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Abstract 25 

 26 

While welcoming the comment of Ho et al. (2015), we find little that undermines the strength of 27 

our criticism, and it would appear they have misunderstood our central argument. Here we respond 28 

with the purpose of reiterating that we are (i) generally critical of much of the evidence presented in 29 

support of the time dependent molecular rate (TDMR) hypothesis, and (ii) specifically critical of 30 

estimates of µ derived from tip-dated sequences that exaggerate the importance of purifying 31 

selection as an explanation for TDMR over extended timescales. In response to assertions put 32 

forward by Ho et al. (2015), we use panmictic coalescent simulations of temporal data to explore a 33 

fundamental assumption for tip-dated tree shape and associated mutation rate estimates, and the 34 

appropriateness and utility of the date-randomisation test. The results reveal problems for the joint 35 

estimation of tree topology, effective population size and µ with tip-dated sequences using BEAST. 36 

Given the simulations, BEAST consistently obtains incorrect topological tree structures that are 37 

consistent with the substantial overestimation of µ and under-estimation of effective population 38 

size. Data generated from lower effective population sizes were less likely to fail the date-39 

randomisation test yet still resulted in substantially upwardly biased estimates of rates, bringing 40 

previous estimates of µ from temporally sampled DNA sequences into question. We find that our 41 

general criticisms of both the hypothesis of time-dependent molecular evolution, and Bayesian 42 

methods to estimate µ from temporally sampled DNA sequences, are further reinforced. 43 
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Introduction 44 

 45 

In their opening paragraph, and then repeated within their comment, Ho et al. (2015) state that we 46 

(Emerson & Hickerson 2015) “claim that there is a lack of support for a time-dependent pattern in 47 

molecular rate estimates”. This is not correct. What we argue for, both in our original paper and 48 

here, is that (i) there is a lack support for the inferred magnitude of TDMR patterns, and that (ii) 49 

explanations of purifying selection over extended timescales to reconcile differences between 50 

spontaneous µ and phylogenetic estimates of µ have been greatly exaggerated, largely because of 51 

issues with biased rate estimates derived from ancient DNA (aDNA) analyses. Neither in this 52 

response, nor in our original article, do we deny there to be evidence for time dependent patterns for 53 

molecular rate estimates. Nor do we deny that purifying selection will lead to lower values for 54 

spontaneous µ. What we argue for in our original article (Emerson & Hickerson 2015), but 55 

apparently misunderstood by Ho et al. (2015), is that the support for purifying selection 56 

underpinning these observed patterns is greatly overstated when most of the observed changes in 57 

estimates of µ can be explained as methodological artifacts. Purifying selection will lead to lower 58 

values for spontaneous µ. This is a truism that we have recognised previously (Emerson 2007). 59 

However, the assumption of Ho et al. (2015) that pattern is evidence for process exaggerates both 60 

the inferred extent of and timescale for rate reduction due to purifying selection. This is our central 61 

argument and cause for concern.  62 

 63 

 64 

Evidence for pattern is not evidence of process 65 

 66 

A substantial part of the comment of Ho et al. (2015) is devoted to presenting many examples of 67 

evidence for time-dependent rate estimates, although for nuclear data, Ho et al. (2015) acknowledge 68 

that there is no strong evidence for such a pattern. As stated above, we are not in denial of the many 69 

published estimates supporting the pattern for mtDNA, and as such our position is somewhat 70 

misrepresented by Ho et al. (2015). It is important to point out that, if a pattern can be explained by 71 

something other than the hypothesis (the hypothesis here being purifying selection), then the pattern 72 

itself cannot be used as evidence in support of the hypothesis. In this context, the examples 73 

presented by Ho et al. (2015) do not in themselves contradict the points raised in Emerson & 74 

Hickerson (2015), as these may be subject to the methodological issues raised in our original article. 75 

Indeed, some of the examples where we highlight methodological issues (e.g. Caenorhabditis 76 

elegans) are presented again by Ho et al. (2015) as supporting the hypothesis of time-dependent 77 
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molecular evolution without further discussion of the concerns we raised. We focus the remainder 78 

of this response on specific points within the comment of Ho et al. (2015), where we feel they may 79 

have either failed to provide an adequate response, or misrepresented our work, when discussing the 80 

evidence for the hypothesis that purifying selection is the driver of TDMR estimates. 81 

 82 

 83 

Adélie penguin data 84 

 85 

In our original article (Emerson & Hickerson 2015) we pointed out that, in contradiction to the 86 

TDMR hypothesis (i.e. the hypothesis that molecular rate estimates decrease toward the past as a 87 

consequence of purifying selection) mean pedigree-based estimates of the mutation rate of 88 

mitochondrial DNA in Adélie penguins are lower than those inferred from aDNA. In response to 89 

this, Ho et al. (2015) make two points. They first suggest that the non-reporting of 95% credibility 90 

intervals may somehow limit the significance of our observation, and further claim there to be 91 

substantial overlap in the 95% credibility intervals between aDNA estimates and the pedigree 92 

estimate. They then state that we acknowledged that both the pedigree rate and aDNA rate estimates 93 

“greatly” exceed those inferred from fossil-calibrated analyses of birds. The first point is incorrect, 94 

and thus misrepresents our original work (Emerson & Hickerson 2015), as the 95% CI of one of the 95 

three published aDNA estimates of µ does not overlap with the pedigree-derived estimate of µ. The 96 

second point requires further context (see below) to understand the extent to which both pedigree 97 

and aDNA rates for Adélie penguins can be compared to a phylogenetic rate.  98 

With regard to the first point, we stated in our original work (Emerson & Hickerson 2015) 99 

that the Adélie aDNA rate estimate of Ho et al. (2007a) is significantly higher than the pedigree 100 

rate. Thus, in contrary to the claim of Ho et al. (2015), there is no overlap among their 95% 101 

credibility intervals. We do not deny that the 95% credibility intervals of the aDNA rate estimates 102 

of Lambert et al. (2002) and Millar et al. (2008), which have a lower mean value than that of Ho et 103 

al. (2007a), overlap with the pedigree rate. However, this should not be seen as somehow 104 

undermining the discrepancy between these two aDNA rate estimates and the pedigree rate in a 105 

field (TDMR) where trends in mean values are frequently reported as support for the hypothesis. 106 

With regard to the second point, we recognize that the mean values for all aDNA rate 107 

estimates and the pedigree-derived rate estimate of µ are higher than the bird phylogenetic 108 

divergence rate of 0.208 mutations/site/Myr presented by Shields and Wilson (1987) that has been 109 

used in previous comparisons (e.g. Lambert et al. 2002; Millar et al. 2008). However, there are 110 

several features of this phylogenetic rate estimate that limit its use for comparative purposes. 111 
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Firstly, it is not a general bird rate estimate, it is an estimate derived from the analysis of 5 species 112 

of geese. A difference between a phylogenetically derived mutation rate for geese, and aDNA or 113 

pedigree-derived rates for penguins may equally be explainable by fundamental differences 114 

between these very different, phylogenetically distant taxonomic groups. Secondly, the 115 

phylogenetic rate is probably underestimated, as recognised by Shields and Wilson (1987), due to 116 

the difficulty of estimating genetic divergences from restriction fragment analysis.  117 

 118 

 119 

Comparing pedigree-derived rate estimates with phylogenetic rate estimates 120 

 121 

We have previously pointed out, using Caenorhabditis elegans as an example, that a mutation 122 

accumulation line or pedigree-derived estimate of µ for a given taxa can only be considered high if 123 

it exceeds a taxonomically relevant phylogenetic rate (Emerson & Hickerson 2015). We provide an 124 

additional example of this problem above, with the inappropriate comparison of Adélie penguin 125 

pedigree and aDNA-derived estimates of µ with a phylogenetic estimate of µ derived from geese. 126 

Rather than providing suitable comparisons within their reply, Ho et al. (2015) continue to cite the 127 

spontaneous mutation rate for C. elegans (Denver et al. 2004), as well as Drosophila melanagoster 128 

(Keightley et al. 2014) and Heliconius melpomene (Keightley et al. 2015), as being higher than 129 

“corresponding phylogenetic estimates”. There are no phylogenetic estimates within the response of 130 

Ho et al. (2015), nor within the original articles, with the exception of Keightley et al. (2015), who 131 

note that applying their spontaneous mutation rate to estimate the age of the Heliconius suggests 132 

that the fossil-calibrated age for the genus is approximately correct. The spontaneous rate is 133 

however higher than the fossil rate, and as pointed out by Keightley et al. (2015), further work is 134 

needed to reconcile the two estimates. But the difference itself is not evidence for the TDMR 135 

hypothesis when alternative equally plausible explanations exist. For example, a difference could 136 

arise because (1) the data sets being compared are very different (whole genome vs a non-random 137 

set of protein coding genes), or (2) only secondary calibration points were used for the phylogeny 138 

(i.e. there are no fossil Heliconiini). But let’s assume the difference is real. What does it tell us? It 139 

tells us that purifying selection results in the underestimation of spontaneous µ when using a 140 

phylogenetic calibration. What it does not tell us is the timescale over which this occurs, and thus 141 

such data is uninformative about the timescale for the TDMR hypothesis. 142 

 143 

 144 

Estimates of µ from temporally sampled DNA, and their lack of validation 145 
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 146 

Ho et al. (2015) take issue with our claim that, while many studies have produced estimates of µ 147 

from aDNA, none have provided validation of their estimates independently of the Bayesian 148 

implementation within BEAST (Drummond et al. 2012) from which they were derived (Emerson & 149 

Hickerson 2015). To support that we are “demonstrably wrong”, they cite two tests to evaluate the 150 

information content of time-structured data. However, these either have not provided, or do not 151 

provide, independent estimates of µ. The first of these, the regression of tree height against 152 

sampling time of Fitch et al. (1991) can, with some caveats, be used to estimate µ but has not, to 153 

our knowledge, ever been used to validate a Bayesian estimate of µ. The second test cited by Ho et 154 

al. (2015), that of Ramsden et al. (2009), which has been further developed by Duchêne et al. 155 

(2015), is not independent. It is a test of information content, where the Bayesian estimate of µ is 156 

compared to the distribution of µ estimated when dates are randomised across the tree. Thus, our 157 

original assertion still stands - Bayesian estimates of µ have yet to be independently validated. 158 

 159 

 160 

Measurably evolving populations, date-randomisation and µ 161 

 162 

Ho et al. (2015) provide a summary of the date-randomisation test, first presented by Ramsden et 163 

al. (2009) to test for sufficient signal within temporally sampled DNA data sets to estimate µ and 164 

divergence dates. It is important to consider what the 95% credibility interval of the date-165 

randomised rate estimate represents. Ho et al. (2015) correctly point out that the two data sets 166 

presented in the schematic trees in Fig. 2 of Emerson & Hickerson (2015) would yield positive and 167 

misleading estimates of µ. We agree with this, but we do not agree with their conclusion that both 168 

data sets do not represent “measurably evolving populations”. On the contrary, both data sets do 169 

represent measurably evolving populations. The definition of genetic change in populations used by 170 

Ho et al. (2015) and elsewhere (e.g. Drummond et al. 2003; Ewing et al. 2004) is of mutation 171 

between sampling time points. However, it has been long understood that genetic change in 172 

populations involves changes in allele frequencies under the dynamic between mutation, selection 173 

and drift (Hartl & Clark 2007), and it is important to clarify that the mutation rate µ is the rate of 174 

mutation along any branch of a sampled gene genealogy, rather than being the rate of new 175 

mutations within a population or rate of mutational turnover between sampling time points. For 176 

example, due to the coalescent process, the vast majority of mutations between two temporally 177 

different samples can often occur at times older than either of the samples. As recognised by Ho et 178 

al. (2015), the sampling scenarios in panels C and D of Fig. 2 (Emerson & Hickerson 2015) will 179 
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yield non-zero estimates of µ. Ho et al. (2015) also suggest that both data sets would fail the date-180 

randomisation test of Ramsden et al. (2009). We agree that they probably would fail (although that 181 

can only be assessed by direct analysis). However, from this point we disagree with Ho et al. 182 

(2015), and the accepted interpretation of the date-randomisation test - that if the empirical estimate 183 

exceeds the 95% confidence intervals from the randomised distribution, then the empirical value is 184 

a reliable estimate of µ. 185 

Regardless of whether a dataset passes the randomization test or not, estimates of µ from 186 

temporally sampled data using BEAST may be overestimated because of other population genetic 187 

(drift and the coalescent) and sampling processes, as well as phylogenetic constraints that BEAST 188 

imposes on temporally sampled data (Box 1). Citing Duchêne et al. (2015), Ho et al. (2015) point 189 

out that data sets that fail the date-randomisation test tend to yield overestimates of µ, which could 190 

be taken to suggest that data sets that pass the test provide meaningful approximations of µ. This is 191 

not the case. A careful examination of Duchêne et al. (2015) reveals that data sets can pass the test 192 

and yield significant overestimates of µ, where the the 95% confidence interval of the estimate does 193 

not include µ. In fact, the parameter space within which both the estimation of µ is correct, and the 194 

test is passed, is limited (Fig. 1 of Duchêne et al. 2015). The take home point is that passing the 195 

date-randomisation test is not validation for an estimation of µ using the BEAST temporally 196 

sampled model. To more fully explore this dynamic, we have conducted coalescent simulations of 197 

temporally sampled data, matching parameters commonly associated with ancient mtDNA data, and 198 

show that BEAST can systematically overestimate µ given temporally sampled data due to incorrect 199 

topological estimates that arise from constraining tip dates (Box 1).  200 

 201 

 202 

TDMR for some genomes, and not for others? 203 

 204 

Ho et al. (2015) suggest that there is scant evidence for an observed TDMR pattern in nuclear 205 

genomes. It will be interesting to see what is learned from new genomic data as it emerges, 206 

although it is worth pointing out that much of this observed discrepancy between nDNA and 207 

mtDNA evaporates if the studies using tip-dating methods with ancient mitochondrial DNA are 208 

confirmed to be the non-trivial overestimates as suggested from our simulation-based exploration.  209 

Furthermore, their assertion that “unfortunately, there remains considerable uncertainty about 210 

nuclear mutation rates in humans”, is vague and misleading, as the various papers show strong 211 

evidence that there is genetic variation for the mutation rate and that paternal age can drive 212 

differences in mutation rates (e.g. Scally & Durbin 2012; Thomas & Hahn 2014). It also seems 213 
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somewhat incongruous for Ho et al. (2015) to criticise us for reporting short-term estimates of µ for 214 

nuclear data, while they themselves report such data when they believe it to support their argument 215 

(e.g. Denver et al. 2004; Keightley et al. 2014; Keightley et al. 2015, but see comments above). 216 

 217 

 218 

Bison data and the Bayesian estimation of µ from temporally sampled DNA 219 

 220 

Ho et al. (2015) cast doubt on two aspects of our reanalysis of the Bison bison data first published 221 

by Shapiro et al. (2004) and reanalysed by Ho et al. (2015). Their concerns regarding the impact of 222 

fixing effective populations size are vague and misleading, as they seem to suggest that there are 223 

“other parameters” in the cataclysmic demographic model that might somehow explain our results. 224 

As we have made all our input files publicly available, it is not clear why Ho et al. (2015) do not 225 

quantitatively assess their concern. A reanalysis exploring their parameters of concern would 226 

suffice. We therefore see nothing in the argument of Ho et al. (2015) regarding the fixing of modern 227 

effective population size for B. bison, that explains our results.  228 

With regard to their other doubt, Ho et al. (2015) state that fixing the root age of the analysis 229 

explains our result because “removing the sequences from older samples to reduce the sampling 230 

window preferentially removes older branches in the gene tree”. In doing so, Ho et al. (2015) 231 

assume a correlation between DNA sequence sampling time, and the coalescence time of the 232 

sampled sequence, which is in stark contrast to expectations under the standard Kingman coalescent 233 

for a single panmictic population without size change or subdivision (Tajima 1983). When we 234 

examined this assumption of Ho et al. (2015) it was apparent that, when compared to an 235 

unconstrained tree of the B. bison data, constraining the tree with tip dates positively contributes to 236 

such a correlation. The maximum clade credibility tree for the B. bison data with tip date constraints 237 

is topologically very different from the unconstrained tree, with DNA sequences of older age 238 

branching more basally within the tip date-constrained tree (Appendix S1, Supporting Information). 239 

As an explanation for this, we can only conclude that enforcing tip dates as a constraint contributes 240 

to the overestimation of µ, due to additional mutation change in the tree required to accommodate 241 

topological difference. We further explore these issues using coalescent simulations of temporally 242 

sampled data under a single panmictic population and find that indeed BEAST tends to incorrectly 243 

misestimate the gene genealogies as well as consistently overestimate µ given the sample size and 244 

temporal distribution of tips of the B. bison data (Box 1). Our analyses (Box 1) call into question all 245 

previous estimates of µ from tip-dated sequences using BEAST.  246 
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Ho et al. (2015) seem to be dismissive of their B. bison data, suggesting it to be small by 247 

current measures. It is in fact among the biggest data sets that have been analysed to date, providing 248 

an apparently compelling example of significance with respect to the date-randomisation test (Ho et 249 

al. 2011). Their argument that bigger data sets for a greater variety of genes will yield more 250 

decisive results will only be realised if the concerns we raise both here and in Emerson & Hickerson 251 

(2015) are taken on board. There are clear and identifiable problems with the estimation of µ from 252 

temporally sampled sequences, and not all these problems will necessarily be solved with more 253 

data. 254 

 255 

 256 

Conclusions 257 

 258 

After responding to the comment Ho et al. (2015), we find that our general criticisms of both (i) the 259 

hypothesis of time-dependent molecular evolution, and (ii) methods to estimate µ from temporally 260 

sampled DNA sequences, are further reinforced. As we have previously pointed out (Emerson & 261 

Hickerson 2015), much of the perceived support for the time-dependent molecular evolution 262 

hypothesis comes from overestimates of µ that are derived from  phylogenetic analyses of 263 

temporally calibrated aDNA using the Bayesian program BEAST. Such estimates of µ have been 264 

argued to be evidence against calibration error as a sufficient explanation for patterns of TDMR (Ho 265 

et al, 2011). In this article we clearly identify a positive bias in the estimation of µ from tip-dated 266 

gene trees with BEAST that appears to be associated with the interaction between effective 267 

population size and enforcing the age of DNA sequences when reconstructing the topologies of the 268 

gene genealogies. Together with previously raised concerns (Debruyne & Poinar 2009; Emerson 269 

2007; Emerson & Hickerson 2015; Navascués & Emerson 2009; Ramakrishnan & Hadly 2009) it is 270 

now clear that published estimates of µ using aDNA data should be considered unreliable, 271 

particularly if it cannot be shown that analyses underpinning the estimates did not result in 272 

topological differences between tip-date constrained and unconstrained trees. As we have pointed 273 

out, much of the remaining evidence for patterns of TDMR estimates can be explained without 274 

resorting to selection, suggesting no more than a limited temporal contribution of purifying 275 

selection to reconcile differences between spontaneous µ and phylogenetic estimates of µ. 276 

 277 
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Box 1: Tree shape and the overestimation of µ from tip-dated sequences 361 

Constraining the tip dates within a phylogeny is expected to change branch lengths, but it might be 362 

less clear why topological relationships inferred from identical patterns of sequence variation 363 

should change. As can be seen in Appendix S1 (Supporting Information), the maximum clade 364 

credibility tree for Bison bison (Ho et al. 2007b; Shapiro et al. 2004) with tip date constraints is 365 

topologically very different from an unconstrained tree, with changes involving DNA sequences of 366 

older age branching more basally within the tip date-constrained tree, as would be expected if the 367 

panmictic effective population size was small. In some cases these rearrangements do not appear to 368 

increase the inferred amount of mutational change within the tree, as the change in gene tree 369 

topology does not disrupt patterns of shared derived variation, yet in other cases patterns of shared 370 

derived variation within the unconstrained tree are disrupted, increasing homoplasy and thus 371 

inferring additional mutational change within the tip-dated tree. One obvious outcome of an 372 

increase in the inferred number of mutational changes in a tip-date constrained tree is that the 373 

estimation of µ will also increase.  374 

To explore this behavior, we followed a simulation procedure similar to that of Duchêne et 375 

al. (2015) ― the main difference being the use of an explicit coalescent simulator, BayesSSC 376 

(Anderson et al. 2005) instead of BEAST (Drummond et al. 2012) to generate the input tree 377 

topologies given known effective population sizes (N) and mutation rates (µ), and a tip date 378 

distribution similar to the B. bison data (pipeline is available at 379 

https://bitbucket.org/diegofalvarado/tdmra_simulations). We have found that trees inferred by 380 

BEAST for tip-dated sequences tend to enforce an age-based coalescent pattern on the posterior 381 

distribution of gene trees. This pattern would be expected given small effective population sizes, 382 

despite true N being 483,827 and 1,451,481 individuals in the simulation models that generated the 383 

simulated datasets. One likely culprit is how the the compound demographic parameter (θ =4Nµ 384 

where N is the effective population size and µ is the per site per generation per genealogical lineage 385 

mutation rate) is decoupled into joint estimates of N and µ in BEAST. Under a standard panmictic 386 

coalescent model, it is only possible to estimate the compound parameter θ rather than its 387 

components (N and µ) unless one of the two parameters are known or assumed (Kuhner et al. 1995). 388 

In contrast, the tip-dated panmictic coalescent model employed in BEAST allows decoupling the 389 

posterior estimates of θ into N and µ using the temporal-mutational information provided from the 390 

age-inforced tips of the posterior distribution of gene genealogies. As true N becomes larger, the 391 

tip-dated constraints result in inferred gene tree topologies that increasingly depart from the true 392 

gene tree topologies (Fig. I). This increasing level of phylogenetic inferential error corresponding 393 

with increasing levels of false homoplasy, which in turn corresponds with overestimates of µ and 394 
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underestimates of N. In other words, underestimates of N result in older samples coalescing more 395 

basally than younger samples in the inferred topologies, and the consequences of this dynamic 396 

appear to be more severe when the true N was larger (Fig. I). As true N is larger, the magnitude of N 397 

underestimation and µ overestimation becomes more severe with inferred gene tree topologies 398 

becoming more age-constrained from the true topologies (Fig. II).  399 

Of note is that under these simulations such overestimates of µ did not typically pass the 400 

date-randomisation test, yet this was less the case under the smaller true N (Fig. II). Under a 401 

coalescent model with small sized populations, one would expect genealogical coancestry between 402 

samples of similar age (i.e., age-based coalescence), and as expected, the simulations reveal that the 403 

probability of this is inversely related to population size (Figure III). At the same time, the 404 

randomization of tip ages has a stronger impact on rate estimates when disrupting patterns of age-405 

based coalescence in the original tree, and hence, the date-randomization test is more likely passed 406 

when the true gene genealogy has a tighter age-coalescent time association (such as under relatively 407 

small effective population sizes; Figure III). Accordingly, as can be seen in Fig. IV, the association 408 

of coalescence time with sample age is much stronger for the bison data when compared to patterns 409 

obtained when simulating under a panmictic coalescent population model. Such a pattern is 410 

expected for population structure and/or small N. We suggest that even though the bison data was 411 

likely generated under scenarios that differed from what we explored in our simulations, the 412 

systematic overestimates of µ and underestimates of N are likely to still be at play with these 413 

estimates being biased by the consequences of large effective population sizes, population 414 

subdivision and/or local colonisation/extinction. Clearly this is in need of further evaluation with 415 

simulations that capture the demographic complexity and the patterns of tip-dates and coalescent 416 

times that are observed in real data. 417 

Given that topological inconsistencies in BEAST appear to be associated with biasing 418 

estimates of both the number and age of DNA mutations together with overestimates of µ and 419 

underestimates of N, we make the following two suggestions. Firstly it would seem relevant to 420 

report the agreement between the topologies of tip-date constrained and unconstrained trees when 421 

reporting estimates of µ. Secondly, we suggest that while previous approaches using coalescent 422 

simulation have been useful to demonstrate that, under some conditions, BEAST can successfully 423 

estimate µ from tip-dated sequences of virus sequences (e.g. Duchêne et al. 2015), the complex 424 

conditions underlying temporally sampled ancient DNA with respect to sample sizes, effective 425 

population sizes, generation times, and subdivision need to be more fully examined to understand 426 

when estimates of µ from BEAST may be positively biased. Our simulations show that estimates of 427 

µ from such data can be systematically upwardly biased, and as such a more thorough exploration 428 
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of the impacts of sample characteristics, historical demographics and analysis settings is needed to 429 

better understand the underlying causes of the methodological artifacts we have revealed. Our 430 

simulations also suggest that all previous estimates of µ from temporally sampled DNA sequence 431 

data using BEAST need a thorough reexamination before they can be accepted. 432 

 433 

Figure I. Comparison of simulated and recovered tree topology for tip-dated sequence data using 434 

BEAST (Drummond et al. 2012). Note that the tree topology inferred by BEAST (b and d) is 435 

markedly different from the tree used to simulate the sequences (a and c) that serve as input to 436 

BEAST. This problem is accentuated under comparatively larger population sizes (Robinson-437 

Foulds distance between a and b = 250, between c and d = 260; weighted-path difference (Steel & 438 

Penny 1993) between a and b = 0.77, between c and d = 20.09). Tips are coloured based on age to 439 

highlight the tendency for age-based coalescent events (i.e. tendency of younger samples to cluster 440 

as ingroups to older samples) in BEAST-estimated trees. 441 

 442 

Figure II. Estimates of the substitution rate (in log 10 scale) against the width of the calibration 443 

window under two different populations sizes: (a) N = 483,427; (b) N = 1,451,481. The solid 444 

horizontal line represent the true simulated rate (mean=1e-8, sd=5%). Symbols represent the mean 445 

rate estimate for each simulation, with the error bars showing the 95% credible intervals. We 446 

conducted 10 randomizations for the date-randomization test for all data sets. Circles denote rate 447 

estimates that failed the test according to both criteria CR1 and CR2 (Duchêne et al. 2015), whereas 448 

triangles denote those that failed according to CR2 only. Numbers of type I and type II errors are 449 

shown for each rate treatment. 450 

 451 

Figure III. Clustering of tip ages in BEAST-obtained trees based on simulated samples for (a) N = 452 

483,427 and (b) N = 1,451,481. The ages of pairs of closest related tips is depicted, with original 453 

values represented in red, and date-randomised values represented in blue. Note how the difference 454 

between date-randomised and original data is smaller when the effective population size is 455 

comparatively larger, making it less likely to pass the test proposed by Duchene et al. (2015). 456 

 457 

Figure IV. Association between tip-age and relative coalescence time. Patristic distance is used as 458 

an indicator for the time of coalescence of each sample in the tree. Note the empirical bison dataset 459 

(black) (Ho et al. 2007b) shows a much tighter association than any of the simulated datasets (small 460 

N = 483,427 in blue, large N = 1,451,481 in red) indicating a strong tendency for samples to 461 
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coalesce together based on their age in this dataset. Such a pattern is expected under small effective 462 

population sizes and/or population structure. 463 
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