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Objectives: The aim of this study was to investigate the structure of a broad and sustained hospital
outbreak of OXA-48-producing Klebsiella pneumoniae (KpO48) belonging to sequence type 405 (ST405).
Methods: Whole-genome sequencing and comparison of ten ST405 Kp0O48 isolates obtained from clinical
samples in our hospital was performed. Using stringent criteria, 36 single nucleotide polymorphisms
(SNPs) were detected (range 0-21 in pairwise comparisons), and allele-specific PCR was used to call the
SNPs among a larger set of isolates.

Results: Several haplotypes were identified within the population. The haplotypes did not show a spatial
structure, but a temporal evolution of sequential haplotype replacements was observed.

Conclusions: The dispersed spatial distribution suggests a reservoir formed by a large pool of colonised
patients, and the temporal replacement pattern suggests that the sustained outbreak was composed of
several small outbreaks that appeared and rapidly dispersed to several units.

© 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All

rights reserved.

1. Introduction

OXA-48 and related enzymes are class D p-lactamases that
hydrolyse most p-lactam antibiotics, including carbapenems. They
are produced by different enterobacterial species and generally
appear combined with other antimicrobial resistance mechanisms

* Corresponding author at: Servicio de Microbiologia, Hospital Universitario La

Paz, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
E-mail address: jesus.mingorance@idipaz.es (J. Mingorance).

! Present address: Servicio de Enfermedades Infecciosas, Hospital Clinico
Universitario ‘Lozano Blesa’, Instituto de Investigaciones Sanitarias Aragén, Avenida
San Juan Bosco 15, 50009 Zaragoza, Spain.

2 Present address: Diagenode S.A., Liége Science Park, Rue Bois Saint-Jean 3, B-
4102 Seraing, Belgium.

https://doi.org/10.1016/j.jgar.2018.06.008

[1,2]. In most cases the blagxa-4s gene is found in a composite
transposon (Tn1999) in a single 62-kb IncL conjugative plasmid
that transfers very efficiently within and between species [3,4].
This plasmid has spread during the last years throughout Europe
[5-8], most often associated with OXA-48-producing Klebsiella
pneumoniae (KpO48). In our hospital (Hospital Universitario La Paz,
Madrid, Spain), KpO48 were first detected in 2010 [9], simulta-
neously with its emergence in several other hospitals in Spain [10].
During the first 2 years of the outbreak, most OXA-48-producing
isolates were K. pneumoniae belonging to multilocus sequence
typing (MLST) sequence type 405 (ST405), with a few sporadic K.
pneumoniae isolates belonging to other MLST types and a few other
enterobacterial species. Later on ST11 became the major group
[11]. This epidemic has been characterised in our hospital by a
sustained and complex pattern of OXA-48-producing isolates

2213-7165/© 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jgar.2018.06.008&domain=pdf
mailto:jesus.mingorance@idipaz.es
https://doi.org/10.1016/j.jgar.2018.06.008
https://doi.org/10.1016/j.jgar.2018.06.008
http://www.sciencedirect.com/science/journal/22137165
www.elsevier.com/locate/jgar

E. Lopez-Camacho et al. /Journal of Global Antimicrobial Resistance 15 (2018) 48-54

belonging to two major and several minor STs that appear
scattered throughout the hospital [9,11,12]. The repeated isolation
of the same ST in some hospital units may suggest that local (i.e.
within-unit) transmission might play a dominant role in main-
taining an endemic situation in these units. To test this hypothesis,
a high-resolution single nucleotide polymorphism (SNP) analysis
of ST405 Kp0O48 isolates recovered from clinical samples during
the first 2 years of the outbreak was performed.

2. Materials and methods
2.1. Setting and strains

Hospital Universitario La Paz is a third-level academic centre
that provides medical assistance to a mixed urban and rural
population of ca. 600 000 people in the north area of Madrid. This
study included all KpO48 isolates belonging to ST405 and obtained
from clinical samples between December 2010 and December
2012. One isolate per patient was included. Data on isolation unit,
date and sample type were collected. No other patient data were
registered. One isolate obtained in April 2010 was identified
retrospectively and was recovered from the collection of the
Microbiology Service. Clonality was established using DiversiLab®
[9] and by ST405-specific PCR typing [13].

2.2. Genome sequencing

The genome of isolate K. pneumoniae KpO3210 (GenBank
accession no. AMRH00000000) was used as the reference to call
for SNPs [14]. To improve the assembly, the genome was
resequenced from a single-read shotgun library and two long-
insert paired-end libraries (3 kb and 8 kb) using GS Junior Titanium
Chemistry and a GS Junior Sequencer (Roche Applied Science,
Penzberg, Germany). These sequencing runs were assembled using
Newbler 3.0 into five scaffolds (30 contigs), with an estimated
genome size of 6.3Mb and an N5y of 510549bp (GenBank
accession no. AMRH02000000). To study the genetic diversity of
the isolates at the subclonal level, nine ST405 Kp0O48 isolates from
different wards and spanning the period from December 2010 to
December 2012 were selected. The nine isolates were shotgun-
sequenced using the same methodology in an Illumina GAIIx
sequencer (one of them in 2 x 125 and eight in 1 x 75). Paired-end
sequencing of strain Kp2 produced 2 x 18 464 504 reads; the single
read sequencing produced an average of 5485377 reads per
genome. SNP calling and a core-SNP alignment were done using
either paired-end or single-end reads with Snippy v.3.0 [15]. SNPs
were selected using stringent criteria: detection in 100% of the
reads in both directions and minimum depth equal to or higher
than the mean coverage. All SNPs were confirmed by Sanger
sequencing. The SNPs were called using Illumina assembly
(accession no. AMRH00000000) [14] but have been renumbered
according to AMRH02000000. A minimum spanning tree of SNP

Table 1
Plasmids identified in Klebsiella pneumoniae isolates Kp1-10.
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profiles was constructed with Sneato v.2 (http://user.xmission.
com/~wooding/Sneato/).

2.3. Allele-specific endpoint PCR

To determine the SNP variants in non-sequenced isolates, an
allele-specific endpoint PCR strategy was used. For every SNP, three
PCR primers were designed: one primer located ca. 100-200 bp
away from the polymorphic position, and two SNP primers with
the 3’ end in the variant position (one primer with each possible
variant sequence) (Supplementary Table S1). PCR reactions were
designed to allow amplification only when there was a perfect
match, so that each isolate would yield a PCR product only with one
of the two SNP primers. PCR products were detected by agarose gel
electrophoresis (Supplementary Fig. S1). The primers were tested
with the sequenced strains. SNPs were recorded in Microsoft Excel
(Microsoft Corp., Redmond, WA), were concatenated and were
transformed to FASTA format and analysed using MEGA7 [16].

3. Results

The genome of KpO48 isolate Kp03210 was resequenced using
the Junior 454 system with one single-read and two paired-end
libraries of 3kb and 8kb length. The revised assembly of the
genome of KpO3210 contains five scaffolds: the chromosome and
four plasmids. All four plasmid scaffolds could be mapped with
high coverage (>96%) and identity (>98%) to plasmids present in
the GenBank database (Table 1). Scaffold 2 contains a multidrug
resistance region that includes the blargnm.1, blacrx.m-15 and blaoxa-1
p-lactamase genes, the aac(6')-Ib-cr and aacC3 aminoglycoside
resistance genes, and a qnrB1 gene, among others.

The genomes of nine additional ST405 KpO48 isolates obtained
from different wards and selected to span the period from
December 2010 to December 2012 were sequenced and the reads
were mapped to the KpO3210 genome. Isolate Kp2 had lost the
blaoxa-1 and aac(6’)-Ib-cr genes, and Kp5 had lost the gnrB1 gene,
although they still had the rest of scaffold 2. Isolates Kp3 and Kp6
had lost scaffold 4, whilst isolate Kp9 had an additional scaffold,
highly similar to the Klebsiella oxytoca plasmid pKO_]JKo3_2 [18]
(Table 1).

Using stringent criteria, 36 SNPs were identified and were
confirmed by Sanger sequencing (Table 2), of which 5 were in
intergenic regions and 31 were in coding regions (12 in the first
codon position, 15 in the second codon position and 4 in the third
codon position). Of the 31 SNPs in coding regions, 26 were non-
synonymous and 5 were synonymous. The variants found in coding
regions were localised in genes coding for a variety of products
including enzymes, regulatory proteins, transporters and hypo-
thetical proteins. Alignment of the concatenated SNPs showed 16
non-phylogenetically informative variants (those that appear just
once in one of the sequenced strains [16]) and 20 phylogenetically
informative ones (Table 2). Pairwise comparisons showed between

Size (kb) Inc? Copy number® Most similar plasmid GenBank acc. no.
Kp1 Kp2 Kp3 Kp4 Kp5 Kp6 Kp7 Kp8 Kp9 Kp10
Scaffold 2 233020 FIB/FIIB 2 2 1 1 2 1 1 1 2 1 pKPN3-307_typeA KY271404.1
Scaffold 3 63400 L 1 2 1 2 1 1 2 2 1 1 E71T KC335143.1
Scaffold 4 34327 3 4 0 10 1 0 5 4 3 4 pECAZ146_3 CP018988.1
Scaffold 5 4593 Col4401 9 7 8 32 12 11 7 12 7 12 pEC08-5 JX238444.1
104331 1 pKO_JKo3_2 AP014953

2 The Inc type is proposed on the basis of sequence similarity identified with PlasmidFinder [17].
> Numbers refer to copy numbers in the sequenced strains estimated from the ratio of the mean coverage for each scaffold to the mean coverage of scaffold 1.
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Table 2

Single nucleotide polymorphisms (SNP) set used for typing of OXA-48-producing Klebsiella pneumoniae ST405 isolates. The table shows the SNP positions in the Kp0O3210
genome sequence (GenBank accession no. AMRH02000000), the polymorphic variants in parenthesis with their surrounding sequences, as well as the amino acid changes,
locus tag and GenBank annotation.

SNP Contig Position Sequence locus_tag AA Protein (GenBank) Phylogenetically
change informative”

SNP1  sctg_0001_0005 1620893 GCCAAATTGTCGTAGTGAGC(T/A) €630_12920 - Hypothetical protein Y
CGGATCCGAGTAGTTAGGGT

SNP2  sctg 0001_0005 125482 TCGACTCCAGCCAGTTTAAT(G/T) C630_05405 G238C Pseudogene Y
GCTCCATTCCGCAAATTTTC

SNP3  sctg 0001_0011 385346 ACCCGTTATTAATGCGGGGG(T/A) C630_17345 T73S Ammonium transporter Y
AATGATGGCAAACATCATTT

SNP4  sctg 0001_0005 1613607 CAGCGAGATCGAGTAATCTG(A/T) C630_12895 L171H Tyrosine permease N
GTGCTTTTACGCCTCCTGCG

SNP5  sctg _0001_0005 1549284 CGCTCGCGCTACCAGGTGCA(T/G) C630_12670 H402Q Hypothetical protein Y
ATAGAGTGCCTGAGTACGGA

SNP6  sctg_0001_0002 35155 GGTCTGCCGCGGTTTGACAA(C/A) C630_01335 V32F Y
CAGCTCAACTCCGGTAAGGA

SNP7  sctg_0001_0002 339756 CGCAATGGCCTGGGCGATGG(C/T) €630_02910 A63T  Phosphoglucomutase Y
CAGGATATGCGGTTCGTTGA

SNP8  sctg 0001_0017 34653 GGTGGCCCGGCGGCCGCGTC(G/A) €630_22240 A131V  AAA family ATPase N
CCAGCCGCGAGGCATAGCGC

SNP9  sctg 0001_0014 267244 TGGGGCTGCTGGGCGGCGCT(G/A) C630_20845 A98T  Ribose ABC transport system, N
CGGCGATCTTTGACGTCTGG permease protein RbsC

SNP10 sctg_0001_0005 1050633 GATATTTAACGGGGCGCCGG(C/G) C630_10155 A85G  VgrG protein Y
TGTTCCAGTGCGTACCGTCT

SNP11 sctg_0001_0005 658096 AGTCTTACCACGGGATGCTG(G/A) C630_08065 A223T LysR family transcriptional regulator Y
CCTGCGTCATCGCCGGCGCC Yne]

SNP12 sctg 0001_0004 57177 GAGCGAGGGTAAAGATACCT(T/A) C630_04620 F219Y  Glucose-1-phosphatase N
TAGCGCCGGTTATCAGCAGG

SNP13 sctg_0001_0005 322733 GGGTGACGGTCAACTCCCTG(A/T) €630_06395 V689A  Glycoside hydrolase N
CCATTTGGCCAGCGTCGGGC

SNP14 sctg_0001_0005 1556836 CTGGGGATTAACGTGAGTCG(T/C) C630_12705 - ABC transporter permease Y
CTGCGCATCGAGATTTTTCT

SNP15 sctg_0001_0009 157189 TACCAGCAGAGCCGGTACCA(G/A) C630_13915 - OmpK36 porin N
GAGGGACAGTACTTTAACTT

SNP16 sctg _0001_0005 1027559 CGTTGCCCCCGTTCTGACGG(A/T) C630_10025 189N Lactoylglutathione lyase Y
TCCGTTCGCAGGCTTCGGCG

SNP17 sctg_0001_0002 188689 CGCGGAAGCAGGGGTTTTCG(A/T) C630_02185 V221D GntR family transcriptional Y
CGCCAATGCGGGTGGTGGAA regulator

SNP18 sctg 0001_0005 1476482 CAATACGCTGGCGGTAACCG(G/A) €630_12340 G216D  Cystine transporter subunit Y
CGAAGCCTTCTCTCGTCAGG

SNP19 sctg 0001_0014 338443 CGTGACGCCCTGTAAAAATG(A/G) C630_21195 S55P Chloride channel protein N
CACCGAACCGACGATCTGCC

SNP20 sctg_0001_0017 28769 CCGCATACGCCGCAGCCGGT(G/A) C630_22200 - Sulfurtransferase FdhD N
CGCCCGGCCAGCGCGCGACG

SNP21 sctg 0001_0001 223506 CCGGCCCCGCCAGCAGCGCG(A/C) C630_01125 1184S  lacl N
TCTCCCGATGCCCCATCTCA

SNP22 sctg 0001_0023 207222 CAATCTTGTTTTCCATCAAT(T/G) C630_24275/ - Intergenic Y
TTACGAAGAGATGCGCATCA C630_24280

SNP23 sctg_0001_0002 255908 TGGCGGTAATGCTGGCCTTC(C/G) €630_02480 - 4-Phytase/acid phosphatase Y
GCACGCCCTTTGTTGACCAC

SNP24 sctg_0001_0002 173769 TATCTTCACTCTTTGGACGA(G/T) C630_02125 A2D Transcriptional regulator, TetR N
CCACTACTTTTTTCCTCACG family

SNP25 sctg_0001_0005 1534233 CACGACTTTTGCCTGGATTA(A/G) C630_12590 N50S  FAD-dependent oxidoreductase N
TTCAAATGGCAAAACACCAG

SNP26 sctg_0001_0005 1549284 CAATAGGAATAACATGATGG(C/T) C630_12670 C34Y  Hypothetical protein N
AGTTATCGCATTCAAAAAGT

SNP27 sctg_0001_0019 44928 CATGGAATCGATCATCAGCC(A/C) C630_22780 H479P Adenylate cyclase N
TCAACCGCTGGAATATAACC

SNP28 sctg_0001_0005 698735 ACGCCCGCCCGGCCAGCAAG(G/A) €630_08285 G62R  Methionine aminopeptidase Y
GGCAATACGATTTTCCCTAT

SNP29 sctg 0001_0019 44922 CGCCGGCATGGAATCGATCA(T/C) C630_22780 1477T  Adenylate cyclase N
CAGCCATCAACCGCTGGAAT

SNP30 sctg 0001_0025 255355 TTTTGTTTACGGAAGGCTGT(G/A) €630_26290/ V27M  Intergenic Y
TGGTAATTCCGAAAAAGGCC C630_26295

SNP31 sctg 0001_0025 255518 TTGTCATTATTTATTCACTG(T/C) €630_26290/ V10A  Intergenic Y
AATTGACTCTGTATTCATTT C630_26295

SNP32 sctg_0001_0023 28735 GCCTTTATCGCCATCGTGGT(G/A) C630_23355 - Branched-chain amino acid ABC Y
CCGCAAATTAAAAGCCAGGC transporter permease

SNP33 sctg 0001_0021 11112 ACCCGCTGTCTGAGATTACG(C/A) €630_23090 H526N DNA-directed RNA polymerase beta Y
ACAAACGTCGTATCTCCGCA subunit

SNP34 sctg 0001_0025 277640 GAACGACGGATCGGCGTTCA(G/A) C630_26375 - Glucose dehydrogenase, PQQ- N
CTGCGGGTCAAAATGCCACT dependent

SNP35 sctg 0001_0009 161321  AAGAGTAATCTCTTCGCCCT(C/A) C630_13925/ - Intergenic Y
TCCGTCTCGCCCCGGCGAGA C630_13930

SNP36 sctg_0001_0005 615540 CGCCTCATTTTTGAGAGTGG(G/A) €630_07845/ - Intergenic N
AAATAGAATGGTAGGATAAT €630_07850
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Numbering refers to version AMRH02000000.
" Y, yes; N, no.

0 and 21 SNPs. Isolates Kp8 and Kp10 were identical, whilst Kp7
and Kp2 differed from them by two and five non-informative SNPs,
respectively. Maximum likelihood phylogenetic analysis of either
core genome alignments or concatenated SNP alignments yielded
essentially the same tree (Fig. 1). The tree has two major branches
that can be identified by three signature SNPs: SNPs 1, 2 and 3
(Table 2). These three SNPs were searched among the genome
sequences of ST405 KpO48 isolates from several Spanish hospitals
that had been sequenced by the National Reference Laboratory
[19]. Of 58 genomes analysed, 48 belonged to the Kp1-3-6 branch
(lower branch in Fig. 1) and 10 belonged to the other branch.

A total of 44 additional isolates of ST405 KpO48 were obtained
from clinical samples during the study period from 25 different
areas (24 hospital wards and primary care). Allele-specific
endpoint PCR was used to call the polymorphic variants in these
isolates (Table 3). Of the 44 isolates, 9 belonged to the Kp1-3-6
branch and the remaining 35 could be grouped to the other branch.
A minimum spanning tree of the 54 isolates was constructed using
the phylogenetically informative SNPs. Mapping the isolation date
on this tree structure showed the older isolates (2010-2011) in
central positions and the newer ones (2012) in terminal positions
(Fig. 2).

The isolates were scattered among hospital wards with no
evidence of spatial clustering or association between haplotypes
and particular units (Table 3). A single isolate was detected in 9
wards, whereas two or more isolates were obtained from each of
the remaining 16 wards. Among these, a single haplotype was
found in only two wards, whilst two different haplotypes were
identified in ten wards and in primary care, and three or more
haplotypes were found in three wards (emergency room, a small
unit dependent on internal medicine, and a post-surgery recovery
section; the three units are often recipients of patients from several
different wards).

4. Discussion
In this study, the population structure of ST405 Kp048 collected

over 2 years in a single hospital in the context of a sustained
outbreak involving several STs was studied. Repetitive extragenic

72

95

89

Kp1 (3210) (21/12/10)W15

100

palindromic PCR (rep-PCR) analysis of clonality using the
DiversiLab® system suggested that the ST405 KpO48 isolates
were a homogeneous group [9], and whole-genome sequencing
(WGS) of ten isolates showed that they were indeed very closely
related, with 0 to 21 SNPs in pairwise comparisons and seven
different SNP profiles. This amount of variation is similar to that
observed previously on a broader geographic range [19]. Most (26
of 36) of the SNPs detected involved amino acid substitutions,
which may suggest a role for selection in the expansion of the
different haplotypes; nevertheless, none of the variants involved
proteins related to antigenicity, antimicrobial susceptibility or any
other obviously selectable properties (SNP15 in the ompK36 gene is
silent).

SNP calling by allele-specific PCR in a larger set of isolates
identified three additional profiles. Despite the limited diversity,
more than one-half of the SNPs were phylogenetically informative
and exposed a structure within the ST405 KpO48 population.
Maximum likelihood phylogeny grouped the sequenced isolates
into two major branches. Isolates from the two branches were
present in our hospital from the beginning of the outbreak: Kp1
and Kp10 were obtained within 20 days (in December 2010 and
January 2011) and differ by four SNPs. Analysis of three signature
SNPs indicated that the two branches were already present in
several Spanish hospitals in the same period [19], although the
relative proportions of the two branches were inverted in that
study. This suggests that ST405 KpO48 had been circulating for
some months in the population before the first cases were
detected. Indeed, a retrospective search in our collection identified
one isolate obtained in April 2010 that mapped to the central
haplotype in the minimum spanning tree (1670 in Fig. 2). This tree
showed a temporal pattern of evolution with sequential haplotype
replacements. In contrast, no spatial structure or clustering was
detected. There was more than one infection case in 16 of 25 areas,
and in 14 of these there were two or more haplotypes. This means
that in these 14 areas the infections were not due to the sustained
transmission of a single haplotype within the same unit, as might
be suggested by lower resolution methods such as MLST or rep-PCR
typing, but there was an underlying structure of fast-spreading
small outbreaks. Similar findings have been described in other

—— Kp4 (1439) (17/03/11)W12
Kp8 (2307) (10/01/12)W04

Kp7 (2292) (24/02/12) W19
Kp10 (6219) (11/01/11) W19

Kp2 (8517) (30/10/11) W15

Kp5 (1562) (07/03/12) W10

——— Kp9 (3472) (01/03/12) W03

Kp3 (0568) (23/11/11)W09

Kp6 (2009) (05/02/12)W20

Fig. 1. Molecular phylogenetic analysis of OXA-48-producing Klebsiella pneumoniae ST405 sequenced genomes. The evolutionary history was inferred using the maximum
likelihood method based on the Tamura-Nei model with MEGA7 [16]. A discrete Gamma distribution was used to model evolutionary rate differences among sites. The tree
with the highest log likelihood is shown with bootstrap values indicated next to the branches. The tree is drawn to scale, with branch lengths measured in the number of

substitutions per site. There were a total of 31 positions in the final data set.



Table 3
Single nucleotide polymorphisms (SNP) profiles of the 54 isolates analysed. The isolates are grouped by similarity. Sample code and isolation date are indicated. The dots indicate sequence positions identical to the first row.
SNP number
Isolate Date 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 22 23 28 30 31 32 35
5475 25-01-201 A T A A G C C G G C G T A T A A A G T C G A T G C
0001 07-02-2011 G
0025 18-10-2011 G
0325 16-02-2012 G
5737 28-09-2011 G
1541 02-09-2011 G
Kp10 11-01-2011 G
1215 28-12-2010 G
1396 16-03-2011 G
2241 27-01-2012 G
5047 10-01-2011 G
1637 08-02-2011 G
5334 15-11-2012 G
9430 25-01-2011 G
Kp8 10-01-2012 G
8678 29-12-2010 G
5728 31-05-2011 G
5869 21-03-2011 G
Kp7 24-02-2012 G
5383 27-06-2011 . . G
Kp2 30-10-2011 T A A . G
1077 28-12-2012 G G
3278 27-09-2012 G G
5173 07-11-2012 G G
2661 30-06-2011 G G
5202 08-11-2012 G G
3781 22-10-2012 G G
2837 10-09-2012 G G
5364 16-11-2012 G G
2734 03-09-2012 G G
5834 26-09-2013 G G
3771 22-10-2012 G G
8436 04-06-2012 G . G
Kp4 17-03-2011 . G T G
1670 29-04-2010 T G
0789 23-02-2011 T G
7823 21-01-2011 T G . .
7106 29-07-2011 T G C A
8535 07-11-2011 T . G . .
Kp9 01-03-2012 T . A . G C A
0104 04-05-2012 T A C G C A
Kp5 07-03-2012 . . . T . . A C . . . . . . . C . A .
3212 16-04-2012 T G T T A T G T T A G G A C A
Kp6 05-02-2012 T G T T A T G T T A G G A C A
9799 12-04-2012 T G T T A T G T T A G G A C A
6286 15-12-2012 T G T T A T G T T A G G A C A
5895 29-10-2012 T G T T A T G T T A G G A C A
0800 23-02-2011 T G T T A T G T T C
5761 02-02-2011 T G T T A T G T T C
5914 24-10-2011 T G T T A T G T T C
4926 05-08-2011 T G T T A T G T T C
Kp3 23-11-2011 T G T T A T G T T C
Kp1 21-12-2010 T G T T G
1546 22-03-2011 T G T T G

w
[\S]
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® 2010
® 2011
® 2012

0104
(n=1)

Kp5
(n=1)

0

5475
(n=1)

Fig. 2. Population structure of OXA-48-producing Klebsiella pneumoniae (KpO48)
ST405 isolates from our hospital. Minimum spanning tree of the single nucleotide
polymorphism (SNP) haplotypes of 54 clinical isolates of ST405 Kp048. Circles are
proportional to the number of isolates with the same SNP haplotype. Haplotypes are
arbitrarily named after one isolate and are coloured according to the year of
isolation. The distances between circles are proportional to the number of SNPs
between haplotypes.

studies, underlining the value of WGS to reliably track pathogen
outbreaks [20,21].

A limitation of the allele-specific PCR approach is that it does
not show the full genome variability in the whole population, only
that previously identified in the sequenced isolates, but it is a fast
and simple approach and the definition of signature SNPs might be
useful for the rapid analysis of tens to hundreds of isolates. In
addition, the study was limited to isolates obtained from clinical
samples because patient and environmental surveillance criteria
changed as the outbreak developed.

We have characterised the population structure of ST405
KpO48 during the first 2 years of an outbreak. We have found no
evidence of spatial clustering, with up to three independently
evolving lineages, which suggest that the reservoir of ST405 KpO48
during the study period was a large population of colonised
patients and the outbreak was composed of a series of small
outbreaks.
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