Estudio bionómico y ecológico de los cnidarios bentónicos de las islas Medes (Girona)

JOSEP M. GILI
Departamento de Ecología. Facultad de Biología. Universidad de Barcelona.
Gran Via de les Corts Catalanes, 585. Barcelona, 7. España

INTRODUCCIÓN

Los cnidarios representan uno de los grupos faunísticos de más amplia distribución en las comunidades bentónicas marinas. Su gran variedad, además de una versátil ecología, son las principales causas de que sean estudiados en forma parcial y en grupos de organización diferentes (hidrozoos, antozoos, etc.). En este trabajo se estudia la ecología basada en la distribución bionómica y en la interacción específica a gran escala de todas las especies de cnidarios recolectadas durante los años 1977-1980 en los fondos de sustrato duro de las islas Medes (Girona), mediante el empleo de la escafandra autónoma, entre 0 y 50 metros de profundidad. Todos los ejemplares recolectados provienen de 128 muestras puntuales recogidas en 19 transectos, tres estaciones de profundidad y 12 paralelas. La superficie de las citadas muestras ha variado debido a las peculiaridades específicas del trabajo efectuado (20 x 20 cm, 40 x 40 cm, 100 x 100 cm y otras más concretas; véase ZABALA et al., 1980).

La información base de este traba-jo se sintetiza en unos inventarios de muestras y de especies (GILI, 1980), a partir de los cuales se han elaborado los inventarios y distribuciones bionómicas, los diagramas de profundidad, la matriz de afinidad y las tablas de diversidad. A lo largo del trabajo se utilizan distintas unidades cualitativas y cuantitativas (número de individuos, biovolumen, etc.) según se ha descrito en GILI (1980), trabajo al que se remite al lector para mayor detalle. Es de resaltar, de una forma general, la dificultad de tratar en conjunto un grupo tan polimorfo como son los cnidarios en las comunidades bentónicas estudiadas.

RESULTADOS Y DISCUSIÓN

GENERALIDADES

Todas las muestras efectuadas (ZABALA et al., 1980) se han distribuido por biccenososis (sensu PERES & PICARD, 1964, o comunidades) y de ellas se han extraído las que presentan cnidarios. Con ellas se han confeccionado los inventarios base para el resto del estu-
dio ecológico. Cada inventario corresponde a una biocenosis general, o a una facies determinada, dependiendo de la asignación previa de las muestras (véase tabla 3), y en cada uno de ellos se agrupan las muestras afines, independientemente de su profundidad (GILI, 1980).

Un problema inicial es la cuantificación de las unidades referidas a cada especie. Para ello se han elaborado dos tipos de datos.

Por un lado, se cuantifican las especies según el número de individuos o colonias, dependiendo de la unidad estructural de cada una de ellas. En el caso de los hidrozoos se tiene en cuenta si la especie es colonial o individual, con lo cual se indica el número de colonias o individuos aunque estén agrupados por un estolón común, caso que es general en todos los hidrozoos, sean coloniales o no. En los antozoos, la unidad preferida es la colonia en los octocorales (menos los estoloníferos) y el individuo en los hexacoralarios (menos algunos madreporarios).

Por otro lado, se han calculado los biovolúmenes a partir de datos biométricos de los ejemplares recolectados en cada una de las muestras. Para generalizar, se han elaborado unas tablas de correspondencia entre el número de individuos o de colonias y su biovolumen medio. Este método es aproximado, ya que en una muestra no todos los individuos son de las mismas dimensiones, ni están formadas las diferentes muestras por individuos iguales, ya que pueden ser juveniles o adultos y por tanto variar el biovolumen de la muestra (ver tabla 1).

De estos inventarios se han obtenido las primeras conclusiones sobre la distribución biológica de las especies, y a partir de éstas y las generales de muestras se han confeccionado los diagramas de distribución batimétrica de las especies.

DISTRIBUCIÓN BIOCENOTICA DE LAS ESPECIES

Como es general en todos los trabajos realizados con muestras al azar, se presentan especies abundantes y otras casuales, cuya presencia va en relación directa a la representatividad del muestreo y a la distribución real de las especies en ambas categorías.

Se han realizado las siguientes clasificaciones a partir de los inventarios biológicos y generales, teniendo en cuenta la frecuencia de las especies seleccionadas en todas las muestras de cada biocenosis.

A) Especies de amplia distribución a lo largo de todas las comunidades observadas; son escasas debido a las características eminentemente fotófilas de los hidrozoos y escífilas de los antozoos. No obstante, se pueden citar unas pocas especies de amplia distribución: *Dynamena disticha*, *Sertularella ellisi*, *Aglaophenia pluma typica*, *Campamularia hemisphaerica*, *Parerythropodium coralloides*, *Clavularia ochracea*, *Eunicella singularis* y *Caryophyllia smithi*.

B) Algas fotófilas; se observa una predominancia de los hidrozoos frente a los antozoos, que se sitúan tanto sobre el sustrato como epibiontes de algas u otros invertebrados, con la característica general de ser todos ellos fotófilos. Un 68 % de las especies de
<table>
<thead>
<tr>
<th>Tabla 1 - Lista de valores de equivalencia del biovolumen por individuo o colonia, en cada una de las especies estudiadas (valor aproximado debido a la variabilidad de las especies). Los números iniciales indican las especies representadas en las figuras 1, 2 y 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1 - List of biovolume values equivalence for individual or colony for each of the studied species (this value is approximate, owing to the species variability). The initial numbers are the species enumerated on the figures 1, 2 and 5.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Máximo</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>1. Bougainvillia ramosa</td>
</tr>
<tr>
<td>2. Periconium repens</td>
</tr>
<tr>
<td>3. Podocoryne carnea</td>
</tr>
<tr>
<td>4. Coryne pusilla</td>
</tr>
<tr>
<td>5. Eudendrium capillare</td>
</tr>
<tr>
<td>6. Eudendrium racemosum</td>
</tr>
<tr>
<td>7. Eudendrium rameum</td>
</tr>
<tr>
<td>8. Eudendrium ramosum</td>
</tr>
<tr>
<td>9. Campanulina sp.</td>
</tr>
<tr>
<td>10. Haleciun beani</td>
</tr>
<tr>
<td>11. Haleciun halecinum</td>
</tr>
<tr>
<td>12. Haleciun muricatum</td>
</tr>
<tr>
<td>13. Haleciun tenellum</td>
</tr>
<tr>
<td>14. Haleciun labrosum</td>
</tr>
<tr>
<td>15. Filellum serpenas</td>
</tr>
<tr>
<td>16. Laphoea dumosa</td>
</tr>
<tr>
<td>17. Campanularia assymetrica</td>
</tr>
<tr>
<td>18. Campanularia integra</td>
</tr>
<tr>
<td>19. Campanularia alta</td>
</tr>
<tr>
<td>20. Campanularia hincksi</td>
</tr>
<tr>
<td>21. Clytia hemisphaerica</td>
</tr>
<tr>
<td>22. Laomedea pelagica</td>
</tr>
<tr>
<td>23. Laomedea loveni</td>
</tr>
<tr>
<td>24. Laomedea angulata</td>
</tr>
<tr>
<td>25. Laomedea flexuosa</td>
</tr>
<tr>
<td>26. Obelia bicuspida</td>
</tr>
<tr>
<td>27. Obelia dichotoma</td>
</tr>
<tr>
<td>28. Obelia geniculata</td>
</tr>
<tr>
<td>29. Synthecium evansi</td>
</tr>
<tr>
<td>30. Hebella parasitica</td>
</tr>
<tr>
<td>31. Hebella scandens</td>
</tr>
<tr>
<td>32. Scandia pocillum</td>
</tr>
<tr>
<td>33. Dynamena disticha</td>
</tr>
<tr>
<td>34. Dynamena cavolini</td>
</tr>
<tr>
<td>35. Sertularella crassicaulis</td>
</tr>
<tr>
<td>36. Sertularella ellisi</td>
</tr>
<tr>
<td>37. Sertularella polyzonias</td>
</tr>
<tr>
<td>38. Sertularia perpusilla</td>
</tr>
<tr>
<td>39. Antenella secundaria</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>74</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>77</td>
</tr>
<tr>
<td>78</td>
</tr>
<tr>
<td>79</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>82</td>
</tr>
<tr>
<td>83</td>
</tr>
<tr>
<td>84</td>
</tr>
</tbody>
</table>
Tabla 2 - Representación de la diversidad de las muestras, ordenadas de mayor a menor valor.

<table>
<thead>
<tr>
<th>nº muestra</th>
<th>bits/Nº individ.</th>
<th>Superficie (cm)</th>
<th>Profundidad (m)</th>
<th>Tipo de comunidad</th>
<th>Estación</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>4.398</td>
<td>40x40</td>
<td>6</td>
<td>Algas fotófilas</td>
<td>T-19</td>
</tr>
<tr>
<td>65</td>
<td>3.184</td>
<td>40x40</td>
<td>4</td>
<td>Algas fotófilas</td>
<td>T-13</td>
</tr>
<tr>
<td>74</td>
<td>3.162</td>
<td>40x40</td>
<td>6</td>
<td>Precoralígeno algas esciáfilas</td>
<td>T-15</td>
</tr>
<tr>
<td>67</td>
<td>3.079</td>
<td>40x40</td>
<td>12</td>
<td>Pradera Posidonia</td>
<td>T-13</td>
</tr>
<tr>
<td>98</td>
<td>2.883</td>
<td>40x40</td>
<td>6</td>
<td>Algas fotófilas</td>
<td>T-16</td>
</tr>
<tr>
<td>31</td>
<td>2.797</td>
<td>20x20</td>
<td>20</td>
<td>Coralígeno Paramuricea</td>
<td>T-4</td>
</tr>
<tr>
<td>81</td>
<td>2.782</td>
<td>40x40</td>
<td>30</td>
<td>Coralígeno Eunicella</td>
<td>T-9</td>
</tr>
<tr>
<td>78</td>
<td>2.742</td>
<td>40x40</td>
<td>5</td>
<td>Algas fotófilas</td>
<td>T-9</td>
</tr>
<tr>
<td>209</td>
<td>2.711</td>
<td>40x40</td>
<td>18</td>
<td>Pared cueva</td>
<td>T-L</td>
</tr>
<tr>
<td>80</td>
<td>2.660</td>
<td>40x40</td>
<td>20</td>
<td>Precoralígeno algas esciáfilas</td>
<td>T-9</td>
</tr>
<tr>
<td>99</td>
<td>2.629</td>
<td>40x40</td>
<td>20</td>
<td>Coralígeno Eunicella</td>
<td>T-12</td>
</tr>
<tr>
<td>68</td>
<td>2.582</td>
<td>40x40</td>
<td>3</td>
<td>Precoralígeno Alcyonium</td>
<td>T-18</td>
</tr>
<tr>
<td>85</td>
<td>2.573</td>
<td>40x40</td>
<td>20</td>
<td>Pradera Posidonia</td>
<td>T-17</td>
</tr>
<tr>
<td>22</td>
<td>2.570</td>
<td>20x20</td>
<td>15</td>
<td>Precoralígeno algas esciáfilas</td>
<td>T-5</td>
</tr>
<tr>
<td>79</td>
<td>2.533</td>
<td>40x40</td>
<td>27</td>
<td>Coralígeno microcavidades</td>
<td>B-1</td>
</tr>
<tr>
<td>11</td>
<td>2.518</td>
<td>20x20</td>
<td>15</td>
<td>Precoralígeno Alcyonium</td>
<td>T-2</td>
</tr>
<tr>
<td>12</td>
<td>2.445</td>
<td>20x20</td>
<td>15</td>
<td>Precoralígeno Alcyonium</td>
<td>T-2</td>
</tr>
<tr>
<td>73</td>
<td>2.443</td>
<td>40x40</td>
<td>5</td>
<td>Pradera Posidonia</td>
<td>T-15</td>
</tr>
<tr>
<td>61</td>
<td>2.430</td>
<td>40x40</td>
<td>5</td>
<td>Algas fotófilas</td>
<td>T-16</td>
</tr>
<tr>
<td>111</td>
<td>2.364</td>
<td>40x40</td>
<td>48</td>
<td>Coralígeno Eunicella</td>
<td>B-3</td>
</tr>
<tr>
<td>202</td>
<td>2.251</td>
<td>40x40</td>
<td>14</td>
<td>Pared cueva</td>
<td>T-L</td>
</tr>
<tr>
<td>203</td>
<td>2.236</td>
<td>40x40</td>
<td>12</td>
<td>Techo cueva</td>
<td>T-L</td>
</tr>
<tr>
<td>97</td>
<td>2.233</td>
<td>40x40</td>
<td>15</td>
<td>Precoralígeno Alcyonium</td>
<td>T-14</td>
</tr>
<tr>
<td>92</td>
<td>2.300</td>
<td>40x40</td>
<td>7</td>
<td>Algas fotófilas</td>
<td>T-14</td>
</tr>
<tr>
<td>101</td>
<td>2.196</td>
<td>40x40</td>
<td>35</td>
<td>Coralígeno Paramuricea</td>
<td>T-12</td>
</tr>
</tbody>
</table>
hidrozoos recolectados están presentes en esta biocenosis; para los antozoos el valor es de un 40% (tabla 3). Entre las especies propias de este ambiente cabe citar: Dynamena disticha, Eudendrium capillare, Sertularella ellisi, Haleciun labrosum, H. benni, Aglaophenia pluma typica, A. pluma helleri, A. kirchenpaueri, Halopteris catharina, Clavularia ochracea, Anemone sulcata, Parerythropodium coralloides, Eunicella singularis y Cornularia cornucopiae.

C) Precoralígeno; gran variedad de especies bien representadas en las facies que forman y delimitan la biocenosis precoralígena. El porcentaje de especies de hidrozoos y de antozoos es muy similar, y por su menor superficie éste es menor en ambos casos: 37% para los hidrozoos y 28% para los antozoos (tabla 3).

Entre las especies más caracteris-

D) Pradera de Posidonia; la fauna de cnidarios es muy próxima a la de la biocenosis de algas fotófilas, con la importante salvedad de una serie de especies adaptadas al sustrato especial representado por las hojas de *Posidonia*. El porcentaje de especies de hidrozoos y de antozoos es muy similar (36 % para los primeros y 33 % para los segundos, tabla 3).

F) Un grupo de especies representa un aspecto de la biocenosis del coralígeno, que se sitúa en sustratos de arena y barro alrededor de los grandes bloques coralígenos. Entre las especies representativas de esta comunidad cabe citar *Eudendrium* rameum, *Alcyonium* palmatum, *Lophogorgia* cataphyta y *Veretillum* cynomorum.

G) Cuevas y túneles submarinos: por ser muy próxima ecológicamente al coralígeno, muchas de las especies características de aquél se encontrarán asimismo bien representadas en esta biocenosis. El porcentaje de hidrozoos y antozoos es bajo en comparación con el resto de las biocenosis y con el total de especies encontradas; 34 % para los hidrozoos y 35 % para los antozoos. En estos últimos, el porcentaje se va compensando por la proliferación de las especies representadas, con porcentajes de recubrimiento y de biomasa muy superiores al de otras (véase tabla 3). Se pueden citar: *Eudendrium* rameum, Halecium beani, *Campanularia* hemisphaerica, *C. bicuspida*, *C. pelagica*, *Filellum serpens*, *Caryophyllia smithi*, *C. inornata*, *Leptopsammia pruvoti*, *Hoplogia* durrotix, *Polythathus* muellerae, *Guynia* annulata, *Parerythropodium* coralloides y *Corynactis* viridis.

En resumen, y generalizando, se pueden considerar como representativos de los estratos superiores y fotófilos a los hidrozoos y de los inferiores y esclafilos a los antozoos. Entre las distintas biocenosis estudiadas los límites no son bruscos, sino que se aprecia un gradiente suave de distribución
Tabla 3 - Distribución del número de especies diferentes, de cada familia (hidrozoos) y de cada orden (antozoos), en cada una de las comunidades estudiadas. Al lado de cada familia o cada orden se indica el número de especies recolectado de las mismas.

Table 3 - Distribution of the different species number of every family (hydrozoans) and of every order (anthozoans), in the studied communities. Next to the family or order the total number of species is indicated.

<table>
<thead>
<tr>
<th>Hidrozoos</th>
<th>Algas corallígenas</th>
<th>Fodrilas</th>
<th>Cnidarias</th>
<th>Actinia marina</th>
<th>Alcyonidés</th>
<th>Corallígeno microcorales</th>
<th>Paramuricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugainvillicidas (3)</td>
<td>2 - - 1 1 - - - 1 - - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynidae (1)</td>
<td>- - - - - - - - - - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eudendridae (4)</td>
<td>2 1 2 1 1 2 1 1 2 4 4 1 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haleciidae (5)</td>
<td>4 1 3 4 2 1 2 - - 1 - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacteaeeae (2)</td>
<td>2 - 2 - - 1 1 - - 2 1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertularidae (6)</td>
<td>5 3 3 3 3 3 2 1 2 - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthecidiae (1)</td>
<td>1 1 - 1 1 - 1 - - - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumularidae (13)</td>
<td>10 7 4 5 5 3 1 - - - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campanularidae (12)</td>
<td>5 4 2 3 3 3 2 - 1 7 5 - 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebeliidae (3)</td>
<td>3 1 - 2 3 - - - - - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (50)</td>
<td>34 18 16 20 19 12 9 3 3 14 12 2 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje (%)</td>
<td>68 36 32 40 38 24 18 6 6 - - - 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antozoos</th>
<th>Alcyonacea (4)</th>
<th>Gorgonacea (6)</th>
<th>Stolonifera (4)</th>
<th>Pennatulacea (1)</th>
<th>Actiniaria (9)</th>
<th>Corallimorpharia (1)</th>
<th>Ceriantharia (1)</th>
<th>Zoantharia (3)</th>
<th>Scleractiniae (13)</th>
<th>Total (42)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 2 3 3 2 2 2 3 - 1 1 1 2</td>
<td>1 1 1 1 2 5 4 3 1 1 1 1 2</td>
<td>5 3 2 2 2 1 3 1 1 1 1 - 1</td>
<td>- - - - - - - - - - - -</td>
<td>2 3 1 - - - - - - - - - - - -</td>
<td>1 - - - - - - - - - - - -</td>
<td>- - - - - - - - - - - -</td>
<td>1 1 1 3 1 2 2 1 - 1 - 1</td>
<td>5 4 3 5 3 5 7 9 4 5 6 5 8</td>
<td>17 14 11 15 10 15 19 20 6 8 10 8 15</td>
<td>40 33 26 36 23 35 45 47 14 - - - 35</td>
</tr>
</tbody>
</table>

La distribución batimétrica de las especies va ligada a los mismos factores, como el sustrato, la iluminación y el hidrodinamismo (GILI, 1980).

DISTRIBUCIÓN BATIMÉTRICA DE LAS ESPECIES

La distribución batimétrica de las especies va ligada a los mismos factores, como...
res (sustrato, iluminación, etc.) que la distribución biocenótica, con la salvedad de que el factor más importante es la luz. En general, se advierten dos grandes niveles de profundidad, entre 0 y 20 m y entre 20 y 50 m. En el primero se consigue el máximo de presencias para los hidrozoos, mientras que en el segundo dominan los antozoos.

Se han establecido las siguientes agrupaciones de especies propias de los distintos niveles batimétricos (figs. 1 y 2). Se consideran las cuevas y túneles submarinos como una unidad aparte, ya que las especies bien representadas en su interior son las mismas que a mayores profundidades.

En los hidrozoos se consideran los siguientes niveles aproximados:

Fig. 1. Distribución batimétrica de las especies de hidrozoos. Para los números ver la tabla 1.

Fig. 1. Bathimetric distribution of the hydrozoan species (for the numbers, see Table 1).
A) Entre 0 y 10 m. Presencia de especies muy fotófilas y de estructura resistente a un hidrodinamismo elevado, además de una preferencia por la epibiosis sobre algas y otros organismos.

B) Entre 10 y 20 m. Especies que se pueden encontrar muy a menudo en el nivel anterior pero que alcanzan su mayor auge en situaciones donde el hidrodinamismo es más atenuado y el sustrato biológico más estable.

C) Entre 20 y 50 m. Las especies representadas son las de más amplia distribución, además de hallarse en ambientes de condiciones más estables.

En los antozoos los niveles elegidos varían un poco debido a la mayor variabilidad de formas y, por tanto, de adaptaciones a las diferentes condiciones ambientales. Se pueden considerar los siguientes niveles:

D) Entre 5 y 15 m. Especies extremadamente resistentes a condiciones de hidrodinamismo elevado y de carácter fotófilo.

E) Entre 5 y 15 m. Especies de afinidades fotófilas que además presentan una adaptación a condiciones de hidrodinamismo moderadas. Se encuentran en las caras de grandes bloques y en los cinturones del precoralígeno en paredes verticales.

F) Entre 15 y 30 m. En este nivel se sitúan las especies de más amplia distribución y que se encuentran tam-

Fig. 2. Distribución batimétrica de las especies de antozoos. Para los números ver la tabla I.

Fig. 2. Bathometric distribution of the anthozoan species (for the numbers, see table I).
bién bien representadas en enclaves es-
ciáfílos a menor profundidad, como grie-
tas y extraplomos, y especies localizadas
preferencialmente en caras verticales
de bloques y paredes, en el interior
de microcavidades y en las entradas de
cuevas y túneles.

G) Entre 30 y 50 m. Las especies
representadas en este nivel se componen
de las más abundantes en el nivel ante-
rior, como Eunicella singularis y Para-
muricea clavata, y de especies de am-
plia distribución en el interior de cue-
vas y túneles.

En general se observa una cierta
similitud entre los diferentes niveles
batimétricos y la distribución de las
comunidades o biocensosis. Esta distribu-
ción batimétrica depende de una serie
de factores que no afectan sólo al gru-
po tratado sino que condicionan a toda
la comunidad, con lo cual es de más fá-
cil comprensión la distribución de cada
especie si se tiene en cuenta la comuni-
dad en la que se encuentra habitualmen-
te, que la profundidad donde se ha reco-
lectado. La similitud ocasional de am-
bos tipos de distribuciones va relacio-
nado con la distribución batimétrica
de las comunidades, que en algunos ca-
sos es bastante regular.

ANÁLISIS DE LOS GRUPOS

1. Estudio de la diversidad de las mues-
tras

La diversidad es una de las medi-
das más utilizadas en ecología como una
estima de la complejidad u organización
de los ecosistemas, y su estudio propor-
ciona valiosa información sobre la es-
tructura de las comunidades.

Para el cálculo de las diversida-
des de las muestras del programa de es-
tudio de las islas Medes, se han tenido
en cuenta todas aquéllas en las que se
han observado cnidarios, y se han elabo-
rado dos tablas diferentes según los
datos de procedencia, ya sea en número
de individuos o colonias, ya en biovolú-
menes. La fórmula utilizada es la de
SHANNON & WEAVER (1963). Los resultados
se exponen en la tabla 3:

Si se tienen en cuenta las ideas
generalizadas sobre las comunidades del
bentos marino, que indican el aumento
de la complejidad de las mismas confor-
me aumenta la profundidad (ver PROGRAMA
DE BENTOS, 1972-74), o de que la diver-
sidad de muestras procedentes de la mis-
ma comunidad y profundidad es muy pare-
cida, o bien que los niveles de organi-
zación y complejidad de la comunidad
van en íntima relación con los valores
de diversidad, se aprecia con una sim-
ple observación de las figuras 3 y 4,
que ello no se ajusta a lo observado,
ya que:

a) se mantienen valores muy dispa-
res entre muestras de las mismas profun-
didades y comunidades.

b) no se aprecia una relación de
la diversidad con el tamaño de la mues-
tra, procedan éstas de superficies de
20 x 20 cm o de 40 x 40 cm.

c) no existe una correlación entre
muestras de comunidades parecidas e in-
cluso se mezclan los valores de diversi-
dad de comunidades consideradas como
relativamente estabilizadas, como es
el caso de las muestras procedentes del
coralígeno.

d) la diferencia entre las diversi-
dades basadas en datos de biovolumen
y las restantes, se debe a que especies
Fig. 3. Distribución de los valores de la diversidad de las muestras en función de la profundidad (valores en nº de individuos).

Fig. 3. Distribution of the samples diversity values as a function of depth (values in number of specimens).

Fig. 4. Distribución de los valores de la diversidad de las muestras en función de la comunidad en que fueron recolectadas (valores en nº de individuos).

Fig. 4. Distribution of the samples diversity values as a function of the community (values in number of species).
que sólo aparecen una vez como colonia o individuo (gorgonias, madréporas, actinias, etc.) representan altos valores de biovolumen, con lo cual se comportan como especies ampliamente representadas.

Una de las primeras razones a tener en cuenta para explicar este fenómeno es la técnica de muestreo, que con el raspado de superficies y la destrucción de gran cantidad de pequeñas colonias hace que muchas muestras procedentes de comunidades complejas para los hidrozoos, como es el caso de la biocenosis de algas fotofílicas, presenten diversidad cero. Un muestreo más cuidadoso posterior, con los inventarios paralelos, ha corroborado esta observación, ya que se recogían gran cantidad de ejemplares que fácilmente se despo- ponen por acción del fijador empleado en los muestreos generales. Esto explicaría que en un gran número de muestras en las que los hidrozoos deberían estar bien representados faltan por completo. En el caso de los antozoos, no parece ser el muestreo la causa de la disparidad de valores y la poca correlación entre ellos. Como organismos formadores de sustrato orgánico (coralígeno), y debido a la complejidad de las comunidades asentadas sobre el mismo, tendrían que manifestar una tendencia a aumentar los valores de diversidad en las muestras profundas, cosa que no ocurre. Ello se podría explicar por la uniformidad de las colonias de muchos de ellos, que alcanzan grandes dimensiones. La proliferación de estas especies comporta la creación de microhábitats con la exclusión de especies competidoras o de nueva instalación. Así se observa en el interior del Túnel Gran de la Me-}

da Xica, donde las grandes colonias de madrepórroros forman un sustrato de difícil colonización por parte de otros antozoos, y muchos de los hidrozoos que los colonizan no son tenidos en cuenta en los muestreos, como se ha mencionado (GILI et al., 1980). Esto se aprecia también en las paredes del coralígeno con grandes colonias de Paramuricea, cuyo sustrato tendría que presentar gran riqueza y variedad de especies, riqueza que, según los muestreos realizados, no se aprecia.

Una de las principales razones por la que los valores de diversidad de cnidarios difieren de los valores de diversidad general para toda la comunidad, es el hecho de que se ha calculado sólo para un grupo taxonómico, y que no todos los grupos tienen que seguir forzosamente la tendencia de la comunidad, a aumentar la complejidad y, por tanto, la diversidad con la profundidad. Hay otros grupos que se adaptan mejor a este esquema general, como son los briozos, los moluscos, etc. (PROGRAMA DE BENTOS, 1972-74). En el caso concre- to de las colonias de Paramuricea, contribuyen a la complejidad de la comunidad al formar un sustrato colonizable por otros organismos, tanto depredadores como meramente epibiontes sobre las mismas. También es el caso observado en el techo de túneles y cuevas, donde las colonias de madrepórroros parecen ser un sustrato predilecto de briozooos y poliquetos.

Debido a los factores que influyen más directamente en la distribución de los cnidarios (iluminación, hidrodinamismo, depredación, alimentación y sedimentación) se distinguen dos pautas ge-
nerales en la colonización y competencia por el sustrato, en la que los hidrozoos responden a estrategias más r, y los antozoos a estrategias más K. Esto comportará una distribución desigual de los hidrozoos y una más regular en los antozoos. En el punto en que se reúnen las condiciones ideales de estas dos estrategias se consigue un alto valor de diversidad. Este es el caso de la muestra 62, con una diversidad de 4,398 bits, realizada a mediana profundidad y recogiendo la muestra en una cornisa en la que la parte superior era horizontal e iluminada, con prolifera-
ción de algas y de hidrozoos, y la inferior era esciáfila, con gran variedad de especies de antozoos. Cuando se reúnen en una muestra dos comunidades diferentes y que se corresponden a las preferidas por ambos grupos (algas fotóticas y precoralígeno para los hidrozoos, y coralígeno para los antozoos), se observan altos valores de diversidad. Ello concuerda con la abundancia de ecotones y fronteras en el bentos sobre sustrato duro, muy heterogéneo.

Como una aproximación general a los valores de diversidad por comunidades se observa que las más altas corresponden a la biocenosis de algas fotóticas y de pradera de Posidonia, gracias al número más elevado de especies de hidrozoos que de antozoos en el conjunto general. A las mismas corresponden, también, gran parte de los valores más bajos, por la problemática del muestreo antes expuesta (fig. 4).

La biocenosis del precoralígeno, al representar un estadio de transición entre dos tipos de comunidades diferentes, tiene un alto número de especies que no llegan a instalarse y estabilizarse, con lo que se mantienen más constantes los niveles de diversidad, aunque no correspondan a las mismas especies. En la biocenosis del coralígeno las diversidades son bajas por lo que se ha explicado; ello se corrobora al observar los niveles de diversidad cuando se toman los datos de biovolumen, en que éstas disminuyen aún más (fig. 4).

2. Estudio de la afinidad entre especies

El estudio de la afinidad entre especies pone de manifiesto las relaciones o asociaciones entre determinadas especies, y además sirve para averiguar multitud de relaciones que serán la base de posteriores estudios de ordenación y clasificación de comunidades.

Para la realización de la matriz de afinidades se han seleccionado 36 especies con los criterios siguientes:

- Que tuvieran al menos seis presencias en el conjunto global de todas las muestras.

- Que pertenecieran a una muestra con cinco o más de cinco especies diferentes.

Cabe decir que estas razones son en cierto modo aleatorias, pero su elección está fundamentada en la exclusión de la información que tienda a dispersar los datos y de las especies de distribución más casual, que por serlo no ofrecen claras afinidades con especies más estabilizadas dentro de una comunidad determinada. Esta afirmación es general, ya que cabe destacar la ausencia en la matriz de especies que podrían representar altas afinidades, pero que por la casualidad del muestreo se pre-
Fig. 5. Diagrama de afinidad entre las 36 especies seleccionadas. Para los números, ver la tabla 1. ●, más del 50 %; □, más del 40 %; △, más del 30 %; ○, más del 20 %.

Fig. 5. Affinity diagram between 36 selected species (for the numbers, see table 1). ●, more than 50%; □, more than 40%; △, more than 30%; ○, more than 20 %.

sentan como raras, factor que se ha tenido en cuenta para las distribuciones específicas de un estudio sistemático más amplio (GILI, 1980).

El cálculo se ha realizado mediante el índice de Jaccard (MARGALEF, 1974), con valores que van desde el 0 al 100 % de afinidad, y que en la matriz simplificada de la fig. 5 se han representado esquemáticamente.

En un primer intento, se ha confeccionado una tabla de contingencia con las especies elegidas, atendiendo al simple porcentaje de frecuencias conjun-
tas. Reordenándola las veces necesarias hasta lograr que los valores altos queden próximos a la diagonal principal y formando grupos, con las mínimas afinidades posibles entre los que van surgiendo.

Se ha procurado trabajar siempre con números, adjudicados previamente (tabla 1) a cada especie, a fin de minimizar la influencia de ideas preconcebidas en la formación de los grupos. Los grupos resultantes no son seguramente los óptimos, pero sirven para un primer intento de clasificación objetiva de comunidades bentónicas de la zona estudiada y, sobre todo, hacen pensar en la validez de la metodología empleada, patentizando errores sospechados o no (PROGRAMA DE BENTOS, 1972-74).

Las especies mejor representadas son las de distribución más amplia, con lo que de perturbador esto pueda tener. No obstante, se advienen con bastante claridad dos grupos generales, dentro de los cuales se encuentran otros más pequeños.

Grupo I. Representado por las especies de carácter fotófilo y, al mismo tiempo, con una distribución batimétrica en niveles de 0 a 20 m.

Grupo II. Especies de carácter eminentemente escláfilo; comprende las representativas de la biocenosis coralígena y con una distribución batimétrica entre los 15 y 50 metros, incluyendo las representantes de cuevas y túneles submarinos.

Grupo III. Grupo más compacto y situado dentro del grupo I, con especies fotófilas y de poca profundidad, representativas de la biocenosis de algas fotófilas.

Grupo IV. Formado por dos especies, Flumularia obliqua posidoniae y Ciavularia crassa, que se encuentran exclusivamente en la biocenosis de la pradera de Posidonia, con una adaptación a un sustrato especializado, y que son muy raras en otras biocenosis.

Grupo V. Donde están comprendidas las especies de mayor afinidad de la matriz, y que corresponden a las procedentes de cuevas y túneles. La presencia de muestras de esta biocenosis ha presentado un alza en el valor de estas especies de distribución en el coralígeno, pero que alcanzan su óptimo de distribución en el interior de las cuevas.

Hay que resaltar que la separación de estos grupos tiene una significación biológica en el área estudiada, y con la base del muestreo estadístico (36 especies de un total de 94) realizado.

La consideración de otras especies puede perfectamente modificar los grupos.

Es de destacar la alta afinidad entre Caryophyllia smithi y Leptopsammia pruvoti. Ambas se encuentran siempre en el interior de microcavidades, en la biocenosis coralígena, y en el interior de cuevas. Lo mismo ocurre con Hoplagia durotix y Caryophyllia inornata, debido a su alta frecuencia en el interior de cuevas y túneles, además de microcavidades; forman una asociación típica.

CONCLUSIONES
Existen dos estrategias diferentes en el comportamiento ecológico de los cnidarios bentónicos. Los hidrozoos son organismos oportunistas, de corta vida de rápida reproducción (estrategia
de la r). Los antozoos son selectivos, de vida más larga y con formas más especializadas, con lo cual contribuyen a la complejidad de la comunidad (estrategia de la K). Ello indica que es difícil la elaboración de los datos que consideren a todos estos organismos como un grupo común. No es, por tanto, extraño, que la primera diferenciación destaque ambos grupos.

Se ha estudiado a grandes rasgos la distribución biocénótica y batimétrica de las especies. Los resultados son bastante concordantes, aunque es de resaltar que el significado es más coherente por biocenso, aunque la distribución de las comunidades vaya ligada a la profundidad. Los mayores porcentajes de especies diferentes de hidrozoos se alcanzan en la comunidad de algas fotófilas, y los de antozoos en la del coralígeno o en el interior de cuevas y túneles submarinos.

Del cálculo de la diversidad específica de las muestras (utilizando número de individuos o de colonias) se observa una gran dispersión de los valores, debido principalmente a la disparidad de las estrategias de hidrozoos y antozoos y sobre todo por no haber estudiado estos grupos sistemáticos por separado sino en conjunto, y por tratarse de valores relativos a una taxocenosis, que no se adapta a la tendencia general de las comunidades. Los valores máximos de diversidad se alcanzan en las muestras de frontera, donde se aúnan las condiciones óptimas de cada uno de los grupos; por ejemplo, una comunidad de algas fotófilas con microcavidades de coralígeno bien desarrolladas. Debe resaltarse la problemática asociada al muestreo, pues en el caso de los hidrozoos elimina gran parte de los pequeños organismos.

Se han elaborado los mismos datos utilizando el biovolumen de las especies en lugar del número de individuos. Para estos se ha realizado una tabla correspondiente. La aplicación de las mismas a la diversidad resulta en una disminución general de los valores debido a las especies que acumulan gran volumen (gorgonias, madreporarios, etc.).

El estudio de las afinidades interspecíficas muestra unos grupos presumiblemente relacionados entre sí, y que coinciden fundamentalmente con los grupos diferenciados biocénoticamente. La consistencia de los citados grupos, aunque parcialmente confirmada, se critica ya que tanto el número de muestras representadas como la validez del muestreo pueden falsear los resultados.

AGRADECIMIENTOS

Este trabajo se ha realizado bajo la dirección del Dr. Joandomènec Ros y la colaboración constante y desinteresada de mi compañera de trabajo Maria-Antònia Bibiloni; a los dos mi más profundo agradecimiento.
SUMMARY

BIONOMIC AND ECOLOGICAL STUDY OF THE BENTHIC CNIDARIANS OF THE MEDES ISLANDS
(GIRONA, SPAIN)

The bionomic and bathymetric distribution of 94 benthic cnidian species obtained in Medes islands (Catalan Northern littoral) has been studied. This note is the first part of a more general study on this group which is in progress.

Bionomic and bathymetric inventories have been obtained from punctual samples obtained in each islet between 0-50 m depth. From these the bionomic and bathymetric distribution of the 94 species have been elaborated. The biological diversity of the samples and the between species affinities of a little group of the more abundant species have been calculated. The disparity of the obtained results has been explained as a function of the different ecological strategies of the two main groups of benthic cnidarians, e.g., Hydrozoa and Anthozaa.

BIBLIOGRAFÍA

LABOREL, J., 1960. Contribution à l’étude di-

