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We have succeeded in synthesizing a new organic biradical F4BIPBNN [= 2,2A-(3,3A,5,5A-tetrafluorobiphenyl-4,4A-
diyl)bis(4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide)] which forms an S = 1=2 Heisenberg three-dimensional honey-
comb antiferromagnet. Each site of a honeycomb layer alternately couples with upper or lower layers, which results in
the unique three-dimensional honeycomb network with four nearest neighbors. At zero magnetic field, antiferromagnetic
long-range order has been observed below TN = 2.7K. Magnetic susceptibility in both paramagnetic and antiferro-
magnetic states and the magnetization curves are well reproduced by quantum Monte Carlo calculations with three
antiferromagnetic interactions in the range of 4.3 to 6.6K. From the concave shape of the magnetization curve, the
shrinkage of spin due to spin fluctuations is evaluated to approximately 30% with respect to its classical value. The phase
diagram of magnetic field versus temperature was determined by heat capacity and magnetization. In the field region
below 3T, a slight increase of TN was observed, which reflects the effect of spin fluctuations.

1. Introduction

Purely organic magnets with π-electron spins have
essentially negligible small spin–orbit couplings and are
attractive materials because they are archetypical S ¼ 1=2
Heisenberg spin systems in which quantum fluctuations play
an important role. The antiferromagnetic frameworks of
isotropic S ¼ 1=2 spins connected by the small number of the
nearest neighbors are the key factors of the novel magnetic
states arising from quantum fluctuations. Among the
representative stable organic radical skeletons, the nitroxide
(–N–O1) radical has the advantage of making an antiferro-
magnetic spin network by the intermolecular contact between
the NO groups.1,2) The stacking of planar π-conjugated
molecules gives a one-dimensional (1D) network. For a
polyradical system in which two or more NO groups are
substituted on a planar molecule, such as a benzene or a
biphenyl, a double spin chain with different spin size has
been reported.2,3) Besides extensive studies on the 1D
Heisenberg antiferromagnet, growing attention is being paid
to the effect of quantum fluctuations in two- or three-
dimensional (2D or 3D) Heisenberg antiferromagnets with
the small number of the nearest neighbors (z), but the
experimental realization is still rare.

An efficient strategy to realize high-dimensional spin
networks is the molecular designing of twisted π-planes, each
of which has multidirectional magnetic exchange pathways.
There is an example in a biradical system that the molecular
arrangement of an 1D stacking has been changed to a 2D
honeycomb arrangement by the enlargement of the dihedral
angle between the two radical planes.1) In order to realize a
3D spin network, we have designed an organic biradical
involving two nitronyl nitroxide (NN) units that are coupled
through twisted π-planes. The NN unit consists of two
conjugated NO groups and has exchange pathways in two
directions. As discussed later in this paper, we have found

that a new organic biradical F4BIPBNN [= 2,2A-(3,3A,5,5A-
tetrafluorobiphenyl-4,4A-diyl)bis(4,4,5,5-tetramethylimidazo-
lin-1-oxyl 3-oxide)] forms a 3D honeycomb antiferromagnet
with four magnetic exchange pathways at each site of S ¼
1=2. Each site of a honeycomb layer is alternately connected
to upper or lower layers to realize alternate stacking of
honeycomb layers.

There is rare example of 3D magnetic lattice in which the
smallest number of the nearest neighbors is z ¼ 4. The
representative model without frustration is a diamond lattice
that has three-fold stacking of honeycomb layers with z ¼ 4.
A diamond lattice with S ¼ 5=2 was reported for a Mn
compound with disordered structure.4) For the case of S ¼
1=2 system, only [{Rh2(acam)4}2I]n16nH2O has been re-
ported as an distorted diamond lattice with the small Weiss
constant of −4K.5)

In this paper, we have succeeded in synthesizing a new
organic biradical F4BIPBNN, which forms a new 3D
honeycomb antiferromagnet with z ¼ 4. The crystal structure
and magnetic properties have been examined. Two kinds of
intermolecular interactions, together with the intramolecular
interactions form a 3D honeycomb network of S ¼ 1=2.
The magnetic interactions have been evaluated by quantum
Monte Carlo (QMC) calculations to be in the same order
within the rage of 4.3–6.6K. The 3D long range order was
observed at TN ¼ 2:7K, which is well reproduced by the 3D
honeycomb model. The concave shaped magnetization curve
was observed and the shrinkage of spin due to the effect of
quantum fluctuations is evaluated to approximately 30%
with respect to its classical value. The effect of quantum
fluctuations also appears in the slight increase of TN with the
increase of magnetic field. This study is the first observation
of the effect of quantum fluctuations among 3D lattice,
caused by the unique network of ideally isotropic spins of
S ¼ 1=2 coupled with the minimum exchange pathways of
z ¼ 4.
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2. Experimental Procedure

The synthesis of F4BIPBNN, whose molecular structure is
shown in Fig. 1(a), was carried out following the conven-
tional procedure6,7) starting from 1-bromo-3,5-difluoroben-
zene through four steps. The obtained compounds were
purified by column chromatography on silica gel with
chloroform and ethyl acetate. Recrystallization of slow
evaporation from a concentrated acetonitrile solution in
heptane atmosphere at 70 °C yielded purple plate single
crystals of F4BIPBNN.

X-ray diffraction data were collected on a Rigaku AFC-8R
Mercury CCD RA-Micro7 diffractometer with a Japan
Thermal Engineering XR-HR10K at the temperatures of
293 and 23K. The crystal structure was solved by direct
methods and refined by the full-matrix least-squares
technique using SHELX-97 software.8) The structural refine-
ment was carried out using anisotropic and isotropic thermal
parameters for the nonhydrogen atoms and the hydrogen
atoms, respectively.

Magnetic measurements of non-oriented single crystals
were obtained on a Quantum Design MPMS XL SQUID
magnetometer at magnetic fields spanning from 0.05 to 5 T
over the temperature range of 1.8–300K. Furthermore, the
VSM option on a Quantum Design Physical Properties
Measurement System (PPMS) was employed to measure the
temperature dependence of magnetization in various mag-
netic fields below 10K over the field range of 5–9T at a
temperature upsweep of 3K=min. The experimental sus-
ceptibility was corrected for theoretical diamagnetic contri-
butions using Pascal’s constants to give the molar para-
magnetic susceptibility. Magnetization curves up to 23T, at
low temperatures (T ¼ 0:4, 1.7, and 4.2K) were obtained by
an inductive method in pulsed magnetic fields at IMR,
Tohoku University.9) A pulsed magnetic field with nearly
sinusoidal shape was generated with the rise time of 6msec.
Magnetization curves were normalized by the saturation
value.

The specific heats of several single crystals of F4BIPBNN
were measured by a thermal relaxation method using the
Quantum Design PPMS installed at Osaka Prefecture
University and ISSP, University of Tokyo. The measure-
ments at zero and in the magnetic field up to 7 T were done in
the temperature range of 1.9–100K. For the measurements in
the range of T ¼ 0:5{7K and B ¼ 9{14T, measurements
were performed with the Helium-3 refrigerator installed at
ISSP, University of Tokyo.

The ab initio molecular orbital (MO) calculations were
performed using the software package Gaussian09. The
UB3LYP method was applied as broken symmetry (BS)
hybrid density functional theory (DFT) calculations with the
basis set 6-31G. The calculations were carried out on real
molecules employing our crystallographic atomic coordinates
at 293 and 23K. The convergence criterion was 10�7 hartree.
The magnetic exchange interaction between neighboring
radical units were estimated based on the formula proposed
by Yamaguchi.10)

QMC simulations were performed with the loop11,12) and
dirloop_sse12,13) packages involved in the ALPS project to
obtain, respectively, the magnetic zero-field susceptibility
versus temperature and the magnetization versus magnetic
field curves. The calculations were performed for different
system sizes (N ¼ 512; 1000; 1728) under periodic boundary
condition for S ¼ 1=2 spin.

3. Results

3.1 Crystal structure
The crystallographic information measured at 293 and

23K is summarized in Table I. Since the space group and the
relative relation of the lattice constants did not change for
either temperature, we concluded that there is no structural
change down to 23K. An ORTEP drawing of a F4BIPBNN
molecule determined at 23K is depicted in Fig. 1(b). The
asymmetric unit is composed only of one half of the
F4BIPBNN molecule, owing to inversion symmetry. The
dihedral angle between the best fit planes of O1–N1–C7–N2–
O2, which is called nitronyl nitroxide (NN), and difluoro-
benzene has been determined as 62.7 and 61.4° at 293 and
23K, respectively. The electrostatic repulsion between oxy-
gen and fluorine atoms would be responsible for this large

(b) (c)(a)

O2’

Fig. 1. (Color online) (a) Molecular structure of F4BIPBNN. The nitronyl
nitroxide (NN) unit is marked by a dashed rectangle. (b) ORTEP view of a
molecule determined at 23K with atomic labelling. Ellipsoids are scaled to
enclose 50% of the electronic density. Hydrogen atoms are omitted. (c) Spin
density distribution of F4BIPBNN determined by MO calculation for the
crystallographic coordinates at 23K. Blue and green lobes represent positive
and negative spin densities, respectively.

Table I. Crystallographic data of F4BIPBNN.

Temperature=K

293(2) 23(2)

Formula C26H28F4N4O4

Crystal system Monoclinic
Space group P21=n
Z 2
Radiation Mo Kα (� ¼ 0:71070Å)
a=Å 10.766(2) 10.660(2)
b=Å 10.4126(18) 10.3537(18)
c=Å 12.380(3) 12.079(2)
β=° 114.447(4) 113.411(4)
V=Å3 1263.4(4) 1223.7(4)
Dcalc=g cm−3 1.411 1.457
Total reflections 2612 2618
Reflection used (I > 2�ðIÞ) 1865 2383
Parameters refined 176 228
Residuals: R; Rw 0.0374; 0.0953 0.0373; 0.0886
Goodness of fit 1.000 1.041
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value. The spin density distribution determined by the MO
calculation of the molecule is shown in Fig. 1(c). On each
asymmetric unit that possesses a spin of S ¼ 1=2, 88.8% of
the total spin density is concentrated on the NN unit and only
7.2% is distributed on the difluorobenzene ring. Thus, a
molecule is treated as two spins of S ¼ 1=2 coupled through
an intramolecular interaction J0. Moreover, the intermolec-
ular contacts between the NN units must be taken into
account when we consider intermolecular interactions. In
order to clarify the intermolecular packing, each methyl
group (C10–C13) is omitted in Figs. 2(a)–2(c). There are two
kinds of intermolecular contacts between the NN units within
5Å, which are marked by blue and red dotted lines in
Fig. 2(a). The blue line represents the interatomic contact of
O1–N2, 4.97Å at 293K and 4.87Å at 23K between the
molecules related by two-fold screw symmetry along the
b-axis. The red line is the one between the molecules related
by inversion symmetry with O2–N2, 4.90Å at 293K and
4.85Å at 23K, which connect molecules along the a þ c
direction. The intermolecular interactions J1 and J2 are
assigned to these intermolecular contacts between the NN
units along the b-axis and the a þ c direction, respectively.
As a result, each half of the molecule carrying an S ¼ 1=2, is
surrounded by four neighboring ones, as shown in Fig. 2(a).
The half molecular unit (1) is connected with (1A) through the
intramolecular interaction J0, with (2) and (3) along the
b-axis by the intermolecular interaction J1, and with (4) by
the intermolecular interaction J2. The molecular packing
viewed along the c- and b-axis are shown in Figs. 2(b) and
2(c), respectively, where a honeycomb network of S ¼ 1=2 is

formed in each of the a�b- and ac-plane, where a� is defined
as a sin �. In the a�b-plane, a 1D chain with J1 is connected
by J0 to form a honeycomb network as shown in Fig. 2(b).
Each hexagonal unit with J0–J1–J1–J0–J1–J1 arrangement
has chair conformation because the molecular long axis leans
from the a�b-plane by approximately 12°. We recall that
F4BIPBNN is a highly-twisted molecule. Thus, each corner
of the J0–J1–J1–J0–J1–J1 honeycomb ring is alternately
connected by J2 with the upper and lower layers along the
c-axis, as is shown in Fig. 2(c). As a result, the honeycomb
network is spread in the ac-plane consisting of a hexagonal
unit with J0–J1–J2–J0–J1–J2 arrangement. A schematic
illustration of the magnetic model of this compound is drawn
in Fig. 2(d). Grey, blue, and red bonds represent the
magnetic interactions J0, J1, and J2, respectively, between
the spins of S ¼ 1=2 on each corner. In this model, J0 and J2
are interchangeable, and a honeycomb network consisting
of a hexagonal unit of J2–J1–J1–J2–J1–J1 arrangement is
formed in the bc-plane. Therefore, the present compound
forms the 3D network of S ¼ 1=2 that comprises honeycomb
layers in every three direction. Since each corner of a
honeycomb layer is linked alternately to the upper or lower
layer, honeycomb layers are linked in honeycomb fashion
and each spin of S ¼ 1=2 is magnetically coupled with z ¼ 4.

Although a diamond lattice has common features with the
present model that each site has z ¼ 4 and honeycomb layers
are seen in every three-direction, the difference lies in the
stacking periodicity of the honeycomb layers. A diamond
lattice has three-fold periodicity in the stack of honeycomb
layers, where a honeycomb ring is not superimposed between
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Fig. 2. (Color online) (a) Molecular packing at 23K connected by NN short contacts within 5Å. Blue and red dotted lines represent the interatomic contact
of N–O 4.87 and 4.85Å, respectively. Each asymmetric unit is colored by symmetry operation as grey (identity), yellow (inversion), green (two-fold screw),
and pink (c-glide). Asymmetric unit (1) is surrounded by four neighbors with the notation of 1 ðx; y; zÞ, 1A ð2 � x; 2 � y; 1 � zÞ, 2 ð1=2 � x; 1=2 þ y; 1=2 � zÞ, 3
ð1=2 � x;�1=2 þ y; 1=2 � zÞ, 4 ð1 � x; 2 � y;�zÞ. All the definition is commonly used in (a), (b), and (c). (b) Molecular packing viewed along the c-axis. Each
asymmetric unit carries an S ¼ 1=2 spin, and the intramolecular interaction between (1) and (1A) is defined as J0, and represented by grey thick line. The blue
thick line represents the intermolecular interaction J1 which connects (1) with (2) and (3). As a result, a honeycomb network of S ¼ 1=2 consisting of J0 and J1
is formed. (c) Molecular packing viewed along the b-axis. The red thick line represents the intermolecular interaction J2 which connects (1) with (4). In the
ac-plane, a honeycomb network of S ¼ 1=2 consisting of J0, J1, and J2 is formed. (d) Magnetic model of F4BIPBNN forming a 3D honeycomb lattice of
S ¼ 1=2 with four nearest neighbors, where grey, blue, and red bonds represent the intramolecular interaction J0 and intermolecular interactions J1 and J2,
respectively, between spins of S ¼ 1=2 existing on each corner.
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the neighboring layers. On the other hand, the present model
has two-fold periodicity in the stacking of honeycomb layers.
When every corner is linked between superimposed honey-
comb layers to both of the upper and lower layers, the model
become a stacking honeycomb lattice with z ¼ 5 whose
honeycomb layers spread only in one direction. In the present
case, the chair conformation of each honeycomb ring is the
key of the interlayer contact at every other corner, which
results in the honeycomb network in three direction. We call
this unique 3D network with z ¼ 4 here as a 3D honeycomb
lattice in distinction from a diamond lattice.

3.2 Magnetic susceptibility
Figure 3(a) shows the continuous susceptibility versus

temperature, �ðTÞ ¼ MðTÞ=B, measured in B ¼ 0:1T. Over
the temperature range of 200–300K, the Curie–Weiss law is
followed with a Curie constant C ¼ 0:749ð1Þ emuK=mol and
a Weiss constant �w ¼ �16:2ð1ÞK. The experimental Curie
constant shows good agreement with the expected value of
0.753 emuK=mol, corresponding to 2mol of spin S ¼ 1=2
with g ¼ 2:0068 reported for NN.7) The negative value of
the estimated Weiss constant indicates the existence of
antiferromagnetic interactions.

The plot of χ vs T reveals a broad maximum at 4K, which
is a fingerprint of the development of short-range magnetic
correlations, followed by a kink anomaly at 2.7K, which

suggests the occurrence of antiferromagnetic long-range
order (AFM-LRO). The position of the kink is precisely
determined to be 2.7K by taking the temperature derivative
of the susceptibility, d�ðTÞ=dT, and we assigned it to be the
Neel temperature, TN. This was confirmed by heat capacity as
described in Sect. 3.4.

Figure 3(b) displays a plot of M=B vs T measured in
various magnetic fields up to 9T. We noticed that there is
a large change between 0.1 and 0.3 T, which implies the
presence of the spin-flop transition between 0.1 and 0.3 T. It
was also confirmed by the field dependence of the magnet-
ization measured at low temperature, as described in the next
subsection. The transition temperatures determined by the
kink of the temperature dependence of the magnetization are
indicated by the arrows in Fig. 3(b). The transition temper-
ature TN slightly increases with increasing applied magnetic
field up to 3T. Above 3T, TN shift toward lower-temperature
side. The broad maxima of �ðTÞ continuously decrease with
increasing magnetic fields, and at 9 T, it almost vanishes and
the phase transition to the 3D AFM-LRO state is observed as
a cusp-like extreme.

3.3 High-field magnetization curve
The high-field magnetization curve MðBÞ measured at

0.4K in pulsed magnetic fields up to 23T is shown in Fig. 4
as a solid black line. The curve shows a saturation value
of 2�B per molecule at a field of 15.7 T. Two anomalies
at magnetic fields BSF ¼ 0:226T and BSAT ¼ 15:7T are
observed in the dMðBÞ=dB curve at 0.4K. The field
dependence of the magnetization shows a concave curve
and deviates from the classical linear behavior. This non-
linear behavior of magnetization versus magnetic fields
comes from the shrinkage of spin due to the quantum
mechanical zero-point oscillation of the spin. Since dM=dB at
B ¼ 0 is proportional to the magnitude of the spin at zero
field SB¼0, we can evaluate the shrinkage factor of spin η,
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which is defined as � ¼ 1 � SB¼0=S, by comparing with
dM=dB of the classical spin system.14) In the present system,
the shrinkage factor of spin is evaluated as � ¼ 0:28. This
value has an intermediate magnitude between those of a
2D square lattice (� ¼ 0:39)15,16) and 3D cubic lattice (� ¼
0:16).15,16) This result demonstrates that the magnetic
properties of the present system exhibit the intermediate
behavior between 2D and 3D systems.

3.4 Specific heat
The heat capacity versus temperature for different

magnetic fields from 0 to 14T is shown in Fig. 5. After
subtraction from the total specific heat (Ctotal) of the lattice
contribution (Clattice), using a single Debye function with
�D ¼ 55K, the magnetic heat capacity (Cmag) was obtained
(see the inset). A typical λ-shaped peak was observed at
TN ¼ 2:7K for B ¼ 0. The total magnetic entropy gain (�S)
was calculated by integrating Cmag=T with respect to T,
where the low-temperature part of Cmag was extrapolated
from observed data using the result of the spin-wave theory.
The estimated value of �S at 7K reaches 80% of 2NAkB ln 2,
which is almost full entropy of two spins of S ¼ 1=2 per
molecule and the evidence of the 3D nature without
frustration. When magnetic field increases up to 3T, TN

slightly increases. With further increases of the magnetic
field above 3 T, TN shifts toward the lower-temperature side
and the height of the peak decreases. The broad anomaly of
short range correlation observed at approximately 4K is
depressed by increasing magnetic field. The magnetic field
determined of TN from the specific heat and the susceptibility
gives the B–T phase diagram shown in Fig. 6.

4. Analysis and Discussion

4.1 Expectation of magnetic interactions by MO
calculations

The present compound F4BIPBNN, bearing two spins of
S ¼ 1=2, forms a 3D honeycomb lattice, where each S ¼ 1=2
spin interacts with four neighboring spins with one J0, two J1
and one J2 bonds. The former two forms the honeycomb

network in the a�b-plane and the last one connects the
honeycomb layers in three-dimension. As described below,
all three interactions should be antiferromagnetic according
to the MO theory. Concerning the intramolecular interaction
J0,17) the antiparallel spin alignment is stabilized by the spin
polarization of the alternately appearing positive and negative
spin density on π-conjugation, as shown in Fig. 1(c). The
large spin density distribution on the NN unit comes from the
fact that the singly occupied molecular orbital (SOMO)
distributes on the NN unit. Since significant overlap between
SOMOs always yields antiferromagnetic interaction,1,2) the
intermolecular interactions J1 and J2 are predicted to be
antiferromagnetic.

The magnitude of the magnetic interaction is roughly
estimated by applying Yamaguchi’s formula10) to the results
of the MO calculation for the neighboring two asymmetric
units connected by J0, J1, or J2. The estimated values are
J0=kB ¼ 13K, J1=kB ¼ 2:4K, and J2=kB ¼ 8:1K for the
crystal structure at 293K, and J0=kB ¼ 16K, J1=kB ¼ 2:7K,
and J2=kB ¼ 8:9K for 23K. The slight enhancement comes
from the shrink of the crystallographic lattice with decreasing
temperature. This procedure is the most commonly used but
always gives overestimation of intramolecular interaction by
a few times.18,19) It comes from the spin contamination due to
the fact that the pure singlet state is not described in the
unrestricted MO theory. Assumption of the overestima-
tion factor 0.38019) predicts the intramolecular interaction
J0=kB � 6K. On the other hand, the planar analogue of
F4BIPBNN is reported to have the intramolecular interaction
of 28K.20) When the reduction of the intramolecular
interaction in a twisted molecule1) is treated on the basis of
the planarity factor cos’1 cos’2,21) where φ denotes the
dihedral angle between the radical unit and its connecting π-
planes, F4BIPBNN is expects to have J0=kB � 6:5K. As for
the intermolecular interactions, the order of the estimated
values from MO calculations are always reliable.22) The
estimated values of J1 and J2 are consistent with the ones of
related materials1,2) when comparing the molecular packings.
On assumption of the scaling factor for J0, the magnitude of
three interactions J0, J1, and J2 are expected to be the same
order at about 6K. Although MO calculations are useful to
reveal the intermolecular packing responsible for magnetic
interactions, in order to determine the exact values of the
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Fig. 6. (Color online) B–T phase diagram of F4BIPBNN. Green and red
circles represent TN determined by susceptibility in separate measurements.
Black triangles and blue diamonds present TN determined by specific heat in
separate measurements. Red diamonds indicate the saturation magnetization
field observed in magnetization curves.
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interactions, the analysis of the magnetic properties is
essential.

4.2 Analysis by QMC calculations and determination of
magnetic interactions

The determination of the magnetic interactions of the
present compound has been done by the fitting of the
magnetic susceptibility and of the magnetization curve with
QMC calculations. We analyzed the magnetic susceptibility
in terms of the 3D honeycomb lattice shown in Fig. 2(d). We
assume the S ¼ 1=2 Heisenberg spin Hamiltonian, which is
expressed as

H ¼ J0
X

hi; ji
Si � Sj þ J1

X

hk;li
ðSk � Sl þ Sk � Slþ1Þ

þ J2
X

hm;ni
Sm � Sn; ð1Þ

where Jp (p ¼ 0; 1; 2) has positive value that indicates
antiferromagnetic interactions, and the sums hi; ji, hk; li, and
hm; ni are taken for grey, blue and red bonds on Fig. 2(d),
respectively. We calculated the magnetic susceptibilities by
the QMC method for various combinations of the parame-
ters of J1=J0 and J2=J0. The total value of the magnetic
interactions (J0 þ 2J1 þ J2) is given by the saturation
magnetic field BSAT ¼ 15:7T. The agreement between the
experiment and calculation was evaluated by using the
quality function ðFÞ2 for each set of ðJ1=J0; J2=J0Þ,

ðFðJ1=J0; J2=J0ÞÞ2 ¼
X

i

ð�calcðTiÞ � �obsðTiÞÞ2: ð2Þ

The ðFÞ2 function was minimal for the set J0=kB ¼ 6:6K,
J1=kB ¼ 4:3ð2ÞK, J2=kB ¼ 5:9ð3ÞK. The calculated results
of �ðTÞ and MðBÞ are compared with the experiments in
Figs. 3(a) and 4, respectively. Since J0 and J2 are
interchangeable in this magnetic model of Fig. 2(d), it is
difficult to elucidate the intramolecular interactions J0 as
6.6K or 5.9K. The alternative model with the intramolecular
interaction J0=kB ¼ 5:9K, and intermolecular interactions
J1=kB ¼ 4:3K and J2=kB ¼ 6:6K gives the identical calcu-
lated results. The estimated three kinds of antiferromagnetic
interactions are in the range of 4.3 to 6.6K, which are
consistent with the expectation from the MO calculations.

4.3 Quantum fluctuation in 3D honeycomb lattice
Since the present 3D honeycomb lattice is the network of

the ideally isotropic spins of S ¼ 1=2 with z ¼ 4, one can
see some effect of quantum fluctuations, though it shows the
AFM-LRO. The first evidence is the increase of TN in low
field regime as shown in Fig. 6. Similar behaviors have been
often observed in quasi-1D Heisenberg antiferromagnets and
have interpreted on the basis of the suppression of the
quantum fluctuations by applying magnetic fields. Namely,
TN increases when the uniform moment is increased at the
sake of the reduction of quantum shrinkage of spin in
magnetic fields. In 2D Heisenberg antiferromagnets, the
increase of TN occurs when application of magnetic fields
reduces the spin dimensionality and suppresses the quantum
fluctuations along the field direction. This behavior is
theoretically predicted23,24) for the 2D square lattice
Heisenberg antiferromagnet and observed in some model
compounds.25–27) In the present system, the magnetic

interactions are not completely uniform and the three-
dimensionality affords the gapless ground state. The
observed field dependence of TN indicates that the quantum
fluctuations in this 3D system are suppressed by applying
magnetic fields.

The effect of quantum fluctuations also appears in the non-
linear magnetization curve shown in Fig. 4. From this
concave shaped magnetization curve, the reduction of the
magnetic moment due to the quantum fluctuations has been
evaluated to � ¼ 0:28, as described in Sect. 3.3. The effect
of quantum fluctuations strikingly appears in S ¼ 1=2
Heisenberg antiferromagnets, which is enhanced depending
on the smaller value of z. Among them, the most conspicuous
fluctuation of � ¼ 0:59 is predicted28) and observed14) in the
1D chain lattice with z ¼ 2. In higher dimensional system,
spin fluctuations are still observed as � ¼ 0:3915,16) for the 2D
square lattice with z ¼ 4 and as � ¼ 0:1615,16) for the 3D
cubic lattice with z ¼ 6. It is evident that the spin fluctuations
are more weakened in the 3D lattice which exhibits AFM-
LRO. On the other hand, the present system shows significant
spin fluctuations of � ¼ 0:28 among 3D system in spite of the
occurrence of AFM-LRO. Since this system is free from the
effect of the spin frustration, the smallest value of z ¼ 4

among 3D system is concluded to the key of the pronounced
effect of the quantum fluctuation. This is the first observation
of the quantum fluctuations among 3D magnetic lattice
without spin frustration.

5. Conclusions

A 3D honeycomb lattice antiferromagnet of ideally
isotropic spins of S ¼ 1=2 with z ¼ 4 has been firstly
realized by an organic biradical F4BIPBNN. The magnetic
properties are well understood by three kinds of antiferro-
magnetic interactions in the same order of 4.2–6.6K. The
concave shaped magnetization curve was observed and the
quantum fluctuations was evaluated as approximately 30%
spin shrinkage. The AFM-LRO was observed and the B–T
phase diagram was determined from the specific heat and
susceptibility. The increase of TN with applying magnetic
field was observed in the low-field region, which is the
evidence of quantum fluctuations in this 3D system. The
present system is the first realization of the 3D quantum spin
system without spin frustration. The observed quantum
fluctuations are caused by the ideally isotropic nature of
spins of S ¼ 1=2 couples with the minimum exchange
pathways of z ¼ 4. In order to reveal precise spin structure in
magnetic fields, further study such as NMR and neutron
scattering is desirable. We hope that the present results
stimulate the study of novel quantum spin states in 3D
system.
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