Arrangement of Maghemite Nanoparticles via Wet Chemical Self-Assembly in PS-b-PNIPAM Diblock Copolymer Films

Yuan Yao,‡ Ezzeldin Metwalli,‡ Bo Su,† Volker Körstgens,† Daniel Mosegui González,‡ Anna Miasnikova,‡ Andre Laschewsky,§‡ Matthias Opel,‖ Gonzalo Santoro,‖‡ Stephan V. Roth,‡ and Peter Müller-Buschbaum*†§

‡Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
†Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
§Fraunhofer Institut für Angewandte Polymerforschung IAP, Geiselbergstrasse 69, 14476 Potsdam-Golm, Germany
‖Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Strasse 8, 85748 Garching, Germany
†Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany
§Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain

Supporting Information

ABSTRACT: The structure and magnetic behavior of hybrid films composed of maghemite (γ-Fe₂O₃) nanoparticles (NPs) and an asymmetric diblock copolymer (DBC) polystyrene₆₁-block-polyN-isopropylacrylamide₁₁₅ are investigated. The NPs are coated with PS chains, which allow for a selective incorporation inside the PS domains at different NP concentrations. Upon incorporation of low amounts of NPs into the DBC thin films, the initial parallel (to film surface) cylinder morphology changes to a well ordered, perpendicularly oriented one. The characteristic domain distance of the DBC is increased due to the swelling of the PS domains with NPs. At higher NP concentrations, the excess NPs which can no longer be embedded in the PS domains, are accumulated at the film surface, and NP aggregates form. Irrespective of NP concentration, a superparamagnetic behavior of the metal oxide-DBC hybrid films is found. Such superparamagnetic properties make the established hybrid films interesting for high density magnetic storage media and thermoresponsive magnetic sensors.

KEYWORDS: nanocomposites, maghemite nanoparticles, block copolymer, GISAXS, hybrid films

1. INTRODUCTION
Nanostructured hybrid composites consisting of an insulating polymer template with embedded inorganic, functional nanoparticles (NPs) attract great attention as novel advanced materials due to their interesting physical properties.¹−⁵ Targeting substantial advantageous electrical, mechanical, optical, magnetic, and thermal properties, which are endowed by adding versatile kinds of functional NPs, has successfully rendered many applications of band gap materials, wrappings, sensors, magnetic storage media, spin-dependent electron transport devices, diagnostic medical functions, catalysis, and thermo-responsive materials.⁶−¹³ In comparison to bulk materials, NPs have been proven to significantly enhance the desired performance due to the large surface-to-volume ratio. For the particular purpose of magnetic applications, such as data storage devices and magnetic sensors, maghemite (γ-Fe₂O₃) NPs are favorable because of their lower magnetic remanence and coercivity as compared with bulk magnetic materials.

The realization of desired properties is largely dependent on the arrangement of the NPs and can be tuned by using host matrices.¹⁴−₁⁶ Nanoscale periodic ordered templates can be formed via self-assembly making use of the microphase separation of diblock copolymers (DBCs), which are composed of two chemically incompatible blocks linked by a covalent bond. By selecting different chemical blocks, changing their molecular weights, and tuning the polymer block ratio, versatile morphologies of spheres, cylinders, gyroids, and lamella can be fabricated with a characteristic length scale ranging from about 10 to 100 nm.³,¹⁷,¹₈ In the case of DBC thin films, in addition to the shape and size of the microphase separation...
morphologies, the orientation with respect to the film surface—which can be parallel, perpendicular, or randomly arranged—is crucial for the applications as well. Therefore, producing an appropriately oriented, highly periodic, ordered DBC matrix is of high interest for fabricating well-defined NPs-DBC hybrid nanocomposites.\(^{19,20}\) On the basis of several different approaches, such as vapor deposition, plasma deposition, electrophoresis, dip-coating, and wet coating, the arrangement of the NPs inside the DBC matrix can be controlled.\(^2\) Particularly interesting are wet chemical approaches, which use ink-type mixtures of NPs and DBC, because such approaches would allow for large scale fabrication methods such as printing or spray coating.\(^2\) A prerequisite for such an approach is the use of functionalized NPs to promote a preferential affinity to one of the DBC blocks.\(^2\) Properly functionalized NPs exhibit an enthalpic driving force for the selective deposition of the NPs inside one domain of the microphase separated structure during the self-assembly process of the NPs/DBC mixture.\(^23,24\) Moreover, such proper coating of the NPs can prohibit self-aggregation of the NPs in the polymer phase to some extent.\(^2\) Upon incorporation of NPs in the DBC matrix, the original DBC morphology can be modified and deviate from that of the pure DBC due a change of the free energy density. As a consequence, different morphologies can be achieved by combining a DBC template together with NPs.\(^2\) In this sense, several related investigations have been reported in literature. Zhang et al. reported that poly(ethylene oxide) (PEO)-functionalized CdSe nanorods were successfully assembled into the channels and pores provided by polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC templates, due to the PEO-functional surface ligand coverage of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.\(^2\) Lo et al. systematically investigated several aspects of the effects on the morphology of self-assembled polystyrene-block-poly 2-vinylpyridine (PS-b-PVP) DBC/surface modified NPs hybrid nanocomposites, including nanorods length, NP size, NP concentration and molecular properties of DBC.\(^25,28,29\) For a similar hybrid system with magnetic pyridine-grafted Fe,P nanorods, at short rod lengths, nanorods are selectively sequestered into PVP domains and cause order transitions of the nanorods, whereas the other alkane-covered CdSe nanorods are not compatible with this assembly process.

2. EXPERIMENTAL SECTION

2.1. Materials. The investigated asymmetric diblock copolymer polystyrene-b-polyN-isopropylacrylamide\(^{115}\), denoted PS-b-PNI PAM, was synthesized via consecutive RAFT polymerizations of styrene and NIPAM using \(n\)-Butyl-S'-benzylthiiricarbamate as chain transfer agent. Details of the synthesis protocols and polymer characteristics for such types of diblock copolymer are described elsewhere.\(^47,48\) The number-average molar mass and weight fraction of the PS block were 6.7 kg/mol and 0.32, respectively, while the polydispersity of the DBC was 1.14. Thus, a cylinder morphology was expected for bulk PS-b-PNIPAM samples.\(^17\) The surface of the used maghemite nanoparticles (\(\gamma\)-Fe\(_2\)O\(_3\)) was modified by fully coating with PS chains, synthesized from \(\alpha\)-lithium poly styrenesulfonate (LPSS, obtained from Heidelberg University, Heidelberg, Germany) with a hydrophilic PNIPAM block. The polymer PNIPAM is among the most explored thermoresponsive polymers.\(^37–39\) However, the majority of the studies related to PNIPAM have focused on wet swollen films, the water induced swelling and thermoresponsive behavior or were carried out in aqueous solutions. Only very few studies explored dry PNIPAM films.\(^40–42\) To our knowledge, so far no investigation has focused on the arrangement of magnetic NPs inside a PNIPAM related host DBC film. The goal of the present investigation is to explore the morphological evolution of metal oxide DBC hybrid films, fabricated with structure-directing PS-b-PNIPAM DBC template upon incorporation of different concentrations of PS-coated \(\gamma\)-Fe\(_2\)O\(_3\). On the basis of the understanding of the morphology of \(\gamma\)-Fe\(_2\)O\(_3\)/PS-b-PNIPAM films further studies can address the humidity-dependent swelling, thermo-responsive switching, and humidity-dependent magnetic properties of the metal-oxide DBC hybrid nanocomposite films. Moreover, based on the methodology of selective \(\gamma\)-Fe\(_2\)O\(_3\) NPs incorporation in block copolymer scaffolds and subsequent polymer degradation, a magnetic nanodots array can be created. Such a type of array with perpendicularly aligned magnetic nanodots is considered to be developed for future storage devices due to the fact that its potential storage may reach over 100 times more than the current hard drives.\(^43–46\) To enable data storage application, the magnetic nanoparticles should be larger than a critical size to combat the superparamagnetic limit (fluctuation of magnetization due to thermal agitation). These nanodots can be considered as a great number of tiny magnets capable of switching polarity to represent binary digits.\(^35–46\) Hence, the nanodots-based storage system can provide much higher storage density. In general, the target applications will be switchable high density magnetic storage media and thermoresponsive magnetic sensors. All films have been fabricated identically with spin-coating at room temperature at ambient conditions without any further post-treatment steps. The systematic evolution of nanostructures of the film surface is characterized with scanning electron microscopy (SEM). Additional information about the film topography such as root-mean-square (rms) roughness values are determined by atomic force microscopy (AFM). In addition, the inner film morphology is probed with the nondestructive reciprocal space technique grazing incidence small-angle X-ray scattering (GISAXS), which delivers structural characteristics with a high statistical significance, whereas film thicknesses are examined with surface profilometry. Finally, the application relevant magnetic behavior is probed with a magnetic property measurement system (MPMS) of a superconducting quantum interference device (SQUID) as a function of NP concentration and temperature.
molar mass of 7.5 kg/mol. The synthesis procedures are presented in details elsewhere. The diameter of the NP was 6.5 nm with a log-normal size distribution (width 20%). Details about the characterization of the NPs, including the size and the chemical composition, with small-angle X-ray scattering (SAXS) and Mössbauer spectroscopy techniques, can be found elsewhere. The 1,4-dioxane, dichloromethane, ammonia solution, and hydrogen peroxide were supplied by Carl Roth GmbH. Silicon wafers (Si 100, n-type) were purchased from Silchem (Richmond Hill, Ontario, Canada).

2.2. Sample Preparation. Silicon wafers with a native oxide layer on the surface were used as solid substrates for the hybrid films. In the applied basic cleaning protocol, the Si substrates were immersed in dichloromethane (purity ≥99.5%) at 46 °C for 30 min, followed by copious rinsing with deionized water. Then, to remove any organic traces, Si substrates were placed into a basic bath (30 mL NH₃, 30%; 30 mL H₂O₂, 30%; 350 mL deionized water) at 76 °C for 2 h. Afterwards, Si substrates were stored shortly in deionized water. Before spin-coating, all possible traces from the basic bath were removed by repeatedly rinsing the Si substrates with deionized water, followed by thorough N₂ blow drying. Due to the used cleaning procedure, a hydrophilic silicon oxide layer of 1 nm was established at the Si surface.

NPs/DBC solutions were prepared by using 1,4-dioxane (purity ≥99.5%) as a solvent. On the basis of previous investigations, 1,4-dioxane is an appropriate solvent for obtaining smooth and homogeneous films in combination with the used basic substrate cleaning. To reach the desired film thickness, a fixed polymer concentration of 45 mg/mL was used. The weight ratio of γ-Fe₂O₃ NPs with respect to the DBC PS-b-PNIPAM was varied (0, 0.1, 0.5, 1, 3, 7, and 15 wt %) in the present investigation. Using an identical preparation procedure, all investigated metal oxide NPs/DBC hybrid films were prepared by spin-coating (acceleration time 9 s, spinning speed 2000 rpm, and spin-coating time 30 s) at ambient conditions (room temperature 22 °C and relative humidity 40%). No further postproduction treatment of the as-prepared films was employed.

2.3. Characterization Techniques. 2.3.1. Profilometry. Film thicknesses were measured with a surface profilometer (Dektak XT Surface Profiler, Bruker) after lifting off part of the film from the substrate with the help of a plastic knife. The profilometry measurements were performed at a slow scan speed of 1 μm/s and a stylus force of 9.8 μN.

2.3.2. Scanning Electron Microscopy (SEM). SEM measurements were performed with an NVision40 FESEM by Carl Zeiss AG with an accelerating voltage of 2 kV and a working distance of 1.2 mm. The software Gwyddion 2.37 was used for further image processing and analysis. To check the sample homogeneity, the SEM micrographs were taken at several selected spots, which were located close to the four corners and at the center of each sample.

2.3.3. Atomic Force Microscopy (AFM). For 3D mapping of the film surface, AFM measurements were performed with a JSPM-S2000 AFM (JEOL U.S.A., Inc.) using a noncontact mode in ambient conditions at room temperature. The mounted cantilevers (ULTRA-SHARP NSC35/ALBS, MikroMasch) had tips with a curvature radius of 15 nm, with a force constant of 7.5 N/m and with a resonance frequency of 165 kHz. The obtained AFM data were further processed and analyzed by the software WinSPM v2.14.

2.3.4. Grazing Incidence Small-Angle X-ray Scattering (GISAXS). The GISAXS measurements were performed at the beamline P03 Micro- and Nanofocus X-ray Scattering (MiNaXs) of the PETRA III storage ring (DESY, Hamburg, Germany). The synchrotron radiation wavelength (λ) and photon energy were 0.0957 nm and 13 keV, respectively. The X-ray impinged onto the sample under an incident angle of αi = 0.35°, which is well above the total reflection angles (critical angles) of all involved materials in the investigated hybrid film system. In this case, the X-ray beam penetrated the whole film, providing averaged scattering information from the full depth of the film. The scattering data were collected with a 2D detector (Platibus 300 K Dectris Ltd., Switzerland, with 487 × 619 pixels, pixel size 172 × 172 μm²). To access the desired nanostructure range, a sample–detector distance of 2.55 m was employed. For avoiding over-saturation, two beam stops were placed in front of the detector in positions of the direct beam and the specular reflection, respectively. Structural information is extracted from horizontal (q∥ direction, parallel to the sample surface) and vertical cuts (q⊥ direction, perpendicular to the sample surface) of the 2D intensity distribution.

For a deeper analysis, a model assuming a Lorentzian distribution of length scales was applied for fitting q∥ profiles. The films were examined repeatedly along several locations on the sample within a distance of 5.0 mm to avoid possible X-ray beam induced effects to the films.

2.3.5. Magnetic Property Measurement System (MPMS). A superconducting quantum interference device (SQUID) magnetometer (MPMS XL-7, Quantum Design, San Diego, CA, U.S.A.) was employed to measure the magnetization as a function of temperature. All measurements were carried out while applying an external magnetic field from −500 to 500 mT in the film plane and repeated at different temperatures of 2, 5, 10, 20, 50, and 100 K.

3. RESULTS AND DISCUSSION

Hybrid films composed of the DBC PS-b-PNIPAM and PS-coated γ-Fe₂O₃ NPs were spin-coated from 1,4-dioxane solutions onto precleaned Si substrates. For the desired applications in magnetic storage devices and magnetic sensors, film homogeneity and uniformity are essential. Both are affected by the solution viscosity, which is controlled by the polymer concentration, in the film preparation via spin coating. At high friction, arising from high viscosities, inhomogeneous films result due to limited NP mobility. As observed in initial tests, a polymer concentration of the solution of 45 mg/mL gives macroscopically homogeneous hybrid films (corresponding optical microscopy data are not included).

3.1. Film Thicknesses. The film thickness increases linearly from 238 ± 2 nm to 264.9 ± 1.3 nm with increasing NP concentration from 0 to 15 wt %, as shown in Figure 1. Since all hybrid films were prepared using the identical protocol, the effect of added NPs on the viscosity of the solutions is fairly limited, and the temperature and relative humidity were constant during the thickness measurements, the film thickness expansion is caused by the volume of the incorporated NPs. Because a DBC film is confined between two different interfaces, different orientations of the nanoparticle separation structure can result from such change in film thickness.

3.2. Local Surface Morphology. For characterization of the surface morphology, the hybrid films are examined with SEM as a function of NP concentration. In these SEM measurements, the electron penetration depth is 10 nm. Figure 2 shows the corresponding gray scale SEM micrographs, in which the dark and bright areas correspond to the PNIPAM and PS domains, respectively. The brightest randomly isolated distributed objects are maghemite NP aggregates. On the basis of...
of self-consistent field theory, a cylindrical morphology is expected for the investigated DBC PS-b-PNIPAM, due to the PS weight fraction of 0.34. For the NP-free DBC film, labyrinth-like, parallel cylinders with only small scattered areas having perpendicular cylinders (with respect to the film surface) are observed (Figure 2a). Such parallel-oriented microphase separated morphologies are favored for film thicknesses larger than the characteristic periodic distance of DBC. In the current study, upon incorporation of NPs into the DBC matrix, at an extremely low NP concentration, the dominating parallel orientation significantly changes into a long-range, lateral order of perpendicularly oriented cylinders (Figure 2b). So far in the literature, the perpendicular orientation was most reported in case of using sophisticated or special treated substrates, or in case of confined thin films with thicknesses smaller than DBC periodic distances.

The observed morphological transition from a parallel to a perpendicular orientation of the microphase separated structure is attributed to the tuned interfacial energy via embedded NPs, which arises from a competition between the entropic and enthalpic terms in the hybrid film system in order to minimize the free energy density. The surface modification of the maghemite NPs by PS coating energetically promotes the selective deposition of the NPs into the PS domains of the DBC at low NP concentrations. In other words, the PS-coated NPs, which appear chemically identical to one of the DBC blocks (PS), will not enter the chemically incompatible PNIPAM domains, or distribute randomly inside the polymer.
Consequently, the order and homogeneity of the orientation of the hybrid films are both enhanced significantly. Some analogous observations that indicated an enhancement of the long-range order and a switch of the domain orientations upon incorporation of NPs in DBC films were reported previously.2,30,33

The degree of orientation of the microphase separated structure of the films is further enhanced at a slightly higher NP concentration (0.5 wt %, Figure 2c). In addition, the SEM micrograph contrast is also improved by higher NP incorporation. Thus, the selectivity of the deposited NPs into one or the other DBC domains arises as a significant factor regarding the fabrication of highly ordered, good perpendicularly oriented cylindrical morphologies.

However, at higher NP contents (>0.5 wt %), the long-range ordered morphology is undermined. NP-aggregates are formed and monotonically increase in size with increasing NP concentration (Figure 2d–g). The ability of the PS domains to accommodate NPs is limited due to the increase in the entropy cost. Upon higher NP upload, this limit is exceeded. Consequently, the excess NPs are squeezed out of the PS domains and accumulate at the film surface. At such NP concentrations, the hybrid system is dominated by the entropic penalty. The NPs favor aggregation, despite their surface penalty. The NPs favor aggregation, despite their surface coating, in agreement with Monte Carlo simulations at high NP concentrations within a host DBC matrix.64,65 More NPs are accumulated, surrounding the initial small NP-aggregates, which impel the NP-aggregates to develop in a larger size. At NP concentration \(\geq 7 \) wt %, the aggregates form network structures with a percolation path and cover large surface areas of the films. At NP concentrations of 3 and 7 wt %, a tendency of a morphological transition from perpendicularly to parallel cylindrical orientation of the NPs/DBC hybrid films begins to gradually appear in the NP-aggregate free areas (Figure 2e,f). This gradual transition becomes even more pronounced at the highest investigated NP concentration (15 wt %, Figure 2g). For clarity, an interesting area of Figure 2g is further magnified and shown in Figure 2h. Although the excess NPs come to the film surface, part of them could contribute to an additional swelling of the PS domains, thereby expanding the PS domains anisotropically and causing a change in morphology.

For further investigating the surface order, the fast Fourier transformations (FFTs) of the SEM micrographs are used (insets in Figure 2). Isotropic rings are observed, which indicate transformations (FFTs) of the SEM micrographs are used for a quantitative analysis, the power spectral density (PSD) functions extracted from azimuthal integration of the intensity distribution in the FFT patterns with different NP concentrations: 0, 0.1, 0.5, 1, 3, 7, and 15 wt %, from bottom to top. Peak I shows the \(q \) value of the lateral structure originated from microphase separation of the DBC. The PSD profiles are shifted along \(y \) axis for clarity.

\begin{align*}
\text{Figure 3.} & \quad \text{Power spectral density (PSD) functions extracted from azimuthal integration of the intensity distribution in the FFT patterns with different NP concentrations: 0, 0.1, 0.5, 1, 3, 7, and 15 wt %, from bottom to top. Peak I shows the } q \text{ value of the lateral structure originated from microphase separation of the DBC. The PSD profiles are shifted along } y \text{ axis for clarity.}
\end{align*}
rms roughness increases due to the presence of the large NP-aggregates, but remains below 2 nm.

3.3. Inner Film Morphology

Since AFM and SEM provide only information on the surface morphology of the metal oxide-DBC hybrid films, but the magnetic properties will depend on the inner film morphology as well, grazing incidence small-angle X-ray scattering (GISAXS) experiments were performed. GISAXS provides an excellent statistical relevance over a macroscopic illuminated sample area with respect to the structure sizes, size distributions and spatial correlations. Details about the GISAXS technique are reported elsewhere.54

Figure 5 shows 2D GISAXS data of hybrid films with different NP concentrations. For all measurements, the most intense specular reflection is blocked by a beamstop for protecting the detector from oversaturation, and the position of that is well separated from the material characteristic Yoneda peak. Thus, characteristic features, such as the Yoneda peak and intensity modulations are easily distinguished on the 2D detector. In general, the significant changes of the GISAXS data appear with incorporation of different amounts of NPs.

3.3.1. Vertical Structures

Already in the 2D GISAXS data of samples with a high NP concentration (≥3 wt %), an intensity modulation along the \(q_z\) direction is seen (Figure 5d-f). Such an intensity modulation results from a partial phase coherence of the X-ray waves diffusely scattered from different interfaces, which causes increase in intensity in a sheet in reciprocal space.41 Compared with the results from film surface measurements using SEM and AFM, the most probable source of the mentioned partial phase coherence of diffusely scattered wave is the correlated roughness of the large NP-aggregates enrichment layers on top of the hybrid films. In other words, the correlated roughness arises from a locally long-range correlated layer thickness between two adjacent interfaces of the hybrid film/NP-aggregates and NP-aggregates/air. Therefore, the intensity modulation along the \(q_z\) direction indicates that the NP enrichment layer has a nearly uniform thickness with only small variances.68

For further quantitative analysis, vertical line cuts of the 2D GISAXS data are made at \(q_y = 0\) and presented in Figure 6a. The thickness of the correlated enrichment NP-aggregates layer, \(d\), is determined by a simple approach of the distance between adjacent minimal intensity (marked by dashed lines in Figure 6a): \(d = 2\pi/\Delta q_z\). Therefore, with \(\Delta q_z = 1.13 \text{ nm}^{-1}\), \(d\) is 5.6 ± 0.1 nm, perfectly agreeing with the AFM observations. Similar roughness correlations were reported in several other polymer systems, consisting either of a single layer or of complex multilayer films.69,70

To extract further information, vertical line cuts are also extracted at different \(q_y\) values different from zero. The obtained off-center line cuts are exemplified for the hybrid film with 15 wt % NP in Figure 6b. The used increment in \(q_y\) direction is \(\Delta q_y = 1.77 \times 10^{-2} \text{ nm}^{-1}\) (from the top to the bottom). The intensity of the resonant diffuse scattering along the \(q_y\) direction decreases with increasing \(q_y\) values (along the arrow direction in Figure 6b), implying the absence of vertical structural correlation at certain \(q_y\) values. Treating the roughness spectrum of the hybrid film/NP-aggregates interface as a
reference, a characteristic decay length of the roughness correlation can be defined, yielding a critical cutoff in-plane length scale \(R_c \). At \(R < R_c \), an individual roughness spectrum is installed independent of the underlying hybrid film/NP-aggregates interface. At \(R > R_c \), the morphology of the hybrid film/NP-aggregates interface can be replicated by the NP-aggregates enrichment layer. Within the experimental errors, a value of \(R_c = 35.5 \text{ nm} \) is determined from the corresponding off-centered vertical line cuts. The \(R_c \) value is slightly larger than the lateral periodic distance (30.0 nm), which will be discussed in detail in the following section.

Thus, the observed thin NP-aggregates enrichment layer has a mean thickness of 5.6 nm and replicates the topography of the underlying film surface when the in-plane structural sizes are larger than 35.5 nm. Since this thickness value is smaller than the mean NP diameter, it is likely that the NPs are embedded to a certain extent inside the top part of the DBC film.

3.3.2. Lateral Structures. Already in the 2D GISAXS data of the samples, information about lateral structural is clearly seen. In the case of the NP-free pure DBC film (0 wt %, Figure 5a), a pronounced side peak is observed, which arises from the presence of well-ordered cylindrical domains due to the difference in electron density contrast between PS and PNIPAM. Upon the incorporation of NPs at low concentration (≤ 1 wt %, Figure 5b,c), the intensity of the side peak and Yoneda region becomes more intense, because of the enhanced order and improved electron density contrast originating from the NPs inside the PS block of the DBC. With further NP loading, the side peak decays and vanishes finally at the highest concentration (15 wt %, Figure 5f) due to the intensive scattering of a large amount of NPs dominating the scattering pattern. In addition, a second side peak appears at a NP concentration of 3 wt % (Figure 5d), which becomes more pronounced with increasing NP concentration. It originates from the structure factor of closely packed NPs in the NP-aggregates and provides information about the NP size.

For further analysis, horizontal line cuts from the 2D GISAXS data are performed at a fixed \(q_y \) value, equivalent to the critical angle of the DBC (\(q_y = 0.51 \text{ nm}^{-1} \)), and shown in figure 6. (a) Vertical line cuts \((q_y)\) of the 2D GISAXS data of the hybrid films at \(q_z = 0 \) for films with different NP concentrations (0, 0.5, 1, 3, 7, and 15 wt % from bottom to top). Dashed lines and arrow mark the characteristic intensity modulation. (b) Vertical line cuts \((q_y)\) for a selected hybrid film with a NP concentration of 15 wt % at different \(q_z \) positions (0 to 0.177 nm\(^{-1}\) from top to bottom as indicated by the arrow; using an increment of \(Δq_z = 1.77 \times 10^{-3} \text{ nm}^{-1}\) showing the decay of the interference fringe of the resonant diffuse scattering. All curves are shifted along \(y \)-axis for clarity.

Thus, the observed thin NP-aggregates enrichment layer has a mean thickness of 5.6 nm and replicates the topography of the underlying film surface when the in-plane structural sizes are larger than 35.5 nm. Since this thickness value is smaller than the mean NP diameter, it is likely that the NPs are embedded to a certain extent inside the top part of the DBC film.

3.3.2. Lateral Structures. Already in the 2D GISAXS data of the samples, information about lateral structural is clearly seen. In the case of the NP-free pure DBC film (0 wt %, Figure 5a), a pronounced side peak is observed, which arises from the presence of well-ordered cylindrical domains due to the difference in electron density contrast between PS and PNIPAM. Upon the incorporation of NPs at low concentration (≤ 1 wt %, Figure 5b,c), the intensity of the side peak and Yoneda region becomes more intense, because of the enhanced order and improved electron density contrast originating from the NPs inside the PS block of the DBC. With further NP loading, the side peak decays and vanishes finally at the highest concentration (15 wt %, Figure 5f) due to the intensive scattering of a large amount of NPs dominating the scattering pattern. In addition, a second side peak appears at a NP concentration of 3 wt % (Figure 5d), which becomes more pronounced with increasing NP concentration. It originates from the structure factor of closely packed NPs in the NP-aggregates and provides information about the NP size.

For further analysis, horizontal line cuts from the 2D GISAXS data are performed at a fixed \(q_y \) value, equivalent to the critical angle of the DBC (\(q_y = 0.51 \text{ nm}^{-1} \)), and shown in figure 6. (a) Vertical line cuts \((q_y)\) of the 2D GISAXS data of the hybrid films at \(q_z = 0 \) for films with different NP concentrations (0, 0.5, 1, 3, 7, and 15 wt % from bottom to top). Dashed lines and arrow mark the characteristic intensity modulation. (b) Vertical line cuts \((q_y)\) for a selected hybrid film with a NP concentration of 15 wt % at different \(q_z \) positions (0 to 0.177 nm\(^{-1}\) from top to bottom as indicated by the arrow; using an increment of \(Δq_z = 1.77 \times 10^{-3} \text{ nm}^{-1}\) showing the decay of the interference fringe of the resonant diffuse scattering. All curves are shifted along \(y \)-axis for clarity.

Figure 6. (a) Vertical line cuts \((q_y)\) of the 2D GISAXS data of the hybrid films at \(q_z = 0 \) for films with different NP concentrations (0, 0.5, 1, 3, 7, and 15 wt % from bottom to top). Dashed lines and arrow mark the characteristic intensity modulation. (b) Vertical line cuts \((q_y)\) for a selected hybrid film with a NP concentration of 15 wt % at different \(q_z \) positions (0 to 0.177 nm\(^{-1}\) from top to bottom as indicated by the arrow; using an increment of \(Δq_z = 1.77 \times 10^{-3} \text{ nm}^{-1}\) showing the decay of the interference fringe of the resonant diffuse scattering. All curves are shifted along \(y \)-axis for clarity.

Thus, the observed thin NP-aggregates enrichment layer has a mean thickness of 5.6 nm and replicates the topography of the underlying film surface when the in-plane structural sizes are larger than 35.5 nm. Since this thickness value is smaller than the mean NP diameter, it is likely that the NPs are embedded to a certain extent inside the top part of the DBC film.

3.3.2. Lateral Structures. Already in the 2D GISAXS data of the samples, information about lateral structural is clearly seen. In the case of the NP-free pure DBC film (0 wt %, Figure 5a), a pronounced side peak is observed, which arises from the presence of well-ordered cylindrical domains due to the difference in electron density contrast between PS and PNIPAM. Upon the incorporation of NPs at low concentration (≤ 1 wt %, Figure 5b,c), the intensity of the side peak and Yoneda region becomes more intense, because of the enhanced order and improved electron density contrast originating from the NPs inside the PS block of the DBC. With further NP loading, the side peak decays and vanishes finally at the highest concentration (15 wt %, Figure 5f) due to the intensive scattering of a large amount of NPs dominating the scattering pattern. In addition, a second side peak appears at a NP concentration of 3 wt % (Figure 5d), which becomes more pronounced with increasing NP concentration. It originates from the structure factor of closely packed NPs in the NP-aggregates and provides information about the NP size.

For further analysis, horizontal line cuts from the 2D GISAXS data are performed at a fixed \(q_y \) value, equivalent to the critical angle of the DBC (\(q_y = 0.51 \text{ nm}^{-1} \)), and shown in figure 6. (a) Vertical line cuts \((q_y)\) of the 2D GISAXS data of the hybrid films at \(q_z = 0 \) for films with different NP concentrations (0, 0.5, 1, 3, 7, and 15 wt % from bottom to top). Dashed lines and arrow mark the characteristic intensity modulation. (b) Vertical line cuts \((q_y)\) for a selected hybrid film with a NP concentration of 15 wt % at different \(q_z \) positions (0 to 0.177 nm\(^{-1}\) from top to bottom as indicated by the arrow; using an increment of \(Δq_z = 1.77 \times 10^{-3} \text{ nm}^{-1}\) showing the decay of the interference fringe of the resonant diffuse scattering. All curves are shifted along \(y \)-axis for clarity.
assumption of a cylindrical geometry. Therefore, inside the NP-free DBC film, highly ordered, hexagonally packed, cylindrical PS domains are dispersed in a PNIPAM matrix. As seen in Figure 7a, upon increasing NP concentration (from 0 wt % to 15 wt %) the position of peak II shifts toward smaller q_\text{y} values resulting from an increase in the lateral spacing between PS domains. The corresponding periodic distance, DII, increases from 23.7 ± 0.2 nm to 30.0 ± 0.6 nm (Figure 7b). The expansion of the periodic distance is caused by the selective swelling of the PS domains upon incorporation of the NPs. In case of a tiny amount of NPs (0.5 wt %), the fwhm of peak II becomes narrower, which implies an enhancement of the structural order. The absence of a second order peak, which would be expected at higher structural order, is caused by the additional scattering originating from the form factor of the embedded NPs. With further increase in NP concentration, peak II becomes less pronounced and broader, which reveals the oversaturation of the PS domains with NPs. This oversaturation perturbs the initially established long-range order structure of the hybrid films.

An additional broad shoulder-like scattering feature (peak III) appears at even smaller q_\text{y} values. It is attributed to the NP-aggregates center-to-center distance. As the sizes of these NP-aggregates increases, the inter NP-aggregates spacing increases. Thus, this peak indirectly refers to the pronounced increase of aggregate sizes upon NP upload. As seen in Figure 7a, peak III initiates with the incorporation of NPs, and shifts in position with increasing NP concentration. With the increase of NP concentration from 0.5 to 3 wt %, the corresponding characteristic NP-aggregates distance, DIII, extracted from the fitting shows a linear increase from 180 ± 10 nm to 380 ± 25 nm with a large distribution (in Figure 7c). This indicates randomly dispersed large structures. Given the NP concentration ≥7 wt % (in Figure 7a), the scattering intensity at low q values is very broad and the early observed peak (peak III, marked with dashed arrow) is only weakly pronounced, indicating large interparticle distance distributions and a relatively more ill-defined large size NP-aggregates at high NP concentrations. These results are in agreement with SEM data where large sized interconnected NP-aggregates at NP concentrations ≥7 wt % are observed (see Figure 2f,g).

In addition, the variation tendencies of the peak (I, II, and III) widths (full width half-maximum, fwhm), which reveal the systematic order of the nanostructure, are presented in the SI (Figure S3). Upon the NP load, the widths of peak I and peak II obviously become narrower or broader, respectively. However, the width of peak III has larger amplitude but changes slightly with the increase of the incorporated NPs.

3.3.3. Film Morphology. The film morphology as determined from both, real-space and reciprocal space investigations, is shown in Figure 8.

The changes in the nanostructures of the hybrid films upon incorporation of NPs are illustrated for the case of low and high NP concentration. Due to self-assembly, the microphase separated structure of the NP-free DBC film, which serves as template for the NP incorporation, is composed of cylindrical PS domains homogeneously distributed in a PNIPAM continuous matrix. With respect to the film surface, the PS domains exhibit a preferential parallel orientation (Figure 8a). This parallel orientation of the PS cylinders can be ascribed mainly to two origins: One is the interfacial preference arising from a lower surface energy, which makes the PS domains to have an affinity to air in comparison to the PNIPAM domain. Another is that the surface boundary condition predicting a parallel morphology is prone to be achieved, given the film thickness is far above the polymer periodic distance. Since the film thickness is 237 nm, it far exceeds the DBC periodic distance of 23.7 nm.

At low NP concentrations (Figure 8b), the preferential interaction between the NPs and the PS domains drives NPs selectively well distributed into the PS domains. In this case, the original interfacial energies of the film/air and segment-to-segment Flory–Huggins interaction parameter are modified due to the embedded NPs. This causes a change in the orientation of the cylindrical NP/PS domains from parallel to perpendicular with respect to the film surface. The spacing of neighboring PS domains increases slightly due to the preferential incorporation of NPs. At low NP concentrations, the enthalpic contribution is enhanced, which leads to a more ordered morphology.

At high NP concentrations (Figure 8c), the long-range ordered structures remain only to some extent, and large NP-aggregates are formed. On the one hand, the former highly

Figure 8. Illustration of the morphological evolution of films for (a) the NP-free pure DBC template, incorporation with (b) low, and (c) high concentrations of NPs. (d) Cross sectional sketch of the NP-aggregates enrichment layer for hybrid film at high NP concentrations; PS domains (red), PNIPAM domains (blue), and NPs (yellow). R_c, d, and DII represent critical cutoff in-plane length scale, thickness of NP-aggregates enrichment layer and periodic distance of DBC, respectively.
ordered PS cylinders have been stretched heavily and deformed to accommodate more NPs inside. On the other hand, the excessive amount of NPs, which can no longer be accommodated inside the PS cylinders, are located on the film surface and NP-aggregates end up forming a layer. This NP-aggregate layer has a mean thickness which is slightly smaller than the diameter of the NPs, which can be a sign that it is to some extent embedded in the film (Figure 8d). The roughness features of the lower interface of hybrid film/NP-aggregates is replicated by the NP-aggregates layer for in-plane structure size $R > R_c$. The determined value of R_c is slightly larger than the neighboring PS domain spacing (DII).

3.4. Magnetic Properties. The magnetic behavior of the metal oxide-DBC hybrid films is probed by magnetization measurements using external magnetic fields from -500 to 500 mT, applied in the film plane. The effect of NP concentration on the magnetic properties of hybrid films at 2 K is shown in Figure 9a. For a quantitative analysis, the NP concentration-dependent remanence, M_r, saturation magnetization, M_s and relative remanence, M_r/M_s, extracted from the corresponding measured magnetic moments at 2 K (blue dashed line) and 20 K (red dashed-dotted line), respectively.

![Figure 9](image_url)

Figure 9. (a) Magnetic moments measured as a function of external magnetic fields at 2 K for hybrid films for different NP concentrations as indicated in the figure. (b) Remanence, M_r, saturation magnetization, M_s, and relative remanence, M_r/M_s, extracted from the measured magnetic moments at 2 K (blue dashed line) and 20 K (red dashed-dotted line), respectively.

In Figure 10, the temperature-dependent magnetic behavior is shown for a selected hybrid film with a NP concentration of 15 wt %. The width of the hysteresis loop decreases with increasing temperature, in agreement with previous investigations. However, some dissimilarities are found. In our previous study, for hybrid films of a perforated lamellar nanostructure established by DBC with identical type and amount of maghemite NPs, a temperature-dependent maximum magnetization was observed even with a higher external magnetic field (700 mT). In contrast, the current study exhibits a different temperature-independent saturation magnetization with an even lower external magnetic field (500 mT) due to a more highly ordered, well-oriented film morphology. However, for the measurement at a relatively high temperature of 100 K, the present employed external magnetic fields are not large enough to saturate magnetization. This observation keeps consistent with Curie’s law. As the temperature rises, hysteresis loops superimpose, but become narrower and approach to zero, which is the fingerprint of a typical superparamagnetic behavior. The extracted coercivity provides a more precise value of the half hysteresis (Figure 10b). The coercivity strongly decreases with the temperature and vanishes when the temperature exceeds a specific blocking temperature of involved superparamagnetic NPs. This temperature T is defined by the integrated Néel–Brown formula:

$$
\tau = \tau_0 \exp\left(\frac{KV}{K_B T}\right)
$$

where τ is the relaxation time, τ_0 of 10^{-10} s is the inverse attempt frequency, and KV represents the activation energy. In
addition, the remanence shows a sharp decay with the increase in temperature as well (in Figure 10b), which is distinguished from a more moderate decay shown in our previous investigation from a randomly oriented DBC with widely distributed maghemite NPs.75 Both the temperature-dependent decay behaviors of coercivity and remanence are attributed to thermal fluctuations.

Considering all aspects of the magnetic behavior, the investigated hybrid films exhibit the typical superparamagnetic properties and are consistent with a modified model of Stoner–Wohlfarth–Néel. This model, based on the developed thermodynamics of superspins was modified by an elastic torsion mechanism.74,75 The present observations interestingly differ from the previous studies, which used other DBC templates with incorporated maghemite NPs.36,75 Therefore, the observed magnetic behavior is in close relation to the morphology of the hybrid film system.

4. CONCLUSIONS
The structure of metal oxide NPs/DBC hybrid films, consisting of PS-coated γ-Fe₂O₃ NPs and PS-b-PNIPAM DBC, has been investigated with surface profilometry, SEM, AFM, and GISAXS at a range of varied NP concentrations and the morphology has been related to the magnetic behavior. The arrangement of the NPs, guided by the cylindrical PS domains of the DBC template, is realized via the preferential incorporation of the surface modified NPs. An unusual parallel-to-perpendicular orientation transition of the micro-phase separated structure is observed. Moreover, the enthalpic contribution is also modified by the presence of highly dispersed, selectively embedded NPs in the low concentration range. This results in the enhancement of nanostructure order and orientation. Such a well-ordered, perpendicularly oriented cylindrical nanomorphology of the hybrid films is fabricated via a wet chemical self-assembly method, by a simple and highly reproducible spin coating procedure without any pre- or post-treatment steps. The periodic distance of DBC domains increases to accommodate the NPs. At higher NP concentrations, the previous long-range ordered structures are mostly lost. The overload of NPs leads to the formation of large NP aggregates on the film surface. With further increase in NP concentration a network of NP aggregates representing an enrichment layer on the film surface is observed. At all NP concentrations, the superparamagnetic behavior of the hybrid films is confirmed. Thus, the excess NPs in the surface layer have no negative influence on the magnetic behavior.

We conclude, that with an appropriate selection of the weight ratios of NPs versus DBC, varied ordered morphological hybrid films with different structural emphasis can be established in a simple and low cost preparation process for versatile potential applications. This may be especially useful in the fields of high density magnetic storage media and thermoresponsive magnetic sensors. Based on the understanding of the morphology of γ-Fe₂O₃:PS-b-PNIPAM films further studies can address the humidity-dependent swelling, thermo-responsive switching, and humidity-dependent magnetic properties of the metal-oxide DBC hybrid nanocomposite films.

■ ASSOCIATED CONTENT

1. Local Surface Morphology: (Figure S1) representative line cuts from the AFM micrographs; (Figure S2) 2D FFT patterns of AFM topography images. 2. Evolution of the Relative Amplitudes in the GISAXS Data: (Figure S3) full width at half maxima (FWHM) obtained from the fits of the horizontal line cuts. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b03308.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: +49 89 289 12451. Fax: +49 89 289 12 473. E-mail: muellerb@ph.tum.de.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the BMBF (German Ministry of Research and Education) Grant No. 03DU03MU and by the Nanosystems Initiative Munich (NIM). Y.Y. and B.S. acknowledge the China Scholarship Council (CSC). V.K. thanks the Bavarian State Ministry of Education, Science and the Arts for funding this research work via project “Energy Valley Bavaria”. We thank Professor Alexander Holleitner and Peter Weiser for the chance to carry out SEM measurements. Portions of this research were carried out at the synchrotron light source PETRA III at DESY. DESY is a member of the Helmholtz Association (HGF).

■ REFERENCES

