that we derived from water relations theory, that the normalized sensitivity of leaf turgor to vapour pressure deficit (D) should be proportional to the diurnal maximum of stomatal conductance ($g_{s,max}$) as $g_{s,max}$ varies seasonally in relation to cycles of moderate water stress. Our data strongly supported this hypothesis: changes in dZ/dD – where Z is a surrogate for normalized leaf turgor, measured with a simple plant-based sensor – correlated strongly with $g_{s,max}$ in olive trees under both well-watered conditions and moderate soil water deficits, and across three consecutive seasons. We found similar results using an extended database in which a continuous record of $g_{s,max}$ was estimated from sap flux density data along one growing season. We also identified the key physiological variables that should drive variations in the slope of dZ/dD vs. $g_{s,max}$ (namely, the seasonal maximum transpiration rate, which depends on plant hydraulic conductance and minimum leaf water potential). Our results thus demonstrate the feasibility of monitoring $g_{s,max}$ in vivo using a sensor that measures a surrogate of leaf turgor pressure and has a rigorous physiological basis (Fernández, 2017, 2014a; Jones, 2007).

4.1. The physiological basis of the conservative relationship between dZ/dD and $g_{s,max}$

For plant-based sensors to have broad utility, it must be possible to link their output to physiological processes or traits in a consistent way. The strong relationship revealed in this study between the value of dZ/dD in the morning and the value of $g_{s,max}$ satisfies this requirement, because it was predicted from physiological principles (see derivation of Eq. 1 in the Appendix). The relationship arises because the sensitivity of leaf turgor to D is mostly driven by the absolute values of stomatal conductance and hydraulic conductance (McAdam and Brodribb, 2015, 2014; Rodriguez-Dominguez et al., 2016). Two more subtle issues require attention, however. First, it is not obvious why dP/dD (and dZ/dD) should be fairly constant as g_s covaries during the morning of a single day, before g_s reaches $g_{s,max}$. To interpret this, consider the following equation (Eq. (A7)):

$$\frac{dR_e}{dD} = -\frac{g_s}{E_{max}}(1 + \frac{d \ln R_e}{d \ln g_s})$$

(4)

where R_{rel} is leaf turgor normalized by its seasonal range (normalized ZM probe output, Z, is an estimate of $1 - P_{rel}$ [Eqn A9]). When $g_s = g_{s,max}$ $dR_e/dD = 0$, because the rate of change of g_s with respect to any parameter is zero when g_s is at its maximum. The fact that dZ/dD is fairly conservative when g_s is approaching $g_{s,max}$ during the morning suggests that the product $g_s(1 + d \ln R_e/dD)$ is likewise somewhat conservative. This is intuitively reasonable, because by definition g_s is approaching its maximum during that period, so that its relative rate of change ($d \ln R_e/dD$) should be decreasing. As soon as $g_{s,max}$ is achieved, the leaf turgor pressure becomes low enough to produce stomatal closure, leading to a decrease in dZ/dD.

The second issue involves the fact that the slope of dZ/dD vs. $g_{s,max}$ was relatively conservative across irrigation treatments and even between years. Eqs. (1) and (4) predict the slope should be inversely related to the seasonal maximum transpiration rate, E_{max}, which is equal to $K(\psi_{total} - \psi_{leaf,min})$, where K is whole-plant leaf-specific hydraulic conductance and $\psi_{leaf,min}$ is the seasonal minimum leaf water potential. This suggests that the slope of dZ/dD vs. $g_{s,max}$ should be conservative in species that tend to maintain constant $\psi_{leaf,min}$ over the growing season, and which have low hydraulic vulnerability to cavitation (i.e., K that

Table 2

Osmotic pressures measured at the olive hedgerow orchard (π) during 2012 for the same periods presented in Fig. 5 (same symbols and colors are shown to easily identify each period). Means ± SE are presented. Number of replicates were three in all cases except for Control 23-Aug-2012 when only two plots were measured. No significant differences were found (one-way repeated measures ANOVA, $P > 0.05$).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Measurement day</th>
<th>π MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>28-Jun-2012</td>
<td>1.68 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>12-Jul-2012</td>
<td>2.05 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>9-Aug-2012</td>
<td>2.06 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>23-Aug-2012</td>
<td>2.11 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>6-Sep-2012</td>
<td>1.90 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>4-Oct-2012</td>
<td>1.65 ± 0.03</td>
</tr>
<tr>
<td>30 RDI</td>
<td>18-Oct-2012</td>
<td>1.79 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>31-May-2012</td>
<td>2.00 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>14-Jun-2012</td>
<td>1.86 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>28-Jun-2012</td>
<td>1.63 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>23-Aug-2012</td>
<td>2.16 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>6-Sep-2012</td>
<td>2.16 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>4-Oct-2012</td>
<td>1.65 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>18-Oct-2012</td>
<td>1.84 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>9-May-2012</td>
<td>1.96 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>31-May-2012</td>
<td>1.79 ± 0.19</td>
</tr>
</tbody>
</table>
does not vary in relation to typical diurnal variation in water potential). Olive meets both of these requirements (Cuevas et al., 2010; Rodriguez-Dominguez et al., 2018; Torres-Ruiz et al., 2013), so it is unsurprising that the slope of dZ/dD vs. $g_{s,max}$ is so conservative in this species. However, even in species that exhibit pronounced variation in $\Psi_{leaf,min}$ in relation to soil moisture, any decline in K at low water potential would tend to counteract the effect of more negative $\Psi_{leaf,min}$, minimizing shifts in E_{max} and thereby preserving a conservative slope between dZ/dD and $g_{s,max}$. Whether this in fact holds for species that exhibit pronounced seasonal variation in K and/or $\Psi_{leaf,min}$ is unknown, and the matter deserves further attention.

The slope of dZ/dD vs. $g_{s,max}$ did change slightly between seasons, being higher in 2012 than in 2010 and 2011. This is consistent with the fact that seasonal E_{max} was lower in 2012 than in 2011 (1.52 vs. 1.73 mmol m$^{-2}$ s$^{-1}$, respectively, averaged across treatments and periods of study), which may, in turn, reflect shifts in K. Indeed, K estimated from sap flow measurements and soil-to-leaf water potential gradients according to Diaz-Espejo et al. (2012) was much smaller in 2012 than in 2011 (0.9 vs. 1.7 mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$, respectively), partly due to an increase in leaf area in 2012 taking into account only the Control treatment (12 m2 vs. 9 m2 in 2011) (Fernández et al., 2013).

In our study, the slope of dZ/dD vs. $g_{s,max}$ estimated from sap flux and D ($g_{s,maxSF}$) correlated well with changes in K across periods and treatments during 2012. Although E_{max} also depends on Ψ_{soil} (and thus 1.73 mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$, respectively), which approaches the turgor point during the season (Diaz-Espejo et al., 2018)) varied significantly in the periods and trees considered in this study, suggesting that K was mostly responsible for the observed variation in E_{max} and thus for the variation in the slope of dZ/dD vs. $g_{s,max}$.

4.2. Comparison of methods for monitoring stomatal conductance in situ

Because stomatal conductance integrates both external (atmospheric demand, soil water content) and internal (ABA, osmotic adjustment, hydraulic conductance) factors related to drought, and because stomatal closure is one of the earliest responses to drought (Martin-StPaul et al., 2017) and the primary limitation to photosynthesis (Flexas and Medrano, 2002), it is a critical parameter in the study of water stress responses. However, measuring g_{s} in situ by gas exchange is highly time consuming and impractical for applications requiring extended monitoring of g_{s}, such as irrigation scheduling or estimating ET. The method proposed here, in which diurnal maximum g_{s} is estimated from a leaf turgor-related sensor, has strengths and advantages over the estimation of g_{s} from sap flow and micrometeorological data. Both methods appear capable of faithfully estimating g_{s} (in the case of sap flow) or $g_{s,max}$ (in the case of the ZIM probe method described here): indeed, it is noteworthy that the slopes of dZ/dD vs. $g_{s,max}$ estimated by gas exchange and sap flow were so similar, which indicates a good match between g_{s} estimated from sap flux density and gas exchange, further confirming the robustness of sap flux-based g_{s} estimation (Hernandez-Santana et al., 2016). Sap flow-based g_{s} has the obvious advantage over ZIM probes of providing a near-continuous measure of g_{s}. This can be used to estimate photosynthesis (Hernandez-Santana et al., 2018) and to address questions involving diurnal responses, such as mechanisms of stomatal regulation, and it reduces uncertainties in using the Penman-Monteith equation to estimate evapotranspiration (Hernandez-Santana et al., 2018, 2016). However, estimating g_{s} from sap flow requires the monitored trees to be highly coupled to the atmosphere (Jarvis and Mclaughlin, 1986), and further requires accurate estimation of sapwood area as well as integration of sap flow velocity across the sapwood profile. By contrast, ZIM probes do not have these requirements, and their simplicity allows them to be applied to nearly any species with flat leaves, ranging from woody to herbaceous species. Furthermore, if the objective of quantifying g_{s} is to evaluate water stress, diurnal patterns are more difficult to interpret, and $g_{s,max}$ is an adequate indicator of water stress, and perhaps even a superior one (Correia et al., 1995; Flexas et al., 2004; Medrano et al., 2002). The utility of $g_{s,max}$ as a water stress indicator may reflect the fact that, when g_{s} is at its diurnal maximum, both turgor- and non-turgor-related signals equally limit stomatal opening (Rodriguez-Dominguez, 2014), although this observation remains to be more widely tested.

4.3. Future directions

The approach presented here can be applied to any broad-leaved species, in principle, given its robust physiological basis. More importantly, it captures the plant response to moderate drought levels and, hence, the range in which stomata play its pivotal role. This extends the use of this plant-based sensor to conditions of moderate changes of soil water content, as already pointed out by other authors that raised the need to differentiate plant water status within low water stress conditions (Marino et al., 2016). Other plant-based measurements, like midday leaf or stem water potential, have limited value as water stress indicators under these conditions, because species like olive tend to maintain constant their minimum ψ under moderate soil water deficit (Cuevas et al., 2010; Diaz-Espejo et al., 2018; Fernández, 2014). However, it is under such conditions that stomata exert most of their control on transpiration (Hernandez-Santana et al., 2016; López-Bernal et al., 2015), photosynthesis (Pérez-Martín et al., 2014), fruit dry matter accumulation (Hernandez-Santana et al., 2018), and ultimately yield (Hernandez-Santana et al., 2017) in olive orchards, making the derivation of moderate water stress indicators highly valuable.

Our approach can be applied not only to optimize deficit irrigation strategies in crops, but also, as it targets the monitoring of $g_{s,max}$ to more physiologically and ecologically based studies. For precision agriculture application, it is well known that previous studies on the heterogeneity of the experimental site (e.g. using remote sensing) greatly reduce the number of sensors to be used, decreasing the problematic of monitoring extended areas (Fernández, 2017, 2014a). For more eco-physiological studies, for instance, g_{s} optimization within plant canopies (Buckley et al., 2014) or plant physiological responses to different light conditions between shrub species (Díaz-Barradas et al., 2017), our physiological-based indicator of water stress levels may combine with them to automatically monitor differences in $g_{s,max}$ within their specific experimental goals, e.g. how $g_{s,max}$ is distributed within plant canopies, or how different are $g_{s,max}$ values from shaded or sunny leaves. Studies like this will largely contribute to expand data under a more widely range of environments and species, helping us to better infer g_{s} functioning. Thus, another step beyond for the physiological understanding of how g_{s} is controlled, is the combination of physiologically-based indicators with simplifications of mechanistic models of g_{s} allowing to directly test specific processes in the field (Buckley et al., 2012; Diaz-Espejo et al., 2012). For instance, our indicator, dZ/dD, could be used to drive the BMF model (Buckley et al., 2003), the most mechanistic approach to model g_{s} currently, and, hence, to predict stomatal function under different scenarios of drought and high atmospheric demand.

A possible limitation of our approach that may seem to curtail its potential to monitor continuously and automatically $g_{s,max}$ could be identified on the necessity to wait until the end of the season to normalize and process the data. However, this was only needed for the present study (i) to be able to pool all ZIM probe output data together, since the experiment was not specifically designed to relate ZIM probe outputs to $g_{s,max}$ and (ii) to demonstrate the physiological foundation of dZ/dD vs. $g_{s,max}$. The normalization procedure presented here does not affect the diurnal dynamics of the ZIM probe output (P_{n}). Thus, the actual P_{n} can be perfectly used, together with D measurements, to conduct experiments in individual plants aiming at deriving a daily and automatic estimation of $g_{s,max}$, expanding the potential applications of our approach (see also Eqn A5 in which leaf turgor pressure, and not its normalized value, is related to g_{s}). The assessment of this potentiality.
deserves more attention, and experiments specifically designed for that purpose will definitely expand the use of the automatic monitoring of \(g_{s,max} \) from the leaf turgor proxy as a plant water stress indicator.

5. Conclusions

Plant response to drought is a highly demanding knowledge needed to overcome water scarcity and optimize agricultural water use. Understanding stomatal function and how it is controlled is crucial for that purpose. Here, we have demonstrated that the use of a plant-based sensor that measures a surrogate of leaf turgor pressure can be used to infer the large variability in maximum stomatal conductance under moderate drought conditions in an olive hedgerow orchard. The sensitivity of normalized leaf turgor to changes in \(D (dZ/dD) \), captured by the ZIM probes, is tightly related to \(g_{s,max} \) which represents one of the best indicator of plant water stress. \(dZ/dD \) not only correlated significantly with \(g_{s,max} \) under moderate water stress conditions during three consecutive seasons, but also it further supported the maximum canopy stomatal conductance estimation from sap flux density data. In addition, variations of \(dZ/dD \) vs. \(g_{s,max} \) were linked to their underlying physiological traits (namely, the seasonal maximum transpiration rate, which depends on plant hydraulic conductance and minimum leaf water potential). The numerous applications of the plant water stress indicator presented here may range from precision crop irrigation management to more ecologically based studies, being of high interest for the scientist community exploring the effects of drought in plants.

Acknowledgements

This work was funded by the Spanish Ministry of Science and Innovation (research project AGL2009-11310/AGR) and co-funded by FEDER programme. C. M. R-D benefited from a PDI research fellowship from the Junta de Andalucía during the data gathering and from an Individual Fellowship from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 751918-AgroPHYS during the writing process of the manuscript. TNB was supported by the National Science Foundation (Award 1557906) and by the USDA National Institute of Food and Agriculture, Hatch project 1016439. We are grateful to the members of the Irrigation and Crop Ecophysiology group from IRNAS-CSIC for assistance in the field, especially to Antonio Montero and Alfonso Perez-Martín, and to Alfonso de Cires for helping on osmotic pressure measurements. We also thank the owners of Internacional Olivarera, S.A.U. (Interoliva) for allowing us to conduct the experiments in the Sanabria orchard, and Tim J. Brodribb for constructive inputs.

Appendix

We derive here a relationship between diurnal maximum stomatal conductance, \(g_{s,max} \) and the normalized sensitivity of leaf turgor pressure, \(P \), to leaf-to-air water vapor mole fraction difference, \(D \). \(P \) is given by

\[
P = \psi_{leaf} + \pi \tag{A1}
\]

where \(\psi_{leaf} \) and \(\pi \) are leaf water potential and osmotic pressure (\(\pi \geq 0 \)), respectively. \(\psi_{leaf} \) is given by

\[
\psi_{leaf} = \psi_{soil} - \frac{g_s D}{K} \tag{A2}
\]

where \(\psi_{soil} \) is soil water potential and \(K \) is soil-to-leaf hydraulic conductance. Combining A1 and A2 gives

\[
P = \psi_{soil} + \pi - \frac{g_s D}{K} \tag{A3}
\]

Differentiating \(P \) with respect to \(D \) gives

\[
\frac{dP}{dD} = \frac{d\pi}{dD} = \frac{g_s}{K} - \frac{D dg_s}{K dD} + \frac{g_s D dk}{K^2 dD} \tag{A4}
\]

If \(\pi \) and \(K \) do not vary diurnally (as we found in the present study within irrigation treatments), their derivatives can be eliminated from A4. Rearranging then gives

\[
\frac{dP}{dD} = -\frac{g_s}{K}(1 + \frac{d \ln g_s}{d \ln D}) \tag{A5}
\]

(Note that \(d \ln g_s/d\ln D \) is a total derivative, not a partial derivative; whereas the partial derivative would generally be negative, reflecting stomatal closure in response to increasing \(D \), the total derivative can be positive if other factors are enhancing stomatal opening while \(D \) happens to be increasing – for example, if both PPFD and \(D \) are increasing during the morning, \(g_s \) may be increasing despite the increase in \(D \), in which case \(d \ln g_s/d\ln D \) would be positive.) As the derivation of normalized ZIM probe output (\(Z \)) was necessary in the present work, to relate \(dP/dD \) to \(Z \), we must normalize \(dP/dD \) by the seasonal range in turgor, \(P_{max} - P_{min} \). The seasonal maximum turgor will occur when transpiration rate is negligible at night, in which case leaf and soil water potentials are equal and \(P = \psi_{soil} + \pi \). Thus, \(P_{max} = \psi_{soil} + \pi \). The seasonal minimum \(P \) will occur when transpiration rate, \(E \), is at its maximum, \(E_{max} \), so \(P_{min} = \psi_{soil} + \pi - E_{max}/K \). The difference between \(P_{max} \) and \(P_{min} \) is simply \(E_{max}/K \). Thus, normalized \(P \) (\(P_{rel} \)) is

\[
R_{rel} = \frac{P - P_{min}}{P_{max} - P_{min}} = \frac{P_{max} - P_{min}}{E_{max} - P_{min}} = \frac{K}{E_{max}} - \frac{P_{min}}{E_{max}} \tag{A6}
\]

Differentiating \(P_{rel} \) with respect to \(D \) (again assuming \(K \) is diurnally invariant) and applying Eqn A5 gives

\[
\frac{dP_{rel}}{dD} = \frac{K}{E_{max}} \frac{dP}{dD} = -\frac{g_s}{E_{max}} (1 + \frac{d \ln g_s}{d \ln D}) \tag{A7}
\]

When \(g_s \) is at its diurnal maximum, its total derivative with respect to any given parameter is by definition zero, so \(d \ln g_s/d\ln D = 0 \). Thus

\[
\frac{dP}{dD} = -\frac{g_{s,max}}{E_{max}} \tag{A8}
\]
Normalized ZIM probe output, Z, can be used as a proxy for $\Delta P_{e}/d\Delta D$, and therefore for g_{max}. However, because ZIM probe output, P_{o}, is negatively related to leaf turgor, $P_{t} = \frac{1}{d} < 0$ in State I, the signs of $d\Delta D/d\Delta P_{e}$ and $d\Delta P/d\Delta D$ are reversed from one another, so that the normalized sensitivity of P_{o} to D given by Eq. (A7) will scale positively with $d\Delta D/d\Delta P_{e}$. To a first approximation, P_{o} is negatively proportional to P_{t}, i.e., $P_{o} = b - mP_{t}$, with b and m constants unique to each probe installation. Thus $P_{\text{max}} = b - mP_{\text{min}}$ and $P_{\text{min}} = b - mP_{\text{max}}$, giving Z as

$$Z = P_{o} - P_{\text{min}} = (b - mP_{\text{min}}) - (b - mP_{\text{max}}) = \frac{P_{\text{max}} - P}{P_{\text{max}} - P_{\text{min}}} = \frac{1 - P_{\text{min}}}{P_{\text{max}} - P_{\text{min}}} = 1 - \frac{P}{P_{\text{max}} - P_{\text{min}}}$$

Thus $d\Delta D/d\Delta P_{e} \propto d\Delta P/d\Delta D$, and

$$\frac{d\Delta D}{d\Delta P_{e}} \approx \frac{g_{\text{max}}}{P_{\text{max}}}$$

We found E_{max} to be conservative over each growing season (Supporting Information File Figure S1, S2), which implies that the slope of $d\Delta D/d\Delta P_{e}$ vs. g_{max} should likewise be conservative. In cases where E_{max} is not conservative, its variations may be predicted and/or interpreted in terms of underlying physiological traits: E_{max} depends on K and on minimum ψ_{t}, as

$$E_{\text{max}} = K(\psi_{\text{t}} - \psi_{\text{t,mean}})$$

Thus, the slope relating $d\Delta P_{e}/d\Delta D$, and thus $d\Delta D/d\Delta P_{e}$, to g_{max} should be smaller if leaf hydraulic conductance or soil water potential are greater, and the slope should be greater if seasonal minimum leaf water potential is more negative.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.agrformet.2019.04.006.

References

