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Resumen (Summary in
Spanish)

La capacidad de entender la materia y su interacción con el medio determinan en
gran parte el desarrollo de las nuevas tecnologías. Hoy en día, las nanotecnologías
son un campo emergente de investigación debido al gran impacto que tienen en la
sociedad. Las simulaciones computacionales de fenómenos físicos en la nanoescala
han contribuido a la aceleración de su desarrollo.

En esta tesis doctoral nos hemos basado en simulaciones ab initio atomísticas
para explicar el comportamiento de nanopartículas sometidas a estímulos exter-
nos. Con “atomístico” nos referimos a que la geometría del sistema se descibe
mediante posiciones realístas de los átomos, es decir, que se tienen en cuenta las
posiciones atómicas y la atracción Coulombiana generada por cada núcleo, en vez
de reemplazarlas por un potencial efectivo suave que confina los electrónes en ob-
jetos de forma simple, como una esfera. “ab initio” significa que nos hemos basado
en las leyes de la mecánica cuántica para modelar los electrones del sistema. De
esta forma, en este trabajo hemos podido simular la interacción de centenas de
electrones confinados dentro de nanopartículas, tanto entre ellos como con el
medio. Este problema se conoce como el problema de muchos cuerpos ( many
body problem en inglés). Desafortunadamente, hay que recurrir a aproximaciones
para resolver el problema de muchos cuerpos. Las aproximaciones adoptadas
en esta tesis son las integradas en la teoriá del funcional de la densidad (DFT,
en inglés density functional theory) implementadas en los paquetes de SIESTA
(Spanish Initiative for Electronic Simulations with Thousands of Atoms)[1, 2], así
como su extensión a fenómenos dependientes del tiempo (TDDFT, en inglés time-
dependent DFT ) implementadas en los paquetes de MBPT-LCAO (Many Body
Perturbation Theory - Linear Combination of Atomic Orbitals) [3–5] y PySCF-
NAO (Python-Based Simulations of Chemistry Framework - Numerical Atomic
Orbitals) [6, 7]. Por otra parte, en esta tesis doctoral hemos conseguido im-
plementar con éxito nuevas funcionalidades en los paquetes de MBPT-LCAO y
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PySCF-NAO. Ambos paquetes han sido utilizados para calcular las propiedades
de estados excitados de sistemas finitos como agregados atómicos (clusters en
inglés) metálicos, fragmentos de nanotubos y moléculas pequeñas.

En el primer capítulo de la tesis, explicamos el porqué de nuestro estudio
teórico. La motivación se basa en el interés genuino de poder entender en profun-
didad e intepretar las datos obtenidos con técnicas experimentales como la espec-
troscopía óptica, espectroscopía de pérdida de energía de electrones (EELS, en
inglés electron energy loss spectroscopy) y espectroscopía de dispersión inelástica.
Además de esto, nos gustaría poder predecir las propiedades de nanodispositivos
electrónicos y ópticos, y así proporcionar una guía teórica en el desarrollo de la
nanociencia y nanotecnología. La predicción de propiedades en la nanoescala con
precisión razonable puede lograrse mediante la aplicación de los métodos ab initio
basados en DFT y TDDFT.

En el segundo capítulo damos cuenta de forma detallada de los métodos DFT
y TDDFT que hemos desarrollado y mejorado. Por completitud, comenzamos
con una breve descripción del problema de muchos cuerpos y de las primeras
aproximaciones que se deben hacer para resolverlo. La primera sección se centra
en una pequeña introducción de la teoría funcional de la densidad. Para esto,
empezamos con el modelo de Thomas-Fermi, para luego explicar los teoremas
de Hohenberg-Kohn, y terminar con una descripción del método de Kohn-Sham
que se utiliza en la práctica para obtener la densidad de electrones del estado
fundamental. Todo esto precede a un resumen sobre TDDFT como método para
obtener la respuesta de la densidad electrónica a una perturbación externa. La
estructura general de dicha teoría junto con la ecuación de Kohn-Sham depen-
diente del tiempo se discute antes de la aproximación de la respuesta lineal y
las características generales de respuesta plasmónica, ambas desde la perspec-
tiva del método de Kohn-Sham dependiente del tiempo. Esto da pie a discustir
el método empleado para implementar la respuesta lineal a nivel TDDFT den-
tro de los paquetes de cálculo MBPT-LCAO y PySCF-NAO. La descripción del
tratamiento de los estados excitados dentro del marco de la combinación lineal
de orbitales atómicos con orbitales atómicos numéricos precede a los cálculos de
la densidad inducida en la utilizando respuesta lineal a nivel TDDFT. En esta
sección se describe la aplicación secuencial de las matrices de la función repuesta
no interaccionante, que es la base de la eficiencia de nuestro método iterativo
para el cálculo de la respuesta autoconsistente del sistema. Durante el desarrollo
de la tesis, se ha logrado implementar mejoras en el algoritmo iterativo y se ha
optimizado los requerimientos de memoria del programa, lo que ha permitido la
computación de grandes agregados metálicos que se presentan en los capítulos
3-7. Después de esto, se explica el método para calcular el tensor de la poraliz-
abilidad óptica junto con el cálculo del campo eléctrico inducido en las cercanías
de las nanoestructuras estudiadas, lo que se conoce como el “campo cercano”.
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Éste último es el primer logro obtenido en este trabajo. Por último, se menciona
la migración del paquete MBPT-LCAO a la librería PySCF-NAO, esta última
escrita en su mayoría en Python.

En el tercer capítulo comenzamos a presentar los resultados obtenidos de las
simulaciones. Este capítulo se centra en la descripción del campo cercano a nivel
ab initio, gracias a la implementación del campo eléctrico inducido en el paquete
MBPT-LCAO. La influencia de los detalles estructurales en la escala atómica
en el campo cercano, que tiene un gran impacto en la nanofotónica, motiva este
trabajo. La primera parte del capítulo se centra en la respuesta óptica de un
agregado de sodio compuesto por 380 átomos que forman una figura icosaédrica.
Como consecuencia, el agregado tiene puntas, facetas y bordes. Demostramos que
estas características geométricas tienen un impacto dramático en la distribución
del campo cercano alrededor de la partícula. En particular, orientando el campo
externo a lo largo del eje de una punta de la nanopartícula, hemos conseguido un
efecto de pararrayos a escala atómica que solo depende debilmente de la frecuencia
del campo externo. Superponiendo el aumento del campo eléctrico obtenido por el
efecto de pararrayos que se obtiene debido al plasmón de superficie de la partícula,
observamos una localización extrema del campo eléctrico inducido que conlleva
a un aumento considerable del campo eléctrico en un volumen de tamaño.

Al aproximar dos nanopartículas se forman dímeros metálicos compuestos por
760 átomos. La respuesta óptica de los dímeros de agregados depende de la dis-
tancia d de separación entre ellos y de la orientación relativa de estos. Nosotros
hemos estudiado tres orientaciones mutuas para distintas distancias d entre los
agregados. El primero lo calificamos como “faceta-faceta”, ya que los agregados
enfrentan facetas planas en esta geometría. La segunda geometría se menciona
como “punta-faceta” ya que un agregado tiene una punta orientada a la faceta
del segundo. La última geometría se describe como “punta-punta” porque cada
partícula muestra una punta al otro. Hemos estudiado la absorción óptica y la
distribución del campo eléctrico inducido dentro de la cavidad para un campo
électrico externo orientado a lo largo del eje del dímero. Hemos comparado estos
resultados con los que se obtienen utilizando esferas modelizadas usando la aprox-
imación de Jellium. Primero, hemos estudiado la absorción óptica en función de
la distancia entre las dos partículas. La respuesta óptica de los dímeros esta car-
acterizada por tres regímenes. Cuando las partículas están muy lejos (d > 10 Å),
los dímeros muestran una única resonancia que depende de forma muy débil de la
geometría de la cavidad y se conoce como modo plasmónico enlazanta del dímero
(BDP, en inglés bonding dimer plasmon). Cuando se reduce la distancia entre
las partículas, el BDP se desplaza ligeramente hacia el rojo hasta una distancia
crítica de 5 Å, a partir de la cual desaparece. A esta distancia aparecen dos
resonancias: el plasmón de transferencia de carga (CTP, en inglés charge transfer
plasmon) a bajas energías y el plasmón cuadrupolar (QP, en inglés quadripolar
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plasmon) a altas energías y otros modos de orden superior a mayores energías.
La intensidad de ambos modos depende en gran parte de la geometría de la cavi-
dad. En el capítulo 3 también describimos la distribución de campo eléctrico
inducido dentro de la cavidad en función de le distancia entre las dos partícu-
las. Demostramos que el máximo valor del campo inducido se dá alrededor de 7
Å de separación y que su intensidad varía en función de la geometría. Debido a
la localización del campo en la punta de las nanopartículas, las configuraciones
“punta-punta” y “punta-faceta” generan mayores campos inducidos que la ge-
ometría “faceta-faceta”. En la última sección de este capítulo comparamos los
cálculos ab initio atomísticos con los cálculos clásicos realizados con el método
de “elementos fronterizos” (BEM, del inglés boundary element method). Se ha
demostrado que este método puede describir la distribución del campo inducido
solo cuando las características geométricas de las partículas hayan sido suavizadas
de forma que no haya ni vertices ni lados del polígono más puntiagudos que la
dimensiones de un radio de sodio (caracterizado, por ejemplo, por el radio de
Wigner-Seitz de este elemento).

El cuarto capítulo muestra cómo la respuesta plasmónica, incluso en el campo
lejano, de nanoestructuras metálicas puede ser modificada por el moviento de un
átomo o unos pocos átomos. La nanoestructura en la que nos hemos basado
en este estudio es el dímero de sodio “faceta-faceta” estudiado en el capítulo
anterior. A diferencia del estudio previo, en este caso permitimos que los átomos
se muevan para relajar el sistema al mínimo energético local más cercano durante
el proceso de interacción de las dos nanopartículas. La geometría inicial del
dímero forma una cavidad de 16 Å. Al reducir la distancia entre los dos agregados
se permite que los átomos se muevan. No se observa ningún cambio evidente hasta
una distancia de unos 6 Å donde los dímeros se acercan hasta tocarse dando
lugar a una reducción radical de la energía del sistema. Seguimos reduciendo
el tamaño nominal de la brecha hasta 0 Å para luego volver a aumentar la
distancia entre los agregados. Durante el proceso de retracción los dos agregados
permanece unidos a través de un cuello de sección atómica que se va alargando
a medida que las nanopartículas se separan. Este proceso viene acompañado de
un aumento gradual de la energía total. Si se sigue aumentando la distancia, se
pueden detectar saltos en la energía total correspondientes al movimiento de algún
átomo dentro de la cavidad. Por último, la conexión entre las nanopartículas
solo se rompre a una distancia nominal de 32 Å, es decir, a una distancia cinco
veces mayor que la necesaria para hacer contacto. En general, la evolución de la
energía total durante el proceso de retracción de las partículas (alargamiento del
cuello que los conecta) se caracteriza por un aumento gradual de la energía, que
corresponde a las etapas de deformación elástica, y saltos bruscos en la energía,
que acompañan las deformaciones plásticas que ocurren de forma puntual.

Más interesante y novedoso es lo que ocurre con la respuesta óptica del sis-
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tema acompañando estos cambios estructurales. Empezando por el proceso de
acercamiento, analizamos la respuesta óptica del dímero en función de la dis-
tancia nominal de la cavidad plasmónica. En comparación con la situación no
relajada, cerca de la distancia de contacto la respuesta óptica es modificada con-
siderablemente. Se observa una singularidad en el punto de contacto en lugar
de una transición suave entre el régimen capacitivo (en el que la respuesta está
dominada por el modo BDP) y el régimen túnel (dominado por el CTP). Por otra
parte, el cambio más interesante de la polarizabilidad óptica ocurre en el proceso
de retracción. Mientras que a distancias cortas la única resonacia excitada es el
CTP, al aumentar la distancia, pero siempre manteniendo el contacto que une
los agregados, se excita una segunda resonancia a mayor energía. Además de
esto, la absorción óptica muestra discontinuidades a ciertas distancias entre las
nanoparticulas. Esta evolución discontinua de la respuesta óptica se debe a la
combinación de varios efectos de los cuales la cuantización del transporte elec-
trónico a través del cuello métalico que une los agregados metálicos es el más
imortante. La cuantización de la conductacia en sistema nanométricos provoca
que cambios de la sección del cuello de un solo átomo produzcan cambios im-
portantes en la corriente que circula en el sistema. Esto produce cambios en la
energía e intensidad de la resonancia CTP del sistema. Es interesante que es-
tos efectos de cuantización también sean visibles en los cambios discontinuos que
sufre la distribución de densidad inducida (por la excitación óptica) a medida
que el cuello evoluciona durante la retracción. Por consiguiente, la evolución
discontinua de la posición, anchura e intensidad del modo CTP detectadas en
nuestras simulaciones son consecuencia directa de la cuantización del transporte
en el cuello de conexión.

En el quinto capítulo nos basamos en la mejora del algoritmo iterativo y de
la gestión de la memoria para realizar cálculos a una escala sin precedentes de
agregados de plata y sodio conteniendo hasta 5000 átomos. Con estas nuevas
capacidades del paquete MBPT-LCAO analizamos la dispersión del plasmón de
superficie con el tamaño de las nanopartículas metálicas. Se sabe que la frecuen-
cia plasmónica de las partículas de metales simples como el sodio, se desplaza
hacia el rojo cuando el tamaño del agregado disminuye. Esta tendencia es op-
uesta al cambio de frecuencia observada en los metales nobles, que se desplaza
hacia el azul cuando se hace más pequeña la partícula. Aunque existe algún
modelo empírico que explica esta tendencia de dispersión opuesta, todavía no se
ha llegado a entender desde un punto de vista microscópico, y en particular con
el nivel de detalle que pueden proporcionar los cálculos ab initio. Hay que enfati-
zar que hasta ahora ningun método ab initio atomístico pudo alcanzar tamaños
suficientemente grandes para confirmar de forma clara esta tendencia opuesta.
Con el fin de obtener la dispersión del plasmón con el tamaño de los agregados
de sodio y plata calculamos la polarizabilidad de una serie de agrupamientos
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icosaédricos desde 55 hasta 5083 átomos. Para los dos materiales obtuvimos el
cambio de frecuencia esperado cuando el tamaño de la partícula disminuye: un
desplazamiento hacia el azul para las partículas de plata y un desplazamiento ha-
cia el rojo para las de sodio. Los cambios de frecuencia obtenidos coinciden con
los valores experimentales. Una vez obtenidos estos resultados y confirmado que
los cálculos ab initio TDDFT reproducen el resultado experimental, realizamos
una serie de análisis para intentar comprender el origen de la tendencia opuesta.
En el primer análisis, estudiamos el impacto de la interacción electrón-electrón
del cambio de frecuencia, para lo cual ajustamos artificialmente la fuerza de la
interacción Coulombiana. En el caso de los agregados de sodio vemos que el
cambio de frecuencia se invierte cuando las interacciones son débiles. Es decir, a
medida que tamaño del agregado disminuye detectamos un desplazamiento hacia
el azul de la frecuencia. Al aumentar la fuerza de la interacción, la tendencia
cambia ligeramente de signo hasta alcanzar lo esperado para una fuerza de in-
teracción normal e incluso hasta aumentar el corrimiento al rojo. El caso de
las partículas de plata no es tan sencillo. Al igual que para el caso del sodio,
el desplazamiento hacia el azul aumenta cuando la interacción se hace más dé-
bil. Sin embargo, al contrario que el sodio, las interacciones fuertes no revierten
la tendencia del cambio de frecuencia mostrando siempre un desplazamiento al
azul. En un segundo intento probamos quitando artificialmente los electrones
4d de la banda de valencia de la plata, pasando a considerarlos como parte del
“core” atómico o bien como electrónes que no pueden ser excitados por el campo
externo. Esta estrategia nos permite casi invertir la tendencia del cambio de
frecuencia de las nanopartículas. A partir de este análisis, podemos concluir que
las distintas tendencias encontradas son el resultado de la competición de dos
factores: i) el corrimiento al azul con la disminución del tamaño característico de
los efecto de confinamiento cuántico, y ii) el corrimiento al rojo que observamos
aumenta con la fuerza de la interacción Coulombiana. En el caso de la plata, el
apantallamiento de la interacción entre los electrones de conducción de la plata
por la polarización de la capa 4d, hace que los efectos de confinamiento cuántico
dominen. Para los metáles simples la dispersión con el tamaño viene determi-
nada por la interacción electrón-electrón. En los modelos clásicos en la literatura,
la dispersión con el tamaño del plasmón se asocia con la posición del centroide
de la distribución de carga inducida en la superficie. Para contrastar con estas
ideas, intentamos calcular dicho parámetro a partir de nuestros resultados ab
initio. Los datos obtenidos utilizando nuestros métodos ab initio respaldan la
correlación entre la dispersión del plasmón y la posición del centroide de carga
unicamente en el caso del sodio. En el caso de la plata nuestros resultados no
soportan por completo está relación, de hecho indican que definir el centroide de
carga en el caso de la plata es de gran complejidad. El principal problema parece
radicar en que la carga inducida asociada a la polarización de los electrones de
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la capa 4d se extiende por todo el volumen de la partícula.
En el sexto capítulo, hemos realizado varios cálculos basándonos en el método

de EELS implementado durante esta tesis. En primer lugar, comprobamos que el
espectro de EELS calculado concuerda de forma razonable con los datos experi-
mentales. Para esto, hemos relizado cálculos tanto con nanotubos de carbono y
nitruro de boro, como con un nanopartícula de plata. Existe un buen acuerdo
cualitativo entre nuestros cálculos y las medidas experimentales para los tres sis-
temas testeados. El acuerdo para la partícula icosaédrica de plata es satisfactorio
solo en la incidencia fuera del conglomerado, es decir, en el que el espectros EELS
y óptico guardan gran similitud. Sin embargo, cuando el haz de electrones pasa
directamente a través del centro de la partícula se observa un desacuerdo entre
las probabilidades de pérdida de energía medidas y calculadas. En dicha inciden-
cia central, la medida exhibe una resonancia de correspondiente al plasmón de
volumen a 3,8 eV, mientras que los espectros calculados muestran solo una res-
onancia de plasmón superficial ligeramente desplazada hacia energías más altas,
a 3,4 eV. El origen de este desacuerdo se debe a las diferencias en la estructura
interna de las nanopartículas. Las partículas caracterizadas experimentalmente
están formados por un millón de átomos, mientras que nosotros solo pudimos
hacer cálculos para agregados conteniendo un máximo de 923 átomos, para los
que asumimos una estructura icosaédrica. La diferencia de la relación superficie-
volumen entre los grupos cálculados y medidos es de un orden de magnitud, lo
que hace que la disposición atómica interna de las nanopartículas más grandes
pueda asumirse de forma razonable que debe ser similar a la red cristalina FCC
del volumen, la cual es significativamente diferente a la estructura icosaédrica
considerada en los agregados pequeños. Por suerte, se puede imponer artificial-
mente la disposición atómica correcta de la red de volumen. Para poder hacer
esto, hemos realizado cálculos para un trozo pequeño de plata con esta disposi-
ción de red. Los espectros de EELS del cubo de plata con incidencia central
concuerdan significativamente mejor con los datos experimentales mostrando la
resonancia plasmónica principal a 3,8 eV. Pudimos concluir que las excitaciones
de los modos dependen en gran medida de la posición de la nanopartícula en la
que incide el haz de electrones, así como de la estructura interna de la misma.

Aparte de esto, realizamos un análisis más profundo de los espectros EELS
de una serie de agrupamientos de plata de estructura icosaédrica de 13 a 923
átomos. En primer lugar, comparamos los espetros de EELS con los espectros
ópticos y observamos que cuando el haz pasa lejos de la superficie de la partícula,
ambos espectros muestran características similares. Estudiamos la influencia de
la trayectoria del haz en los espectros EELS y así pudimos por una parte, excitar
modos plasmónicos “silenciosos” (i.e., modos que no pueden ser excitados con luz)
para una trayectoria del haz que pasa a través del centro del agregado, y por otra
parte y con otras trayectorias, el modo dipolar del plasmón de superficie, el cual
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también se puede observar con excitaciones ópticas. Por último llevamos a cabo
cálculos para un dímero de plata compuesto por dos partículas de 309 átomos
cada uno y comparamos los espectros de EELS obtenidos con los espectros ópticos
para dos trayectorias de haz (pasando lejos de la superficie del dímero y pasando
por el centro de la cavidad del dímero) y en función de la distancia entre los
agregados. De esta forma, con la primera trayectoria se excita el modo BDP
(modo plasmónico enlazante del dímero) y con la segunda, el modo plasmónico
anti-enlazane. Este último se conoce como modo “silencioso” o modo “oscuro”
(en inglés dark) ya que no puede ser excitado con luz.

En el séptimo capítulo, reportamos otro tipo más de espectroscopía: la es-
pectroscopía de dispersión vibracional, la cual se origina en cambios de energía
relativamente pequeños de la luz dispersada por una molécula causados por la
excitaciones de modos vibracionales. Dos de las espectroscopía de vibración más
habituales son las de infrarrojo y Raman, las cuales que se pueden utilizar como
detectores altamente selectivos y espcíficos de moléculas. La combinación de
ambas técnicas junto con el gran aumento de la intensidad de campo en las prox-
imidades de superficies nanostructuradas, puntas o nanopartículas cuando se ex-
citan los correspondientes modos plasmónicos, permite aumentar la sensibilidad
de la detección hasta el nivel de una única molécula. Teóricamente, las espectro-
scopias vibracionales pueden ser simuladas utilizando métodos ab initio utilizando
la aproximación armónica y métodos de diferencias finitas. En la aproximación
armónica se asume que las fuerzas que actuan sobre los núcleos atómicos son
lineales en los desplazamientos con respecto a las posiciones de equilibrio. De
hecho, el cálculo de frecuencias vibracionales es parte de muchos paquetes DFT
ab initio. Sin embargo y particularmente en el caso de la dispersión de Raman,
la estimación de las secciones eficaces de dispersión requiere más pasos. Para
estimar la probabilidad de dispersión Raman no resonante, se deben rastrear los
cambios de polarizabilidad óptica cuando el sistema se desplaza a lo largo del
correspondiente modo normal de vibración. Este cálculo puede ser relativamente
rápido con nuestro TDDFT iterativo, lo que permite estimar las polarizabilidades
de moléculas en las proximidades de agregados metálicas relativamente grandes
y así, dar explicación a la espectroscopía Raman aumentada. Sin embargo, tal
cálculo presenta complicaciones relacionadas con la altísima precisión númerica
requerida, así que en el presente capítulo nos limitamos a demostrar solo cálculos
de secciones eficaces de Raman (e infrarrojo) para moléculas pequeñas y espec-
ulamos sobre cómo la aproximación armónica podría extenderse para simular
directamente las espectroscopías Raman aumentadas por la presencia de puntas
o superficies (SERS o TERS).

Por último, en el octavo capítulo resumimos los puntos más importantes de la
tesis y concluímos hablando del impacto que esperemos tenga este trabajo para
la comunidad científica que trabaja en el campo de la nanociencia.

x



Contents

1 Introduction 1

2 Theory 7
2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Thomas-Fermi Model . . . . . . . . . . . . . . . . . . . 10
2.1.2 Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . 10
2.1.3 Kohn-Sham Method . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Local Density Approximation . . . . . . . . . . . . . . . . . 17

2.2 Time-Dependent Density Functional Theory . . . . . . . . . . . . . 17
2.2.1 One-to-one correspondence . . . . . . . . . . . . . . . . . . 18
2.2.2 Time-Dependent Kohn-Sham Equations . . . . . . . . . . . 19
2.2.3 Linear-Response Theory . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Plasmons within TDDFT . . . . . . . . . . . . . . . . . . . 23

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Response Function within LCAO with Numerical Atomic

Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Iterative Method to Calculate the Induced Density . . . . . 28
2.3.3 Calculation of the kernels . . . . . . . . . . . . . . . . . . . 34
2.3.4 Optical Polarizability Tensor . . . . . . . . . . . . . . . . . 35
2.3.5 Calculation of the Induced Electrical Field in the Near-

Field regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.6 Electron Energy Loss Spectroscopy . . . . . . . . . . . . . . 37
2.3.7 The PySCF-NAO Program: the Pythonic Version of MBPT-

LCAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale
Resolution in Nanooptics 45
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Description of the System: the Na380 Cluster and Cluster Dimers . 47
3.3 Atomic-Scale Lightning Rod Effect . . . . . . . . . . . . . . . . . . 48

xi



CONTENTS

3.3.1 Induced Field Localization of a Single Cluster . . . . . . . . 48
3.3.2 Electric Field Enhancement of Sodium Dimers . . . . . . . 52

3.4 Comparison with Classical Methods . . . . . . . . . . . . . . . . . 63
3.4.1 The Boundary Element Method . . . . . . . . . . . . . . . 63
3.4.2 Na380 Cluster and Dimers with BEM . . . . . . . . . . . . . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Plasmonic Response of Nanojunctions Driven by Single Atom
Motion: Quantum Transport Revealed in Optics 73
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Atomic Rearrangements in the Plasmonic

Junction: Nanoparticles Approach and Retraction . . . . . . . . . 77
4.3 Optical Response of a Forming Plasmonic

Cavity: Relaxed vs. Unrelaxed Cases . . . . . . . . . . . . . . . . . 80
4.4 Optical Response of a Retracting Plasmonic Junction: Optics

Driven by Individual Atoms . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Size Dispersion of the Plasmon Frequency in Metallic Clusters 95
5.1 Experimental Evidence and Classical Picture . . . . . . . . . . . . 95
5.2 Clusters Structures and Ground-State Calculations Details . . . . . 97
5.3 Size Dispersion from Atomistic Ab initio Theory . . . . . . . . . . 99

5.3.1 Electron-Electron Interaction and the SP Frequency . . . . 101
5.3.2 Centroid of Charge at the Cluster Surface . . . . . . . . . . 105
5.3.3 Impact of the Average Inter-Atomic Distance . . . . . . . . 109

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Valence Electron Energy Loss Spectroscopy: an Ab Initio Ap-
proach 113
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Validation of the Method . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Carbon Nanotube . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Boron Nitride Nanotube . . . . . . . . . . . . . . . . . . . . 118
6.2.3 Silver Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Analysis of Silver Clusters and Cluster Dimers EELS spectra . . . 124
6.3.1 Single Icosahedral Silver Clusters . . . . . . . . . . . . . . . 124
6.3.2 Dependence of EELS on the velocity of the probing electrons130
6.3.3 EELS of Silver Cluster Dimers . . . . . . . . . . . . . . . . 134

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xii



CONTENTS

7 Raman and Infrared Spectroscopy from Ab Initio Calculations 141
7.1 Brief Introduction to Raman Scattering . . . . . . . . . . . . . . . 142

7.1.1 Harmonic Approximation in Vibrational Spectroscopies . . 143
7.1.2 Implementation of the Harmonic Approximation . . . . . . 146

7.2 Vibrational Spectra of the CO2 Molecule . . . . . . . . . . . . . . . 147
7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions 151

Appendices 159

A The SIESTA program 161
A.1 SIESTA Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Basis Set Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.3 Energy Shift Parameter . . . . . . . . . . . . . . . . . . . . . . . . 164

B TDDFT Calculations Example: Silver Clusters 167

C PySCF-NAO Script Examples 171

D Analysis of EELS Spectra for a Silver Cube 173

E PySCF-NAO Calculator and Raman Scattering implementations
in ASE 175
E.1 SIESTA-PySCF Calculator . . . . . . . . . . . . . . . . . . . . . . 175
E.2 Raman Intensity with ASE, SIESTA, PySCF-NAO . . . . . . . . . 177

F Iterative Procedure: GPU Parallelization 179

List of Publications 185

Bibliography 187

xiii



CONTENTS

xiv



Chapter 1

Introduction

During the last century, the development of quantum physics together with the
discovery of the elementary particles has permitted to understand and manipu-
late matter at an unprecedented scale. As Feynman predicted in his lecture back
in 1959, “There’s plenty of room at the bottom” [8], progress in nanosciences led
to a tremendous number of new technologies and scientific breakthroughs. This
progress has been accelerated by the use of computers to solve physical prob-
lems, leading to the new field of computational modeling in scientific research,
half-way between experimental and theoretical science. In nanosciences, the fab-
rication, the manipulation and the operation of devices of very small sizes, down
to a few nanometers, are the main motivations for scientists. For example, when
nanoparticles are coupled to light (or other sources of excitation such as elec-
trons), oscillations of the nanoparticle’s electrons occur, creating a movement of
charges called plasmon that has great applications in the field of nanophoton-
ics. For instance, metallic nanoparticles play a key role in the development of
nanophotonics. The ability of the conduction electrons to collectively oscillate
produces surface charge density oscillations in nanoparticles, so-called surface
plasmons, that couple very efficiently to light, producing subwavelength localiza-
tion and a large enhancement of the optical fields induced in the proximity of
nanoparticles [9–11]. Nanophotonics with localized surface plasmons has boosted
a variety of technological applications in which the intense electromagnetic fields
assist in enhancing the signal from vibrational spectroscopies [12, 13], improv-
ing the performance of solar cells [14, 15], optimizing the active control of nan-
odevices [16, 17] or implementing noninvasive thermotherapies in medicine [18],
among others.

The theoretical study of nanoparticles greatly depends on our capacity to
model the interaction of the nanoparticle’s electrons between themselves as well
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as with the environment. At the nanoscale, only quantum mechanics grants the
correct description of the physical phenomena by depicting the particle’s electrons
using the formalism of probability amplitudes or wave functions. Unfortunately,
the great complexity of the many-body wave function ψ(x1, x2, ..., xN ), depend-
ing on the coordinates of each electron xi = (ri,σi) that contain the spatial
and spin degrees of freedom, does not permit to solve the many-body problem
exactly, neither analytically nor numerically, for systems with more than a few
electrons. Hence, in order to obtain the properties of nanoparticles composed of
tens, hundreds, thousands of electrons, various approximate methods have been
developed since the advent of quantum mechanics. Perhaps, the most successful
method is the density functional theory (DFT). According to DFT, the ground-
state of a quantum system is determined by its electron density n(r), which is
always a function of three spatial degrees of freedom r, independently on the
number of electrons in the quantum system. In contrast to the static properties
of the ground-state, the excited states determine the time-dependent, dynamical
properties of a quantum system. For instance, such phenomena as optical ab-
sorption, electronic conductance, energy loss of external charged projectiles are
determined by the properties of the excited states. The excited states properties
can be estimated within the time-dependent extension of DFT (TDDFT). By ap-
plying TDDFT, we can explore and understand the complexity of the excitation
spectrum of a nanoparticle, thus providing more relevant information about the
system. In this work, we will use DFT and TDDFT to study the properties of
finite systems such as metallic clusters, small molecules and finite nanotubes.

The electromagnetic field localization in nanoantennas is one of the leitmotivs
that drives the development of plasmonics. The near-fields in these plasmonic
nanoantennas are commonly addressed theoretically within classical frameworks
that neglect atomic-scale features. The approach of classical electromagnetism is
often appropriate since the irregularities produced at the atomic scale are typ-
ically hidden in far-field optical spectroscopies. However, a variety of physical
and chemical processes rely on the fine distribution of the local fields at the
atomic scale. Atomistic TDDFT methods are able to show how the atomistic
details of the nanoparticles determine the presence of hot spots that are further
enhanced by the action of the underlying nanometric plasmonic fields. This sit-
uation is analogue to a self-similar nanoantenna cascade effect, scaled down to
atomic dimensions and it provides new insight into the limits of field enhance-
ment and confinement, with important implications in the spatial resolution of
field-enhanced spectroscopies and microscopies. Due to their simplicity, sodium
cluster are ideal systems to demonstrate such properties within atomistic ab ini-
tio theory. In particular, we have used sodium particles with realistic geometries
and explored the dependence of the local-field on the structural details of the
cavity formed between two of them.
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When the two particles approach each other and a metal neck is eventu-
ally formed connecting both of them, this system allows to demonstrate inter-
esting relations between optical and transport properties. The correlation be-
tween transport properties across the subnanometric metallic gaps formed by
two nanoparticles forming the dimer and the optical response of the system is a
complex effect that is also determined by the atomic-scale details of the junction
structure. As experimental advances are progressively accessing transport and
optical characterization of smaller nanojunctions, a clear connection between the
structural, electronic and optical properties in these nanocavities is needed. Us-
ing ab initio calculations, it is possible to study the simultaneous evolution of
the structure and the optical response of a plasmonic junction as the particles
forming the cavity approach and retract. Atomic reorganizations are responsi-
ble for a large hysteresis of the plasmonic response of the system, which shows
a jump-to-contact instability during the approach process and the formation of
an atom-sized neck across the junction during retractation. Atomistic ab ini-
tio calculations demonstrate that, due to the quantization of the conductance in
metals nanocontacts, atomic-scale reconfigurations play a crucial role in deter-
mining the optical response of the whole system. Abrupt changes are observed
in the intensities and spectral positions of the dominating plasmon resonances
and a one-to-one correspondence between these jumps and those of quantized
transport exist as the neck cross-section diminishes. Thus, our calculations re-
markably show that atomic-scale reorganization involving one or a few atoms are
observed in the far-field plasmonic response, even if the metallic systems explored
in our calculations contain close to eight hundred atoms.

Changes of plasmonic resonances of single metallic clusters as function of
their size and constituent material are other important phenomena arising at the
nanoscale. In particular, a classical description using a dielectric function does
not lead to any size dependence of the plasmonic resonances of particle. There-
fore, they appear as a signature of quantum and non-local effects in the response
of the material. Studying these changes using atomistic TDDFT leads to a better
understanding of the physics of nanoparticles. Specifically, it is interesting to ad-
dress an anomalous behavior of the plasmon frequency of simple metal clusters,
a subject that has attracted intensive experimental and theoretical work over the
last decades. The red shift of the plasmonic frequency as the size of the cluster
diminishes is opposite to the expected size dispersion of the electronic properties,
according to standard quantum mechanical considerations. In contrast to simple
metal clusters, plasmonic resonances in noble metal and semi-conductor clusters
show the opposite trend. The ab initio atomistic calculations presented in this
thesis of plasmonic resonances in sodium and silver clusters containing up to 5000
atoms reproduce the opposite plasmon dispersion versus size observed between
simple and noble metals.
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Previous works, mostly using a jellium model description, have attempted a
one-to-one correlation between the position of the centroid of the induced density
at the surface and the size dispersion of the surface plasmon. However, here we
find that the situation is not so clear for nanoparticles with realistic structures,
particularly at optical frequencies. While for sodium particles we could define
the centroid, and find that it appears shifted towards the vacuum side of the
surface consistently to previous claims, for silver particles a sensible definition of
the centroid of charge was not possible. However, the origin of the dispersion
trends as a competition between quantum confinement effect and a material-
dependent screening of the electron–electron interaction is clearly demonstrated
in our study.

Besides optical perturbation, atomistic ab initio TDDFT can be as well used
with other type of perturbations. Particularly, as electron energy loss spec-
troscopy (EELS) is presently a common tool in laboratories because of its multiple
advantages over light spectroscopy, it becomes necessary to understand how swift
electrons create low-energy valence excitations. A real space implementation of
EELS capable of describing large systems within atomistic TDDFT presents nu-
merous advantages over other kind of EELS implementations. In this work,
we have implemented an approximate, semi-classical scheme to estimate EELS
within the real-space atomistic ab initio TDDFT that was previously used for
optical perturbations. We applied the implemented theory of EELS to several fi-
nite systems relevant in nanoscience. Calculations with carbon and boron nitride
nanotubes show excellent agreement with experimental results, while a deeper
analysis of silver clusters and silver cluster dimers grants a better understanding
of plasmons in noble metals nanoparticles.

Finally, atomistic ab initio calculations were used to estimate the Raman
intensity of the vibrational modes of molecules. The vibrational modes of a
molecule can be easily obtained within the harmonic approximation and with
the finite difference method. Computing the derivatives of the optical polar-
izability along the vibrational-mode coordinates, we were able to estimate the
cross-sections of the non-resonant Raman scattering. We demonstrate proof-of-
principle calculations of Raman (and infrared) cross sections for small molecules,
and we mention the possibility to apply this method to study surface- and tip-
enhanced Raman spectroscopy for molecules coupled to plasmonic nanocavities.

The simulations described above have been possible because of efficient im-
plementations of DFT and TDDFT based on numerical atomic orbitals (NAO).
Several programming suites were used to perform these simulations:

• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of
Atoms) [1, 2] was used to perform the ground-state DFT calculations;

• MBPT-LCAO (Many Body Perturbation Theory - Linear Combination of
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Atomic Orbitals) [3–5] is the core program for this work. It was used for
the TDDFT calculations;

• PySCF-NAO (Python-Based Simulations of Chemistry Framework - Nu-
merical Atomic Orbitals) [6, 7] is the Python successor of MBPT-LCAO.
It has been implemented as a module of the PySCF package;

• ASE (Atomic Simulation Environment) [19] is a Python library which has
been largely used for the manipulation of the geometry of the system consid-
ered in this work. The computation of the Raman intensity of vibrational
modes starting from SIESTA and MBPT-LCAO input was implemented
within the ASE suite.

A number of implementations were accomplished to cope with optical, EELS
and Raman spectroscopy mainly in MBPT-LCAO and PySCF-NAO packages,
and in ASE. The most important ones will be the subject of further chapters,
and are summarized below:

• Real-space Electron Energy Loss Spectroscopy;

• Improvement of the iterative procedure that permitted unprecedentedly
large calculations;

• Spatial distribution of the induced density and electric field;

• Raman intensity of vibrational modes;

• Other technical improvements such as GPU parallelization and HDF sup-
port.

The thesis is organized as follows. In chapter 2, we briefly introduce the
basics of DFT and TDDFT. This introduction is necessary for understanding
both the simulation outcomes, as well as the methodological and programming
improvements achieved. Chapter 3 presents the work about induced electric field
inside nanocavities. In chapter 4, the impact of atomic relaxations in nanocavities
is studied. Chapter 5 provides a detailed analysis of the size dispersion in sodium
and silver clusters from ab initio methods. In chapter 6, simulations of real-space
electron energy loss spectroscopy with atomistic ab initio theory are presented.
Raman spectroscopy is covered in chapter 7, where we describe the theory and
the implementation of non-resonant Raman spectroscopy combining SIESTA,
ASE and PySCF-NAO to achieve the direct estimation of Raman intensities of
small molecules. Finally, the accomplishments of this thesis are summarized in
chapter 8.
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Chapter 2

Theory

One of the challenges of modern physics is the description of the interaction
between electromagnetic fields and matter. This interaction is at the origin of
many phenomena around us and the ability to understand and control it has an
important technological impact. During the previous century, great efforts had
been done for the description of such interaction at the atomic and molecular
levels using the theory of quantum mechanics. In the present work, the exter-
nal fields (light, electric field created by a moving charge) are assumed small
and, therefore, perturbation theory is applied. Furthermore, the perturbation is
treated as a classical electrical potential while the perturbed systems obey the
laws of quantum mechanics (QM). Therefore, we shall first summarize the QM of
the unperturbed matter (ground-state) and then formulate the time-dependent
perturbation theory to cope with excited states of matter. The ground-state is
treated in this work according to density functional theory (DFT), while linear-
response time-dependent DFT (TDDFT) will be used to describe the excited
states. DFT and TDDFT are relatively recent theories within the more gen-
eral framework of QM. Ideally, DFT and TDDFT allow to model the matter of
arbitrary chemical composition with minimal empirical input. Thus, the whole
theoretical framework is outlined as ab initio.

Within quantum mechanics, the electrons and nuclei are fully described by the
so-called wave function ψ(r1, r2, ..., R1, R2...; t) which depends on the electrons’
coordinates ri, the coordinates of the nuclei RI and time t. The wave function
ψ(r1, r2, ..., R1, R2...; t) represents a “probability amplitude”—notion absent in
classical mechanics. The probability amplitude is not directly measurable, but the
square of the wave function in an infinitesimally small volume in the many-body
configurational space, |ψ(r1, r2, ..., R1, R2...; t)|2d3r1d

3r2...d3R1d
3R2... gives the

probability of finding the system at the time t in a given configuration [20]. In
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the absence of a time-dependent perturbation, the probability of finding par-
ticles at given positions should not be time-dependent and so the wave func-
tion ψ(r1, r2, ..., R1, R2...; t) can be factorized to a time-dependent phase and
a time-independent probability amplitude ψ(r1, r2, ..., R1, R2...). The time-
independent term obeys an eigenvalue equation [20]

Ĥψ = Eψ, (2.1)

where the eigenvalues E will be the total energies the system can assume. The
Hamiltonian operator Ĥ can be constructed after Schrödinger [21] in the non-
relativistic approximation

Ĥ = −
∑
i

∇2
i

2me
−
∑
I

∇2
I

2MI
+ 1

2
∑
i6=j

1
|ri − rj |

−

∑
iI

ZI
|ri −RI |

+
∑
I 6=J

ZIZJ
|RI −RJ |

.
(2.2)

Here, the small indices i, j run over electrons and the capital indices I, J run
over nuclei. The Hamiltonian (2.2) contains the kinetic energy terms of nuclei and
electrons, and the instantaneous Coulomb interaction between all pairs of bodies.
Unfortunately, equation (2.2) does not allow for a simple separation of variables,
neither for analytic solutions in almost all cases. Therefore, the diagonalization
problem (2.1) must rely on a discretization of the multi-dimensional wave function
ψ(r1, r2, ..., R1, R2...). The computational complexity of the direct diagonaliza-
tion grows exponentially with the number of particles. This exponential growth
was named as “exponential wall” by W. Kohn [22] because the problem becomes
already numerically impracticable for as few as 5-6 particles. Fortunately, it is
possible to find sufficiently accurate approximate solution of equation (2.1) with
the many-body Hamiltonian (2.2) using methods of quantum chemistry [23, 24],
many-body perturbation theory [25, 26], or density functional theory [21, 27, 28].
The suitability of each of these approximations depends on the specific size and
composition of the different systems. A first step used by these methods, is to
separate the electron and nuclei variables in the multi-dimensional wave function
ψ(r1, r2, ..., R1, R2...). By noticing the difference of the electron mass me with
that of the nuclei Mn, which is at least three orders of magnitude heavier than
me, it is possible to separate the variables of the nuclei and electrons to a good
accuracy. This is the so-called Born-Oppenheimer approximation [20]

ψtotal(r1, r2, ..., R1, R2...) = ψelec(r1, r2, ..., rN )×
ψnuclei(R1, R2, ..., RM ).

(2.3)

Furthermore, due to the large masses of nuclei, in most cases they can be safely
assumed to behave as classical point particles and treated according to classical
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mechanics [21]. Thus, we can approximate the Hamiltonian (2.2) one step further
by considering the nuclei as an external potential Vext(r) for the electrons. The
N electrons interact through the Coulomb potential:

Ĥ =
N∑
i=1

 p2
i

2m + Vext(ri) + 1
2

N∑
j 6=i

e2

|ri − rj |

 , (2.4)

Ĥ = T̂ + V̂ext + Ŵee. (2.5)

With T̂ the kinetic-energy operator and Ŵee the electron-electron interaction
operator. Unfortunately, the exact wave function ψelec(r1, r2, ..., rN) belonging
to this Hamiltonian cannot be so easily simplified and further approximations are
necessary to treat it. DFT is one of the theories allowing to effectively separate
variables in the electronic wave function. We summarize in the next section the
ideas and theorems of DFT. The following description of DFT is based on the
lecture notes of Julien Toulouse [29].

2.1 Density Functional Theory
As explained above, the exponential growth of the computational complexity
with the number of particle N is the main barrier to obtain quantities of primary
interest in the many-body problem. One of these quantities is the ground-state
energy E0, which can be obtained from the variational principle with the following
minimization [20]

E0 = min
ψ

〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 , (2.6)

where the search is over all N -electron anti-symmetric wave functions ψ(r1,
r2, ..., rN ), normalized to unity 〈ψ| ψ〉 = 1. By reformulating the variational
theorem in term of the electron density n(r), defined from the wave function
ψ(r1, r2, ..., rN ) by

n(r) = N

ˆ
d3r2

ˆ
d3r3...

ˆ
d3rNψ

∗(r, r2, ..., rN )ψ(r, r2, ..., rN ), (2.7)

DFT greatly reduces the complexity of the many-body problem. The elec-
tron density n(r) is normalized to the number N of electrons in the system,´
n(r)d3r = N .
DFT has had a considerable success in many branches of physics. In this

sections, we will present an introduction to DFT, for deeper reviews and appli-
cations of DFT in atomic, molecular and solid-state physics, we refer the reader
to Jones and Gunnarsson [27] and Dreizler and Gross [21].
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2.1.1 The Thomas-Fermi Model
The Thomas-Fermi model [30] is a precursor of modern rigorous DFT. Llewellyn
Thomas and Enrico Fermi realized that statistical considerations can be used to
approximate the distribution of electrons in an atom. The assumptions stated
by Thomas are that: “electrons are distributed uniformly in the six-dimensional
phase space for the motion of an electron at the rate of two for each h3 of volume”,
(where h is the Planck’s constant) and that there is an effective potential field
that “is itself determined by the nuclear charge and this distribution of electrons.”
From these assumptions, Thomas and Fermi derived that the ground-state elec-
tron density must satisfy the variational principle [28]

δ

{
ETF [n]− µTF

(ˆ
n(r)d3r −N

)}
= 0, (2.8)

where ETF[n] is the energy functional of the atom in terms of electron density
n(r). The total number of electrons is given by N = N [n(r)] =

´
n(r)d3r and

µTF is given by the Euler-Lagrange equation

µTF = δETF[n]
δn(r) . (2.9)

Unfortunately, the simple approximations for the total energy density functional
ETF[n] fail when it comes to molecules and the accuracy for atoms is rather
poor comparing to other approximations such as Hartree-Fock method. The
poor accuracy caused the Thomas-Fermi model to be viewed as an oversimpli-
fied model of not much real importance for quantitative predictions of electronic
structure. However, after the advent of Hohenberg-Kohn theorems, the Thomas-
Fermi model turns to be a brilliant conjecture.

2.1.2 Hohenberg-Kohn theorem
The presentation of the Hohenberg-Kohn theorem follows closely the excellent
account given by Julien Toulouse in Ref. [29].

The ground-state wave function ψ(x1, x2, ..., xN ), where xi = (ri,σi), σi being
the spin of the electron, of an electronic system perturbed by an arbitrary external
potential Vext(r) can be obtained in principle by solving the Schrödinger equa-
tion (2.1). The ground-state electronic density n(r) is then obtained from equa-
tion (2.7). Hohenberg-Kohn (HK) demonstrated in 1964 [31], that the ground-
state electron density n(r) determines the potential Vext(r) up to an arbitrary
additive constant cte

n(r) −→ V (r) + cte. (2.10)

10
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The demonstration of this mapping is done by a two-step proof by contradic-
tion [31]. In the first step, we assume two Hamiltonians Ĥ1 = T̂ + Ŵee + V̂1 and
Ĥ2 = T̂ + Ŵee + V̂2 having the same ground-state wave function ψ, i.e

Ĥ1 |ψ〉 = E1 |ψ〉 , (2.11)
Ĥ2 |ψ〉 = E2 |ψ〉 , (2.12)

with E1 and E2 being the ground-state energies of the Hamiltonians Ĥ1 and Ĥ2
respectively. We assume that the potentials V̂1 and V̂2 differ by more than an
additive constant cte

V1(r)− V2(r) 6= cte. (2.13)

Subtracting eqn. (2.11) and eqn. (2.12), we obtain

(V̂1 − V̂2) |ψ〉 = (E1 − E2) |ψ〉 , (2.14)
N∑
i=1

[V1(ri)− V2(ri)]ψ(x1, ..., xN ) = (E1 − E2)ψ(x1, ..., xN ). (2.15)

Assuming that the ground-state is non-degenerate and that ψ(x1, x2, ..., xN ) 6= 0
for all spatial coordinates (r1, r2, ..., rN ) and at least one fixed set of spin coordi-
nates (σ1,σ2, ...,σN )1, then ψ(x1, x2, ..., xN ) can be eliminated from eqn. (2.15)
and we obtain the following condition,

V1(r)− V2(r) = cte. (2.16)

Equation (2.16) is in contradiction with the condition (2.13). Therefore, the same
ground-state ψ can not be shared by two local potentials differing by more than
an additive constant.

For the second step of the proof, we consider the two ground-state wave
functions ψ1 and ψ2 of the Hamiltonians Ĥ1 and Ĥ2 respectively. From the last
paragraph, The wave functions ψ1 and ψ2 are necessarily different. We assume
that ψ1 and ψ2 share the same ground-state electronic density n(r). We note E1
and E2 the ground-state energies of the Hamiltonians Ĥ1 and Ĥ2 respectively.
The variational theorem leads to the following inequality

E1 =
〈
ψ1

∣∣∣ Ĥ1

∣∣∣ψ1

〉
<
〈
ψ2

∣∣∣ Ĥ1

∣∣∣ψ2

〉
=

〈
ψ2

∣∣∣ Ĥ2

∣∣∣ψ2

〉
+
〈
ψ2

∣∣∣ Ĥ1 − Ĥ2

∣∣∣ψ2

〉
= E2 +

ˆ
[V1(r)− V2(r)]n(r)d3r,

(2.17)

1This is in fact true “almost everywhere” for “reasonably well behaved” potentials
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Symmetrically, by exchanging the role of system 1 and 2, we have the strict
inequality

E2 < E1 +
ˆ

[V2(r)− V1(r)]n(r)d3r. (2.18)

Adding equations (2.17) and (2.18) gives the inconsistent result

E1 + E2 < E1 + E2, (2.19)

which finally leads to the conclusion that there cannot exist two local potentials
differing by more than a constant which have the same ground-state density.

According to the Hohenberg-Kohn theorem [31]: “the ground-state density
n(r) determines the potential Vext(r), which in turn determines the Hamiltonian,
and thus everything about the many-body problem. In other words, the potential
Vext(r) is a unique functional of the ground-state density n(r)”. Therefore, all
the ground-state properties will be functionals of the electronic density n(r).
The ground-state wave function ψ for the potential V (r) is itself a functional
of n, denoted by ψ [n], which was exploited by HK to define the universal (i.e.,
independent from the external potential) density functional

F [n] =
〈
ψ[n]

∣∣∣ T̂ + Ŵee

∣∣∣ψ[n]
〉

. (2.20)

The total electronic energy functional E[n] for a specific external potential
Vext(r) can be defined by using the universal functional F [n]

E[n] = F [n] +
ˆ
Vext(r)n(r)d3r, (2.21)

Note that, for degenerate ground-state, ψ[n] is not unique but stands for any
degenerate ground-state wave function. However, all ψ[n] give the same F [n],
which is thus a unique functional of the electron density n.

The ground-state energy E0 of the system considered can be obtained by
minimizing the total electronic energy functional E[n] with respect to N -electron
densities with some local potential (referred as V -representable densities). The
minimum energy is reached for a ground-state density n0(r) corresponding to the
potential Vext(r).

E0 = min
n

{
F [n] +

ˆ
Vext(r)n(r)d3r

}
, (2.22)

The existence of the mapping from a ground-state density n(r) to the external
potential Vext(r), the existence of the universal density functional F [n], and the
variational property of the ground-state energy with respect to the density n(r)
constitutes the set of Hohenberg-Kohn theorem.
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2.1 Density Functional Theory

2.1.3 Kohn-Sham Method
The following description of the Kohn-Sham method is based on the lecture notes
from Julien Toulouse [29].

The variational principle of Hohenberg and Kohn allows the determination
of the exact ground-state density of a specified many-particle system. In 1965,
Kohn and Sham [32] demonstrated that the use of orbitals instead of the density
with the variational theorem would have multiple advantages. The Kohn-Sham
method has revealed to be very successful, and it became the standard in appli-
cation of the density functional formalism [21].

2.1.3.1 Decomposition of the universal functional

Kohn and Sham (KS) [32] proposed to decompose the universal functional F [n]
using a single-determinant wave function Φ, and using a constrained search for-
mulation for the kinetic energy

F [n] = min
Φ→n

〈
Φ
∣∣∣ T̂ ∣∣∣Φ〉+ EHxc[n], (2.23)

with EHxc[n] the Hartree-exchange-correlation functional. Φ→ n means that the
minimization is done over normalized single-determinant wave function Φ. We
note Ts[n] the non-interacting kinetic energy functional, Ts[n] = min

Φ→n

〈
Φ
∣∣∣ T̂ ∣∣∣Φ〉 =〈

Φ[n]
∣∣∣ T̂ ∣∣∣Φ[n]

〉
, Φ[n] being the minimizing single-determinant wave function for

a given density (non necessarily unique) and is called the KS wave function. The
idea of the KS method is then to use the exact expression of Ts[n] by reformulat-
ing the variational property of F [n] in terms of single-determinant wave function
Φ

E0 = min
n

{
F [n] +

ˆ
Vext(r)n(r)d3r

}
(2.24)

= min
n

{
min
Φ→n

〈
Φ
∣∣∣ T̂ ∣∣∣Φ〉+ EHxc[n] +

ˆ
Vext(r)n(r)d3r

}
(2.25)

= min
n

min
Φ→n

{〈
Φ
∣∣∣ T̂ + V̂ext

∣∣∣Φ〉+ EHxc[nΦ]
}

(2.26)

= min
Φ

{〈
Φ
∣∣∣ T̂ + V̂ext

∣∣∣Φ〉+ EHxc[nΦ]
}

, (2.27)

the minimizing single-determinant KS wave function giving the exact ground-
state density n0(r). Thus, the exact ground-state energy and density can in
principle be obtained by minimizing over single-determinant wave functions only.
The advantage of the KS scheme is to use the single-determinant wave function Φ
instead of the multi-determinant wave function ψ, which represents a tremendous
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simplification. With the single-determinant wave function Φ the kinetic energy
can be treated explicitly, only EHxc[n] remains to be determined as a functional
of the density.

In practice, EHxc[n] is separated into the Hartree and exchange-correlation
terms

EHxc[n] = EH[n] + Exc[n]. (2.28)

Here EH[n] is the Hartree energy functional and Exc[n] is the exchange-correlation
energy functional. EH[n] represent the classical electrostatic repulsion energy for
the electronic density n(r)

EH[n] = 1
2

¨
n(r)n(r′)
|r− r′| d

3rd3r′, (2.29)

The exchange-correlation energy functional Exc[n] in eqn. (2.28) remains to be
approximated. This functional is often decomposed as

Exc[n] = Ex[n] + Ec[n], (2.30)

where Ex[n] is the exchange energy functional

Ex[n] =
〈

Φ[n]
∣∣∣ Ŵee

∣∣∣Φ[n]
〉
− EH[n] (2.31)

and Ec[n] is the correlation energy functional

Ec[n] =
〈
ψ[n]

∣∣∣ T̂ + Ŵee

∣∣∣ψ[n]
〉
−
〈

Φ[n]
∣∣∣ T̂ + Ŵee

∣∣∣Φ[n]
〉

= Tc[n] + Uc[n], (2.32)

which contains a kinetic contribution Tc[n] =
〈
ψ[n]

∣∣∣ T̂ ∣∣∣ψ[n]
〉
−
〈

Φ[n]
∣∣∣ T̂ ∣∣∣Φ[n]

〉
and a potential contribution Uc[n] =

〈
ψ[n]

∣∣∣ Ŵee

∣∣∣ψ[n]
〉
−
〈

Φ[n]
∣∣∣ Ŵee

∣∣∣Φ[n]
〉
.

2.1.3.2 Kohn-Sham Equations

The minimization (2.27) over the single-determinant wave function Φ can be
reformulated to a minimization of the total electronic energy E [{φi}]

E [{φi}] =
N∑
i=1

ˆ
φ∗i (r)

(
−1

2∇
2 + Vext(r)

)
φi(r)d3r + EHxc[n], (2.33)

with respect to the spatial orbitals φi(r). The spatial orbitals φi(r) form a set of
N orthonormal occupied orbitals {φi(r)}i=1,...,N . The density is then expressed
in terms of the spatial orbitals φi(r) as

n(r) =
N∑
i

|φi(r)|2. (2.34)

14
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The method of the Lagrange multipliers can then be used to perform the
minimization with the Lagrangian

L [{φi}] = E [{φi}]−
N∑
i=1

εi

(ˆ
φ∗i (r)φi(r)d3r − 1

)
. (2.35)

The Lagrange multiplier εi is associated to the normalization condition of φi(r).
The functional derivative of the Lagrangian L with respect to φ∗i leads to the
following equation(

−1
2∇

2 + Vext(r)
)
φi(r) + δEHxc[n]

δφ∗i (r) = εiφi(r), (2.36)

since the Lagrangian L should be stationary with respect to the variations of or-
bitals φi(r). The derivative of the functional Hartree-exchange-correlation energy
EHxc[n] with respect to φ∗i (r) is given by

δEHxc[n]
δφ∗i (r) =

ˆ
δEHxc[n]
δn(r′)

δn(r′)
δφ∗i (r)d

3r′. (2.37)

One can introduce the Hartree-exchange-correlation potential VHxc(r), which is
functional of the density, as the functional derivative of EHxc[n] with respect to
n(r)

VHxc(r) = δEHxc[n]
δn(r) (2.38)

Using the decomposition of EHxc[n] (see eqn. (2.28)), we get

VHxc(r) = δEH[n]
δn(r) + δExc[n]

δn(r) = VH(r) + δExc[n]
δn(r) (2.39)

where the Hartree potential VH(r) = δEH[n]
δn(r) is defined as

VH(r) =
ˆ

n(r′)
|r− r′|d

3r′. (2.40)

Furthermore, from eqn. (2.34) we can obtain the derivative of n(r) with respect
to the orbitals φi(r)

δn(r′)
δφ∗i (r) = φi(r)δ(r− r′). (2.41)
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Injecting eqn. (2.41) into eqn. (2.37) and using the definition of the Hartree-
exchange-correlation potential VHxc(r) (2.39), we finally obtain the Kohn-Sham
equations

(
−1

2∇
2 + Vext(r) + VHxc[n](r)

)
φi(r) = εiφi(r), (2.42)

Heff(r)φi(r) = εiφi(r), (2.43)

where εi is the KS orbital energies and Heff(r) = − 1
2∇

2 +Veff(r) the one-electron
KS Hamiltonian. Veff(r) = Vext(r) + VHxc[n](r) is the so-called KS potential.
The orbitals φi which satisfy the KS equations (2.43) are called KS orbitals.
The KS equations constitute a set of coupled self-consistent equations since the
potential VHxc[n](r) depends on all the occupied orbitals {φi(r)}i=1,...,N through
the density n(r). The ground-state density n(r) of the KS system of N non-
interacting electrons, defined by the effective Hamiltonian Heff, is the same that
the exact ground-state density n0(r) of the physical system of N interacting
electrons. The exact ground-state energy E0 is then easily obtained by injecting
the KS orbitals into equation (2.33). The self-consistent field loop of the KS
equations is shown in Figure 2.1.1.

Input n0(r)

Mixed n
′

0(r)

Effective Potential

Veff(r)
Solve Kohn-Sham

Heffϕi(r) = εiϕi(r)

Calculate the density

n(r) = ∑i |ϕi(r)|
2

|n(r)−n
′

0(r)| ≪ 1

no

yes

Mixing n(r) and n0(r)

Output:

Energy, Forces, ...

Figure 2.1.1: Schematic representation of the self-consistent field loop for solving the KS equations.
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2.1.4 Local Density Approximation
Ideally, DFT is an exact theory and with the Kohn-Sham method described pre-
viously, the approach is very appealing since the solution of a self-consistent one
body problem is much simpler than the original correlated many-body problem.
Unfortunately, the exchange-correlation (xc) energy Exc can not be determined
exactly and must be approximated. A number of approximations exist such as
the local-density approximation (LDA) [33, 34] or the generalized gradient ap-
proximation (GGA) [35, 36] which are the ones used in this work. The simplest
and most used functional for Exc is the LDA described below.

The LDA for a finite system with variable density n(r) consist in assuming the
local xc energy density exc to be that of the electron gas with density n = n(r)

ELDAxc [n] =
ˆ
n(r)exc(n(r))d3r. (2.44)

The extension to the spin-density formalism is straightforward; it is usually
termed "Local-spin density" (LSD) formalism.

The exchange energy part of the LDA was derived by Dirac (1930)

ELDAxc [n] = −3
4

(
3
π

)1/3
e2
ˆ

[n(r)]4/3 d3r, (2.45)

and is also often referred to as the Slater approximation. The most commonly
used correlation energy functionals in cluster physics are those by Wigner (1934),
with

eWc = − 0.88
rs(n) + 7.8 , (2.46)

and by Gunnarsson and Lundqvist [37], with

eGL
c = −0.0666

[
(1 + x3) log

(
1 + 1

x

)
+ 1

2x− x
2 − 1

3

]
, x = rs(n)

11.4 ; (2.47)

both are in atomic energy units (Ry) and are written in terms of the electronic
Wigner-Seitz radius rs(n) = (3/4πn)1/3.

2.2 Time-Dependent Density Functional Theory
In chapter 2.1, we presented Density Functional Theory, however, DFT can be
used only to calculate physical quantities corresponding to the ground-state of
the studied system. In order to calculate the response of a system under a pertur-
bation we need to use the time-dependent version of DFT, the Time-Dependent
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Density Functional Theory (TDDFT). TDDFT follows the same scheme as DFT
but assumes that the time-dependent xc energy functionals Exc[n](r) depend on
the time-dependent density n(r; t).

2.2.1 One-to-one correspondence
As it has been described in the introduction of this chapter, the evolution of N
electrons in time is fully described by the time-dependent wave function ψ(x1, x2,
..., xN ; t). Similarly to the previous section, the variables xi = (ri,σi) contains
the spatial and spin coordinates. The wave function ψ(x1, x2, ..., xN ; t) obeys
the time-dependent Schrödinger equation [20]

Ĥ(t)ψ(t) = i
dψ(t)
dt

, (2.48)

with Ĥ(t) is the time-dependent Hamiltonian operator similar to the time-inde-
pendent Hamiltonian but with a time-dependent external potential Vext

Ĥ(t) =
N∑
i=1

 p2
i

2m + Vext(ri; t) + 1
2

N∑
j 6=i

e2

|ri − rj |

 . (2.49)

The initial wave function ψ(x1, x2, ..., xN ; t = 0) is typically obtained from
the ground-state DFT and must be specified because of the first order differential
equation (2.48). Similarly to the ground-state density (2.7), the time-dependent
density is defined by

n(r; t) = N

ˆ
d3r2...

ˆ
d3rN |ψ(r, r2, ..., rN; t)|2, (2.50)

and has the interpretation that n(r; t)d3r is the probability of finding any electron
in the volume d3r around r at time t.

In the section 2.1.2, we briefly discussed the Hohenberg-Kohn theorem demon-
strating the one-to-one mapping between the ground-state density and the ex-
ternal potential (2.10). E. Runge and E. K. U. Gross demonstrated that a time-
dependent analogue to the HK theorem exists; the Runge-Gross theorem [38].
The Runge-Gross theorem shows a one-to-one correspondence between the time-
dependent density n(r; t) and the external potential Vext(r; t) up to an arbitrary
constant cte

n(r; t) −→ V (r; t) + cte, (2.51)

which is the time-dependent version of eqn. (2.10).
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2.2 Time-Dependent Density Functional Theory

2.2.2 Time-Dependent Kohn-Sham Equations
The Runge-Gross theorem [38] establishes that the one-body potential Vext(r; t)
is a functional of the density n(r; t) and initial state ψ(x1, x2, ..., xN ; t = 0).
Following the idea of Kohn and Sham, we define a fictitious system of non-
interacting electrons that satisfy the time-dependent Kohn-Sham equations

i
∂φi(r; t)

∂t
=
[
−∇

2

2 + Veff[n](r; t)
]
φi(r; t). (2.52)

Here, n(r; t) is the electron density computed from the time-dependent KS or-
bitals φi(r; t) similarly to eqn. (2.34) but now depending on time

n(r; t) =
N∑
i=1
|φi(r; t)|2. (2.53)

The KS density n(r; t) is defined to be precisely that of real system. By virtue
of the one-to-one correspondence, the potential Veff(r; t) yielding this density is
unique. We then define the xc potential

Veff(r; t) = Vext(r; t) + VH(r; t) + Vxc(r; t), (2.54)

where the Hartee potential reads

VH(r; t) =
ˆ
d3r′

n(r′; t)
|r− r′| . (2.55)

The xc potential Vxc(r; t) is a functional of the entire history of the density,
n(r; t). Moreover, the xc potential depends on the initial many-electron wave
function ψ(x1, x2, ..., xN ; t = 0) and on the initial Kohn-Sham wave function,
Φ(x1, x2, ..., xN ; t = 0). This time-dependent functional Vxc(r; t) is more complex
than the similar functional for the ground-state case. Knowledge of it implies
solution of all time-dependent Coulomb interacting problems.

According to the KS theorem discussed in section 2.1.3, the ground-state of
a quantum system is determined uniquely if the ground-state is non-degenerate.
Therefore, if the many-electron and KS wave functions are non-degenerate, the
time-dependent xc potential is a functional of the time-dependent density alone.

In ground-state DFT, the xc potential Vxc(r; t = 0) is the functional derivative
of the xc energy functional Exc[n] (eqn. 2.37). It would be useful to find an xc
functional Exc[n] whose functional derivative gives the xc potential Vxc(r; t) =
δExc[n](t)
δn(r;t) . Such xc functional exist and is called the xc action Axc[n]. A plausible

approximation to it was proposed by E. Runge and E. K. U. Gross [38]. However,
it turned out later [39] that this action leads to an unfortunate consequence.
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Paradoxically, the second functional derivative of the proposed xc action over the
electron density (so-called xc kernel used in linear-response TDDFT) violates the
causality principle [40]. In this work, we are using adiabatic time-dependent xc
functionals. In the adiabatic functionals, the xc action Axc[n](r; t) depends on the
instantaneous density n(r; t), i.e., there is no memory of previous times. This is a
strong but very common approximation. Besides allowing us to use any standard
approximation for the ground-state (as far as the xc kernel can be computed), it
solves the problem of the causality breaking, since all xc effects only depend on
the instantaneous electron density. Moreover, because we focus on spectroscopical
properties, we will further assume a weak time-dependent addition (perturbation)
δVext(r; t) to the time-independent external potential Ṽext(r)

Vext(r; t) = Ṽext(r) + δVext(r; t). (2.56)

The perturbation theory for TDDFT can be formulated via so-called linear-
response functions. In the following we discuss the linear-response theory for
TDDFT.

2.2.3 Linear-Response Theory
A straightforward way of extracting spectroscopical information about optical
excitations within the time-dependent KS formalism would be using the time-
dependent KS equations (2.52) with a simple adiabatic functional for the time-
dependent xc potential Vxc[n](r; t). Before the perturbation is applied at t = 0,
the system is usually assumed to be in its ground-state. Thus the KS ground-
state (occupied KS orbitals) can be used as an initial condition. Adding a weak
kick-like dipole perturbation δVext = Eextrδ(t) at the time t = 0 and solving
the KS equations (2.52), we can compute the time-dependent induced dipole mo-
ment Di(t) =

´
riδn(r; t)d3r. The Fourier transform of the dipole moment will

give the spectrum of the dipole polarizability α(ω) which is simply connected to
the optical absorption cross section. In fact, this procedure is found in many
implementations of TDDFT [41, 42]. However, the real-time TDDFT generally
provides much more information on the excitations (non-linear processes) and is
capable to model many scenarios (charging/discharging) beyond what is needed
in spectroscopy. The versatility of the real-time TDDFT contributes to its high
computational cost despite its favorable computational complexity scaling with
number of atoms. One of the main drawbacks of real-time TDDFT for spec-
troscopic calculations is the fact that the frequency resolution of the computed
spectrum is linked to the total propagation time, i.e., in order to increase the en-
ergy resolution of the response properties longer simulations are needed. Besides
the associated increase of the computational cost, this requires sufficiently stable
algorithms for the time propagation, which are not completely trivial. In contrast,
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linear-response TDDFT is less general, being restricted to small perturbations.
As we will describe in detail below, it can be formulated in an efficient way that
allows to study very large systems. Moreover, the linear-response TDDFT is
formulated directly in frequency domain, simplifying the interpretation of the
results. In this work, we continued to develop and apply the linear-response
TDDFT. Below, we summarize the linear-response TDDFT for the sake of the
self-contained presentation.

In the framework of linear-response TDDFT, the induced density δn(r; t) is
given by the convolution product in time of the external potential δVext(r; t) with
the so-called response function χ(r, r′; t)

δn(r; t) =
ˆ
dt′
ˆ
d3r′χ(r, r′; t− t′)δVext(r′; t′), (2.57)

i.e., if you make a small change in the external potential at point r′ and time t′,
χ tells you how the density will change at point r and later time t. An important
property of χ is that it does not depend of the time t0 at which the perturbation
is switched on. This is why χ is function only of t− t′ and not of (t, t′). Since the
present framework is in real-space, we can drop the spatial variables temporarily
for the sake of clarity

δn(t) =
ˆ
dt′χ(t− t′)δVext(t′). (2.58)

Now, the Fourier transform of expression (2.58) is simply

δn(ω) = χ(ω)δVext(ω), (2.59)

or

δn(ω) = χ0(ω)δVeff(ω), (2.60)

where δVeff = δVext +VHxc is the KS potential which includes the small perturba-
tion δVext. χ0(ω) is the non-selfconsistent response defined by eqn. (2.60). χ0(ω)
tells you how the non-interacting KS electrons would respond to the changes
in the effective potential δVeff(ω). Thus, χ and χ0 are generally very different,
but both must yield the same density response δn(ω). The advantage of equa-
tion (2.60) over equation (2.59) is that χ0(ω) has a close expression in terms of
KS orbitals and energies, which is not the case of χ(ω)

χ0(r, r′;ω) = lim
ε→0

∑
n,m

(fn − fm)φ
∗
n(r)φm(r)φ∗m(r′)φn(r′)
ω − (Em − En) + iε

, (2.61)

where (n,m) are indices over the KS orbitals. fn are occupation terms, if n andm
are both occupied or unoccupied states then fn−fm = 0, otherwise, fn−fm 6= 0.
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En are the eigenenergy of the corresponding KS states φn. Thus, χ0 is obtained
from the occupied and virtual KS orbitals φn obtained in the ground-state KS
DFT. If the Hartree-exchange-correlation potential VHxc is not allowed to change
in response to the external perturbation δVext(ω), then χ = χ0. In such case the
excitations of the system can be exactly described as one-electron excitation in
the KS potential obtained from the ground-state density. From equations (2.59)
and (2.60) we obtain 

χ(ω) = δn(ω)
δVext(ω) ,

χ0(ω) = δn(ω)
δVeff(ω) .

(2.62)

Since δVeff(ω) = δVext(ω) + δVHxc(ω) and taking the variational derivative with
respect to δn(ω), we get

δVeff(ω)
δn(ω) = δVext(ω)

δn(ω) + δVHxc(ω)
δn(ω) . (2.63)

Taking into account that δVeff/δn = χ−1
0 and δVext/δn = χ−1, and defining

δVHxc(ω)
δn(ω) = KHxc(ω), usually called xc kernel, we obtain

χ−1
0 (ω) = KHxc(ω) + χ−1(ω), (2.64)

or

χ(ω) =
[
χ−1

0 (ω)−KHxc(ω)
]−1 . (2.65)

Then, [
χ−1

0 (ω)−KHxc(ω)
]−1 =

{
χ−1

0 (ω) [1− χ0(ω)KHxc(ω)]
}−1 , (2.66)

χ(ω) = [1− χ0(ω)KHxc(ω)]−1
χ0(ω), (2.67)

1 = χ−1
0 (ω)χ(ω)−KHxc(ω)χ(ω), (2.68)

χ(ω) = χ0(ω) + χ0(ω)KHxc(ω)χ(ω). (2.69)

Equation (2.69) is the well known Petersilka-Gossman-Gross equation [43]. We
can continue to simplify the Petersilka-Gossman-Gross equation further using
relations (2.62)

χ(ω) = δn(ω)
δVext(ω) = χ0(ω) + χ0(ω)KHxc(ω) δn(ω)

δVext(ω) , (2.70)

δn(ω) = χ0(ω)δVext(ω) + χ0(ω)KHxc(ω)δn(ω),(2.71)
[1− χ0(ω)KHxc(ω)] δn(ω) = χ0(ω)δVext(ω). (2.72)
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2.2 Time-Dependent Density Functional Theory

Furthermore, inserting equation (2.60) into equation (2.72), we get the system of
integral equations

[1− χ0(ω)KHxc(ω)]χ0(ω)δVeff(ω) = χ0(ω)δVext(ω), (2.73)

Acting from the left in the last equation with the inverse of the non-interacting
response function χ−1

0 (ω), we get

[1−KHxc(ω)χ0(ω)] δVeff(ω) = δVext(ω). (2.74)

Setting up and solving this equation is the main part of the iterative TDDFT
algorithm that we use along this thesis [44]. Eqn. (2.74) is slightly more preferable
than eqn. (2.72) because after determination of the effective potential δVeff(r;ω)
we can easily organize several types of analysis of the induced density δn(r;ω) [44]
which are difficult to achieve otherwise. The algorithm to discretize and solve
the linear equations (2.74) or (2.72) will be further detailed in section 2.3

2.2.4 Plasmons within TDDFT
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Figure 2.2.1: Panel (a) shows the imaginary part of the polarizability of a sodium cluster containing
3871 atoms. The broad resonance is caused by the surface plasmon at 3.40 eV. The corresponding
distribution of the imaginary part of the density change δn for a cut through the center of the cluster
is shown on panel (b). The clear dipolar character of the surface plasmon of this system can be
appreciated.

A number of unprecedented technologies for applications in optics, chemical
and biological sensing, and medicine have been developed based on the intense
extinction spectra associated with localized surface plasmon excitation [45, 46].
A plasma consists of a gas of charged particles in dynamic equilibrium. When
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an external electric field perturbs the system, the distribution of charges is not
anymore in equilibrium and regions with excess of charges of a given sign are
created. Once the perturbation is switched off, a restoring force appears between
the regions of opposite charge, which leads to the oscillation of the charges in the
system. This oscillatory motion is called plasma oscillations. When such oscil-
lations are localized at the interface between a plasma and a dielectric material,
it produces quantized electromagnetic surface waves localized at the interface,
called surface plasmons. Finally, when the particle has a finite size, comparable
or smaller to the wavelength of the excitation then the charges are confined to this
small volume, they can not therefore freely propagate, creating a localized surface
plasmon [47]. These localized surface plasmons (LSP) are the main objects of
study in this thesis.

Commonly, LSPs are described using classical electrodynamics of contin-
uous media with some approximate model dielectric functions describing the
frequency-dependent attenuation of the electric field in media [48, 49]. How-
ever, for nano-sized systems on which we focus here, the classical theory hits
serious limitations. One of these limitations is the poor definition of the dielec-
tric function for the nanoparticles with a diameter below ten nanometers. In
contrast to the classical electrodynamics, quantum mechanics backed up with ab
initio methods can provide a much more credible description for such systems.
For instance, ab initio TDDFT predicts material-dependent and size-dependent
surface plasmon energies ωsp of the LSP using only basic information on the
chemical composition and shape of the clusters. However, the finite lifetime of
the electronic excitations, the finite resolution of the spectrometers, and the tem-
perature effects exhibit larger broadening constants than the energy separation
between the individual electronic excitations that build up the LSP. Therefore,
LSP resonances appear as strong, broad peaks in the optical polarizability of the
clusters. An example of the polarizability is shown in Figure 2.2.1 panel (a).
In this example, we computed the polarizability of a Na3871 cluster using the
linear-response theory discussed in the previous section. In panel (b), we show
the induced density δn(r;ω). The atomically-resolved oscillations of the induced
density δn(r;ω) are indeed localized predominantly at the surface of the cluster,
justifying the name of the resonance.

The linear-response theory is less computationally demanding than the real-
time TDDFT when realized with suitable methods and optimized from program-
ming point of view. In the next section, we will present the methods allowing the
linear-response theory to be competitive in the next section.

24



2.3 Method

2.3 Method
In this section, we describe the methodology behind our implementation of the
linear-response TDDFT. The methodology is realized in the software package
MBPT-LCAO which is an acronym for Many Body Perturbation Theory with
Linear Combination of Atomic Orbitals. The package is a tool to determine and
analyze the electronic excitations in condensed matter systems. The ground-
state of the studied system must be provided to MBPT-LCAO. Currently, we
use the DFT package SIESTA [1, 2] for the determination of the ground-state
properties. The usage of atomic orbitals allows to study quantum systems of
general chemical composition with moderate computational cost. The methods
implemented in the MBPT-LCAO package for finite systems, like molecules and
clusters, are:

• Linear-response TDDFT [4, 7, 44];

• Hartree-Fock SCF-calculations;

• Hedin’s GW approximation for quasi-particle levels [5, 50];

• Bethe-Salpeter equation [51].

In this work, the efforts were concentrated in the TDDFT part of the code.
The spatial dependencies of the KS orbitals and response functions are rep-

resented by means of atomic orbitals and their products, correspondingly. The
atomic orbitals are localized functions allowing to represent the studied electronic
system efficiently in term of resources. The short-sightedness of the atomic or-
bitals is especially pronounced when using the so-called numerical atomic orbitals
(NAO) [52, 53]. NAOs possess both a desirable flexibility of their shape and a
strictly-defined spatial extend. The DFT package SIESTA and our methods for
excited-states employ NAO throughout all the steps. In the following, we provide
details, starting with the description of the spatial degrees of freedom.

2.3.1 Response Function within LCAO with Numerical Atomic
Orbitals

The linear combination of atomic orbitals (LCAO) method was developed in the
early days of quantum mechanics to expand molecular orbitals. Using LCAO
method we expand the KS states φn(r) in equations (2.42) and (2.61) as

φn(r) = Xn
a f

a(r−Ra). (2.75)

Here, the expansion coefficients Xn
a are determined by self-consistently solving

equation (2.34) and (2.42), while fa(r) is a set of atomic orbitals, i.e., a set of
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CHAPTER 2. THEORY

known functions centered at the atomic nuclei Ra. Here and later in this thesis
we use the Einstein’s summation convention over repeated indices. The atomic
orbitals fa(r) possess a radial-angular decomposition

fa(r) = fa(r)Yla,ma(r), (2.76)

where fa(r) is a radial function depending on the distance to the origin r, and
Yl,m(r) are the spherical harmonics which will be chosen as real spherical har-
monics. In order to assert in the notation the independence of the radial orbitals
fa(r) on the magnetic quantum number ma we use also a multiplet index µ

faµ,m(r) = fµ,m(r) = fµ(r)Ylµ,m(r). (2.77)

In this notation, the multiplet index µ and magnetic quantum number m deter-
mine the orbital index a = aµ,m.

When inserting the LCAO ansatz (2.75) into eqn. (2.61) to describe the den-
sity response, one encounters products of localized functions fa(r)f b(r)—a set
of quantities that are known to be linearly dependent. There is extensive lit-
erature [54–56] on the linear dependence of products of atomic orbitals. For
example, Baerends et al. use an auxiliary basis of localized functions to rep-
resent the electronic density [56, 57], a procedure that is quite popular in the
quantum chemistry community. Their procedure of fitting densities by auxil-
iary functions is essential both for solving Casida’s equations [58] and in van
Gisbergen’s iterative approach [59].

In the alternative approach of Beebe and Linderberg [54], one forms the over-
laps of products 〈ab| a′b′〉 to disentangle the linear dependence of the products
fa(r)f b(r). The difficulty with this approach is its lack of locality and the O(N4)
cost of the construction of the overlaps [60].

Our approach, initially devised by D. Foerster [61], of constructing the basis
for the products of orbitals fa(r)f b(r) relies on the diagonalization of a Coulomb
metric in the basis of original orbital products 〈ab| cd〉. The diagonalization is
done for each atomic pair individually in order to maintain the locality of the
constructed product basis (PB). Moreover, in the process of constructing, we
use the spatial symmetry of the orbitals’ products in order to further reduce the
dimension of the diagonalized metric [7, 61]. The resulting basis set of dom-
inant products is of controlled quality and is locally-optimal by construction.
However, the dominant functions belonging to different atom pairs could still
overlap strongly and, thus, the problem of linear dependence is not fully solved.
Therefore, the basis of dominant products was augmented by a re-expression
procedure allowing to use only atom-centered product functions. Both product
basis sets: the dominant product’s as well as the atom-centered PB set allow
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to expand the atomic orbital’s products fa(r)f b(r) within the so-called product
vertex ansatz [62]

fa(r)f b(r) = V abµ Fµ(r), (2.78)

where V abµ are the product vertex coefficients. Inserting the product vertex
ansatz (2.78) into the response function (2.61), we obtain

χ0(r, r′;ω) =
∑
µ,ν

Fµ(r)χ0
µν(ω)F ν(r′), (2.79)

(2.80)

where the matrix χ0
µν(ω) reads

χ0
µν(ω) = (fn − fm)

(Xn
a V

ab
µ Xm

b )(Xm
c V

cd
ν Xn

d )
ω − (Em − En) + iε

. (2.81)

Furthermore, inserting the expansion (2.79) into the Petersilka-Grossman-
Gross equation for the interacting response (2.69), we obtain the matrix equation

χµν(ω) = χ0
µν(ω) + χ0

µµ′(ω)Kµ′ν′

Hxc χν′ν(ω), (2.82)

for the interacting response matrix χµν(ω). Inserting the PB in equation (2.74),
we get the linear equation for the induced effective potential δV νeff(ω)[

δµν −Kµµ′

Hxcχ
0
µ′ν(ω)

]
δV νeff(ω) = δV µext(ω). (2.83)

Equation (2.83) is the equation that will be solved iteratively using the solver
described in section 2.3.2. The interaction kernel Kµν

Hxc is defined by

Kµν
Hxc =

ˆ
d3rd3r′Fµ(r)KHxc(r, r′)F ν(r′), (2.84)

while the external δV µext(ω) and effective δV µeff(ω) potentials are defined by

δV µext(ω) =
ˆ
d3rFµ(r)δVext(r;ω), (2.85)

δV µeff(ω) =
ˆ
d3rFµ(r)δVeff(r;ω). (2.86)

In the following, we describe the iterative method of solution of equation (2.83)
which relies on the locality of the product basis vertex V abµ in the matrix repre-
sentation of the non-interacting response function (2.81).
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2.3.2 Iterative Method to Calculate the Induced Density
Linear-response TDDFT describes how the external perturbation δVext(r;ω) in-
duces the density change δn(r;ω) in the KS system. Namely, the induced density
change δn(r;ω) is linearly connected to the external perturbation δVext(r;ω) by
means of the interacting response function χ(r, r′;ω). However, for the sake of
computational efficiency one should avoid the computation of the whole opera-
tor χ(r, r′;ω) and seek for an algorithm allowing to compute the action of the
operator on a given perturbation. In this section we will formulate such algo-
rithm. The algorithm uses the Krylov subspace technique to compute the action
of the interacting response function χ(r, r′;ω) on a given external perturbation
Vext(r;ω) without explicit storage of neither the interacting response function nor
the non-interacting response functions. The method has been described in detail
in Refs. [4, 7, 44]. In this thesis the iterative TDDFT was applied to two types of
external perturbations: a dipolar field Vext(r;ω) = (E0r) and the Coulomb field
of an electric charge moving uniformly and rectilinearly Vext(r; t) = |r− re(t)|−1,
re(t) being the position of a probe-electron at time t. The former model has been
used to address optical excitations (see section 2.3.4), while the latter has been
used to address electron energy loss spectra (see section 2.3.6). Several enhance-
ments of the iterative TDDFT were implemented during this thesis. For instance,
the action of the non-interacting response function to a vector was improved al-
lowing to treat larger systems with less computational resources. Moreover, the
electron energy loss spectroscopy (EELS) within the iterative TDDFT was first
realized in this work.

2.3.2.1 Krylov Subspace Method

The system of linear equations (2.83) will be solved separately for each frequency
ω. In order to solve this system of linear equations, we apply the generalized
minimal residual method (GMRES) [63, 64]. GMRES belongs to the Krylov-
type methods [64, 65] that represent a large matrix A in an iteratively built up
Krylov-type basis |0〉 , |1〉 . . . |i〉. The first vector |0〉 in the basis is chosen to be
equal to |b〉, while further vectors are computed recursively via |i〉 = A |i− 1〉.
As the vectors |i〉 = Ai |0〉 are not mutually orthogonal, one may enforce their
orthogonality by using the Gram-Schmidt method

|i〉 = A |i− 1〉 −
i−1∑
j=0
|j〉 〈j|A |i− 1〉 . (2.87)

The orthonormal basis built in this way is used in the GMRES method to ap-
proximately solve the linear system of equations A |X〉 = |b〉 by minimizing the
residual |r〉 = A |X〉− |b〉 within the Krylov-type subspace eqn. (2.87). The min-
imization of the residual occurs when the equation

∑
j 〈i|A |j〉 〈j| x〉 = 〈i| b〉 is
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satisfied and this set of equations is of much smaller size than the original problem.
Once the solution in the Krylov subspace 〈i| x〉 is found, then an approximate
solution in the original space can be computed from |X〉 =

∑
i |i〉 〈i| x〉.

A suitable stopping criterion is essential for our method, and several criteria
were tested when the program was initially written [4] in order to keep the number
of iterations small and achieve a reliable result at the same time. The conven-
tionally used criterion that εr = |r|/|b| should be small is unreliable when the
tolerance threshold is comparatively large (εr ∼ 1%). Therefore, it was suggested
an alternative combined criterion.

A natural stopping criterion for an iterative solver of the linear system of
equations A |X〉 = |b〉 is a condition on the relative error of the solution εX =
|∆X|/|X|. In the case of optical absorption and EELS, the convergence condi-
tion using either the relative error εX or absolute error |∆X| lead to accurate
values of the optical polarizability (see eqn. 2.91) and the energy loss probability
(see eqn. 2.116). In the case of Raman spectroscopy presented in chapter 7, it
is necessary to compute the derivative of the polarizability using finite differ-
ence. Therefore, the polarizability used to estimate the Raman signal need to
be converged more strictly and only the absolute error provides the necessary
accuracy.

A general iterative method of the Krylov type involves only matrix-vector
products A |z〉. For an explicitly given matrix A, the operation |z〉 → A |z〉
requires O(N2) operations. Therefore, the whole iterative method will scale as
O(N2Niter), where Niter is the number of iteration until convergence. This is
better than direct methods when Niter � N , since a matrix-matrix multiplication
takes O(N3) operations.

To avoid matrix multiplications, the application of the matrix A = 1 −
KHxcχ0(ω) to a vector |z〉 is done sequentially by computing first |z′〉 = KHxc |z〉
and then A |z〉. The kernel matrix KHxc is computed before the iterative proce-
dure. Because it is frequency independent, it can be easily stored and reused. By
contrast, the response matrix χ0(ω) is frequency dependent and computationally
expensive, and its explicit construction should be avoided. Therefore, only the
matrix-vector products χ0(ω) |z〉 will be computed as explained below without
ever calculating the full response matrix χ0(ω).

2.3.2.2 Application of the Non-Interacting Response Matrix

The Krylov method briefly presented above allows a fast computation of the effec-
tive potential δVeff(ω), despite its relatively high computational complexity. As
we will see below, the computational complexity of our iterative TDDFT method,
O(N3), scales asymptotically with the third power of the number of atoms N .
For a comparison, the real-time TDDFT possesses a much lower computational
complexity scaling of O(N).
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The starting point of our construction of the matrix-vector product χ0 |z〉 is
the expression in eqn. (2.81) for the KS response matrix in the basis of dominant
products. To compute the matrix-vector product χ0 |z〉 efficiently, we decompose
its calculation into a sequence of multiplications that minimizes the number of
arithmetical operations by exploiting the sparsity of the vertex V abµ . The sequence
we chose is shown in equation (2.88). For clarity, the frequency-dependent de-
nominator (ω− (En−Em) + iε) is omitted. Boxes represent the operations to be
performed at different steps. An algebraic representation of the computational
steps is given in table 2.1.

χ0
µνz

ν = V abµ Xn
a Xm

b Xm
c V cdν zν Xn

d (2.88)

Step Expression Complexity Memory
1 αcd = V cdν zν 1 1
2 βcn = αcdXn

d 2 2
3 γmn = Xm

c β
cn 3 2

4 ˜γmn = cγmn 0 2
5 ˜βbn = Xm

b
˜γmn 3 2

6 α̃ab = ˜βbnXn
a 2 2

7 δnµ = V abµ α̃ab 1 1

Table 2.1: Sequence of operations for the calculation of χ0
µνz

ν of equation (2.88) with the respective
computational complexity and memory scaling. The powers p of respective scaling demands O(Np)
are stated in the table.

The procedure starts with a trace over the product index ν to obtain a sparse
overlap-like matrix αcd = V cdν zν . This operation takes asymptotically O(N) op-
erations and, as a matter of fact, it spends a minor portion of runtime. In the sec-
ond step, we multiply the sparse matrix αcd with the occupied-states eigenvectors
βcn = αcdXn

d . The product takes O(N2) operations because the eigenvectors Xn
d

form a dense matrix. In the third step, we multiply the (dense) matrix βcn with
the virtual-states eigenvectors γmn = Xm

c β
cn. This operation takes O(N3) opera-

tions, but with parsimonious NAOs, it becomes the largest time-consumer only for
large systems (thousands of atoms). In the next step, the matrix γmn is updated
with the frequency denominator γ̃mn = γmn [(fn − fm) / (ω − (Em − En) + iε)].
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The update is not shown in equation (2.88) and takes a negligible run time. Re-
maining steps include a matrix-matrix multiplication β̃bn = Xm

b γ̃
mn, which takes

O(N3) operations and a matrix-matrix multiplication α̃ab = β̃bnXn
a in which only

an overlapping part of α̃ab is computed and, therefore, it takes O(N2) operations.
Finally, a trace over orbital indices a and b delivers the result δnµ = V abµ α̃ab.

The sequence described above was implemented in sparse algebra during this
thesis for the first time. In older versions of the procedure, we were using an
alternative sequence in which an auxiliary table Aanµ = V abµ Xn

b was precomputed
to diminish the number of mathematical operations. Although this table takes
O(N2) storage elements of random-access memory (RAM), it becomes too big
for large systems. Moreover, due to the size of the table Aanµ , the machine cache
gets obstructed and the computation gets slower than with the current sequence
of operations we presented above. The improved operation sequence that we
detailed above does not involve any approximations comparing to the old version.
In fact, the new algorithm has a great impact on the performance of the iterative
algorithm in all cases.

The sequence of matrix operations described above involves the operations of
O(N3) computational complexity at most. Therefore, the computation of χ0

µνz
ν

(eqn. 2.88) should be the most time consuming part of the program. However,
the measurements of runtime show another pattern. The table 2.2 shows the
total runtime (in hours) of the MBPT-LCAO program (third column) for a series
of icosahedral silver clusters composed of 13 up to 2057 atoms (see the chapter 5
for more details about the clusters and appendix B for further details on the
calculations). The percentage of the total runtime for the iterative procedure

Number
atoms

Number
electrons

Total
runtime
(hours)

iterative proce-
dure: % of total
runtime

χ0
µνz

ν : % of to-
tal runtime

13 143 0.01 22.7 10.1
55 605 0.08 33.6 13.2
147 1617 0.36 48.0 18.7
309 3399 1.62 68.1 31.5
561 6171 5.88 74.1 43.6
923 10153 27.67 79.6 51.9
1415 15565 102.61 90.8 69.4
2057 22627 349.00 92.7 76.0

Table 2.2: Timing of the MBPT-LCAO program for a series of silver clusters. First and second
columns indicate the number of atoms and the corresponding number of electrons of the clusters.
Third column shows the total runtime of the program in hours. The percentage of the total runtime
for the iterative procedure and the calculation of χ0

µνz
ν (eqn. 2.88) are indicated in the fourth and

fifth columns respectively.
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Figure 2.3.1: Panel (a) shows the time scaling of the MBPT-LCAO program for the series of
icosahedral silver clusters from 13 to 2057 atoms indicated in the table 2.2. The running time of the
full program (blue dots), of the iterative procedure (red dots) and of the the χ0 algorithm (green
dots) are represented. The blue dots of panel (b) show the average time by iteration to calculate
χ0
µνz

ν (eqn. 2.88) on the left axis and the average number of iterations by frequency (red dots) on
the right axis. For both panels, the x-axes and the left y -axes are given in logarithmic scale, while
the right y -axis of panel (b) is using a linear scale.

and the χ0 algorithm described in this section are indicated in the fourth and
fifth columns respectively. The data of table 2.2 are represented on panel (a) of
Figure 2.3.1 as function of the number of atoms. The blue dots shows the total
runtime (third column of table 2.2) of the MBPT-LCAO program, the red dots
indicate the runtime of the iterative procedure while the green dots the total time
to perform the matrix operations (2.88) described above. The indicated times
are in hours and both axes are in logarithmic scale. The blue dots of panel (b) of
Figure 2.3.1 gives the average time by iterations to compute χ0

µνz
ν (left axis) in

seconds (logarithmic scale). The red dots of the same panel (right axis) indicate
the average number of iteration by frequency necessary to achieve convergence
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(the threshold used in these calculations is ε = 1× 10−3). Fitting the blue dots
with a polynom, we obtain the expected cubic behavior. Nevertheless, as shown
in table 2.2, the computation of χ0

µνz
ν takes the majority of the runtime only

for clusters larger than one thousand atoms. In fact, we see that the iterative
procedure, which the calculation of χ0

µνz
ν is part of, takes the largest part of

the total runtime for small cluster as the Ag309. Therefore, it seems that further
optimizations of the iterative procedure are necessary to improve the performance
of the program. Furthermore, as observed in panel (b) of Figure 2.3.1, we can
see that the average number of iterations by frequency increases considerably
for large clusters. The GMRES algorithm has thus more difficulties to converge
when the size of the system increases. We will see in section 2.3.7, that this issue
is not affecting the Python version of the program (PySCF-NAO) in which we
used the GMRES solver provided by the SciPy library [66].

It is worth noting the relatively small absolute runtimes of the program. These
calculations were done for a total of 61 frequencies and were using only 12 cores
of a modern central processing unit (CPU)2 with OpenMP parallelization to
compute systems containing up to several thousands of atoms. Moreover, the
sequence of operations described in this section relies on simple matrix-matrix
multiplications in a manner facilitating the parallelization using graphical pro-
cessing units (GPUs). As a consequence, it has been relatively easy to parallelize
these matrix-matrix operations using the CUDA and CUBLAS [67] libraries. The
usage of GPU allows for a faster and energy-efficient computation. More details
are gathered in the appendix F.

2.3.2.3 Memory Requirements of the Algorithm

The scaling of the RAM requirement in the sequential application of the non-
interacting response matrix described above in section 2.3.2.2 does not exceed
O(N2) scaling with the number of atoms N . The interaction kernel (eqn. 2.90),
which does not depend on frequency for the density functionals used in this work,
is computed before the iterative calculation of the induced density. The interac-
tion kernel should take as well O(N2) elements of RAM but using an optimized
method (explained in section 2.3.3) the storage requirement for the interaction
kernel scales as O(N). Therefore, we expect an overall RAM requirements to
scale with the second power of the number of atoms. In Figure 2.3.2 we show the
actual memory consumption as function of the number of atoms for a series of
icosahedral silver clusters. The Figure shows indeed a quadratic increase of the
RAM requirement. The fitting of the RAM as function of the number of atoms

2Intel(R) Xeon(R) CPU E5-2683 v4 at 2.10GHz
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N gives the following equation

RAM(N) = aN2 + bN + c,
with a = 5.76× 10−3, b = 18.76, c = 0.0.

(2.89)

Since a� b, the quadratic behavior is rather weak and for small systems it evolves
quasi linearly. In fact, the quadratic term will dominate only for N > b

a ∼ 3254
atoms. This excellent scaling has been achieved thanks to careful optimization
of the memory consumption. More details on the TDDFT calculations of these
silver clusters are given in the appendix B.
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Figure 2.3.2: Memory scaling of the MBPT-LCAO program for several icosahedral silver particles
from 13 to 2057 atoms (blue dots). The memory consumption has been interpolated (red dashed
line) with the second order polynom (2.89).

2.3.3 Calculation of the kernels
The interaction kernel K appearing in equations (2.64) becomes a matrix in the
PB set {Fµ(r)}. Here we write the matrix as a sum of the Hartree and exchange-
correlation kernels

Kµν
Hxc =

ˆ
Fµ(r)F ν(r′)
|r− r′| drdr′ +

ˆ
Fµ(r)Kxc(r)F ν(r)dr. (2.90)
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In this work we use semi-local energy functionals E[n] of the electron density
n such as the local-density approximation (LDA) [33, 34] and the generalized
gradient approximation (GGA) [35]. The exchange-correlation kernels of these
functionals becomes local in spatial variables [44, 68–70]. However, the Hartree
kernel Kµν

H is a dense matrix. Previously we suggested to view the application of
the interaction kernel (2.90) to a vector as a simple matrix-vector product where
the matrixKµν

Hxc is stored in the dense matrix format. However, for large systems,
the storage of the O(N2) matrix elements of TDDFT kernel Kµν is prohibitive.
For instance, in case of silver clusters (described in chapter 5), using the atom-
centered PB set, we have to use about 60 functions per atom. Therefore, for
Ag5083, the storage of the (upper part of) interaction kernel in single precision
will take 173 GBytes, which is prohibitive for many machines. Therefore, we
realized a more sophisticated kernel operator. Namely, the non-overlapping part
of Hartree kernel Kµν

H can be computed much faster than the overlapping part,
using the multipole moments of PB functions. Therefore, in order to save RAM,
we store only overlapping part, spending only O(N) memory elements, while the
remaining non-overlapping elements are computed on the fly just before a matrix-
vector operation Kµνzν that is organized block-wise. In fact, this sophistication
slows down the whole iterative loop only by a minor amount.

2.3.4 Optical Polarizability Tensor
The external electric field of the monochromatic optical stimuli is given by the
plane wave δEext(r;ω) = E0e

ikr. If the wavelength of the optical oscillations λ =
2π
k = 2πc

ω � R is much larger than the size of the excited quantum system R, then
the simple dipole approximation for the external potential δVext = E0r provides
an accurate description of the optical perturbation. The dipole approximation
gives rise to the notion of the optical polarizability tensor

Pij(ω) =
ˆ
d3rd3r′riχ(r, r′;ω)r′j . (2.91)

The indices i and j enumerate the Cartesian space coordinates (x, y, z). The
trace of the imaginary part of the polarizability Pij(ω) is proportional to the
optical cross section σ(ω)

σ(ω) = −4πω
3c = [Pxx(ω) + Pyy(ω) + Pzz(ω)] . (2.92)

In order to compute the optical response δV µeff(ω) for any direction of the external
field E0, we shall compute the response for three unit vectors along Cartesian
axes x, y and z [

δµν −Kµµ′

Hxcχ
0
µ′ν(ω)

]
δV νeff(ω) = dµi , (2.93)
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where the dipole moment dµi reads

dµi =
ˆ
d3rFµ(r)ri. (2.94)

Once the effective KS potential δV νeff(ω) is known, we can calculate the induced
density

δniµ = χ0
µν(ω)δV νeff(ω), (2.95)

which can then be easily transformed back into real space

δni(r;ω) = Fµ(r)δniµ. (2.96)

The induced density in Cartesian coordinates δn(r;ω) will be analyzed in the
chapters 3,4,5 and 6 for different physical systems and external stimuli. Moreover,
we will see in the next section that the induced near-field can be easily obtained
form the induced density δn(r;ω).

2.3.5 Calculation of the Induced Electrical Field in the
Near-Field regime

The optical polarizability tensor Pij(ω) characterizes the so-called far-field re-
sponse of the electro-dynamic system. In this work we will also analyze the
near-field response of the quantum systems. The near-field is crucial to overcome
the diffraction limit of optical light which is approximately λ/2. For instance,
near-field scanning optical microscopy (NSOM) overcomes the diffraction limit
by using the sub-wavelength tips at the end of a fiber that brings (concentrates),
collects and scatters light, pushing the spatial resolution of optical spectroscopic
measurements down to tens of nanometer [71, 72]. Therefore, the near-field tech-
nique is determinant in enhanced Raman spectroscopy and other applications of
plasmonics [12–17].

The induced near-field of the quantum systems will be computed out of the
induced density change δn(r;ω) in frequency domain using the definitions from
electrostatics

δEind(r;ω) =
ˆ r− r′

|r− r′|3 δn(r′;ω)d3r′. (2.97)

In our approach, we use intertwined spatial grids to represent the density δn(r;ω)
and the induced field δEind(r;ω). The points of one grid occupy central positions
in the cells created by the points of the other grid. For visualization purposes,
the induced field δEind(r;ω) will be computed on a 3D equidistant grid. Direct
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evaluation of the integral (2.97) takes NENn operation where NE is the number
of points at which we evaluate the electric field and Nn is the number of point
used to represent the induced density δn(r;ω) with a sufficient accuracy. Because
the number of point NE and Nn can be rather large, the direct evaluation to the
Coulomb field is impractical. Instead, we will apply the convolution theorem
of the Coulomb field (2.97) and use Fast Fourier Transform (FFT) to compute
the successive Fourier transforms (FT). As it can be easily seen, the Coulomb
field (2.97) is a convolution of two functions

δEind(r;ω) = r
|r|3 ⊗ δn(r;ω). (2.98)

The convolution theorem reads

FT [δEind(r;ω)] = FT
[

r
|r|3

]
FT [δn(r;ω)] , (2.99)

i.e., FT of a convolution is the product of the FTs of the functions. Using inverse
FT we can then recover the spatial distribution of the induced electric field

δEind(r;ω) = FT−1
(
FT
[

r
|r|3

]
FT [δn(r;ω)]

)
. (2.100)

Notice that here, in spite of the use of the FFT as a key ingredient, we are
computing the electrostatic field associated with isolated charge distributions. In
order to do this, the periodicity is taken to be at least twice the extension of
the charge distribution along a given direction, i.e., a conveniently large buffer
region is defined surrounding the charge distribution, and the Coulomb kernel in
real-space is taken to be identical to zero for distances larger than the maximum
linear dimension of the charge distribution. In this way it is possible to use FFTs
to compute exactly the field associated with isolated objects.

2.3.6 Electron Energy Loss Spectroscopy
In section 2.3.4, we applied the iterative TDDFT method to compute the optical
polarizability tensor in the dipole approximation. However, the iterative method
of computing the induced density can be used for other types of external pertur-
bations. During this work, we extended the iterative TDDFT method to the case
of an external field produced by a moving point like charge (typically considered
to be a fast electron).

The external field of a point-like charge moving uniformly and rectilinearly
models the perturbation suffered by condensed-matter systems (clusters and
molecules) in transmission electron microscope (TEM). TEM exhibits better
spatial resolution than optical spectrometers [73]. The relevant experimental
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techniques demonstrate that Electron Energy Loss Spectroscopy also shows a
high energy resolution [74]. In this work, we compute and analyze the trajectory-
dependent power of electron energy losses ΓEELS(ω)—one of the principal observ-
ables measured in TEM. We are using our efficient ab initio atomistic approach
to probe the response of a system under such perturbation.

2.3.6.1 Perturbation of Matter by Fast Electrons

The probe electrons in TEM possess a kinetic energy in the range from tens
up to hundreds of keVs. The wavelength of such electrons is rather short (from
0.5 to 4 Å) and the interaction time of such electrons with the nanoparticles
is too short to provoke significant changes in the initial velocity of the projec-
tile. Correspondingly, we model the probe electrons as uniformly moving point
charges. Moreover, the current density of the probe electrons can be kept small
and the interaction of the probe electrons with the target electrons remains in
the linear-response regime. Furthermore, in this work we focus on computing
valence excitations. This, together with the high speed of electrons, justifies to
some extent the use of a linear-response formulation.

t0 t0 + δtve δFind

b
δVext

δVind

Figure 2.3.3: Representation of the interaction between an electron and a benzene molecule when
the electron is passing in the vicinity of the molecule. The electron is represented at the time t0 and
t0+δt with a velocity ve and with the impact parameter b. The electron’s trajectory is represented by
the dark line. The potential created by the probing electron δVext(r; t) = 1/|re(t)− r| is represented
by blue arcs. While the the target’s electrons creates an induced potential δVind represented by the
red arcs which create an induced force δFind acting back on the electron.
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The total mechanical work performed by the uniformly moving charged par-
ticle is given by [73]

∆E =
ˆ

ve ·Eind(re(t); t)dt, (2.101)

where Eind(re(t); t) is the electrical field induced due to the electronic excitations
of the probed system, and re(t) = vet+re(t = 0) is the position of the projectile.
The probe is assumed to have an electric charge of one atomic unit. Perform-
ing the Fourier transform of the induced electric field, we obtain the following
expression of the total energy loss (see derivation below)

∆E =
ˆ
ωΓEELS(ω)dω, (2.102)

where ΓEELS(ω) is the energy loss probability. ΓEELS(ω) is interpreted as the
probability for the probe electron to change its energy by amount of ω.

Let’s perform the Fourier transform of the induced electric field and obtain
an expression for the energy loss probability suitable for linear-response TDDFT.
The Fourier transform of the induced electric field Eind(re(t); t) reads

Eind(re(t); t) = 1
2π

ˆ
Eind(re(t),ω)eiωtdω, (2.103)

therefore, eqn. (2.102) becomes,

∆E = 1
2π

ˆ
dtdωve ·Eind(re(t);ω)eiωt. (2.104)

Furthermore, since Eind(re(t); t) ∈ R we can transform the integral over all pos-
itive and negative frequencies into an integral over the positive frequencies only

ˆ +∞

−∞
dωEind(re(t);ω)eiωt = 2<

ˆ +∞

0
dωEind(re(t);ω)eiωt. (2.105)

Thus, equation (2.104) becomes

∆E = 1
π
<
ˆ
dt

ˆ
dωve ·Eind(re(t);ω)eiωt, (2.106)

From the other side, the induced field Eind(r;ω) is created by the induced
density δn(r;ω). A simple Coulomb law can be used here since relativistic ef-
fects are neglected and there are no appreciable retardation effects due to the
nanometer size of the particles we consider

Eind(r;ω) =
ˆ
d3r′

r− r′

|r− r′|3 δn(r′;ω). (2.107)
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By inserting equation (2.107) into equation (2.106) one gets,

∆E = 1
π
<
ˆ
dω

ˆ
dtd3r′

dre(t)
dt

re(t)− r′

|re(t)− r′|3 e
iωtδn(r′;ω) (2.108)

Calculating the derivative of the external potential δVext(r; t) = 1/|re(t) − r|
created by the probe,

d

dt
δVext(r; t) = d

dt

1
|re(t)− r| (2.109)

= dre(t)
dt

re(t)− r
|re(t)− r|3 (2.110)

which is the expression in the integral of equation (2.108)

∆E = 1
π
<
ˆ
dω

ˆ
dtd3r′

d

dt
δVext(r′; t)eiωtδn(r′;ω). (2.111)

Because δVext(r′; t) is real, one can write
ˆ
dteiωt

d

dt
δVext(r′; t) =

(ˆ
dte−iωt

d

dt
δV ∗ext(r′; t)

)∗
(2.112)

= −iωδV ∗ext(r′;ω). (2.113)

Inserting equation (2.112) into equation (2.108) we get

∆E = − 1
π<
´
d3r′dω (−iωδV ∗ext(r′;ω)δn(r′;ω)) . (2.114)

Finally using the relation < (−iz) = = (z) with z ∈ C we simplify the last equation

∆E = − 1
π

ˆ
ω

ˆ
d3r′= [δV ∗ext(r′;ω)δn(r′;ω)] dω. (2.115)

Comparing the last equation with the probability ansatz (2.102), we derive the
electron loss probability

ΓEELS(ω) = − 1
π
=
ˆ
d3rδV ∗ext(r;ω)δn(r;ω), (2.116)

ΓEELS(ω) = − 1
π
=
¨

d3rd3r′δV ∗ext(r;ω)χ0(r, r′;ω)δVeff(r′;ω). (2.117)

Using the analytical properties of the response function, e.g., using the Lehmann
representation of the many-body response function, it can be easily shown that
the expression in eqn. (2.117) must be non-negative for every ω. Therefore,
ΓEELS(ω) can be safely interpreted as an excitation probability. We see in
eqn. (2.117) how ΓEELS(ω) is simply related to the induced density δn(r;ω)
and the external potential δVext(r;ω). The calculation of the external poten-
tial δVext(r;ω) is discussed below.
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2.3.6.2 Iterative Computation of the Energy Loss

In section 2.3.6.1 we derived the electron energy loss probability ΓEELS(ω). The
electron energy loss probability is determined by the induced density δn(r;ω)
and the external potential created by the moving charge δVext(r;ω). In this
work, we use linear-response theory to compute the induced density δn(r;ω). We
calculate the induced density δn(r;ω) expanding it in terms of product functions
{Fµ(r)} (see eqn. 2.96)) and using linear equations (2.60) and (2.74) to compute
the expansion coefficients δnµ(ω). The right-hand side of equation is a vector of
the external potential moments δV µext(ω) in frequency domain. The moments of
the external potential δV µext(ω) read

δV µext(ω) = 1
2π

ˆ
dteiωt

ˆ
Fµ(r)

|r−Rµ
elec(t)|

d3r, (2.118)

where Rµ
elec(t) = R0+vet−Rµ and Rµ are the positions of atomic nuclei at which

the product functions {Fµ(r)} are centered. Comparing with the calculation of
the optical absorption, the only difference is in the definition of these moments.
In contrast to the dipole (2.94) needed for optical polarizability tensor, the recti-
linear moments (2.118) depend on the impact parameters (trajectory of the probe
electron), on the velocity of the probe electron ve and are generally frequency-
dependent quantities. In order to compute the rectilinear moments (2.118), we
will use the Laplace expansion of the Coulomb interaction and Fourier transform
of the moments in time domain

δV µext(t) =
ˆ

Fµ(r)
|r−Rµ

elec(t)|
d3r. (2.119)

We use the Laplace expansion

1
|r− r′| =

∑
lm

4π
2l + 1

rl<
rl+1
>

Y ∗lm(r̂)Ylm(r̂′), (2.120)

where r< = min(r, r′) and r> = max(r, r′). Inserting eqn. (2.120) into eqn. (2.118)
we get

δV µext(t) =
∑
lm

4π
2l + 1

ˆ
d3r

rl<
rl+1
>

Y ∗lm(r̂)Ylm(r̂µelec(t))F
µ(r). (2.121)

Since Fµ(r) = Fµ(r)Ylµmµ(r̂) and
´
Y ∗lm(r̂)Yl′m′(r̂)dΩ = δll′δmm′ , we can then

remove the sum over l and m

δV µext(t) = 4π
2lµ + 1Ylµmµ(r̂µelec(t))

ˆ
r2 rl<
rl+1
>

Fµ(r)dr. (2.122)
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A final step consist in separating the radial integral into two ranges

δV µext(t) = 4π
2lµ + 1Ylµmµ(r̂µelec(t))

[
1

(Rµelec(t))
lµ+1×

ˆ Rµelec(t)

0
rlµ+2Fµ(|r|)dr + (Rµelec(t))

lµ

ˆ +∞

Rµelec(t)

Fµ(|r|)
rlµ−1 dr

]
.

(2.123)

Using the computed moments in time domain (2.123), we apply Fourier trans-
form (FFT is used) and get the moments (2.119) in the frequency domain. In
principle, following the work of Ferrel and Echenique [75] it is possible to find
a close analytical expression for δV µext(ω) when the trajectory passes outside the
support region of a given product basis functions Fµ(r). However, for a gen-
eral trajectory that overlaps with the functions Fµ(r) it is necessary to compute
it numerically and, therefore, we decided to use the same numerical procedure
for all the moments of the external potential. Using the product basis set, the
electron energy loss probability becomes a scalar product

ΓEELS(ω) = − 1
π
=
(
δV µ∗ext(ω)δnµ(ω)

)
. (2.124)

The expansion coefficients of the induced density δnµ(ω) are obtained by iter-
atively solving the system of linear equations (2.83) using the Krylov subspace
methods (see section 2.3.2.1).

2.3.7 The PySCF-NAO Program: the Pythonic Version of
MBPT-LCAO

The software package MBPT-LCAO was written in Fortran language. The cum-
bersomeness of coding in Fortran made maintenance and extensions of the code
difficult. During the last period of the PhD, we managed to port the program to a
Python version which is more user-friendly, easier to maintain and to extend. The
code is integrated into the Python-based Simulations of Chemistry Framework
(PySCF) [6] that provides the possibility of reusing the open-source programs
developed by many leading scientists. The module Numerical Atomic Orbital
(NAO) corresponding to our code can be found in the development version of
PySCF and loaded from Python shell with:

import pyscf.nao

Most of the functionalities of the code have been re-implemented in Python,
except for heavy calculations (mainly the product basis generation and the com-
putation of the exchange-correlation kernel). The heavy computations are done
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in a Fortran library libnao which is interfaced with Python by means of the
standard Python module ctypes [76]. The Fortran library libnao is part of
the PySCF package. The flexibility of Python in the data managing made pos-
sible to interface the iterative TDDFT not only with SIESTA [1, 2], but also
with other software packages such as GPAW [77] and PySCF [6]. Several other
software packages such as OpenMX [78] or Fireball [79] can also be interfaced
with PySCF-NAO with some more programming effort. Examples of Python
scripts to run PySCF-NAO are available in the appendix C. The Python code
is almost as fast as the Fortran code because of the use of the NumPy [80] and
SciPy [66, 81, 82] libraries. In fact for large system such as silver cluster of
1415 atoms, the PySCF-NAO code is even faster than MBPT-LCAO because of
improved GMRES solvers available in the SciPy library.

To demonstrate the capability of the code, we calculated the optical polariz-
ability of a series of silver clusters containing 55 up to 1415 atoms. The iterative
procedure is done for a set of 100 frequencies between 1.0 and 6.0 eV, with the
imaginary part equal to 0.15 eV. The interacting polarizabilities are collected in
panel (a) of Figure 2.3.4. Inspecting the polarizabilities, we see a pronounced
low-frequency plasmonic peak. The resonance frequency of this peak is slowly
changing with the cluster size, giving rise to a well-known 1/D scaling of the plas-
monic frequency ωsp with the cluster diameter D. In panel (b) of Figure 2.3.4 we
show the runtime needed to compute the polarizability together with the number
of applications of the response function The actual runtime scaling is closer to
T ∼ N2 for the cluster sizes we consider. Furthermore, if we compare the num-
ber of iteration per frequency of Figure 2.3.4 to the one of the Fortran code (see
Figure 2.3.1), we observe that the Python GMRES routine (from SciPy [66]) con-
verges three times faster than the Fortran GMRES, for large systems (Ag923).
This improvement makes PySCF-NAO even more efficient than MBPT-LCAO
for large systems.

43



CHAPTER 2. THEORY

1 2 3 4 5 6

ω (eV)

=P
x
x

(a
rb

.
un

it
) a) Ag55

Ag147

Ag309

Ag561

Ag923

Ag1415

102 103

Number of atoms

103

104

105

T
ot

al
ti

m
e

(h
)

b)

12

14

16

18

20

It
er

at
io

ns
p

er
fr

eq
.

Figure 2.3.4: Polarizabilities, runtime and number of iterations for a series of icosahedral silver
clusters. Panel (a) shows the interacting polarizability. In panel (b) the total runtime of the Python
script spent to compute the dynamical polarizability show on panel (a) is represented on the left
y -axis as function of the number of atom in logarithmic scale. The number of applications of the
non-interacting response function (per frequency) is shown on the right y -axis with red dots.
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Chapter 3

Atomistic Near-Field
Nanoplasmonics: Reaching
Atomic-Scale Resolution in
Nanooptics

Electromagnetic field in nanoantennas is one of the leitmotifs that drives the
development of plasmonics. The near-fields in these plasmonic nanoantennas
are commonly addressed theoretically within classical frameworks that neglect
atomic-scale features. This approach is often appropriate since the irregular-
ities produced at the atomic scale are typically hidden in the far-field optical
spectroscopy. However, a variety of physical and chemical processes rely on the
fine distribution of the local fields at the ultraconfined scale. Using the efficient
TDDFT program presented in section 2.3, we studied the optical response and
the induced electric field at the vicinity of sodium clusters and dimers under the
perturbation of an external electric field [83].

3.1 Motivation
Metallic nanoparticles are key in the development of nanooptics. The ability
of the conduction electrons to collectively oscillate produces surface charge den-
sity oscillations in nanoparticles, so-called surface plasmons, that couple very
efficiently to light, producing subwavelength localization and large enhancement
of the optical fields induced at the nanoparticles [9–11]. Nanooptics with lo-
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calized surface plasmons has thus boosted a variety of technological applica-
tions in which the intense electromagnetic fields can assist in enhancing the sig-
nal from vibrational spectroscopies [12, 13], improving the performance of solar
cells [14, 15], optimizing the active control of nanodevices [16, 17], or implement-
ing non-invasive thermotherapies in medicine [18], among others. In a majority
of these applications, the optical response that determines the properties of plas-
monic surface modes can be estimated in sufficient detail with classical electro-
dynamics, by solving Maxwell’s equations for a particular material, shape, and
environment. In this way, for instance, plasmonic modes of spherical nanoparti-
cles [48, 49], nanoshells [84], nanorings [85], nanorods [86–89], nanostars [90, 91],
dimers [11, 92, 93], or particle oligomers [94, 95] have been routinely estimated
during the last years. The mode volumes typically reached in these structures
are in the range of some tens of nanometers, and the actual degree of their field
confinement is determined by the morphology of the nanostructure (curvature,
thickness, interaction between different particles,...) [96–99]. The effective squeez-
ing of electromagnetic energy into these nanometric dimensions has triggered out
referring to plasmonic nanostructures as optical nanoantennas [100, 101].

As nanotechnology reaches a control of nanoarchitectures at scales of the order
of the nanometer and even subnanometer [102, 103], nanooptics is called to face
new regimes of interaction, where the atomic scale needs to be considered to
correctly determine the optical response of the nanosystem. Optical processes at
the atomic scale can be critical in many branches of nanoscience such as in field-
enhanced photochemistry [104–107], in single molecule spectroscopy [13, 108], or
in electronics at optical frequencies [109, 110].

Most of these situations require a complete theoretical framework that ac-
counts for the quantum nature of the electrons in their interaction with light.
Time-dependent Density Functional Theory (TDDFT) [38, 111] provides the ad-
equate framework to tackle the optical response of plasmonic nanoantennas where
the complex nonlocal screening [112, 113], the smooth electronic density profile
at the metal interface [114], quantum size effects [115–117], and electron tun-
neling across metallic nanogaps [118, 119] can be properly taken into account.
Furthermore, an atomistic description of the nanostructures [120] can address the
effect in the optical response of atomic-scale features at the surfaces such as the
presence of protruding atoms, steps, vertices, or edges at the contact of crystallo-
graphic planes. Although these atomic-scale effects might be sometimes masked
in experimental far-field techniques, they are very relevant in spectroscopy tech-
niques that directly rely on the ultrafine details of the near-field intensity and
distribution.
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3.2 Description of the System: the Na380 Cluster
and Cluster Dimers

The cluster that we used for this study is a sodium cluster with an icosahedral like
shape showing tips, facets and edges. The geometry is presented in Figure 3.2.1
for three orientations. A tip and a facet are highlighted in panels (b) and (c). The
cluster is composed of 380 atoms; was initially determined using semi-empirical
force fields [121]. We further relaxed the initial semi-empirical geometry using
ab-initio DFT with LDA density functional as implemented in SIESTA code (see
appendix A for further details). The geometry relaxation was done towards an
energy minimum until the residual forces were smaller than 0.02 eV/Å. The ab
initio relaxation confirms that the structure is stable, at least corresponding to
a local minimum of the DFT energy landscape of Na380 .

Figure 3.2.1: Atomistic structure of the Na380 cluster. The facet and tip atoms used to define the
plasmonic gaps of different structures in our calculations are highlighted in red on panels (b) and
(c) for two orientations.

To model a plamonic cavity, we brought two Na380 clusters in a close prox-
imity. As shown in Figure 3.2.2, we examined three mutual orientations of the
clusters forming the nanogaps. One of the nanogaps is formed by two parallel
planar facets in a facet-to-facet configuration [Figure 3.2.2 panel (a)]. Another
configuration, the tip-to-facet, is formed by a planar facet and a tip [Figure 3.2.2
panel (b)]. The last configuration is constituted of two tips facing each other in
a tip-to-tip configuration [Figure 3.2.2 panel (c)]. In the following, we will study
the response of these systems as function of the distance dsep between the two
clusters. The distance dsep is defined as the minimal distance between atoms
located in different clusters.

The ground-state calculations for the Na380 cluster and dimers were preformed
using DFT as implemented in the SIESTA code (see app. A for methodological
details). The resulting Kohn-Sham orbitals and energies were used as an input
for the TDDFT calculations of the optical response using the iterative scheme
described in section 2.3.
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Figure 3.2.2: Structures of the three plasmonic gaps studied for a distance between the clusters
of 10 Å. Panel (a) shows the facet-to-facet geometry, panel (b) the tip-to-facet and panel (c) the
tip-to-tip.

We used the local density approximation [33, 34] (LDA), norm-conserving
pseudo-potentials [122] to effectively describe core electrons, and a double-ζ po-
larized basis set of numerical atomic orbitals generated using an energy shift of
10 meV [52]. The fineness of the real-space grid used to compute the Hartree and
exchange-correlation contributions to the energy and Hamiltonian corresponds
to a plane-wave cutoff of 130 Ry [2].

3.3 Atomic-Scale Lightning Rod Effect

3.3.1 Induced Field Localization of a Single Cluster
Using the cluster geometry described in Figure 3.2.1, we calculated the response
of the Na380 perturbed by an homogeneous (in space and time) external elec-
tric field. As explained in the chapter 2, the homogeneous external field ap-
proximates the optical perturbation and gives rise to the notion of the optical
polarizability (eqn. 2.91). We computed the dipole polarizability of the single
Na380 cluster in a range of frequencies from 0 to 8 eV to capture the LSP re-
sponse of the cluster. In Figure 3.3.1 we present the diagonal components of
polarizability tensor (eqn. 2.91) and the orientationally averaged polarizability
< P >= (Pxx + Pyy + Pzz) /3. The symmetry of the cluster is not perfect,
therefore, the polarizability is slightly different along the Cartesian axes, but
the differences are barely discernible on the plots. The symmetry of the dipole
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polarizability will be used in chapter 5 to reduce the computational load of the
iterative procedure.
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Figure 3.3.1: Polarizability of the Na380 cluster. Panel (a) shows the average polarizability < P >=
1
3
(Pxx + Pyy + Pzz ). Panels (b), (c) and (d) show the polarizability along the respective direction

xx , yy and zz. Since the symmetry of the cluster is not perfect the polarizability is slightly different
along the axes.

In this chapter, we theoretically show how the atomic features at the surface
of plasmonic nanoparticles do localize the electromagnetic fields down to atomic-
scale dimensions, showing resonant (plasmonic) and non-resonant (lightning-rod
effect) field enhancement (eqn. 2.97). With the help of our TDDFT calculations,
we show near-fields maps of plasmonic nanoparticles which produces atomic hot
spots superimposed to the plasmonic resonance. This is the atomic-scale analogue
of the lightning-rod effect [123–125], which can be understood as the atomistic
limit of the classical field divergence at an infinitely sharp metallic tip. Indeed,
the sharpest possible structure is given by a tip ending with a single atom. In
such small scale, the quantum mechanics determines a limit for the attainable
field enhancement. When the atomic-scale enhancement is combined with the
overall field enhancement given by the plasmon resonance, the very intense and
localized atomic-scale hot spots is obtained. The presence of such hot spots has
been proposed and even exploited experimentally in subnanometer-resolved sur-
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face enhanced optical spectroscopies [126–130]. An accurate description of the
physical properties of atomic-scale local near-fields has been elusive to date due
to the limitations of classical and quantum description that even if capable of
correctly reporting the main trends of the response, are typically based on strong
approximations either on the electromagnetic boundary conditions or the atomic
structure of surfaces. Our calculations provide a faithful description of the actual
near-field induced in metallic interfaces considering realistic atomic structures,
unambiguously resolving the near-field features at the hot spots with unprece-
dented resolution and detail. We can thus quantify the level of confinement of
the near-fields relevant in complex photochemical processes and near-field spec-
troscopies. Our results indicate that, at the vertices and edges formed at the
contact of different facets, it is possible to localize plasmons with subnanometric
resolution. Figure 3.3.2 shows the confinement of the field at the vertices of the
cluster very clearly, and depending the orientation of the external field, different
tips localize the field. The extreme plasmon localization reported here already
allowed the exploitation of novel probes, capable to provide ultraresolution and
reach access to information on single molecules [131].

Figure 3.3.2 shows the local near-field distribution around the Na380 cluster
for different polarizations of the incident field of amplitude E0, both at the dipo-
lar plasmonic resonance energy [panels (a-c)] and out of resonance [panels (d-f)].
We show the data in the (y, z) plane passing through the center of the cluster
for two different incident linear polarizations [along y axis in panel (a) and along
z axis in panel (b)]. As observed in the plots, when the atomistic structure is
accounted for, the near-fields dramatically depend on the cluster orientation with
respect to the polarization direction. Even if the general dipolar pattern of the
induced fields is preserved, the underlying icosahedral geometry of the atomic
arrangement can be clearly recognized. Most importantly, we can undoubtedly
identify sub-nanometric ‘hot-spots’ characterized by strongly localized fields at
the metal-vacuum interface. The enhancement at these ‘hot-spots’ is not dra-
matically larger than that of the overall background of the plasmon-enhanced
near-fields, but it carries a very distinctive localization with it. The ‘hot-spots’
of the Na380 cluster in panels (a) and (b) are related to the atomic-scale vertices
and edges of the icosahedron cluster structure. Obviously, a quantum (or clas-
sical) calculation that considers smooth surfaces and thus ignores the atomistic
nature of the clusters cannot address these subnanometric features in the near-
fields, and misses the description of atomic-scale field localization (we will see
in section 3.4, how classical methods can reproduce the ‘hot-spots’ of atomistic
structures). This is illustrated in panel (c) where the results based on the jellium
model (JM) for the perfectly spherical cluster are shown for comparison. In this
case, the induced fields are independent of the cluster orientation with respect
to the incident field, and feature the typical smooth dipolar pattern of the plas-
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Figure 3.3.2: Induced-field enhancement, |Eind|/E0 with E0 the amplitude of the incident field, in the
proximity of a Na380 cluster and a jellium sphere (rs = 2.12 Å) of radius R = 15.57 Å. The induced
field is represented in the (y , z) plane, that passes through the center of the cluster/sphere. Top
panels show the results at the dipolar plasmonic excitation (at 3.35 and 3.16 eV, for the atomistic
and jellium models, respectively), (a) for a polarization of the external field along the y -axis, (b)
along the z-axis, and (c) along the y -axis (although the response is isotropic in the jellium case).
Panels (d-f) show the same information as (a-c) for an energy of the exciting field out of resonance
(2 eV).

mon induced along the polarization direction (y-axis chosen here). While outside
the cluster the TDDFT-JM description is very similar to the classical Mie [132]
results for a metal sphere described with a Drude dielectric function, quantum
effects are apparent inside the cluster where the screening of fields is accompanied
by Friedel-like oscillations [133].

Remarkably, in the atomistic results we observe an atomic-scale lightning rod
effect [123] that can be related to the macroscopic lightning rod effect [124, 134]
resulting from the classical field divergence at infinitely sharp tips. The atomistic
structure of the material naturally sets a quantum constraint to the notion of “in-
finitely sharp” since, obviously, an effective curvature radius cannot be smaller
than that given by the electron density profile of the single atom. The local
dipoles responsible for the subnanometric field confinement are formed by the
collective response of the protruding groups of atoms screened by the rest of the
cluster. Therefore, at resonance excitation conditions, the near-field structure of
the cluster, as obtained from our atomistic calculations, can be understood as
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a combination of two effects: (i) The overall plasmonic near-field enhancement
at the dipolar mode, and (ii) the atomic scale lightning rod effect which arises
because of the presence of vertices and edges between the atomic planes form-
ing the cluster surface, allowing to further focus the energy into an extremely
small area. We can thus establish an analogy with the macroscopic self-similar
plasmonic nanoantennas, where larger antennas produce further enhancement on
the smallest ones, like in a plasmonic lens [135–137]. Here, the sub-nanometer
hot spots induced around atomically sharp features are fed in a cascade fashion
by the plasmonic field of the larger and smoother nanometric plasmonic system
(hosting particle or dimer).

The lightning rod effect is also present in the off-resonant response of the
metal cluster. We illustrate this in Figure 3.3.2 (d-f) where we plot the near-field
distribution around the Na380 cluster, obtained for incident plane wave irradi-
ation off-resonance with the plasmonic dipolar mode. Except for this change
of wavelength, we used the same conditions regarding polarization, geometry,
and atomistic or jellium modeling of the cluster, as in panels (a-c). In the off-
resonance situation, the atomic-scale hot-spots are still present for the Na380
cluster for both polarizations, providing a substantial local enhancement that
extends a few Ångstroms from the cluster surface. In this case, the lightning rod
effect is isolated from the plasmonic effect, even though overall, in the absence
of the resonant dipolar plasmon mode, the induced near-fields are several times
weaker, which also holds at the hot-spots.

3.3.2 Electric Field Enhancement of Sodium Dimers
In the following, we emphasize the importance of atomic-scale features in a canon-
ical structure in plasmonics—the metallic nanogap. By placing two metallic
nanoparticles together, we can create a plasmonic nanogap where the coupling
of plasmonic modes generates new hybridized solutions that are red shifted with
respect to the original resonances of the individual particles [11, 138]. In Fig-
ure 3.3.3 we analyze the importance of the atomistic details of the nanogap by
selecting results obtained for three main configurations that present different ter-
minations of the interfaces at the gap: (i) facet-to-facet, (ii) tip-to-facet, and (iii)
tip-to-tip. For completeness, we also consider the case of a dimer formed by two
jellium spheres, thus forming a nanogap bound by smooth surfaces. The spectral
behavior of the nanogap resonances as a function of the interparticle separation
distance, dsep, is displayed in Figure 3.3.3 (a-d), where we plot the absorption
cross-section, σabs, for each case: (a) facet-to-facet, (b) tip-to-facet, (c) tip-to-tip,
and (d) jellium. The polarization of the incident field is set along the dimer axis.

The corresponding atomistic structure of the different nanogap models are
represented on Figure 3.3.3 (e-g), along with the distribution of the induced near-
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Figure 3.3.3: Panels (a-d) show the spectral evolution of the absorption cross-section of the plas-
monic dimers depicted in (e-g), and a dimer of jellium spheres (h), for a polarization of the in-
cident field along the dimer axis as a function of separation distance between the particles, dsep.
The hybridized bonding dipolar plasmon (BDP), the charge-transfer plasmon (CTP) mode and the
quadrupolar (QP) are identified on the spectra. Separation distances lower than 1 Å, and negative
distances represent overlapping clusters and have been modeled in (a-c) by modified geometries in
which atomic layers of one of the clusters are subsequently removed (region A, one layer removed;
region B, 2 layers; region C, 3 layers). Panels (e-h) show the distribution of the local induced-field
produced in a longitudinal cross section (x = 0 plane) of the dimer for an energy in resonance with
the BDP and for a separation distance of 10 Å: (e) the gap is formed by a facet-to-facet junction,
(f) facet-to-tip, and (g) tip-to-tip configurations. In (h) the same situation for a dimer described
by the jellium model is displayed.

field for an interparticle distance of 10 Å, evaluated at the resonance frequency
for each type of gap. In the case of the atomistic calculations, the separation
distance, dsep, is measured between the closest atoms across the gap. Separation
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distances smaller than 1 Å, as well as negative distances (corresponding to the
case of overlapping clusters [11]), were modeled using modified structures in which
atomic layers are successively removed from one of the clusters. For a consistent
comparison, in the jellium case we also consider the separation distance as defined
from the hypothetical surface atomic layers rather than from the jellium edges
present in JM.

In Figures 3.3.3 (a-d) we recognize clearly the evolution of the hybridized
Bonding Dimer Plasmon (BDP) for each gap configuration: the BDP red shifts as
the separation distance between the nanoparticles decreases [11, 92, 93]. Consis-
tent with previous descriptions, this trend holds down to separations of the order
of a few Ångstroms. When the particles are even closer together, the system en-
ters a new regime due to the emergence of the tunneling current across the gap at
optical frequencies [118, 119, 139]. In the quantum tunneling regime, the BDP is
progressively screened, and it disappears from the spectrum [118, 119, 139]. For
increasing current across the gap, charge-transfer plasmons (CTPs) emerge [140].
The CTP corresponds to the polarization of the entire dimer with interparticle
charge transfer. Despite the common general trends for the three atomistic calcu-
lations, remarkable differences arise with regard to the exact separation distance
where the quantum effects occur. For the same separation distance dsep, in the
facet-to-facet configuration the tunneling current density is larger because of the
larger contact area. Thus the BDP disappears and the CTP emerges at the
largest separation distances, (6 Å and 4 Å respectively). In the configurations
characterized by the presence of a tip, the tunneling current is confined mainly
to the area around the tip, thus the overall tunneling current is smaller. As a
consequence, smaller separation distances, dsep, are required for the quenching
of the BDP and appearance of the CTPs in such cases, as clearly observed in
Figures 3.3.3 (b) and (c).

We now explore the influence of the different atomistic configurations of the
plasmonic gap on the near-field distribution at the resonance position. In Fig-
ures 3.3.3 (e-h) the induced near-fields are shown in the (y, z) plane of the dimer
passing through the centers of the nanoparticles for the facet-to-facet (e), tip-to-
facet (f), tip-to-tip (g), and jellium spherical (h) configurations. The width of
the gap is set in all the cases to dsep = 10 Å, with incident light in resonance
with the hybridized BDP corresponding to the position marked with a green dot
on the spectra to the left. The Coulomb coupling between induced charges of
opposite signs across the gap leads to a strong localization and enhancement of
the near-fields in the gap. This effect is widely exploited in surface-enhanced
spectroscopies and microscopies. Overall, the nanometric near-field distributions
obtained in the full atomistic calculations at the BDP frequency show similar
gross features to those in the JM calculations. However, the exact atomistic
structure of the junction determines the details of the near-field distribution,
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and in particular the appearance of the extremely localized hot spots. As ob-
served in Figure 3.3.3 (e), the gap characterized by a facet-to-facet configuration
features a well-defined and rather homogeneous field enhancement that extends
over the entire gap, as expected from a scaled parallel plate capacitor. The lat-
eral localization of the hot-spot between the particles is thus determined by the
corresponding nanometric facet size. Albeit much less intense, atomic-scale hot
spots can be also identified at the edges and vertices of the different facets of
the cluster surfaces, both near and opposite to the plasmonic gap. These are
due to the atomic-scale lightning rod effect, similar to that found in Figure 3.3.2
for the single particle. Compared to the JM with a perfectly spherical geometry,
atomic-scale features between the cluster facets increase the Landau damping of
the BDP and thus broaden the plasmon resonance peaks.

A remarkable situation is achieved when exploiting the atomic-scale light-
ning rod effect in the tip-to-facet or in the tip-to-tip configurations in the gap
[Figure 3.3.3 (f) and (g)]. In such situations, the tip-induced enhancement is su-
perimposed on the already intense background field of the plasmonic resonance,
producing a further increase of the value of the enhancement, and more impor-
tantly, an extreme localization of this local near-field down to an extension of a
few Ångstroms. This extreme confinement of the fields is missed in the JM model
that assumes a smooth density profile, as shown in Figure 3.3.3 (h). By means
of our realistic atomistic calculations, we have thus shown that atomic-scale hot
spots are possible, and they may be relevant to allow super-resolution in a variety
of experimental near-field techniques [126, 128, 141].

To analyze the field enhancement induced at each of the plasmonic nanogaps
quantitatively, we show in Figure 3.3.4 the maximum induced near-field enhance-
ment at resonance in the middle of the gap, |Emax

ind |/E0 [panel (a)], and the ef-
fective localization area of the near-field, A [panel (b)], as a function of the gap
separation dsep. A is defined according to the following expression:

A = 1
h

ˆ
V

|Eind(x, y, z)|2

|Emax
ind |2

dV , (3.1)

where |Eind(x, y, z)| is the modulus of the induced field in a thin slab of volume
V and thickness h=0.63 Å in the z direction, with z = 0 at the center of the gap.
|Emax

ind | is the maximum value of the field in the integration volume. Therefore,
A provides a measure of the effective area in which the induced field is localized
within the middle of the gap.

We have chosen to plot and analyze the field distributions at those resonance
energies that produce the largest maximum of the induced near-field at each
configuration. Thus, for the tip-to-facet and tip-to-tip gaps we follow the BDP-
QP mode around 3 eV, whereas for the facet-to-facet configuration data, for dsep≤
5 Å we follow the CTPmode appearing at lower energies. The local near-fields are
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obtained for the same configurations and light incidence as in Figure 3.3.3. The
maximum enhancement is found in all the cases for dsep ≈ 7 Å [see Figure 3.3.4
(a)].
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Figure 3.3.4: (a) TDDFT calculations of the maximum enhancement of the local induced-field
|Emax

ind |/E0 at the center of a gap between two particles showing different atomistic configurations,
as a function of the separation between the particles forming the gap, dsep. The separation is defined
as the distance between the most protruding atoms in both clusters. The green line stands for the
facet-to-facet configuration in the gap, the blue line stands for the tip-to-facet configuration and
the red line stands for the tip-to-tip configuration. (b) Effective localization area A of the local field
in the midplane of the gap as defined in the text [eqn. (3.1)] for each of the three configurations.
As a reference, the localization of the BDP for a pair of spherical particles given by a classical
calculation is displayed as a dashed line. The plotted data correspond to the resonance energies
that produce the largest maximum of the induced near-field for each configuration and distance. For
the facet-to-facet case this corresponds to the CTP mode for dsep< 5 Å. For the the tip-to-facet
and tip-to-tip gaps we follow the BDP and QP modes around 3 eV. The different dependence of A
on dsep for the BDP and QP modes is clearly visible in the singular behavior of the A data around
4 Å for the tip-to-facet case, which is almost undetectable in the more gradual BDP-QP transition
of the tip-to-tip gap.

The electron tunneling neutralizes the plasmon-induced charges at the metal
surfaces across the gap, and quenches the induced fields [118, 119] when the gap
size is reduced below dsep ≈ 7 Å. For larger separations, the coupling between the
plasmons of the individual particles becomes smaller thus the field enhancement

56



3.3 Atomic-Scale Lightning Rod Effect

progressively decreases, and the differences due to the atomic-scale features are
also attenuated. When atomic-scale tip(s) is (are) present in the junction, the
maximum near-field enhancement is about 1.5 times larger than that of the facet-
to-facet configuration [red and blue lines vs. green line in Figure 3.3.4 (a)],
emphasizing the importance of the fine details of the gap.

Together with the absolute value of the field enhancement, the confinement
is an aspect of particular interest in nanophotonics. In Figure 3.3.4 (b), we plot
the effective localization area, A, of the BDP for each atomistic configuration.
The results are plotted in Figure 3.3.4 (b) as a function of separation distance,
for the same excitation wavelengths used in Figure 3.3.4 (a). As expected, the
three different atomistic configurations show maximum localization of the BDP
mode at separations of about 7 Ångstroms, corresponding to the separation of
maximal enhancement described above. For smaller separation distances, when
the tunneling current is established, the field is expelled out from the gap and thus
becomes less localized [126]. The tip-to-tip morphology, for which the lightning
rod effect is more pronounced, provides the strongest localization among all. The
minimum A in this case is 0.4 nm2, clearly indicating that the plasmonic fields
can be localized down to lateral dimensions of a few thousandths of the incident
wavelength with the help of an atomic feature. This value of A is up to 4 times
smaller than that for the facet-to-facet configuration, for the same dsep = 7 Å.

For reference purposes, we also plot in Figure 3.3.4 (b), as a black dashed
line, the localization corresponding to a classical calculation of the BDP in a gap
formed by spherical particles of the same size, and characterized by a Drude-like
response that corresponds to the same electronic density as in the atomistic cal-
culations. As observed in the figure, the localization in this case tends linearly
to zero for small dsep. This unphysical result is due to the lack of dynamical
screening and tunneling in the classical description. It is interesting to note that
all the systems show a linear dependence of the localization with separation dis-
tance, as the gap is opening. This is a reminiscence of the two effects involved:
the overall plasmonic effect, plus the atomistic effect. The classical estimation in
spherical particles indeed establishes a reference for the behavior of the localiza-
tion at the different atomistic gaps, but when an atomic-scale tip is present in
the gap, the linear dependency is pushed below this classical result (larger slope
of red and blue lines). However, for the case of a facet-to-facet gap, the linear
dependency shows a smaller slope, setting values of the localization area that
exceed those of the classical confinement. In this case the minimal localization
area of the field is approximately given by the surface of the facet, as one would
expect for a flat capacitor. Therefore, our classical result for the induced-field
localization establishes a good benchmark to distinguish between subplasmonic
and plasmonic localization, depending on whether the linear tendencies show a
more or less pronounced change, respectively, compared to the classical reference
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of spherical particles.
As a further remark, it should be noted that the presence of subnanometric

hot spots would only weakly affect the effective localization area A, as defined by
eqn. (3.1), in large plasmonic systems because the integral will be dominated by
the overall plasmonic field structure in the gap. This is actually one of the reasons
why plasmonic enhancement is a robust and reliable tool in many standard field-
enhanced spectroscopies. Nonetheless, such local behavior at the atomic scale can
be important to determine the precise properties of the near-field at particular
positions, probed, for example, by molecular targets [127, 130] or by electron
emission [142], which are extremely sensitive to these spatial inhomogeneities
independently of how large the plasmonic background is.
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Figure 3.3.5: Local induced-field enhancement in a transversal cross section that contains the axis
of a Na metallic dimer for the case of a facet-to-facet configuration at the gap (left column), tip-
to-facet configuration (middle column) and tip-to-tip configuration (right column). From top to
bottom, three cases of decreasing separation distance are shown for each case: dsep = 20 Å (top
row, a-c), dsep = 6 Å (middle row, d-f) and dsep = 1 Å (bottom row, g-i). The field is always plotted
at the frequency of the most intense resonance in the absorption cross-section of the dimer. This
corresponds to the BDP mode in most cases, except for the facet-to-facet and tip-to-face cases at
the closest separation, that corresponds to the CTP mode [panels (g) and (h)].

The evolution of the near-fields response with the gap size dsep is further illus-
trated in Figure 3.3.5 and Figure 3.3.6. In Figure 3.3.5 we plot the distribution of
induced near-fields in the (y, z) plane containing the centers of the nanoparticles.
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The results are shown for the facet-to-facet (left column), tip-to-facet (middle
column), and tip-to-tip (right column) configurations of the nanogap. Three
separations, dsep = 20 Å (top row), dsep = 6 Å (middle row), and dsep = 1 Å
(bottom row), are chosen here to represent respectively weak interaction, strong
interaction and strong tunneling regimes. For the largest separation, dsep = 20 Å,
the coupling between nanoparticles is weak, therefore the near-fields around each
nanoparticle of the dimer resemble those of the individual particles, as presented
in Figure 3.3.2. Nevertheless, stronger fields at the facing surfaces across the gap
can be clearly observed, indicating the onset of the hybridization of the BDP.

Atomic-scale hot-spots are visible all over the nanoparticle surface, partic-
ularly in regions associated with atomic edges at the contact of the crystalline
facets. These hot-spots are apparent for the flat-facet gap (top row, left), but are
even more pronounced in the presence of a tip-like geometry pointing towards
the junction, and aligned with the polarization direction (middle and right). As
the particles get closer, dsep =6 Å (middle row), the field enhancement at the gap
becomes very intense (notice the absolute value of the corresponding scales). For
the facet-to-facet situation (middle row, left column) the enhancement is nearly
homogeneous inside the gap as a consequence of the flat-surface capacitor geom-
etry. In contrast, when a tip-like configuration is present in the gap, it leads to a
particularly strong field enhancement and to clear subnanometer localization at
the center of the gap, consistent with the results of Figure 3.3.4. For very small
separation distances (bottom row), the electronic densities of the two particles
strongly overlap, essentially producing a nanometric neck of continuous electron
density. Therefore, the region of enhanced field is expelled to the edges of the
junction [139, 140]. This is accompanied with an overall weakening of the fields
in the junction region, which eventually become comparable in intensity to the
hot spots at other locations of the dimer surfaces.

The evolution of the field confinement in the gap as a function of separa-
tion distance, dsep and the corresponding change of the localization area A is
illustrated in Figure 3.3.6, where the field enhancement is shown in the (x, y)
mid-plane between the two particles for each configuration (facet-to-facet on the
left column, tip-to-facet on the middle column, and tip-to-tip on the right col-
umn). When the particles are far away from each other (dsep = 20 Å), a relatively
broad spatial profile of the plasmonic near-field is obtained (top row). This pro-
file is mainly determined by low-order multipoles at each nanoparticle so that
the features due to the specific atomistic structures of the nanoparticle surfaces
are weak. For smaller separation, dsep = 10 Å, the profile of the near-fields
reflects the atomistic structure of the nanoparticle surfaces across the gap, show-
ing a triangular shape for the facet-to-facet configuration, a round spot for the
tip-to-tip configuration, and a round spot on top of a triangular background for
the tip-to-facet configuration. As expected from the results in Figure 3.3.4, the
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Figure 3.3.6: Local induced-field enhancement at resonance in the midplane of the gap between
two Na380 clusters for our three configurations, facet-to-facet gap (left column), tip-to-facet (middle
column) and tip-to-tip (right column). From top to bottom each case shows a decreasing separation
distance for each configuration, from dsep =20 Å (largely separated particles, on the top row) to
dsep =1 Å (interpenetrating situation on the bottom row). The influence of the atomic scale features
at the nanogaps is directly noticeable.
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tip-to-tip configuration corresponds to the strongest field confinement with the
smallest spot size reduced to atomic dimensions, below 1 nm2 for dsep ≈ 6 Å.
For the parallel capacitor facet-to-facet configuration, the spot profile and size
change only slightly when dsep is reduced from 10 Å to 6 Å, and the tip-to-facet
configuration features the intermediate situation (see also Figure 3.3.5). We thus
show here that the widely accepted picture of the overall reduction of the lo-
calization area A for smaller dsep, as obtained from previous studies for smooth
particles [118, 139, 143], has to be taken with caution, as it can be altered by the
atomistic structure of the gap. For separation distances dsep below 6 Å (lower
rows), the tunneling current expels the fields from the middle of the gap. This
effect is particularly strong for the CTP mode in the facet-to-facet configuration.
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0

1

2

3

σ̃
(ω

)

×10−2

Figure 3.3.7: Amplitude of the electron current (in atomic units and normalized by the external
field) flowing between the two Na380 clusters as a function of the interparticle distance dsep for the
three plasmonic gaps considered here. The continuous lines represent the data computed at the
frequencies of the most intense resonances of the absorption cross-section show in Figure 3.3.3.
At sufficiently large distances this corresponds to the BDP mode for three configurations. For the
facet-to-facet case at dsep < 5 Å we plot the current associated to the CTP mode; while for the
tip-to-facet and tip-to-tip gaps we follow the QP mode around 3 eV at small values of dsep. In the
tip-to-facet case we also show for comparison (green dot) the current calculated for ω ∼ 1.9 eV at
dsep = 1 Å, i.e., at the onset of the CTP mode for this configuration. The insets of each panel show
an estimation of the conductivity, σ̃, as a function of separation distance for each configuration
considered. This conductivity is obtained as a ratio between the effective current density, and the
local field at the gap.

The link between the appearance of the CTP mode (and the quenching of
the BDP mode) and the increase of the electron current flowing through the gap
can be clearly established with help of Figure 3.3.7. In this figure we present the
amplitude of the electron current divided by the external field as a function of
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the interparticle separation dsep. The currents are computed at the frequencies of
the most intense resonances of the absorption cross-section (see Figure 3.3.3) for
each distance. At sufficiently large distances this frequency always corresponds to
the BDP mode for the three configurations. However, for dsep < 5 Å we plot the
current associated to the CTP mode for the facet-to-facet case, while for the tip-
to-facet and tip-to-tip gaps we follow the QP mode around 3 eV for those small
values of dsep. The currents are calculated, using the induced electron density at
a given frequency, as the charge crossing a surface bisecting the gap by unit of
time. As expected, in all cases the current grows steeply as dsep is reduced. The
strongest currents are obtained at the frequencies and distances where the well-
defined CTP mode appears (left panel for the facet-to-facet configuration, and
filled circle in the middle panel for the tip-to-facet configuration). For example,
at small separation distance dsep the current is approximately four times larger
for the CTP mode in the facet-to-facet case than that computed for the QP
mode in the tip-to-facet geometry. In the tip-to-facet case, we also show (filled
circle) for comparison the current computed at ω ∼ 1.9 eV and dsep = 1Å, i.e.,
at the onset of the CTP mode. It is a ∼ 50% larger than the current for the QP
mode at the same distance. This clearly indicates that, for the same geometry
and gap separation, the current is considerably larger in the CTP mode than
in the QP mode. It is also interesting to note that the current computed at the
onset of the CTP mode for the tip-to-facet configuration is almost identical to the
current computed at the onset of the CTP mode mode for the facet-to-facet case
(although dsep is in the range 4-5 Å in the latter case and 1 Å in the former).
This is to be expected, since the establishment of the CTP mode depends on
the possibility of charge to be transferred through the gap. Another interesting
conclusion from our analysis is that an atomic contact formed by a single Na
atom (like in our “tip configurations”) is insufficient to sustain the current flow
necessary for the appearance of a fully developed CTP mode, consistent with the
results of Figure 3.3.3.

Finally, we also show in the insets of Figure 3.3.7 an estimation of the con-
ductivity, σ̃, as a function of separation distance dsep for each configuration con-
sidered. The conductivity σ̃ is obtained as a ratio between the effective current
density, and the local field at the gap. The effective current density is obtained by
dividing the current intensity I(ω) by the minimum localization area A, defined
in eqn. (3.1), while the local field is estimated as a product of the external field
and the maximal local field enhancement. The minimal localization areas A and
the maximal local field enhancements E/E0 are shown in Figure 3.3.4, on panels
(a) and (b), correspondingly. The currents and conductivities estimated in this
way for the facet-to-facet configuration (inset of the left panel in Figure 3.3.7)
are consistent with those recently reported between two large jellium spheres
representing Na clusters [144].
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3.4 Comparison with Classical Methods
As we have been describing in the previous section, atomistic ab initio methods
can provide a very accurate response of a system under an external perturbation,
specifically, the polarizability and the induced field enhancement distribution.
However, because of their high computational cost, these methods are limited by
the size of the systems they can be applied for (typically a few hundreds atoms).
Light scattering of nanoparticles of arbitrary shape and size is usually well ad-
dressed within a classical electrodynamics framework, by solving Maxwell’s equa-
tions for specific compositions, morphologies and environments [48, 140]. When
the size or the separation distance between plasmonic nanoparticles becomes
of the order of a few nanometers or even smaller, the quantum nature of the
electrons emerges due, among others, to the particle-size effect in the electron
confinement [115, 145], the inhomogeneous dynamical screening of the electrons
response, the electron spill-out at the metal interfaces, the presence of atomistic
inhomogneities, or even the activation of quantum tunneling across subnanome-
ter interparticle gaps. All of these effects are initially not included in typical
local classical electro-dynamical descriptions of the optical response, and differ-
ent levels of approximation have been adopted to address their influence in the
response in extended classical models [139]. Nevertheless, only an atomistic ab
initio method is suitable to properly address the quantum physics that arises
for small particle sizes that we study here. Furthermore, thanks to progress we
did during this thesis, we are able to perform calculations for very large par-
ticles (containing a few thousands of atoms) using ab initio atomistic method
(see chapter 5). In this section, we compare our ab initio calculations for the
Na380 cluster and cluster dimers presented previously with classical calculations
performed by our colleagues [146].

3.4.1 The Boundary Element Method
The electrodynamic calculations have been performed using the boundary ele-
ment method (BEM) [147]. Within BEM, particles of arbitrary shape is treated.
The particles and surrounding media are assumed to be homogeneous with given
dielectric permeabilities. Moreover, the particles are assumed to have abrupt
boundaries. It is worth mentioning that this model requires only the discretiza-
tion of the boundary surfaces, instead of the whole volume of the dielectric regions
considered. For the size of the nanoparticles considered in this study, which is
below the intrinsic mean free path of conduction electrons in bulk metals, surface
scattering becomes very important. In order to account for the surface scatter-
ing, we included a correction to the free-electron model of the cluster’s dielectric
function (Drude model) in the calculations. In the classical standard approach
it is assumed that the surface scattering effects lead to a reduced effective mean
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free path Leff, which adds a damping factor in the Drude dielectric function of
the bulk metal. When a peculiar reflection of electrons at the boundaries is as-
sumed, as in the so-called Billard model [148, 149], the effective mean free path
is given by Leff = 4V/A, where V and A are the volume and area of the particle
respectively [150]. Therefore, within the Drude model the dielectric function is
given by

ε(ω) = ε∞ −
ω2
p

ω2 + iω(γd+
vf
Leff

) , (3.2)

where vf is the Fermi velocity, which is vf = 1.07×106 m/s for Na, and the intrin-
sic damping term γd = 27.6 meV. Electron-hole excitations and other quantum
effects such as electron tunneling in close interparticle gaps are not considered in
the Drude model. Nevertheless, we have preserved the main geometrical features
of the sodium cluster such as the positions of apexes, edges, and facets, and their
relative orientations, to keep the shape as close as possible to that of the particle
used for the ab initio calculations. With this idea in mind, we observed that
the regular icosahedron fits the requested conditions. In Figures 3.4.1 (a) and
(b) we show the particles used for both atomistic and continuous calculations
respectively. The simulations were carried out with the MNPBEM toolbox [151]
implementation of BEM.

3.4.2 Na380 Cluster and Dimers with BEM
As for the ab initio calculations, we looked at the absorption cross section and
near-field of single particle (Figure 3.4.1) and dimers using the BEM theory and
compare the results to the ab initio one [83]. For BEM, a continuous particle with
icosahedral symmetry was used for the calculations as we displayed in Figure 3.4.1
(b). The icosahedral particle is circumscribed into a sphere of radius r = 1.85 nm
(distance between the center of the particle and a tip), which was chosen based on
the approximate size of the atomistic structure shown on Figure 3.2.1. The tips
and edges were further smoothed in such a way that their minimum curvature
was the Wigner-Seitz radius of sodium rNa ∼ 2.08 Å.

In Figure 3.4.1 (c) the absorption cross section from TDDFT and BEM are
compared. For TDDFT (blue line) we observe a single peak at 3.15 eV, corre-
sponding to the dipolar plasmon (DP) resonance as shown on Figure 3.3.1, and a
shoulder around 3.8 eV. The BEM cross section (red line) shows two peaks emerge
at 3.2 eV and 3.6 eV, corresponding to the DP and quadrupolar plasmon (QP)
modes, respectively. The energy difference between the DP mode of TDDFT
and BEM is minimal but they are more relevant with respect to the intensity,
which depends on the size of the particle. Moreover, when a smoother geometry
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Figure 3.4.1: (a) Atomistic cluster composed by 380 atoms used in TDDFT calculations. (b) Sketch
of the continuous icosahedral cluster used for BEM calculations. The sphere of radius r = 1.85 nm
circumscribing the icosahedron has been drawn for reference. The tips and edges have been rounded
to have a minimum radius of rNa = 2.08 Å. (c) Absorption cross-section of the particle calculated
using TDDFT (blue line) and BEM (red line). The energies of the dipolar plasmons obtained for
the two models are highlighted with dots. The dashed black line corresponds to the absorption
cross section of the sphere in (b), as calculated with BEM. A peak corresponding to the QP is
observed for BEM at ω = 3.6 eV, while a shoulder is appreciated for TDDFT around ω ∼ 3.8 eV.
Induced near-field enhancement for a single icosahedral nanoparticle obtained using TDDFT (d-e)
and BEM (f-g). The external field E0 is polarized along the y -axis (left column) and along z-axis
(right column).

is considered for the BEM calculations a stronger dominance of the DP mode and
a smearing of the QP mode is observed, which may explain up to a certain level
the presence of the second peak, instead of the shoulder as for the TDDFT. The
spectrum corresponding to a spherical particle of the same size as the icosahedral
one is represented with dashed line on Figure 3.4.1 (c) for comparison.

Figure 3.4.1 (d-g) compare the near-field maps around a single Na particle
with two different field orientations for the two models. The frequency of the
external field correspond to the dipolar mode. Even if the BEM method does
not show any atomistic features (in contrary to the atomistic ab initio method),
it can reproduce the strong localization of the field at the tips of the particle as
shown on Figure 3.4.1 (f) and (g). Therefore subnanometric localization of the
field is possible even if smooth surfaces and continuous media are used instead of
the realistic atomistic structure.
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Figure 3.4.2: Sketch of the three interparticle gap geometries use with the BEM approach, (a) facet-
to-facet, (b) tip-to-facet and (c) tip-to-tip, the external field E0 is oriented along the dimer axis.
(d-f) Absorption cross-section of the icosahedral dimers obtained from the ab initio calculations and
(g-i) the absorption cross-section obtained with BEM as function of the separation distance dsep. The
hybridized bonding dimer plasmon (BDP) mode, the bonding quadrupolar plasmon (BQP) mode,
charge transfer plasmon (CTP) mode and higher-order charge transfer plasmon (CTP’) mode are
highlighted in the spectra when them identification is possible. The minimum distance (dc = 0.0)
for which the continuous (BEM) particles overlap is represented with white dashed lines.

As for the ab initio atomistic calculations shown previously, we also studied
the field enhancement of nanocavities formed by two Na380 clusters using BEM.
In this case, the separation distance has been considered as the distance between
the closest points of the particles surface, which includes an additional correction
term corresponding to the distance between the center of an outermost sodium
atom and the surface of the particle (the Na atoms are considered as spheres
of radius rNa = 2.08 Å), dsep = dc + 2rNa. As previously the direction of the
external field is along the dimer axis, as shown in the top row of Figure 3.4.2.

The far-field behavior of the systems are studied in Figure 3.4.2 (d-i), where
the absorption cross-section of the gap size, σabs color maps, calculated with
TDDFT and BEM models for the three geometries. At large separation distances
(dsep > 6 Å), the single particle’s DP hybridize into the bonding dimer plasmon
(BDP), which has a lower energy than the DP mode of single particle. As the
particles get closer, the BDP is red shifted in the both models, and for dsep = 6 Å
major differences among the models arise.

• For the TDDFT calculations (second row of Figure 3.4.2) the BDP red
shifts as the inter-particle distance decreases, and below 6 Å it eventually
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fades away, indicating that the quantum regime has been reached as ex-
plained in the previous section. Then the CTP at lower energy (around
2 eV) emerges due to the tunneling effect, even if the particles are not in
contact (dsep ∼ 5 Å). Notice the higher intensity of the CTP mode for the
facet-to-facet geometry due to the largest particle surface area as explained
previously. Furthermore, for these short distances the higher-order charge
transfer plasmon(CTP’)1 mode is also excited at higher energy (about 3 eV).

• For the continuous BEM cross-section shown in the third row of Figure 3.4.2,
it is observed that the BDP mode vanishes for practically overlapping parti-
cles (dsep ∼ 4 Å, which is equivalent to dc ∼ 0 Å, represented by the dashed
white lines) in contrast to the TDDFT case. Moreover, there is a larger
red shift of the BDP than what is observed in the TDDFT case, which is
balanced by the stronger coupling between the single particles higher order
modes such as BQP. This behavior is also observed for dimers composed by
spheres [11], but it is enhanced by the geometrical features of the system, as
can be clearly seen by comparing the facet-to-facet [Figure 3.4.2 (g)] with
a slight excitation of the BQP and intense BDP mode, and the tip-to-tip
[Figure 3.4.2 (i)] with a much stronger BQP and lower BDP. Notice that
within this classical model, the CTP mode emerges only for particles with
physical contact (dsep < 4 Å), as no effective quantum tunneling effects
are introduced in this model, although they could be included by using a
quantum corrected model [139]. The evolution of this mode, both in in-
tensity and energy, shows high dependence on the geometry of the neck
that links both particles, although for the three gap configurations it is
red shifted compared to the TDDFT results. Furthermore, the relative in-
tensity of CTP’ is extremely dependent on the geometry and width of the
neck, which stabilizes in energy as the overlapped dimer size gets smaller,
thus resembling a single particle. Overall, major differences with TDDFT
are observed in the 2 < dsep < 6 Å regime, where electron spilling effects
and non-zero tunneling probability take place and are captured by TDDFT,
contrary to classical electrodynamics calculations, which do not incorporate
these effects related to the wave nature of electrons.

To compare quantitatively the field localization provided by the two mod-
els we represent the maximum induced near-field at the center of the gap on
Figure 3.4.3 (a-c). The maximum induced field show similar trend for large sepa-
ration distances (dsep > 10.0 Å). For smaller distances major differences between
geometries and models are observed. For TDDFT, a maximum is observed at
dsep = 8.0 Å for the facet-to-facet and at 7.0 Å for the tip-to-facet and tip-to-tip

1The CTP’ mode was called QP in the previous section, but since a new mode appears with
BEM, we preferred to rename this mode.
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configurations. The presence of the tip in the cavity is reducing the tunneling
effect compare to the facet-to-facet geometry, increasing the maximum value of
the induce field since a stronger lightning rod effect is observed. In the other
hand, for BEM, the field enhancement increases exponentially as the particles
get closer, with larger values for tip-to-tip and tip-to-facet due to lightning rod
effect. Quantitatively, at dsep = 5 Å, the values obtained using BEM are between
7.8 and 9.5 larger than the ones obtained with TDDFT.
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Figure 3.4.3: (a-c) Maximum local induced-field enhancement Emax
ind /E0 at the center of the gap

between the two particles for the three dimer geometries as function of the cavity size [as in Fig-
ure 3.3.4 (a) for TDDFT]. The blue lines stand for TDDFT calculations and the red lines show the
BEM calculations. The vertical dashed red lines the touching distance dc = 0.0 . (d-f) Effective
mode volume V of the local field in the mid of the gap as define in equation (3.3) for the three
geometries and the two models. The plotted data correspond to the energies for which the largest
maximum of the induced field for each configuration and distance are obtained. The dashed black
lines represent the effective mode volume calculated classically using spheres.

Along with the maximum absolute value of the induced field, another char-
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acteristic of the induced near-fields is the effective mode volume V defined by

V =
ˆ
V

|Eind(x, y, z)|2

|Emax
ind |2

dV . (3.3)

The effective mode volume V is shown in Figure 3.4.3 (d-f) as function of the inter-
particle separation dsep which is similar to expression (3.1). The effective mode
volume V depends on the excitation frequency ω among the other parameters. We
computed the effective mode volume V at the frequency of the BDP resonance
(which is slightly changing with the inter-particle separation dsep). In the ab
initio calculations, for large distances (dsep > 5 Å), there is a smooth increase
of the field confinement, i.e. a smooth decrease of V , for the three geometries.
Then for small cavities (dsep < 5 Å), the confinement depends on the geometry:

• For the facet-to-facet [Figure 3.4.3 (d)], a transition is observed from the
BDP (dsep > 5 Å) to the CTP (dsep < 5 Å), while a characteristic dip [83],
corresponding to the emergence of the CTP’ mode, is observed.

• At dsep = 5 Å, the tip-to-facet [panel (e)] and tip-to-tip [panel (f)] show a
transition from BDP to CTP’, which is more gradual for the latter.

Regarding the BEM calculations, the BDP mode shows slightly larger field en-
hancement until the particles overlap (dsep = 4 Å), with an increase of the local-
ization as the particles get closer, following a similar pattern than for the TDDFT
results until the inter-particle separation dsep = 8 − 9 Å. For smaller distances,
differences arise. The tip-to-tip configuration shows the strongest localization
due to the intense lightning rod effect. When the tip is rounded, the effective
mode volume V increases since the field is spread around.

In order to get further insight in to the similarities and differences of the
induced field, we looked at the distribution of the field around the dimer for the
both models on Figure 3.4.4. The Figure 3.4.4 is similar to Figure 3.3.5 but
for the tip-to-facet geometry only since it gathers both tip and facet features
and illustrates the outcomes due to each geometrical feature. Four separation
distances has been chosen to illustrate the different interaction regimes: 20 Å on
the first row, 10 Å on the second row, 6 Å on the third row and 1 Å on the last
row. The TDDFT results are plotted on the left column while the BEM results
on the right column.

• In the weak interaction regime (dsep = 20 Å), the near-fields look like the
single particle one for both models. Moreover, an enhancement is observed
inside the cavity, meaning that an hybridization of the dipolar mode of the
particles into the BDP also emerges at this distance.
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Figure 3.4.4: Induced near-field maps in the plane (y, z) for the tip-to-facet geometry calculated
with TDDFT (left column) and BEM (right column). Separation distances are 1, 6, 10 and 20 Å.
The frequency at which the map are plot are the frequencies of the most intense resonances.

• Medium interaction and, specially, strong interaction regimes show a major
localization and enhancement of the field in the cavity for both models,
with minor hot spots around the tips of the clusters.

• The near-fields map in the charge-transfer regime plotted for the CTP’
mode energies in panel (g) and (h) shows the differences between the mod-
els. In the TDDFT case [panel (g)] charge is transferred through the cavity
due to the overlap of the electron wave functions, so that the field is expelled
outside the cavity and the induced field decreases. Similar phenomena oc-
curs for BEM [panel (h)] where particle are overlapping, thus the field is
expelled to the outside showing a similar pattern to TDDFT. Furthermore,
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the field distribution around the terminal tip is also preserved.

3.5 Conclusions
In conclusion, by means of first-principles atomistic TDDFT calculations we have
demonstrated that the distribution of the near-field close to plasmonic nanopar-
ticles presents subnanometric hot spots that reflect atomic-scale features at the
nanoparticle surface. In our case, these features consist of vertices and edges
at the contact of the crystallographic facets of the particles. In particular, for
the plasmonic dimer, we have shown that the field localization and enhancement
inside the plasmonic nanogaps can be very different depending on whether the
distribution of the atoms at the gap define a flat surface, or present atomic-scale
tip-like protrusions. We obtain that the far-fields also depend on the atomic
configuration but in a less marked fashion as expected.

Our findings provide new insights into the limits of plasmonic localization.
The presence of atomic-size features, e.g., formed by edges and vertices between
crystalline facets in a nanoparticle, gives rise to near-fields localized in regions
with linear dimensions of a few Ångstroms, i.e., literally of atomic size. This effect
is related to the classical divergence of a field due to the presence of sharp edges.
Indeed, the vertex ending by a single atom, as the one considered here, would
be the example of the sharpest possible tip. Furthermore, the field enhanced at
the atomic-scale hot spots are intensified by the presence of the overall plasmonic
background enhancement, following a cascade effect. Based on this parallelism,
we can establish an atomic-scale analogy with the macroscopic plasmonic lens of
self-similar antennas [135–137, 152].

We demonstrate that classical methods such as BEM can be used to pre-
dict the electro-magnetic enhancement in proximity of atomic-scale protrusions.
Nevertheless, only full ab initio atomistic calculations are able to provide a fair
description of the response of the system under external perturbation. Particu-
larly when the two clusters approach, quantum phenomena play important role.
Furthermore, classical calculations strongly depend on how the geometry of the
system is defined, while in the ab initio calculations, the geometry is a result of an
energy-minimization procedure which is itself a part of the ab initio framework.
For instance, as we will see in the next chapter, the geometry relaxations of the
sodium cluster dimer critically influence the response of the plasmonic cavity. In
particular, we will show that even a motion of single atom can strongly affect the
optical response of the sodium cluster dimer.
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Chapter 4

Plasmonic Response of
Nanojunctions Driven by
Single Atom Motion:
Quantum Transport
Revealed in Optics

The correlation between transport properties across sub-nanometric metallic gaps
and the optical response of the system is a complex effect which is determined by
the fine atomic-scale details of the junction structure. As experimental advances
are progressively accessing transport and optical characterization of smaller nano-
junctions, a clear connection between the structural, electronic and optical prop-
erties in these nanocavities is needed.

In this chapter we continue to model the optical response of two Na380 clusters.
We present a study of the simultaneous evolution of the structure and the optical
response of a plasmonic junction as the particles forming the cavity approach
and retract. Atomic reorganizations are responsible for a large hysteresis of the
plasmonic response of the system, that shows a jump-to-contact instability during
the approach process and the formation of an atom-sized neck across the junction
during retraction. Our calculations demonstrate that, due to the quantization
of the conductance in metal nanocontacts, atomic-scale reconfigurations play a
crucial role in determining the optical response of the whole system. We observe
abrupt changes in the intensities and spectral positions of the dominating plasmon
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resonances, and find a one-to-one correspondence between these jumps and those
of the quantized transport as the neck cross-section diminishes. These results
point out to an unforeseen connection between transport and optics at the atomic
scale, which is at the frontier of current optoelectronics and can drive new options
in optical engineering of signals driven by the motion and manipulation of single
atoms.

4.1 Motivation
It has recently been shown that the interaction of metal surfaces in sub-nanometric
proximity drives new optoelectronic phenomena, where an interplay between
the photons, single electron transitions, plasmons, vibrations and motion of
atoms present in the junction, determines the complex outcome of the opti-
cal response including strong quantum effects and nonlinearities [119, 153]. On
the one hand, strong non-local dynamical screening [154] and quantum tunnel-
ing [118, 139, 143] have been shown to drastically modify the optical response
in a metallic sub-nanometric gap, establishing the limit of localization and en-
hancement of the optical fields far below the predictions from simple classical
approaches [83, 118, 120, 144]. On the other hand, even if typical surface plas-
mon excitations localize in the nanometer scale, we have shown in the previous
chapter that the fine atomistic details of the crystallographic facets and vertices
of the metal particle, with the presence of single atomic protrusions and edges,
introduce further non-resonant light localization [83, 155]. This is analogue to
the macroscopic lightning rod effect, [134, 135] but brought down to the atomic
scale.

We are here interested on how the optical response of plasmonic cavities
simultaneously correlates with their structural and transport properties [156],
going beyond the macroscopic description to focus on the influence of strong
atomic-scale structural reconfigurations of the cavity (that has been previously
ignored) [83, 157]. This is important since, when two metallic surfaces are ap-
proached and put into contact, the formation of small metal necks or nanojunc-
tions connecting them is a very likely process [158], and indeed, we are also able
to rigorously model the formation of the metal necks in our simulation. The
formation of such metal nanocontacts has been theoretically predicted [158, 159]
and experimentally observed [158, 160–162]. These structures are at the root of
friction phenomena in metal surfaces [163, 164] and give rise to quantized trans-
port following discontinuous changes in the contact cross-section [158, 165–167].
Thus, the key question that we want to address in this chapter is whether a slight
modification of the geometry of the cavity, involving the movement of a few or
even a single atom in such sub-nanometric junction, e.g., due to migration or
repositioning driven by strain accumulation in a metal neck, and its correspond-
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ing change in conductance are clearly reflected in the optical response. If this
were the case, one could expect to observe a discontinuous change in the plas-
monic response of the system accompanying each plastic deformation event. As
shown below, our simulations indeed confirm that such expectations are fulfilled.

The present study is particularly relevant in the light of recent progress in fab-
rication and processing techniques. As the dimensions of nanoscale architectures
are progressively reduced, we are facing a regime where the actual distribution of
the atoms in a system matters [168]. The fact that optics might follow the atoms
is of utmost importance in optical engineering and optoelectronics, targeting opti-
cal modulators or electro-active control of optical signals, where instabilities and
modifications of the performance can be attributed to atomic-scale features [169].

In order to address the complex correlation of electronics and optics in sub-
nanometric junctions where the atoms in the system are allowed to adapt to the
mechanical boundary conditions, we performed atomistic quantum mechanical
calculations of the electronic structure, the optical response, and the structural
evolution of a plasmonic cavity. We employed our efficient implementation [170–
172] of linear-response Time-Dependent Density Functional Theory (TDDFT)
as described in section 2.3 in conjunction with the SIESTA Density Functional
Theory (DFT) package (appendix A) [1, 2]. The plasmonic cavity used for this
simulation is the facet-to-facet dimer depicted in Figure 3.2.2 (a). This is a canon-
ical example of a metallic system whose properties can be quite straightforwardly
extrapolated, with care, to other metallic systems. The use of sodium allows per-
forming larger calculations, in terms of the number of atoms, as compared to
other more technologically relevant materials like, e.g., gold. This increases the
relevance of our results, since the number of atoms involved in the structural
reorganizations of the neck is indeed a small percentage of those contained in the
system.

The structural relaxations of the Na380 dimers were performed within DFT
as implemented in the SIESTA code [1, 2]. We used the Perdew-Burke-Erzenhorf
density functional (GGA-PBE) [35], norm-conserving pseudo-potentials [122] to
effectively describe core electrons, and a double-ζ polarized (DZP) basis set of
numerical atomic orbitals generated using an energy shift of 100 meV [52]. The
other parameters are similar to those stated earlier in chapter 3 (section 3.2).

Figure 3.2.1 shows the relaxed initial structure of one of the Na380 clusters that
form the plasmonic cavity. The cluster presents an nearly-icosahedral structure
and has been obtained starting from a configuration optimized with empirical
potentials [173] and available at the Cambridge Cluster Database (CCD) [121].
The relaxed structure obtained using GGA-PBE is very similar to the one pro-
vided at the CCD site, and it is characterized by the presence of planar facets,
sharp edges and single-atom vertices.
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Figure 4.1.1: The atoms in the outer facets of
both clusters (the atoms in one of these facets
have been highlighted in yellow) are kept fixed
during the relaxation process.

Figure 4.1.1 shows a snapshot of
the relaxation of the plasmonic cav-
ity when the two clusters are ap-
proached towards each other. As a
mechanical constraint, and mimicking
the presence of macroscopic scanning
probe tips or surfaces where the clus-
ters are attached, the atoms in the
outer surfaces of both clusters (high-
lighted in yellow in Figure 4.1.1) re-
main fixed and move rigidly during the
approach/retraction events. Each new
configuration is generated by chang-
ing the distance between these fixed
facets by 0.2 Å. The rest of the atoms,
blue atoms in Figure 4.1.1, are then
moved to minimize the total energy
of the cluster dimer. The presence of
two unrelaxed facets allows to mea-
sure the displacement applied to the
system unambiguously, which in turn
permits the definition of a nominal gap
size, corresponding to the distance be-
tween the inner facets of the neighbor-
ing clusters in case the system were
not allowed to relax. This is the mag-
nitude that is used to define the inter-

particle distance.

Our approach consists in tracing the energetics, the geometrical and the opti-
cal response of the two metallic clusters which gradually get closer while allowing
atoms to rearrange. Remarkably, at a given separation distance, the clusters
show a jump-to-contact instability [174] leading to a strong modification of the
optical response, a result in striking contrast to the smooth evolutions found
in the context of previous classical and quantum descriptions based on static
geometries [83, 118, 120, 139]. The subsequent process of retraction of the clus-
ters is particularly interesting. In such a situation, consistently with previous
studies [175, 176], a metallic atom-sized contact is formed and the conductance
across the gap gets quantized. This allows revealing the strong correlation be-
tween the transport and optical properties of the system and how, paradoxically,
the motion of a few atoms or even a single atom in a nanometric gap can drive
a quantized-like (abrupt, discontinuous) evolution of the optical response.
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4.2 Atomic Rearrangements in the Plasmonic
Junction: Nanoparticles Approach and Re-
traction

Our model of the plasmonic cavity is formed by two sodium clusters that are
progressively approached and retracted from each other. Structural relaxations,
using forces obtained from DFT calculations, are performed for each approaching
and retraction step. Each cluster forming the dimer has an icosahedral shape
and contains 380 sodium atoms as explained in the previous sections. The lateral
dimension of each cluster is ∼25 Å. The initial configuration consists of the
two clusters placed at a distance of 16 Å—distance large enough to avoid direct
interaction between the nanoparticles. The cavity is initially symmetric with the
two clusters opposing planar facets. Starting from that distance the two clusters
are slowly brought together. We monitor the inter-particle distance using the
nominal gap size, defined as the distance between the two cluster inner facets if
the system would remain unrelaxed (as it was the case in the chapter 3). Thus,
a nominal size gap of zero value would correspond to the superposition of the
atoms forming the two opposing facets in the absence of relaxation. Approaching
steps of 0.2 Å were chosen as a compromise between computational convenience
and an approximately adiabatic evolution of the structure. As described in the
previous section, in order to control the inter-particle distance and to mimic
the presence of tips or surfaces the clusters are attached to [143], the atoms
belonging to the outer facet of each cluster. The outer-facet atoms are kept fixed
during the relaxations after each approaching or retracting step, i.e, they are not
relaxed but move rigidly as shown on Figure 4.1.1. Once the distance between
clusters corresponds to the typical inter-layer distance in bulk sodium, a process
of retraction is started by pulling the clusters apart, again in steps of 0.2 Å, until
they completely separate.

The total energy of the system during this process of approaching and retract-
ing is shown as a function of the nominal gap size in Figure 4.2.1. The evolution
of the clusters and junction geometry is shown in the panels of Figure 4.2.1 for
selected separation distances. The latin letters that label each panel relate the
geometry of the system to the corresponding nominal gap size and energy, as
indicated in the curves of the figure. During the approach (red circles) the total
energy remains constant until a nominal gap size of about 7.5 Å is reached. From
this separation, the total energy starts decreasing smoothly. At a nominal gap
size of ∼ 6.1 Å the two clusters suddenly jump to contact [174]. At this point
the actual interface distance abruptly decreases and the energy is substantially
reduced. The clusters are now connected and elongated along the intermolecu-
lar axis. The inset in Figure 4.2.1 shows the actual gap size indicating the real
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distance between the inner facets of the clusters. After the jump-to-contact, the
value of the actual gap size drops to a value of about 3.2 Å remaining fairly
constant and close to 3.0 Å as the two clusters get closer together. The abrupt
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Figure 4.2.1: Total energy of a plasmonic cavity formed by two Na380 clusters as a function of
the nominal distance between them (nominal distance is defined as the distance among the facets
defining the cavity if the system would not be relaxed). Red circles represent the approaching
process while blue circles indicate the retracting process. The inner panel shows the actual gap size
as a function of the nominal value during the approach, showing the clear signature of a jump-to-
contact event. Images of the geometries around the graph show the rearrangement of the atoms
in the clusters and the formation of a nanojunction during retraction. Latin letters indicate the
correspondence between some of the total energy points in the graph and the configurations shown
in the surrounding panels.
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reduction of the energy at the jump-to-contact point is mostly due to the reduc-
tion of the surface energy of both clusters (two facets disappear). However, this
happens at the expense of a large elastic deformation of the clusters. By further
approaching the two clusters we reduce the elastic deformation of the system
and, correspondingly, the total energy decreases. Eventually the system suffers
some reorganizations which are also reflected (although they are somewhat less
obvious than the jump-to-contact) in the energy versus distance curve in Fig-
ure 4.2.1. For example, the stacking of the atomic layers at the interface, initially
imposed by the mirror symmetry of our starting geometry, gets optimized at a
nominal gap size of approximately 2.5 Å. Later, the particles start to deform
reducing further their surface area by increasing the contact cross-section. The
energy finally stabilizes and starts to slowly increase for nominal gap sizes below
∼ 1 Å. We stop our approaching process at this point.

Once the two clusters are clumped together at a nominal distance comparable
to the interlayer distance in bulk sodium, we start pulling them apart (blue circles
in Figure 4.2.1). During the retraction process the structure evolves creating and
thinning a neck that connects the two clusters until a mono-atomic chain is
formed and, eventually, until a complete separation of the clusters is achieved
(point l in Figure 4.2.1). In agreement with previous studies, the evolution of the
contact structure takes place via an alternation of elastic and plastic deformation
events [158, 167, 176, 177]. The contact is elongated until the accumulated elastic
energy is sufficient to produce atomic rearrangements, mainly driven by the atoms
in the neck area. During these plastic events the energy of the system decreases
abruptly. Thus, there is a one-to-one correspondence between the discontinuities
of total energy in Figure 4.2.1 and the changes in the configuration of the metal
neck. It is striking to note the dramatic contrast between the distance at which
the jump-to-contact takes place and the clusters “touch” for the first time during
the approaching process (close to point a in Figure 4.2.1), and the distance at
which they finally detach (indicated by a vertical green dashed line). A nominal
gap distance of 32.3 Å is needed to separate completely the clusters.

In summary we have seen that the geometry of the system strongly departs
from the idealized situation in which two clusters simply change their relative
position. These structural rearrangements had been overlooked by most previous
studies of plasmonics although, as we describe in the following, they play a key
role in determining the optical response of the cavity.
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4.3 Optical Response of a Forming Plasmonic
Cavity: Relaxed vs. Unrelaxed Cases

To explore the connection between the structural evolution and the plasmonic
response of the cavity, we compare the optical absorption of a plasmonic junction
as the clusters approach for two situations:

• first, no relaxation of the clusters is allowed and the only parameter modi-
fied is the distance between the particles [Figure 4.3.1 (a)] as it was shown
in the chapter 3 [Figure 3.3.3 (a)];

• second, the relaxation of the atoms is taken into account, meaning the
atoms are free to move inside the cavity as explained in the previous sec-
tion, [Figure 4.3.1 (b)] following the atomic-scale restructuring shown in
Figure 4.2.1 (red symbols).

The resonant plasmonic modes of the forming cavity, as obtained from the
calculated polarizability of the system, are displayed as a function of the inter-
particle distance in both situations. The component of the polarizability parallel
to the dimer axis is considered here, i.e., induced by an electrical field polarized
along the same axis, that we take hereafter as z-axis. In both cases, and depend-
ing on the separation, we can identify three distinct resonances as it has been
largely explained in the previous chapter 3 [83, 118, 120, 139, 140, 143, 144]. We
will now briefly recall the main feature of the polarizability in the unrelaxed case
for the sake of the comparison.

The so-called Bonding Dipolar Plasmonic (BDP) resonance around 3 eV dom-
inates the response at large inter-cluster distances when the two clusters interact
weakly. The BDP shows an induced charge distribution characterized by a capac-
itive coupling of charges of opposite sign at both sides of the cavity, as schemat-
ically depicted in the right drawing of the top panel in Figure 4.3.1. When both
clusters are in contact, so that free charges can efficiently move across the junc-
tion, we enter a conductive coupling regime characterized by the so-called Charge
Transfer Plasmon (CTP) and the associated high-energy Charge Transfer Plas-
mon (CTP’) modes. The conducting link of the CTP through the junction of the
clusters, produces a screening of the charges in the cavity, and thus redistributes
the induced charge density to produce a net dipole that extends to the whole
dimer structure, as depicted in the top-left scheme in Figure 4.3.1 [see also the
panel (c) and (d) ].

The BDP resonance is red-shifted as the inter-cluster distance is reduced and
the Coulomb interactions between the clusters increase. This shift is due to the
strong interaction of the parallel induced dipoles along the dimer axis, which
hybridize [178] lowering the energy of the resulting optically active mode.
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Figure 4.3.1: Evolution of the imaginary part of the polarizability of a Na380 dimer (external field
applied along the dimer axis) as the clusters are approached, plotted as a function of the separation
distance and photon energy. Both unrelaxed (a) and relaxed (b) geometries of the cluster dimer
are considered. The dark dots indicate the position of the peak maximum in the polarizability for
those distances for which the optical response has been computed. The arrow lines indicate the
contact point for the two cases, i.e., the distance at which the clusters merge into one single larger
object. The top panel shows the schematic representation of the induced charge in the modes
that dominate the optical response before contact (bonding dipolar plasmon mode, BDP) and after
contact (charge transfer plasmon mode, CTP). Panels (c) and (d) show the imaginary part of the
induced density and the corresponding modulus of the electron current flowing through each cross
sectional [i.e., (x , y)] plane along the dimer axis. An external electric field of magnitude of 1x10−9

atomic units is assumed here with a polarization parallel to the junction main axis. The nominal
gap size is 6.1 Å, corresponding to the jump-to-contact configuration in the relaxed case.

In this capacitive (weak interaction) regime both unrelaxed and relaxed cases
show the same dependence on the inter-particle distance. The BDP mode “lives
until” the clusters are brought to a distance of about 6.1 Å. At this point,
for the unrelaxed dimer [see Figure 4.3.1 (a)], the BDP mode is quenched and
higher energy modes start gaining intensity. If the clusters are approached further
we observe a smooth transition from the capacitive to the conductive coupling
regime. For separation distances right below 6 Å, the electron tunneling current
at relevant frequencies gradually starts flowing, giving rise to the progressive
emergence of the CTP resonance (see section 3.3.2 [83, 119, 139, 144] ). This
transition region is frequently referred to as the quantum tunneling regime of
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plasmonic cavities [143]. At a distance comparable to the sodium interlayer
distance, ∼ 3.0 Å, the clusters become chemically bonded and obvious mechanical
contact is established. Under those conditions, a substantial current can be
established and the CTP appears fully developed.

In contrast, the situation shown in Figure 4.3.1 (b) for the relaxed dimer
is strikingly different. The relaxed dimer undergoes a jump-to-contact insta-
bility (see red curve in Figure 4.2.1) that dramatically modifies the evolution
of the optical spectrum. The transition regime, found between 6 Å and 3 Å
for the unrelaxed dimer, has almost completely disappeared in the relaxed case.
There are no stable geometries for those intermediate gap sizes and, thus, the
resistive tunneling (transition) regime cannot be clearly identified in the optical
response. Although the details of the jump-to-contact process strongly depend
on the size and shape of the facets and the effective elastic constants of the sys-
tems being brought into contact, this effect is a quite general behavior which is
routinely taken into account in the interpretation of data from scanning probe mi-
croscopies [179]. Our results indicate that the effect of the jump-to-contact must
be considered when exploring and interpreting the optical response of metallic
particles in close proximity, particularly when large atomic-scale reconfigurations
can be expected. Importantly, this phenomenon can hinder the appearance of
a smooth transition between the capacitive and charge-transfer regimes in the
optical response of plasmonic cavities.

In panels (c) and (d) of Figure 4.3.1 we show the real space distribution of
the induced charge for the CTP and CTP’ modes right after the clusters get
into contact, i.e., right after the jump-to-contact instability. Here we plot the
imaginary part of the induced density at the resonant frequencies. We also plot
the corresponding electron current (graph to the right of each charge density plot)
flowing through (x, y) planes (i.e., perpendicular to the dimer axis) as function
of z, the coordinate along the dimer axis.

Since we are dealing with a finite object we can use the continuity equation
and an integration region like the one shown in Figure 4.3.2 to define the current
that flows across a plane perpendicular to the dimer axis and passing through
the center of the junction. From our TDDFT calculation we obtain the induced
electron density δn(r;ω) in response to a monochromatic field with frequency ω.
We can now integrate the induced density over the volume in Figure 4.3.2

δQ̃(ω) =
ˆ

Ω
dr3δn(r;ω), (4.1)

to obtain δQ̃(ω) the Fourier transform of the time-dependent total induced charge
contained in Ω. The continuity equation provides with the trivial relation between
the total induced charge in Ω, δQ(t), and the current flowing across the junction
I(t) at each instant of time t. In frequency domain this relation is expressed as
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Ĩ(ω) = −iωδQ̃(ω). (4.2)

Thus, we can easily obtain the modulus of the current (maximal current) flow-
ing through the junction in response to the monochromatic electric field E =
E0 cos(ωt)

|Imax(ω)| = ω

√[
δQ̃′(ω)

]2 +
[
δQ̃′′(ω)

]2, (4.3)

z

x
y

Figure 4.3.2: Representation of the inte-
grating volume used to define the current
passing through the junction with the help
of the continuity equation.

with δQ̃′(ω) and δQ̃′′(ω), respectively, the
real and imaginary parts of δQ̃(ω). In our
calculations we compute the current at the
frequencies of the plasmonic resonances for
each geometry, and δQ̃(ω) is calculated by
integrating the density change δn(r;ω) over
a given real space volume (Ω). By changing
the integration volume we define the (x, y)
plane through which the current is calcu-
lated. For example, the current as a func-
tion of the position of such plane is shown,
for a particular configuration and two dif-
ferent resonance frequencies, in the panels
(c) and (d) in Figure 4.3.1. It is important
to stress that such maps do not refer to a
given instant of time, but they rather depict
the maximum current passing through (x, y)
plane as function of the plane’s location z. In
order to compute the current flowing through
the center of the junction (As shown on Fig-
ure 4.4.5) we need to integrate the induced
charge over a volume similar to that depicted
in Figure 4.3.2.

The induced density associated with the
CTP forms a dipolar pattern over the whole

system having a single node placed at the center of the system. Thus, the charge
accumulation does not take place in the cavity interfaces, but rather extends
to the whole system. Correspondingly, the current associated with the CTP
resonance has its maximum at the cavity center. On the other hand, the CTP’
mode presents two dipolar patterns on each cluster with nodes of the induced
density charge in the center of the system as well as in the middle of each cluster.
The charge distribution in this case is somewhat similar to what one can expect
for the BDP mode. However, the current reveals a key piece of information to
rule out this interpretation. In the case of the CTP’ resonance the maxima of the

83



CHAPTER 4. PLASMONIC RESPONSE OF NANOJUNCTIONS DRIVEN
BY SINGLE ATOM MOTION: QUANTUM TRANSPORT REVEALED IN

OPTICS

current are found both in the center of the system as well as within each cluster.
This indeed confirms the existence of the charge transfer among both clusters
also in this high-energy mode. Thus, the observed induced density pattern is
better interpreted as the second optically active mode of a single metal rod.

Finally, below 2 Å nominal gap size the conductive coupling regime of the
junction is fully developed in both the unrelaxed and relaxed cases, with the
CTP and the CTP’ resonances converging to similar values of energy, around
2.25 eV and 3.3 eV, respectively. This underlines the fact that the details of
atom rearrangements at the cluster interface might not be so important in the
determination of the optical response once the two clusters are fully chemically
bonded.

4.4 Optical Response of a Retracting Plasmonic
Junction: Optics Driven by Individual Atoms
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Figure 4.4.1: (a) Evolution of the resonances in the polarizability of a plasmonic junction as a
function of the nominal gap size and energy, as the clusters forming the junction move apart (i.e.,
move towards larger nominal gap sizes). The dots indicate the positions of the peak maxima in the
polarizability for the considered configurations. Panels (b) show the spectral lines of the polarizability
at distances before and after each of the jumps highlighted in panel (a) by means of Greek letters
and colored arrows and dots. The colors of the lines of the spectra correspond to the colors of those
arrows and dots, thus indicating whether a given spectrum corresponds to a configuration before or
after the jump. (c) Imaginary part of the induced charge density distribution around the junction
for the three selected distances in (a) and (b), before (top) and after (bottom) the jumps.

Figure 4.4.1 shows the optical polarizability of the junction during the retrac-
tion process. Surprisingly, as the two clusters are retracted, the CTP and CTP’
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modes dominate the spectrum for most separation distances, all the way to nom-
inal inter-particle distances of several tens of Ångstroms. This is in clear contrast
with the results obtained in the previous section (approaching situation), and it
is a result of the structural evolution of the junction, characterized by the forma-
tion of a thin conducting neck among the clusters [as shown in the panels (c)-(i)
of Figure 4.2.1]. As the clusters get separated, the neck gets longer and thinner.
As a consequence, the charge-transfer modes disperse towards lower energies (due
to the overall elongation of the system). Moreover, as the neck cross-section is
reduced, the intensity of the CTP’ mode increases at the expense of the lower-
energy CTP resonance, consistent with calculations of stretched clusters [157].
As the current flowing across the neck diminishes, the CTP’ mode converges
towards the BDP mode while the CTP mode tends to disappear.

While the polarizability of the approaching situation in Figure 4.4.1 exhibits
only one definite discontinuity associated with the jump-to-contact instability of
the cavity, the retracting situation shows a dramatically different behavior as a
function of the separation distance. During retraction the optical spectrum is
characterized by the appearance of many discontinuities both in the spectral po-
sition and the intensity of the resonances. A careful inspection of Figure 4.4.1
reveals that these discontinuities happen at exactly the same nominal distances
where jumps in the total energy are detected. The largest jumps are highlighted
with arrows of different colors and marked with Greek letters in Figure 4.4.1 (a),
and the corresponding polarizability is plotted in detail on the panels of Fig-
ure 4.4.1 (b), which extracts the spectral lines from the panel (a). Each panel
shows spectra corresponding to distances before and after one of the jumps, iden-
tified in the panel (a) of Figure 4.4.1 with the corresponding colored dots and ar-
rows. Consecutive curves correspond to configurations in which the inter-particle
distance is changed by 0.2 Å. In each panel there are several, almost indistin-
guishable, spectra of the same color. This highlights that noticeable changes in
the spectrum are indeed linked to the plastic deformation events in the neck, and
not to the small rearrangements during elastic deformation. At each jump we
observe clear changes in the intensities, widths and positions of the resonance
peaks. The jumps affect primarily the low energy resonance, CTP, although they
are also visible in the CTP’ mode. They are owing to the atomic reorganization
in the neck region and they are strongly pronounced for distances above ∼ 20 Å
due to the small cross-section of the neck. Remarkably, for such thin necks even
single-atom movements produce visible changes in the optical response of the
system, clearly associated with the quantized nature of the conductance through
the junction neck. The jump at 29.3 Å indicates the formation of a well-ordered
mono-atomic neck, i.e., the clusters are connected by a single row of atoms. The
formation of such structures has been observed for many metals, for example in
the case of Au, for which these mono-atomic wires have even been visualized by
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electron microscopy [158, 175, 180–183].
The intensity of the CTP resonance suffers an abrupt decrease for a nomi-

nal gap size of around 23 Å, becoming broader between 27 and 29.3 Å. After-
wards, simultaneously to the mono-atomic neck formation, the CTP resonance
gets sharper with a consequent regain in intensity. This evolution is due to a com-
bination of several effects, the most important being the quantization of electron
transport in the metal neck. Such quantization is a well-known effect due to the
small cross-section of the contact, comparable to the electron wavelength [184].
As a result of the lateral confinement, the electronic energy levels in a thin metal
nanowire or neck get quantized and, at a given energy, only a discrete number
of bands (or “channels” using the standard terminology in quantum transport)
can contribute to the electron transport. Thus, under a small, static bias, if the
electron injection from the electrodes (in our case the clusters) is efficient and
the neck structure is sufficiently long and ordered, we can expect each channel
at the Fermi level to contribute to transport with a quantum of conductance
G0 = 2e2/h [184], with h the Planck’s constant. In the presence of defects or
strong scattering in the connections to the electrodes, the transmission probabil-
ity of the channels gets reduced [184].

With these ideas at hand, we can easily explain the observed behaviors. The
abrupt jump in the intensity of the CTP peak around 23 Å (α jump) is caused
by the sudden reduction of the neck’s cross-section, as can be clearly seen in
Figure 4.4.1 (c) and the inset of Figure 4.4.4. As expected, the reduction of
the cross-section reduces the number of conduction channels and, therefore, the
electric current flowing through the junction (this is confirmed in Figure 4.4.4,
discussed later in detail). The resonance peak also shifts to slightly lower energies.
The origin of the intensity jump at ∼ 27 Å (β jump) is also similar: a cross-section
reduction that translates onto a sudden decrease of the current as can be seen
in Figures 4.4.1 (c) and 4.4.4. After this jump at 27 Å, the neck develops into
a less ordered structure, creating a region of high scattering that hampers the
electron transport between the clusters. As a consequence the CTP resonance
broadens. Finally, once the relatively defect-free mono-atomic wire is formed,
the transport through the neck becomes completely ballistic, i.e. all the electron
that are injected to the mono-atomic wire get across the junction, and the peak
in the polarizability becomes more defined again.

These quantization effects can also be observed in the shape of the distribu-
tions of induced charge density as the neck evolves during retraction. In panels
(c) of Figure 4.4.1 the imaginary part of the induced density associated with the
CTP mode is plotted for those configurations immediately before and after the
α, β and γ jumps (indicated by the colored arrows in the polarizability plot).
Although the density change has a quite complex distribution, it is possible to
follow the evolution of the patterns towards simpler schemes of charge oscillation
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Figure 4.4.2: Imaginary part of the induced charge density distribution for the frequencies of the
two plasmon resonances found after the break of the connecting neck and final separation of the
clusters.

after each jump. The induced density presents a complex distribution and nodal
structure, with a decreasing number of nodes as the cross-section of the neck gets
thinner, a fact that reflects the larger number of open conduction channels for the
wider structures. Subtle changes in the structure that have a direct translation
in the optical response can also be observed in the plots of the induced density.
For example, in the case of the γ jump, the three-atoms-long mono-atomic wire
becomes more straight and the connections to the cluster more symmetric. This
slightly increases the current flowing through the structure and produces the
aforementioned changes in the plasmonic response.

Once the two clusters totally separate, breaking the neck, two split resonances
arise near the CTP’ resonance at about 2.6 and 3.2 eV. The initial face-to-face
configuration has been substituted by an asymmetric tip-to-tip configuration (see
panel l in Figure 4.2.1). The lower energy resonance recalls a BDP mode, with
the largest charge accumulations around the central gap.

When the metal contact connecting the two clusters finally breaks and they
separate, their final structure differs considerably from the initial one. The two
clusters are not anymore identical and the mirror symmetry in the junction is

87



CHAPTER 4. PLASMONIC RESPONSE OF NANOJUNCTIONS DRIVEN
BY SINGLE ATOM MOTION: QUANTUM TRANSPORT REVEALED IN

OPTICS

Only Real

Only Real

Only Imaginary

Figure 4.4.3: Real time evolution of the induced density associated with the CTP mode when the
cavity is connected by a short mono-atomic wire. Black arrows indicate the time direction while
green arrows indicate the direction and intensity of the external electric field in each instant. At
t = 0 and t = π/ωres the distribution is completely derived from the real part δn′(r,ωres), at
t = π/2ωres it is given by the imaginary part δn′′(r;ωres).

lost. Furthermore, rather than in the initial facet-to-facet configuration, the
clusters now present some sort of tip-to-tip configuration. With the rupture
of the connecting neck, the CTP and CTP’ modes that dominated the optical
response of the system during the whole retraction process disappear and give
way to two modes, rather than a single BDP resonance. The new modes are found
at slightly different energies. Moreover, the corresponding induced charge density
distributions in Figure 4.4.2 show different patterns. The lower energy resonance
at 2.55 eV recalls a BDP mode, with the largest charge accumulations around the
central gap. The higher energy resonance at 3.14 eV has a more complex charge
distribution, corresponding to higher order mode, showing charge accumulations
both in the tips inside the cavity and in the facets of the clusters.

The real space distributions of the induced charge density shown in Fig-
ures 4.3.2, 4.4.1 and 4.4.2 only correspond to the imaginary part. Therefore,
although they can serve to characterize the resonant modes at a particular fre-
quency, they may not give a complete picture of the time evolution of the screen-
ing charge in the system.
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The imaginary part of the polarizability (induced density distribution) cor-
respond to the optical absorption and provides information about the resonance
frequencies (spatial distribution) of the different modes. For a single, sharp ex-
citation the maximum of the peak in the imaginary part of the polarizability
coincides with a zero in the real part of the polarizability. Therefore, when at
resonance the external field and the induced dipole in the system are always out
of phase. However, when dealing with a system having multiple resonances and
especially at low frequencies, even at resonance the real part can be different
from zero and have a non-negligible intensity as compared to the imaginary part.
In these cases, at the resonance frequency the real time evolution of the induced
charge is a combination of the contributions coming from the imaginary and real
part of the density change

δn(r; t,ωres) = δn′(r; t,ωres) cos(ωrest)
+δn′′(r; t,ωres) sin(ωrest), (4.4)

being induced by the external electric field E = E0 cos(ωt). The real part is in
phase with the external field and the imaginary part representing the out-of-phase
(resonant) component of the complex-valued density change. This is the case for
the CTP low energy mode seen in the polarizability once the mono-atomic neck
is formed, that shows a large real part of the induced density charge even at
resonance.

The sequence of imagines shown in Figure 4.4.3 describes the evolution in time
of the CTP mode across the cavity when there is a mono-atomic wire connecting
the clusters. At t = π/2ωres, the induced density δn(t) reflects the imaginary
part of the induced density in the frequency domain δn(ω). As expected, the
dipole pattern extents all over the whole system with the presence of a node in
the center of the junction. Thus, it corresponds to the expected charge transfer
among the clusters. In contrast, the real part, found at t = 0 and t = π/ωres,
presents a pattern formed by dipoles placed on each cluster that resembles a BDP
mode.

From a physical point of view what we see here is quite transparent. The
mono-atomic wire across the junction represents a bottleneck for electron con-
duction as compared to the facile movement of charges within each of the clusters.
As a consequence, electrons can easily move across each of the clusters and react
fast to the applied external field. However, when they reach the gap in the center
of the system they accumulate there, since the movement of charge across that
gap is limited by the mono-atomic chain, which provides just a single channel for
electron conduction.

To fully account for the connection between high-frequency electron transport
and optical response of the plasmonic junction, we have calculated the current
through the junction as a function of the nominal gap size. In Figure 4.4.4 the
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Figure 4.4.4: Modulus of the current flowing through a plasmonic junction as a function of the
separation of the clusters forming the junction. The current is evaluated at a cross-sectional plane
passing through the center of the cavity (and cutting the center of the neck when present). Colored
arrows indicate the direction of the process (approaching or retracting). The current is computed at
the resonance frequency of the different modes of the cavity, as indicated by the labels and described
in the text. Black arrows indicate the position at which the spectral jumps in Figure 4.4.1 occur.
The inset shows the one-to-one correspondence between the jumps in the current for the CTP mode
and the cross-section of the metal neck. An external electric field of 1x10−9 atomic units is assumed
with a polarization parallel to the junction main axis.

results for the modulus of the current passing through a plane cutting the center of
the junction are shown. Here we present the current computed at the frequencies
of the main resonances of the polarizability, described in previous sections.

The current during the approach process is shown by red solid circles, corre-
sponding first to the BDP mode, and later to the CTP mode, once the clusters
are in contact. The current for the BDP mode is negligible until the jump-to-
contact event takes place. Once the clusters are connected the current can flow
through the whole system and therefore its value increases dramatically. The cur-
rent calculated for the CTP resonance increases almost linearly as we decrease
the nominal gap size.

The values of the current across the junction at the energies of the CTP and
CTP’ resonances, while retracting the clusters and the neck is getting thinner,
are plotted respectively in blue and yellow. The current related to the CTP
resonance decreases monotonously as we elongate the system. As commented
above, its evolution is characterized by abrupt jumps whenever the neck suffers
a plastic deformation. The current eventually reaches a plateau associated with
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the formation of a well-defined mono-atomic neck. Interestingly, once the mono-
atomic neck is formed, a further neck stretching does not affect considerably
the current. This can be expected since the conductance of such small necks
mostly depends on the cross-section, which is fixed for the mono-atomic wire. It
is interesting to mention that for the low energy CTP mode, it was possible to
define the conductance of the mono-atomic neck as the ratio of the current and the
voltage drop across the wire. The modulus of the optical conductance (which is a
complex number now) computed in this way at the CTP frequency is ∼ 0.65 G0,
close to the expected value for a mono-atomic sodium wire at low frequency, G0.
In this case it was possible to define the conductance without ambiguity since the
potential drop is confined to the gap region, with the electrostatic potential flat
inside the clusters. For larger cross-sections of the necks and/or higher energies
of the mode, this condition is not fulfilled and the definition of the conductance
is hampered by the ambiguity of determination of the potential difference. The
current associated with the CTP’ mode follows the same trends than that of the
CTP, although it shows a less pronounced dependence on the overall elongation of
the system. Obviously, once the clusters separate the current becomes negligible.

The arrows in Figure 4.4.4 indicate the position of the jumps shown in Figure
4.4.1 (a). Except for the last jump at 29.3 Å, the other two jumps observed
in the polarizability (Figure 4.4.1) and in the total energy (Figure 4.2.1) show a
clearly correlated sudden change in the current. This points towards a remarkable
effect of a few atoms (or even a single atom), whose motion influences the overall
optical response of the dimer (containing 760 atoms in our case). This observation
can be of utmost importance in the control and manipulation of optical signal
in subnanometric junctions which are clearly affected by this type of physical
processes at the atomic scale.

To establish a more direct connection between the computed current as a
function of the gap separation within the junction and the well-known quanti-
zation of transport in metal nanocontacts, in the inset panel of Figure 4.4.4 we
show the current for the CTP while retracting (left axis of the graph) plotted in
relationship with the neck cross-section (right axis of the graph).

The neck formation during the retracting process opens the question of how
to measure the neck cross-section. In particular, it is not obvious how to compare
the cross-sections of necks with similar structures. Here we decided to use the
distribution of the ground-state electron density as means of measuring the neck
cross-section for an arbitrary structure. The density is computed in an (x, y)
plane passing through the middle of the junction and the neck cross-section Acs
is obtained as the area where the electron density is larger than a given threshold
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Figure 4.4.5: The neck section is calculated by analyzing the electron density in a (x , y) plane
cutting the center of the neck. The right panel shows the 2D electron density distribution in that
plane (blue dashed line). The red solid line represent the isocontour corresponding to a 0.00169 e/Å3

threshold density. The cross-section is defined as the area of the region limited by such isocontour.
We can clearly see that the neck cross-section is formed in this case by three Na atoms.

value ρth (see Figure 4.4.5). In other words, we use the integral

Acs =
´ ´

dxdy f(r)
where f(r) = 1 if |ρ(r)| > ρth, (4.5)
and f(r) = 0 if |ρ(r)| < ρth.

The value of ρth is arbitrary and was chosen here so that the radius of an isolated
Na atom is 2.88 Å, a reasonable value if we compare to Na bulk density (charac-
terized by Wigner-Seitz radius rs ∼2.12 Å) and we take into account the spillage
of charge towards vacuum in a finite object. In any case, the specific value of
the cross-section assigned to a particular neck structure is irrelevant (as far as
reasonable), the importance of this method is the ability to continuously monitor
the cross-section change as the structure evolves.

As can be seen in Figure 4.4.4, there is an almost perfect correlation between
the changes in the current and the evolution of the neck cross-section. Such cor-
relation has been already well-established in the case of low-frequency driving-
fields being applied to the necks. It has been observed in the formation of metal
nanocontacts in Scanning Tunneling Microscopy (STM) and break-junctions ex-
periments, and corroborated by some calculations [158]. Our Figure 4.4.4 goes
one step beyond, establishing such correlation at optical frequencies. With this
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additional piece of information, we can now summarize the results described in
this section by unambiguously establishing the following cause-effect relation-
ships: plastic deformation of the neck during elongation → cross-section reduc-
tion → abrupt drop of the current → decrease of the intensity of the CTP mode.
This process is sometimes accompanied by small shifts of the position of the res-
onance peak. Finally, as mentioned above, more disordered structures translate
into broader and dimmer CTP resonances.

4.5 Conclusions
In summary, we have shown how atomic-scale structural reorganizations are cru-
cial to determine the optical properties of plasmonic cavities. Besides the im-
portance of jump-to-contact events, that can almost completely eliminate any
signature of the plasmonic tunneling regime, the effects are particularly dramatic
when a metal nanocontact is formed across the cavity. This is due to the strong
dependence of the plasmonic response of the system on the quantized current
flowing through the connecting neck.

The mechanical response of atom-sized necks is characterized by sudden re-
arrangements of the atomic structure, which often involve just a few atoms in
the thinner part of the contact. Since the electron transport through thin metal
nanocontacts is quantized, the corresponding changes of the current flowing across
the junction are necessarily discontinuous. Our calculations demonstrate that this
common observation under small applied dc biases can be extrapolated to the
optical frequencies of the plasmon resonances of the cavity, at least for the short
ballistic contacts considered here. These jumps in the current translate onto
abrupt changes in the plasmonic response of the system. Thus, the discontinuous
evolution of the spectral position, width and intensity of the CTP mode observed
in our simulations is a direct consequence of the transport quantization in the
connecting neck.

The correlation is clearly demonstrated, showing that remarkably, optics fol-
lows the atoms. This is absolutely important in the design of subnanometric-scale
optical modulators that rely on slight changes of the optical response against tiny
configurational modifications. In our case we have analyzed relatively small icosa-
hedral sodium clusters, however, we expect to find a similar behavior for other
materials suitable for electronic applications, such as gold.

The effect of a single atom in the optical properties of a nanoscopic object
as the one reported here, which can be probably extended to somewhat larger
objects, has important consequences in optical engineering, molecular electronics,
and photochemistry, where the optical response can now be tailored by a few
atoms.
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Chapter 5

Size Dispersion of the
Plasmon Frequency in
Metallic Clusters

An anomalous behavior of the plasmonic frequencies in the simple metal clus-
ters has been attracting the attention of experimental and theoretical physicists
for several decades. The red-shift of the plasmonic frequency as the size of the
clusters diminishes is opposite to the expected size dispersion of the electronic
properties. Plasmons in noble metal and semi-conductors blue-shift with smaller
cluster size. In this chapter, we present large-scale ab initio atomistic calculations
and characterization of the plasmonic resonances in sodium and silver clusters up
to more than 5000 atoms. These unprecedentedly large calculations were realized
using modest computational resources (32 CPUs, 512GB of RAM). The calcula-
tions became possible after the improvements of the iterative TDDFT algorithm
which were described in section 2.3.2. The improvements of the algorithm were
implemented during this work, and are one of the main results of this thesis. Our
calculations reproduce the opposite plasmon dispersion versus size of sodium and
silver nanoparticles, and reveal that the observed behaviors stems from the com-
petition between the effects of quantum confinement and the material-dependent
screening of the electron-electron interaction.

5.1 Experimental Evidence and Classical Picture
The interest in metal clusters is caused by their numerous applications such as
sensors construction [185], enhanced spectroscopies [186], photovoltaics [187] and
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medicine [188]. Driven by these prospective applications, a vast number of exper-
imental [189–191] and theoretical [115, 192–194] studies have been performed to
understand the dependence of the optical absorption spectra on material, shape
and size of metal particles.
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Figure 5.1.1: Experimental data on the frequency of maximal absorption for silver- (1,2,3, blue)
and sodium (4,5,6,red) clusters. The data originates from: 1 – Ref. [189]; 2 – Ref. [190];
3 – Ref. [191]; 4 – Ref. [195]; 5 – Ref. [196]. 6 – Ref. [197];

Experimentalists found that the frequency of maximal absorption disperses
linearly with the inverse characteristic size R−1 for both simple metal and noble
metal clusters. However, the spectrum blue-shifts for noble metals (Cu, Au,
Ag) [190, 193, 198] and red-shifts for simple metals (Li, Na, K, Al) [193, 197,
199, 200], when decreasing the cluster size, for particles much smaller than the
wavelength of the exciting light. This size dispersion of the plasmon frequency
can be seen in Figure 5.1.1, in which we collected experimental data for sodium
and silver clusters.

To address the observed size dispersion from the theoretical point of view, one
can resort to classical models within electrodynamics of continuous media [193],
two of which [197] are summarized below. According to electrodynamics of con-
tinuous media, the optical spectra are determined by matching conditions for the
potentials and fields at the cluster surface giving rise to the notion of the surface
plasmon (SP). For a spherical particle with sharp boundaries, the frequency of
dipolar SP is proportional to the bulk plasmon frequency ωsp = ωp/

√
3 (if a sim-

ple Drude model of dielectric function is assumed) and does not depend on the
size of the particle R. (I) Because the bulk plasmon frequency ωp is proportional
to the electron density ωp =

√
n, one could explain the size dispersion of the SP

frequency ωsp = ωsp(R) by the spill-out of electron density beyond the limits of
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the sharp classical sphere [201]. The spill-out of the conduction electrons leads to
a more diluted electronic density ñ, which can be described by a size-independent
increase dg of the radius of an effective sphere R̃ = R+ dg. In principle, one can
assume that this gives rise to a reduction of the average density of conduction
electrons in the system that results in a dispersion law

ωsp = ωp√
2 + εb

(
1− 3

2
dg
R

)
, (5.1)

(to the first order in dg
R ), where the effect of screening due to the presence of

bound electrons is accounted via a dielectric function εb. The simplicity of this
model makes it very appealing. However, in a metal particle, one can only expect
deviations from the charge neutrality condition right at the surface. This is a
problem for the rationale behind this simple argument that is based on the scaling
of the bulk plasmon. (II) Alternatively, a similar expression for the SP frequency

ωsp = ωp√
2 + εb

(
1 + 3

(2 + εb)
di
R

)
, (5.2)

was derived within a formalism of the size-dependent dielectric functions by Apell
et al. [115, 192, 193]. The Apell’s parameter di is related to the distribution of
the induced density δn(r;ωsp), rather than to the ground-state density invoked
in explanation (I). Both classical models (I) and (II) imply a sign reversal of
their respective parameters dg or di in order to explain the size dispersion of
SP frequency in simple metals versus noble metals. The validity of classical
models is questionable for clusters containing several dozens of atoms, where
quantum effects are expected to be determinant. In the present chapter, we
analyze in detail the scaling of the surface plasmon resonance with size for silver
and sodium particles using ab initio calculations. For this purpose, we analyze a
realistic model of both materials, with access to the microscopic distribution of
the induced electron density and where the screening of conduction and bound
electrons (4d shell in Ag) is automatically included.

5.2 Clusters Structures and Ground-State Cal-
culations Details

For the sake of a consistent comparison, we assume an icosahedral geometry [202,
203] as represented in Figure 5.2.1 for the Ag3871 cluster, which is known to be a
very stable structural motif for small metal clusters [204]. The initial geometries
were generated using the Atomic Simulation Environment (ASE) [19]. In order
to get the optimal structure without relaxing the initial geometries (that would
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be too much time consuming for the large clusters), we determined an optimal
inter-atomic distance L to generate the ideal clusters geometries as close to the
relaxed-cluster geometries as possible. The optimal inter-atomic distance L was
determined individually for each material (sodium and silver). In the first step,
we optimized the geometry of the Ag147 cluster using the conjugate-gradient al-
gorithm and forces from the ab initio DFT. Using the optimized geometry, we
found an effective inter-atomic distance (L0 = 5.620 Bohr) providing the same
distance between extremal atoms in the ideal and relaxed geometries. We com-
puted the optical polarizability of the relaxed cluster to be used as the reference.
In the second step, we created a series of ideal geometries of Ag147 cluster by
varying the inter-atomic distance L around the optimal value L0. Comparing
the corresponding series of optical polarizability spectra we confirmed the best
match with the relaxed reference is for the polarizability calculated with the
inter-atomic distance L0 determined from the extremal-atoms distance in the
first step. The procedure was repeated for the sodium cluster Na147. The opti-
mal inter-atomic distance for sodium is L0 = 7.095 Bohr. The obtained effective
bond-length were used to generate the idealized geometries of the other cluster
sizes. The ideal geometries were used in the TDDFT calculations of the op-
tical polarizability. All the optical polarizability calculations done in this work
(except the analysis in section 5.3.3) were done with these inter-atomic distances.

Figure 5.2.1: Silver cluster containing 3871
atoms (ghost atoms are not shown) present-
ing the icosahedral geometry we used in this
work.

We checked additionally that the devia-
tion of the SP of the unrelaxed structures
compared to the relaxed geometry for the
larger clusters (up to the Ag1415) is rather
small (few meV). The electronic structure
calculations of the Na and Ag clusters were
performed using standard DFT as imple-
mented in the SIESTA code [1, 2]. The
resulting Kohn-Sham orbitals and energies
were used as an input for the TDDFT cal-
culations of the optical response using the
iterative scheme described in section 2.3.

We used the GGA by Wu-Cohen
(WC) [36] for Ag clusters and by Perdew,
Burke and Ernzerhof (PBE) [35] for
Na clusters, norm-conserving pseudo-
potentials to effectively account for the
removed core electrons [122], and a DZP
basis of NAOs generated using an energy

shift of 100 meV [52]. The fineness of the real-space grid used to compute the
Hartree and exchange-correlation contributions to the energy and Hamiltonian
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corresponds to a plane-wave cut-off [2] of 250 Ry for both elements. In order
to get a better dispersion trend for large sodium clusters, it is important to add
a layer of ghost atoms [44, 205]. This layer of ghost atoms added in the calcu-
lations corresponds to a fictitious external layer of atoms. This allows a better
description of the smooth decay of the electron density into the vacuum. For the
sake of consistency, we added as well a layer of ghost atoms for silver clusters.

5.3 Size Dispersion from Atomistic Ab initio The-
ory

Quantummechanical descriptions of plasmonic resonances were repeatedly demon-
strated in the past. There have been several calculations within the jellium
model [201, 206, 207] and later also with fully atomistic calculations [208–210].
For sodium clusters, a standard jellium model can reproduce the experimental
trend for the size dispersion of the SP frequency, while for silver it is necessary
to add a polarizable background [207]. The atomistic calculations of plasmonic
resonances were done both with linear-response and wave-packet propagation
methods [206, 211].

In this section, we analyze the size dispersion trends in silver and sodium
clusters from an ab initio point of view, using atomistic and jellium models. For
both models, we used the framework of Kohn-Sham TDDFT as described in the
chapter 2. The atomistic calculations are done with the improved version of the
linear-response method described in section 2.3 and Refs. [4, 44] that allows us
to treat particles of unprecedented sizes [212].

For comparison purposes, jellium calculations were performed using the wave
packet propagation methods described in Ref. [213]. The Wigner-Seitz radii of
rs = 4.0 and 3.02Bohr are used for sodium and silver clusters correspondingly.
The radius of the jellium positive background R+ = rsN

1/3 is chosen according
to the number of atoms N for both materials. For silver clusters, a polarizable
background is added to represent the screening of the electromagnetic field inside
the cluster caused by 4d electrons. The polarizable background occupies a sphere
of the radius Rpb = R+ − 2.4Bohr within which a dielectric constant εb = 4.58
is assumed. We used LDA by Gunnarsson-Lundqvist [37] in the jellium model.

The maximum of the dipole polarizability (eqn. 2.91) of the metal cluster
arises due to the SP resonance [44] and we determine the SP frequencies ωsp as
the location of these maxima as function of the cluster size.

The polarizability α(ω) for a set of sodium and silver clusters is gathered in
Figure 5.3.1. We can easily anticipate the opposite size dependence of the SP
frequency ωsp in sodium and silver. In Figure 5.3.2, we show the dependence of
the SP frequency ωsp on the cluster size both for the atomistic icosahedral clusters

99



CHAPTER 5. SIZE DISPERSION OF THE PLASMON FREQUENCY IN
METALLIC CLUSTERS

2 3 4 5
ω (eV)

100

200

α
(ω

)/
N

a) Na

55

561

5083

2 3 4 5
ω (eV)

0

20

40

60

H
ol

a

b) Ag

55

561

5083

Figure 5.3.1: Optical polarizability per atom from our ab initio atomistic calculation for sodium
(panel a) and silver (panel b) clusters. Clusters contain 55 (solid line), 561 (dashed line) and 5083
(dotted line) atoms.
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Figure 5.3.2: Theoretical results on the size dispersion of sodium and silver clusters. The SP
frequency ωsp dispersion for silver (blue) and sodium (red) is shown for ab initio atomistic (dots)
and jellium (triangles) simulations. Cluster size is taken as the radius of the positive background
R+ in jellium calculations, and as the radius of a sphere of the same volume as that of each our
cluster. The volume of each cluster is computed as the volume of one icosahedron with an edge
length equal to the distance between two atoms defining the cluster’s edge plus one interatomic
distance between nearest-neighbor atoms.

and jellium spherical clusters. Comparing the Figures 5.1.1 and 5.3.2, we see that
the theoretical results follow the experimentally observed trends despite the usage
of simple semi-local density functionals. Therefore, we obtain a computationally
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affordable, atomistic quantum mechanical model for a further analysis.

5.3.1 Electron-Electron Interaction and the SP Frequency
In a first analysis, we characterize the size dispersion of the maximum of the
optical response as a function of the strength of the electron-electron (e-e) inter-
action between the electrons building up the induced density. In order to do so,
we modify the TDDFT interaction kernel K, described in section 2.3.3 with a
coupling constant λ

k = λ(fH + fxc), (5.3)

where the Hartree kernel fH = |r − r′|−1 is the bare Coulomb interaction and
the exchange-correlation kernel fxc[n] gives the modification of the exchange-
correlation potential in response to a density change as explained in chapter 2.
We denote the position of the λ-dependent polarizability maximum as ωsp(R,λ).
Notice that for λ = 1 we have the plasmon resonances presented in Figure 5.3.2.
In the limit λ = 0, we are mainly analyzing the effect of quantum confinement
(QC) on the electron states as a function of the cluster size. The SP frequencies
ωsp(R,λ), are presented in Figure 5.3.3 as a function of the number of atoms N
for sodium and silver clusters, on panels (a) and (b) correspondingly.

Without e-e interaction, i.e. with a zero coupling constant λ = 0, the size
dispersion in sodium and silver clusters becomes similar: the optical absorption
maximum blue-shifts as we move to smaller cluster sizes, as we expected from
QC effects (see Figure 5.3.3). Notice that this size dispersion is opposite to that
observed in reality for Na, but qualitatively corresponds to that of Ag. In the limit
N → ∞, the SP frequency strives to a small non-zero value (∼ 0.1 eV for both
elements) which is below the broadening constant 0.15 eV used in the calculations.
However, already a small e-e interaction significantly modifies the SP frequencies
in sodium [see Figure 5.3.3 (a)]. A small coupling constant λ = 0.2 is strongly
blue-shifting the SP frequencies, albeit still not reversing the size dispersion trend.
However, a larger coupling constant λ = 0.6 results in a qualitatively correct,
sodium-like behavior of the size dispersion trend. An artificially stronger e-e
interaction λ = 2 makes the slope of the dispersion only steeper. Moreover, there
is almost no change caused by explicit 2p electrons, which we demonstrated
by including them into a semi-core shell and using a pseudo-potential modified
accordingly.

In contrast to sodium, even the full e-e interaction λ = 1 or an artificially-
increased e-e interaction λ = 2 makes the slope of the size dispersion in silver
clusters less steep, but does not reverse the trend caused by QC [see Figure 5.3.3
(b)]. This comparison leads to the conclusion that QC is the determinant factor
behind the size dispersion observed in silver.
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Figure 5.3.3: Size dispersion of the SP frequency as a function of competing factors from our
atomistic TDDFT. Notice the different scales along vertical axis in this Figure and Figures 5.1.1
and 5.3.2. For sodium (panel a) and silver (panel b), we show the size dispersion as the function
of e-e coupling strength, represented by a coupling constant λ. We show also the trend taking
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constant λ = 1.
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Figure 5.3.4: Variation of the parameter di calculated with equation (5.7) using the data from
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Coulomb interaction.
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Using equation 5.2, we can easily extract the Apell’s parameter di from the
slope of the lines in Figure 5.3.3. Since the radius R of the icosahedral particles
is not well defined, we can express eqn. (5.2) as function of the number of atoms
N that we perfectly know noting that R = rsN

1/3

ωsp(N−1/3) = ωp√
2 + εb

− 3ωp
rs (2 + εb)3/2 diN

−1/3, (5.4)

then

ωsp = aN−1/3 + b, (5.5)

where

a = − 3ωp
rs (2 + εb)3/2 di, b = ωp√

2 + εb
, (5.6)

di is then easily obtained

di = −2 + εb
3

a

b
rs. (5.7)

The extracted values of di (using εb = 1.0 and εb = 4.58 for Na and Ag
respectively) are represented in Figure 5.3.4 as function of the coupling constant
λ. A large value of di indicates a strong energy shift with the size, if di < 0, then
the energy of the surface plasmon will be red shifted when N decreases, while it
will be blue shifted if di > 0.

For sodium, we clearly see, that for weak e-e interaction λ < 0.5, the surface
plasmon frequency blue-shifts for smaller clusters as one would expect from QC.
However, when the interaction is stronger (λ > 0.5), the energy is red-shifted
as the size of cluster decreases as it is actually observed experimentally. The
variation of di as function of λ is nearly linear (except for λ� 1). In contrast to
sodium, silver does not reverse trend when λ increases (blue dots in Figure 5.3.4).
In fact di reaches a minimum value for λ = 0.6, and then increases again. The
minima for silver can be explained by the screening caused by 4d electrons which
is modified by the coupling constant λ. When the e-e interaction increases, the
strength of the inner dipoles created by the d electrons increases, opposing a
stronger force to the surface dipole created by the 5s electrons and therefore
diminishing the effect of the bare Coulomb interaction.

The reason for the very different effect of the Coulomb interaction in the
response of Na clusters can be immediately seen in the maps of the induced
density δn(r;ωsp). Figure 5.3.5 shows the induced density in a plane bisecting
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the Na2869 and Ag2869 clusters [panels (a) and (b) correspondingly]. In the case of
sodium, the induced density is predominantly concentrated on the cluster surface,
while there is a substantial amount of induced density located in the interior of
the silver cluster. The induced density in the interior of the silver cluster is mostly
caused by the strongly bound 4d electrons. The resonance frequency of these 4d
electrons is higher than the SP frequency and, for this reason, their polarization
appears with opposite phase with respect to that of the conduction electrons,
leading to the screening of the Coulomb interaction among conduction electrons.

To quantify the effect of 4d electrons in the size dispersion, we performed yet
another set of calculations switching off the contribution of 4d electrons. For
this purpose, we tried two methods. In the first method, we excluded the 4d
electrons from the valence shell and treated them as core electrons at the level of
pseudo-potential, i.e. fully removing them from the DFT/TDDFT calculations.
The corresponding size dispersions of the SP frequency are shown in Figure 5.3.3
with blue circles on panel (b), while the corresponding polarizabilities are shown
in Figure 5.3.6, panel (a). In the second method, we removed the 4d electrons at
the TDDFT level. For this purpose, before performing the TDDFT iterations, we
excluded the KS eigenstates with a predominant 4d character in the formation of
the non-interacting response functions χ0. The selection of KS states was made
according to the partial density of states. The corresponding size dispersions of
the SP frequency are shown in Figure 5.3.3, with dark-blue diamonds on the panel
(b), while the corresponding polarizabilities are shown in Figure 5.3.6, panel (b).
In both cases the energy of the SP resonance increases substantially with respect
to the calculations including the 4d electrons. With the first method, the SP fre-
quency shift is slightly red-shifted, giving the opposite trend of “normal” silver,
as shown by the blue square of Figure 5.3.4. In contrast to the first method, the
second method of eliminating the 4d states leaves the dispersion trend qualita-
tively the same as for the “true” silver (see blue triangle in Figure 5.3.4). The
polarizability of the silver clusters with the removed 4d electrons at TDDFT
level [Figure 5.3.6, panel (b)] exhibits the slight decrease of the SP frequency for
small clusters, while for larger clusters the SP resonance becomes split with the
low-frequency resonance strongly red-shifted. The strong mode splitting ham-
pers the determination of the size-dispersion trend. Previously, we determined
the SP frequency as the frequency of the most intense peak in the polarizability.
Continuing to do so for the polarizability in Figure 5.3.6, we observe a slightly
weaker red shift of the SP frequency which does not reverse the trend of the real
silver clusters.
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Figure 5.3.5: Distribution of the imaginary part of induced density change δn(r;ωsp) for (a) sodium
and (b) silver clusters containing 2869 atoms (10 atomic layers).
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Figure 5.3.6: Imaginary part of the polarizability along the xx axis for silver clusters without d
electrons. Panel (a) shows the polarizability when the 4d electrons have been excluded from the
pseudo-potential (at the DFT level), while in (b) the eigenfunctions with larger contributions from
4d orbitals have been excluded from the response functions χ0 (i.e, only at the TDDFT level).

5.3.2 Centroid of Charge at the Cluster Surface

As we mentionned in section 5.1, we can describe phenomenologically the size
dispersion of the SP frequency ωsp(R) within a formalizm of size-dependent di-
electric functions [115] using a size-independent parameter di (see eqn. 5.2). The

105



CHAPTER 5. SIZE DISPERSION OF THE PLASMON FREQUENCY IN
METALLIC CLUSTERS

sign of the parameter di defines the trend of the frequency shift: if di < 0, the
SP frequency ωsp is red-shifted when R decreases (as shown by the red lines of
Figure 5.3.2), and vice versa. Apell et al. [115] have shown that the parameter
di is proportional to the centroid C of the distribution of induced charge at the
surface

di = R− C, where C = <
´

rδn(r;ωsp)d3r´
δn(r;ωsp)d3r

. (5.8)

Therefore, using the spatial distribution of the induced density calculated from
our ab initio calculations (for example the colormaps show in Figure 5.3.5), we
could calculate the value of di. Since the radius of the icosahedral particles is not
well defined, it is easier to use the number of atoms, inserting the Wigner-Seitz
radius of the cluster R = rsN

1/3 in the last equation, C = rsN
1/3 − di.

radius60.0
radius70.0
radius80.0
radius90.0

a) b)

Figure 5.3.7: The integration volume and the diameter of the cylinders over the facet used to
compute the centroid of charge C out of the atomically resolved induced density δn(r;ωsp). Panel
(a) shows the spatial distribution of the imaginary part of the density change for the Na923 cluster.
The red cylinder represents the integration volume. Blue and brownish iso-surfaces stand for opposite
signs of the induced density. Panel (b) shows the position of the atoms on the triangular facet for
the Na1415 (red dots). The 4 circles represent the cylinders used for the integration.

Because the number of atomsN is the parameter in our atomistic calculations,
we can linearly fit the calculated centroid of charge C and extract the effective
Wigner-Seitz radius rs and the parameter di simultaneously. The integrations
for the calculation of the centroid of charge C should be performed in a suitable
volume to avoid the edges and tips of the icosahedral clusters. Because, the
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surface of the icosahedral clusters consists of triangular facets, we chose to apply
the external field perpendicular to a given facet. We then integrate the induced
density inside a cylinder parallel to the external field and with its axis passing
through the center of the facet. We used cylinder radii between 60% and 90% of
the radius of the circle inscribed in the triangular facet as shown in Figure 5.3.7
(b) to avoid issues with the facet boundaries and limit any edge effects from
modifying the results.

species
kernel strength λ 0.0 0.2 0.6 1.0 2.0

Na di (Bohr)
Polarizability 115.70 2.0 −0.52 −1.86 −4.38

Centroid – 3.86 1.38 −1.41 –
Ag di (Bohr) Polarizability 398.30 7.67 2.89 6.24 5.50

Table 5.1: The dispersion parameter di obtained both, from the scaling of the computed plasmon
resonances polarizabilities and, in the case of sodium, from the centroid of the induced charge
density for λ = 0.2, 0.6, 1.0.

In the direction perpendicular to the facet, the integration volume defined
by the cylinder starts from the center of the cluster and extends beyond the
spatial support of the basis functions [Figure 5.3.7 (a)]. Panels (a) and (b) of
Figure 5.3.8 show the real and imaginary part of the induced density δn(r;ω)
along the cylinder axis for the systems of interest (for clusters composed of 1415
atoms). Panels (c-f) of the same Figure represent the density change centroid
C as function of the number of atoms N1/3. Panel (c) shows data for sodium
clusters. As one can see, there is a clear linear relationship between the centroid
of charge and the number of atoms. This indicates that, as we have seen already
in the plot of Figure 5.3.5, the induced density of Na is centered at the surface
of the clusters. It is then easy to extract the Wigner-Seitz radius rs (from the
slope of the line) and the di parameter (value of the centroid at N = 0). We
calculated 3.75 Bohr for rs and −1.41 Bohr for di. These values are comparable
to those that we got from the dispersion of the SP frequency in Figure 5.3.2
(di = −1.86 Bohr). As one can see on panel (d) of Figure 5.3.8, the case of silver
is more complex. The value of the centroid C are strongly dependent on the
radius of the cylinder. The centroids C are scattered and no linear behavior can
be extracted. Therefore, no meaningful values for rs and di could be extracted
via the centroid of charge for silver clusters with any diameters of the integration
cylinders. The unsteady values of the centroid C are caused by the more complex
spatial distribution of the induced density in silver clusters. In particular, the
induced charge density δn(r;ωsp) extends deep inside the bulk of the cluster. This
is mainly due to the presence of the bound 4d electrons that polarize along the
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Figure 5.3.8: Analysis of ab initio induced density δn(r ;ωsp). Panels (a) and (b) show the values of
the real and imaginary part, correspondingly, of an average induced density along the axis n̂ of the
integration domain as function of the position in the cluster (normalized to the cluster “surface”).
Panels (c-f) show the linear relation between the centroid of charge and the number of atoms
(eqn. 5.8) for different cylinder radii for the following systems, sodium, silver, sodium with 20% of
kernel interaction and sodium with 60% of the kernel interaction. As can be seen clearly from the
results in panel (d), for Ag is not possible to define a meaningful centroid of charge because the
induced charge extends deep inside the bulk of the cluster

whole structure screening the field created by the accumulations of conduction
electrons at the cluster surfaces. We extracted as well the trend of the frequency
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shift of sodium with weaker electron-electron interactions (Figure 5.3.3). Panels
(e) and (f) of Figure 5.3.8 show the corresponding change of the centroid for
λ = 0.2 and λ = 0.6. In these cases the sign of the extracted di is opposite to the
fully-interacting case [λ = 1.0, see panel (a) in Figure 5.3.8]. The values of the
di parameter are collected in table 5.1. The values of the di parameter extracted
from the SP dispersion or from the centroid of charge C behave similarly with
the charge of the coupling constant λ. For instance, the di parameter is positive
for the small value of the e-e interaction λ = 0.2 and becomes negative at the full
coupling λ = 1 for both methods of calculation. However, at the intermediate
coupling strength, the sign of the di parameters differ depending on the method
of calculation.

From the analysis presented here we can conclude that, as pointed out by Apell
et al. [115, 192] and other authors, there is some levels of correlation between the
position of the centroid of induced charge relative to the surface and the sign of
the dispersion of the SP resonance with size. However, we could only establish
such relation for sodium and artificial variants of sodium where the strength of the
Coulomb interaction has been modified. In the case of Ag, the complexity of the
induced charge distribution precludes a meaningful definition of the centroid of
charge. The main difficulty is related to the presence of bound electrons (4d shell),
which are not free to move across the cluster, in addition to conduction electrons
similar to those present in simple metal clusters. The screening charge associated
with 4d electrons extends deep into the bulk of the cluster and, as a consequence,
the centroid of charge is not anymore solely linked to the surface position. For
Ag we tried to make a partition into “bound-electron” and “conduction-electron”
contributions to the induced charge in order to estimate the centroid of induced
charge of the free-carriers using only the last component. However, this turned
out to be rather cumbersome. Therefore, we are forced to conclude that the
centroid of induced charge density is an ill-defined concept for silver nanoparticles.

5.3.3 Impact of the Average Inter-Atomic Distance

To get additional understanding of the SP dispersion trend within our atomistic
models, we tested the effect of the inter-atomic distance L on the SP dispersion.
In Figures 5.3.9 and 5.3.10, we gathered the polarizability curves and the SP
dispersion trends for sodium and silver clusters correspondingly. The inter-atomic
distance L plays a role in the SP dispersion trend, but it does not reverse the
trend. We used three inter-atomic distance L, 5.62, 7.095 and 8.2 Bohr and
computed the SP dispersion for the series of small clusters 55 ≤ N ≤ 923, where
N is the number of atoms. The value L = 5.62 Bohr is matching the optimal
inter-atomic distance of silver, while the value L = 7.095 Bohr is matching the
optimal inter-atomic distance for sodium. The value L = 8.2 Bohr corresponds
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Figure 5.3.9: Impact of the inter-atomic distance L on the SP frequency dispersion trend for sodium.
Top row panels show the optical polarizabilities, while the bottom panel shows the SP frequencies
as function of the number of atoms N−1/3 in the cluster.
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Figure 5.3.10: Impact of the inter-atomic distance L on the SP frequency dispersion trend for silver.
Top row panels show the optical polarizabilities, while the bottom panel shows the SP frequencies
as function of the number of atoms N−1/3 in the cluster.
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to the extreme dilution of the electron density. For this inter-atomic distance,
the SP frequency dispersion is flat for both materials. When the clusters get
compressed (L = 7.095 and 5.62 Bohr), the SP frequency dispersion becomes
visible. However, there is no sign-change in the dispersion trend neither for silver
nor for sodium clusters.

5.4 Conclusions
Thanks to improvements in our iterative TDDFT code that have been imple-
mented during this thesis, we were able to calculate the polarizability and the
induced charge density distribution for metallic clusters of sizes ranging from a
few atoms up to more than 5000 atoms. The software enhancement allowed us
to study the SP frequency dispersion in such large metallic clusters with atom-
istic ab initio methods for the first time. The calculations presented here prove
that current ab initio TDDFT can be used to successfully describe and gain an
understanding on the plasmonic properties of nanostructures of different chem-
ical compositions. In particular, we have revealed the competition between the
size dispersion determined by quantum confinement and by Coulomb interaction,
the former dominating in Ag due to the d-screening that weakens effective e-e
interactions.

Comparing the pictures provided by the classical and quantum mechanical
theories, we see that most of the classical explanations are based on some surface
models (of the average electron density or of the distribution of the screening
charge at the surface). In our quantum mechanical approach, we explain the
different size dispersion of Na and Ag as a result of the competition between QC
effect and the strength of the Coulomb interaction between conducting electrons.
The Coulomb interaction is weakened by the screening created by the bound 4d
electrons in the case of silver clusters. Our calculations in the non-interacting and
weakly interacting (λ � 1) testify that the crucial effect governing the size dis-
persion is QC. Moreover, the classical microscopic picture of the induced density
clumping at the surface can be confirmed only for sodium clusters.

We think that the detailed input provided by ab initio calculations will con-
tribute to increase our understanding of the main ingredients determining the
energy position and other characteristic of the surface plasmon resonances, guid-
ing the design of plasmonic particles by controlling their composition or their
coating. The methods we used in this work are sufficiently general and can be
applied to both metallic and semi-conductor clusters with arbitrary composition.
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Chapter 6

Valence Electron Energy
Loss Spectroscopy: an
Ab Initio Approach

The application of electron microscopy for the characterization of nanoparticles
has greatly improved our knowledge of the objects at the nanoscale. The inter-
pretation of the images generated in electron microscopes involves the theory of
condensed matter systems which is based on the quantum mechanical descrip-
tion of the electrons inside the material. An atomistic ab initio theory is thus a
viable, and sometimes necessary, framework for the correct modeling of electron
energy loss spectroscopy (EELS). However, because of its high computational
complexity, ab initio theory is difficult to apply in many experimentally relevant
situations involving nanoobjects composed of hundreds or thousands of atoms.
In the previous chapters, we studied metal clusters under the perturbation of
a spatially homogeneous external electric field. In this chapter, the perturba-
tion will be an electric field generated by an uniformly moving electric charge.
The perturbation caused by the uniformly moving electric charge is an excellent
model of the electromagnetic field created by the fast probing electrons in an
electron microscope. Here, we realize the perturbation within the linear-response
TDDFT in order to model the spatially resolved EELS in finite systems. The
realized theory of EELS was summarized in section 2.3.6 of this thesis. In this
chapter, we applied the theory to a number of experimentally relevant systems.
The computed EELS match well the experimentally measured spectra. For in-
stance, the computed EELS of carbon and boron nitride nanotubes and silver
clusters show an excellent agreement with the experimental data. Further calcu-
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lations of silver clusters and silver cluster dimers permitted to analyze the role of
the plasmonic response in EELS within an atomistic ab initio approach for finite
objects of unprecedented size.

6.1 Motivation
The presence of geometrical features in nanomaterials with dimensions well below
the wavelength of optical light strongly limits the relevance of light spectroscopy
to study many of their properties. The limited spatial resolution of optical spec-
troscopy fostered the elaboration of new spectroscopic techniques. One of the
alternatives to light spectroscopy is to use electrons instead of photons as done
in EELS. Since the wavelength of the electrons can be made much shorter than
the one of optical light, EELS leads to subnanometer spatial resolution [214–
216] and yet with a very good energy resolution [73, 74]. Furthermore, using
sufficiently energetic electron beams it is possible to create high-energy excita-
tions involving core-electrons at individual atoms, thus allowing the analysis of
the chemical composition of the sample with high spatial resolution [217, 218].
Because of these exceptional characteristics, EELS is revealed to be a powerful
tool for the characterization of nanoparticles such as carbon and boron nitride
nanotubes [219–222], structure determination of biological molecules [223], mea-
surement of specimen thickness [217, 224–226], or in the study of the localized
surface plasmon in noble metals [227–229]. Plasmonic features are particularly
pronounced in silver, making it one of the most used material for nanophotonics
applications [13, 230, 231]. Thus, silver clusters and cluster dimers have been
widely studied by electron microscopy [232–237]

The range of the energy-loss spectrum up to 50 eV, also called low energy loss,
is particularly attractive for nanophotonics applications [238]. In many materials,
the main loss resonances in this range correspond to collective oscillations of the
conduction or valence electrons, giving rise to the notion of plasmon. In other
materials, interband transitions appear directly in the low loss spectrum as a
series of peaks or fine structure superimposed on the plasmon peak. In all cases,
the low loss spectrum is characteristic of the material exposed to the electron
beam and can sometimes be used to identify it. Furthermore, in the low loss
regime, by optimizing specimen preparation and EEL spectra collection time,
it is possible to dramatically reduce the sample damage and thus, achieve non-
destructive measurements characterizing the intrinsic properties of materials in
the spirit of other spectroscopy techniques [234].

The theory describing the excitation of low-energy valence electrons in nanopar-
ticles created by moving charges has been already explored at different levels of
approximation [73–75, 232]. The most widely used method to calculate the re-
sponse of a system perturbed by swift electrons consist in calculating the inverse
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of the dielectric function ε in momentum space [239–241]

ΓEELS(q;ω) = −=
(

1
ε(q;ω)

)
(6.1)

at a given excitation energy ω and momentum transfer q. The dielectric function
ε(q;ω) can be obtained using various models such as classical electromagnetism
theory [147, 242], quantum jellium [243] or quantum atomistic [220, 244–248]. In
this approach, the electron probe is described in momentum space using plane-
wave expansion, which is perfectly valid and appropriate for electrons in vacuum,
i.e., a wide electron beam. However, in order to simulate a specific beam tra-
jectory, the momentum space approach is not the optimal option. A real space
methodology is more appropriate to simulate the response of a microscopic system
to the perturbations caused by the atomically precise positioned electron beams.
Suitable real-space methods to describe energy loss processes have been proposed
using real-time wave-packet propagation techniques. In most cases the probing
projectile, either an electron or an ion, is treated as a particle moving along a
classical trajectory [243, 249, 250]. More scarce are the methods in which both,
probe and target electrons, are treated quantum mechanically using TDDFT and
other similar time-dependent approaches [251]. Real-time propagation applied to
the target’s electrons is, in principle, a universal method to describe electron ex-
citations beyond linear-response. Furthermore, with a suitable implementation,
it can be quite efficient and, for example, it has been proposed as a suitable
alternative to compute optical response in large systems as already mentioned
in chapter 2 and in Refs. [235, 252]. However, one of the main limitations of
such approach is the poor energy resolution, which is typically limited by the
duration of the entire simulation, and the difficulties to correlate the computed
losses with specific resonances and modes of the system. Thus, we found that the
combination of our efficient iterative linear-response scheme with the description
of the probing electrons as moving point charges provides a very efficient way to
describe the EEL spectra of large nanoparticles. In the following, we convinc-
ingly show that the linear-response regime is sufficient to successfully address
most relevant situations in EELS experiments, and to obtain a good qualitative
agreement with experimental results in many cases.

In section 2.3.6, we summarized the equations behind our original real-space
implementation of EELS within the linear-response TDDFT. In this chapter, we
will apply the new method to a number of experimentally relevant nanoscopic
objects. The rest of the chapter is organized as following. In section 6.2, we com-
pare the computed EELS spectra of carbon nanotubes, boron nitride nanotubes
and small silver clusters with experimentally acquired EELS. In section 6.3, we
discuss the EELS of silver clusters and silver cluster dimers in a more detailed
manner, analyzing the spatial distributions of induced densities dependent on sev-
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eral parameters such as the beam positioning, velocity of the probing electrons,
and the geometrical arrangement of the clusters.

6.2 Validation of the Method
With the intention to validate our method, we compare in this section the EELS
signal of three systems obtained with the approach described in the section 2.3.6
to available experimental data. We performed EELS calculations for carbon and
boron nitride nanotubes, as well as silver cluster. The ground-state DFT calcula-
tions were performed using the SIESTA package [1, 2]. A double-ζ polarized basis
set of numerical atomic orbitals generated using an energy shift [2] of 25 meV
was used for the nanotubes, and of 100 meV for the silver cluster. The core elec-
trons were removed by means of Troullier-Martins pseudo-potentials [122]. We
used the Perdew-Burke-Erzenhorf density functional (GGA-PBE) [35] for the
nanotubes and the Wu-Cohen density functional (GGA-WC) [36] for the silver
cluster. The TDDFT calculations were performed using the Local Density Ap-
proximation (LDA) kernel and the probe-electron velocity was fixed at 75 a.u.
(∼ 100 keV) for all calculations.

6.2.1 Carbon Nanotube
Carbon nanotubes are quasi-one-dimensional (1D) objects whose structure is ob-
tained after rolling up one or several graphene sheets to form cylinders of nano-
metric diameter. CNTs possess a number of exceptional properties. Their pe-
culiar electronic structure—metallic versus semiconducting behavior—depends
sensitively on the diameter and chirality of the tube [253]. CNT have been stud-
ied extensively in the low loss regime to characterize their π and σ plasmonic
resonances. Stéphan et al. [219] performed such kind of experiments and they
have made freely available their measured spectra of CNT [254]. One of the
spectra from Stéphan et al. is shown in Figure 6.2.1 by the red line. The ex-
perimental spectrum was obtained by shooting the electrons near the surface of
a single wall CNT of 2.2 nm diameter and of several tens of nm length with an
armchair geometry. The kinetic energy of the probing electrons is 100 keV. The
electron beam follow a trajectory in grazing incidence over the surface of the CNT
and perpendicular to the tube’s axis as shown in the inset of Figure 6.2.1 by the
blue circle together with the tube structure. This particular spectrum was chosen
because of the relatively small diameter of the CNT from which it was obtained.
Nevertheless, the size of the tube is still too large for our calculations, therefore,
we used a CNT of 1 nm diameter, 5 nm length and with an armchair chirality for
a total of 624 atoms. The initial geometry of the CNT was generated with the
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ASE suite [19] and then relaxed with the SIESTA package until the remaining
internal forces were lower than 0.04 eV/Å.

Figure 6.2.1: Comparison of measured and computed EELS for a single-wall carbon nanotube of
small diameter. The calculated spectra were obtained for a SWCNT with a diameter of 1 nm, 5 nm
length. The spectra were obtained for two trajectories, both perpendicular to the tube’s axis. One
crossing the tube at its center (green line) and the second in grazing incidence over the surface
of the CNT (blue line). The experiments (red line) were performed for a SWCNT of 2.2 nm of
diameter and several nm of length and for an external trajectory perpendicular to the tube’s axis
(similar to the blue trajectory in the scheme). In the top right corner is represented the structure
of the tube used for the calculations. In the lower part of the figure, we show the 2D projection of
CNT geometry with the positions of electron beams indicated by the green and blue open dots, the
trajectories pass across the central region of our finite CNTs. The color coding of the dots match
the color coding of the calculated spectra. The energy of the probing electrons was 100 keV in the
experiment and in the calculations.

The π and σ plasmons measured by Stéphan et al. [219] are located around
4.8 and 15.1 eV respectively, with the high frequency σ plasmon presenting a
broader and more intense peak. We computed the EELS spectra for two trajec-
tories, both perpendicular to the tube axis. The first beam trajectory crosses
the tube at its center (blue line) while the second passes near the tube surface
(green line). The position of the beams relative to the tube are represented in
the inset of Figure 6.2.1. The color of the beams matches the one of the spectra.
The frequency of the π plasmon is around 5.1 eV for the two computed beam tra-
jectories, which compares very well with the experimental peak position around
4.8 eV. However, the case of the σ plasmon is more complex. When the electron
crosses the tube at its center, the σ peak is very broad and has its maximum
around 20 eV. For the second trajectory, the resonance is less broad (similar to
the experimental one) and shows a clear peak around 18.75 eV. Nevertheless, in
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both cases, we observe a frequency shift of around 4-5 eV with respect to the
experimental value.

The deviations of the simulation with respect to the experiment have various
origins. The most obvious one is the smaller size used for our calculations that
differs from the experimental one. The tube used for the measurements performed
by Stéphan et al. has a diameter twice bigger and a length one order of magnitude
larger. Furthermore, the quasiparticle spectrum given by the static version of
the functional we utilize here (GGA) is known to have some limitations that are
likely to show up also in the TD-GGA calculations of relatively large objects
like this finite tubes [255, 256]. In the more technical side, the results might be
influenced by the limitations of our DZP basis set of numerical atomic orbitals to
represent excitations of such high energy. Finally, we do not take into account the
substrate present in experimental measurement nor do we account for the effects
of the atomic motion caused by finite temperature. In spite of the problems to
reproduce the losses associated with σ peak, we can see that the π peak is well
represented and the average shape of the spectrum has a reasonable match with
the experimental result.

6.2.2 Boron Nitride Nanotube

Similarly to CNT, the boron nitride nanotubes (BNNTs) are formed by rolling
up sheets of hexagonal boron nitride, another layered material with a structure
closely related to that of graphene. However, the electronic properties of BNNTs
contrast sharply with those of CNTs. They present a more uniform behavior
with a wide band-gap (larger than 4 eV), almost independent of diameter and
chirality [257, 258]. In this work, we use the experimental measurements of the
single wall BNNTs performed by Arenal et al. [221]. The experiments were done
for 20 nm long and 1 nm diameter single-walled tube. The majority (85%) of
the tube sample possess a zigzag chirality [259], but the chirality of the specific
tube used for these measurements was not precised in the text. The electron
beam crosses the tube approximately in its center. The experimental data were
obtained directly from the EELS database [254]. We performed calculations for
a shorter tube (5 nm) but with the same diameter as in the experiment (1 nm)
and armchair geometry. We use the armchair geometry because previous ab initio
molecular dynamics simulations have shown that open tips of BNSWNTs with a
zig-zag configuration are unstable unlike armchair tubes [260]. Furthermore, For
BNNTs, the chirality has little impact on the properties of the tube [257, 258].
Similarly to the CNT calculations, we generated an initial geometry of BNNT
in the ASE suite [19]. The edges of the initial geometry (containing 624 atoms)
were saturated with hydrogen atoms and further relaxed in SIESTA. Figure 6.2.2
shows the qualitative comparison of the experimental data (red line) with the
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EELS spectra obtained from our calculations for two trajectories perpendicular to
the tube axis. One trajectory is crossing the tube at its center (green line) and the
other is passing near the tube surface (blue line). The inset of Figure 6.2.2 shows
the tube geometry along its axis (dark blue dots represent the nitrogen atoms
while the orange dots represent the boron atoms) with the position of the electron
beams (green and blue open dots). The colors of the beam trajectories match
those of the spectra. The comparison of the EELS spectra is rather favorable in

Figure 6.2.2: EELS of BNNT. The experiment is performed for a single-wall BNNT of 1 nm
diameter and 20 nm long, while the calculations are performed for single-wall armchair BNNT of
the same diameter and 5 nm long. The top left corner shows the geometry of the BNNT used for
the calculations. In the lower part of the figure, we show the 2D projection of BNNT geometry with
the positions of electron beams indicated by the green and blue open dots. The color coding of the
dots match the color coding of the calculated spectra. Unfortunately, it is the green curve which
should match best the experimental spectrum (red curve), not the blue as we actually observe. The
energy of the probing electrons was 100 keV in the experiment and in the calculations.

this case. Again the low energy peak is well reproduced, as well as the onset of
the high energy loss, but the width of the high energy feature on the calculations
strongly depends on the trajectory. Surprisingly, although the experimental setup
is supposed to correspond to the beam positioning in the center of the tube, we see
a significant discrepancy between our corresponding EELS (green solid line) and
the these experimental data (red solid line). The discrepancy is clearly visible in
the high-frequency range (19-30 eV) and negligible in the low-frequency range (4-
15 eV). At the same time, there is a stunning agreement between our EELS for the
beam positioning outside the BNNT (blue solid line) and the experimental data in
the whole frequency range (4-30 eV). The controversy remains so far unresolved,
while the common excuses for the theory (spelled out above in section 6.2.1 in the
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case of CNT) still apply in the case of BNNT, the private communication with
experimental group leaves little doubt in their confidence in the correct beam
positioning and its sufficient collimation. Despite the unfortunate controversy in
the high-frequency range, we can clearly identify the main features of the EEL
spectra such as π and σ plasmon resonances. The position of the low-frequency π
plasmon agrees with experimental measurements within 0.2 eV. The shape of the
π plasmon resonance is also in excellent agreement with the experimental data.
Moreover, the relative intensities of π and σ resonances agree well between the
experimental and theoretical data.

The good agreement, at least in the low energy part of the spectra, with
experimental data for the CNT and BNNT is encouraging. In the rest of the
chapter, we apply the linear-response TDDFT to the EELS of the silver clusters
and silver cluster dimers.

6.2.3 Silver Cluster

1 nm

Figure 6.2.3: EELS for large silver clusters. The experimental data for 24 nm diameter silver cluster
are represented by dashed lines, while the calculated spectra for icosahedral Ag923 cluster are shown
by full lines. Two distinct trajectories of the probing electron are shown, one crossing the cluster
at its center (blue lines) and the other near the surface of the cluster (red lines). The inset of the
figure shows the cluster geometry together with the electron beam trajectories. The colors of the
beams are matching the colors of the lines in the plot. The calculated spectra are obtained with
100 keV electrons while the beam energy was not specified for the experimental data.
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In this section, we compare our calculations for large silver clusters with the
experimental work from J. A. Scholl et al. [233] and A. L. Koh et al. [234] for the
sake of the method’s validation. In the work of A. L. Koh et al. [234], the EELS
spectra of 24 nm diameter silver clusters are reported for two beam trajectories.
They analyzed two types of beam trajectories, one that passes right through the
center of the cluster, and another trajectory that passes near its surface. In the
work of J. A. Scholl et al. [233], the EELS spectra are reported for clusters of
similar size (of 20 nm diameter) and more beam trajectories ranging from those
passing right through the center of the cluster to those passing far outside the
cluster and including several intermediate beam positions.

The clusters of 24 nm diameter (containing approximately million atoms) is
out of reach currently within our atomistic ab initio approach. On the other
hand, the larger the object the more amenable for description using classical
electromagnetic methods. Therefore, here we focus on clusters containing several
hundred atoms that, while can be reasonable described with classical methods
and a dielectric function, also present features that require a quantum mechanical
treatment, as described in detail in chapter 5. We have chosen Ag923 cluster
(∼ 3 nm of diameter) of icosahedral shape for our calculations. Despite the fact
that this can be a reasonable structural motif for such small cluster, the main
motivation to chose the icosahedral structure is the detailed characterization of
its optical response presented in chapter 5. Thus, for us, this cluster represents
the ideal playground to explore the differences between far-field optical response
and the EELS obtained with different trajectories. The cluster geometry has
been generated using the ASE package [19], then relaxed with SIESTA [1, 2].
The final geometry is depicted in Figure 6.2.3 together with the examined beam
trajectories.

The experimentally measured spectra from Ref. [234] are shown in Figure 6.2.3
with dashed lines, while our simulations are represented with full lines. When
the beam is passing near the cluster surface (red lines), the agreement between
our calculations and the experimental data is rather good. We can appreciate a
slight frequency shift of 0.2 eV of the surface plasmon, otherwise, the resonance is
correctly reproduced by our method. Anyway, one should bear in mind that this
comparison is also influenced by the size dispersion of the SP resonance presented
in chapter 5. However, in case of the crossing trajectory (blue lines), the agree-
ment is less satisfactory. The experiment shows a strong peak at 3.8 eV, which
is usually assigned to the bulk plasmon and a shoulder at 3.3 eV corresponding
to the surface plasmon, while the calculated EELS still exhibits only a slightly
blue-shifted SP resonance at 3.5 eV and a barely discernible shoulder at 3.7 eV
which could be related to the strong bulk plasmon response seen in the experi-
ment. The reason for the diminutive bulk resonance could be the differences of
geometry of the cluster interior between the 24 nm cluster characterized in the
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Figure 6.2.4: Experimental (dashed lines) EELS for Ag particles with 20 nm diameter [233], and ab
initio (full lines) EELS for a silver cube composed of 500 atoms and presenting a FCC lattice. Three
distinct trajectories of the electron beam were used both in the experiments and the calculations,
one crossing the cluster at its center (blue lines), a second crossing the cluster at half-distance from
the surface (green lines) and the last one passing at 1 nm from the surface of the cluster (red lines).
The cluster geometry used for the calculations together with the beam trajectories are represented in
the figure. The colors of the beams are matching the colors of the lines. Experiments used probing
electrons of 300 keV, while 100 keV were used in the calculations.
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experiment and the 3 nm icosahedral cluster used in the calculations. Indeed, the
surface-to-bulk ratio of these clusters differs by an order of magnitude and one
should expect rearrangements in the interior of the 24 nm cluster towards the
FCC lattice structure of bulk silver. In order check this conjecture, we calculated
the EELS for a small chunk of FCC lattice rather than for the icosahedral geome-
try. We used a silver cube of 500 atoms, which were cut out from the FCC lattice
with the experimental lattice constant of 4.0853 Å [261] and kept non relaxed. In
appendix D, we present a deeper analysis of the silver cube. In Figure 6.2.4, we
compare the computed EELS of the silver cube with the experimental spectra by
Scholl et al. [233] for three beam positions. The first one is passing at 1 nm from
the cluster surface (red lines), the second beam crosses the cluster but not at its
center (green lines), while the last trajectory passes right through the center of
the cluster (blue lines). For the first electron beam passing near the surface, the
computed spectrum is similar to that of the icosahedral cluster. The SP appears
at 3.25 eV in our calculations which is in a good agreement with the correspond-
ing experimental frequency of 3.3 eV. Given that our FCC cube is considerably
smaller than the experimental clusters, this good agreement is probably the con-
sequence of a fortunate cancellation of two effects: on the one hand, the blue-shift
characteristic of Ag cluster as they become smaller and, on the other hand, the
slight red-shift of the SP obtained with the WC-GGA functional (see chapter 5
and Refs. [44]). For the crossing beam arrangements (blue and green lines), the
calculated spectra differ significantly from the previous calculations of the icosa-
hedral cluster. Namely, now a clearly discriminated bulk plasmon is excited in the
cubic cluster while it was virtually absent for the icosahedral cluster. The bulk
plasmon frequency recovered in the calculations is 3.8 eV, which is in excellent
agreement with the experimental value of 3.85 eV. When the beam is shot inside
the cluster but not at its center (green lines), the simulated spectrum strongly
resembles the experimental results. The bulk plasmon is less intense than the
SP in our simulation, while they show similar intensity in the experiment. This
disagreement can be explained by the size differences between the measured and
modeled clusters. Indeed, the cluster used in the simulation is much smaller than
the one characterized in experiment. Therefore, the simulated cluster exhibits
a relatively weaker bulk plasmon. The computed EELS for the electronic beam
crossing the cluster in the middle (blue lines) exhibits a larger disagreement with
the corresponding experimental spectrum. Namely, the experimental data show
both the bulk plasmon at 3.8 eV as well as an attenuated but still clearly visible
SP excitation at 3.3 eV. In contrast to experimental data, the SP resonance is
mostly absent in the calculated EELS (however, although no peak is found at the
corresponding energy, there is considerable loss at the corresponding energy, i.e.
the SP seems to give rise to a shoulder in the spectrum), while the bulk plasmon
resonance appears at 3.8 eV. This difference must be due to the perfectly sym-
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metric configuration utilized in the theory that strongly reduces the probability
to excite the SP mode, and which necessarily differs from that found in a realistic
experimental situation.

The comparison of the atomistic ab initio EELS and experimental data for
silver clusters demonstrates that the SP resonances is well reproduced in the
calculations for the beam trajectories passing far from the cluster surface. In
contrast to the SP resonances, the bulk plasmons need more care to be repro-
duced theoretically because the internal structure of the 20 nm clusters must
be similar to the bulk arrangement rather than to the icosahedral atomic ar-
rangement characteristic for the small 3 nm clusters affordable in the modeling.
Overall, the agreement with the experimental data is good considering the large
geometrical differences between the clusters used experimentally and modeled in
the calculations.

6.3 Analysis of Silver Clusters and Cluster Dimers
EELS spectra

Nanoparticles composed of noble metals are of particular interest for plasmonic
applications because they support localized SP resonances, therefore, they have
been widely studied with multiple methods, experimentally [229, 233, 234, 262]
and theoretically [44, 252, 263]. The presence of d-electrons in the valence band
of noble metals screens the SP, damping its intensity and shifting its frequency
to lower energy. SP in silver clusters have been examined in several ab initio
approaches [233, 235]. In particular, recent advances in TDDFT [44, 252, 264]
allowed to study the optical excitations in silver clusters consisting of hundreds of
atoms. In the rest of this chapter, we analyze the electronic excitations in TEM
using the iterative TDDFT for EELS.

6.3.1 Single Icosahedral Silver Clusters
We performed a series of calculations for a set of silver clusters with number
of atoms varying from 13 (two shells) up to 923 (seven shells). We assumed
icosahedral geometry of the clusters [202, 203] which is known to minimize the
total energy for small clusters of many metallic elements [204]. The geometry of
the Ag923 cluster is shown in the inset of Figure 6.3.2 panel (f). In this analysis,
the trajectory of the electron is parallel to one of the edges of the cluster.

In the first series of calculations, the beam trajectory is located at a distance
b′ = 1 nm from the cluster surface as presented by the cartoon in panel (d) of
Figure 6.3.1. The distance b between the cluster’s center and the trajectory is
then b = b′ + D/2 where D is the diameter of the cluster. The diameter of the
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Figure 6.3.1: Panels (a, b, c, e, f, g) show the computed optical polarizability (red dashed lines) and
EELS (blue solid lines) for the icosahedral clusters containing 13, 55, 147, 309, 561 and 923 atoms,
respectively. The central panel (d) shows the SP frequency extracted from the optical polarizability
(red squares) and EELS (blue circles) as function of the number of atoms in the cluster. The black
arrows link the dots to them corresponding systems. A scheme of the probing electron trajectory is
also shown, b′ = 1 nm in this case. The electron kinetic energy is 100 keV.
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cluster D is measured as a distance between two atoms of opposite edges located
at the center of their respective edge. We compare the optical polarizability
(eqn. 2.91) shown by red dashed lines with the EELS signal (eqn. 2.124), shown
by the blue solid lines. Panels (a, b, c, e, f and g) of Figure 6.3.1 show the op-
tical polarizability and EELS for clusters of different sizes (13, 55, 147, 309, 561
and 923), respectively. Panel (d) shows the dependence of the SP frequency on
the cluster size, as obtained from the maxima of the optical polarizabilities and
EELS calculations. We see a striking similarity of the optical polarizability and
EELS signal, particularly for small clusters shown on panels (a-c). In case of the
larger clusters, the distance to size ratio b′/D becomes smaller, increasing the
importance of higher multipoles in the response to this specific trajectory and, as
expected, reducing the agreement between the optical polarizability and EELS
signal. In the high-frequency range, the EELS signal becomes relatively stronger
than the optical polarizability, as expected from the excitation of higher mul-
tipolar modes, although the overall shape of the spectrum remains maintained.
We observe the well known blue shift of the SP frequency ωsp for Ag clusters
with decreasing cluster size. This behavior originates from the dominant effect
of quantum confinement [232, 233, 252, 262, 264].

In a second series of calculations, we studied the impact of the electron beam
trajectory in the EELS signal for the same set of silver clusters. The beam is
kept parallel to the cluster edge as previously, but the distance b between the
cluster’s center of mass and the beam trajectory is now varying. We performed
calculations for the four trajectories shown on panel (f) of Figure 6.3.2. The
first trajectory passes right through the center (blue lines) of the cluster (b = 0.0
nm), the second trajectory (orange lines) goes inside the cluster, at half-distance
between the cluster center and surface (b = D/4), the third trajectory (green
lines) is situated at the cluster surface (b = D/2) and the fourth trajectory (red
lines) at 1 nm from the cluster surface (b = D/2 + 1 nm), as in the previous
calculations in Figure 6.3.1. The spectra corresponding to the beam trajectories
are represented on panels (a, b, c, d, e and f) for the clusters 13, 55, 147, 309,
561 and 923 respectively. The color coding of trajectories and spectra matches.

For the electron beam passing outside the cluster (red lines), only one mode
responds strongly, independently on the cluster size. As we have seen previously
this mode is the SP that blue shifts when the cluster size decreases [Figure 6.3.1
panel (d)]. For the beam passing near the cluster surface (green lines), the SP is
still excited in all clusters but other modes appear at higher frequencies. These
higher order modes are well differentiated for small clusters (up to Ag309) but
give rise to a broad structure for larger clusters. This merging of resonances
indicates the quantization of the energy levels as the cluster size diminish, passing
from a quasi-continuous to a quantized spectrum one. The beam trajectories
passing through the cluster body (orange lines) and through the cluster center
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(blue lines) provide very similar responses at high energy, particularly for large
clusters. They start to diverge as the cluster size decreases. The main noticeable
difference between these two trajectories is for the SP mode. It is weaker when the
beam passes right through the center, particularly for the small clusters [panels
(b), (c), and (d)], in fact, for clusters smaller than the Ag561, the SP mode is
barely excited with this trajectory. The smallest cluster [panel (a)] behaves quite
differently than the other ones. The three trajectories that cross the cluster (blue,
orange and green lines) give almost identical response, only the spectrum of the
last trajectory (red line) which passes far from the cluster is radically different,
showing only the single SP peak.

Figure 6.3.2: Calculated EELS for silver cluster of 13, 55, 147, 309, 561 and 923 atoms for four beam
trajectories. Blue lines correspond to trajectories passing through the center of the cluster, orange
lines to trajectories at half-distance between cluster center and surface, green lines to trajectories
passing at the cluster surface and the red lines to trajectories passing far from the cluster surface
(1 nm). The trajectories are represented on the inset of panel (f) relative to the Ag923 cluster. The
kinetic energy of the exciting electrons is 100 keV.

A slight frequency shift of the SP occurs for large clusters (309, 561, 923)
as the beam trajectory approaches the silver cluster and penetrates it. For the
largest cluster, the SP is excited at 3.3 eV when the beam passes at 1 nm from
the cluster surface, but at 3.45 eV when the beam crosses the cluster right at its
center (Fig 6.2.3). Inspecting the EELS spectra for the four trajectories presented
on panel (f) of Figure 6.3.2, we see that the frequency shift occurs only when
the beam passes right through the center of the cluster. For the three other
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trajectories, the shift is negligible and the SP frequency locates around 3.3 eV,
even when the beam crosses the cluster with an impact parameter of D/4.

Figure 6.3.3: Real part (top row) and imaginary part (lower row) of the density change distribution
for the largest silver cluster with 923 atoms. From the left to the right we have, the trajectory passing
through the center of the cluster [panels (a) and (b)], then the trajectory crossing the cluster at
half-distance from the edge [panels (c) and (d)], third column show the density for the trajectory
passing along an edge of the cluster [panels (e) and (f)], and the last column the trajectory passing
at 1 nm from the cluster edge [panels (g) and (h)]. The maximum and minimum values of the
color scale are set to 10% of the absolute value of the maximum of the absolute value of the induce
density.

In order to get a better understanding of the physics behind this shift we
analyzed the induced electron density of the Ag923 for the four trajectories at the
SP frequencies. The correlation between the appearance of the induced density
maps and the symmetry of the modes excited in EELS is not a simple one. This
is due to the fact that the external potential δVext(r;ω) (eqn. 2.123) in the case of
EELS always carries a position-dependent phase that depends on the velocity of
the projectile. This is more clearly address in section 6.3.2, where we analyze in
detail the dependence of the EEL spectra of Ag clusters on velocity. Thus, neither
the real nor the imaginary part reflect fully the symmetry of the imaginary part
of the response function χ (see section 2.2.3), which contains the information
about the excitation modes in the system. However, at relatively high velocities
(here we use v = 75 a.u. ∼ 100 keV) one expects that the phase variation of
the external perturbation δVext(r;ω) is small across our nanoparticles. In such
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conditions, the inspection of the induced density plots recovers relevance from
the point of view of interpreting the symmetry of the excitations associated with
a given resonance peak.

Figure 6.3.3 shows the maps of the density change of the Ag923 cluster, in a
plane cutting the cluster at its center and containing the beam trajectory. The
top row [panels (a, c, e, g)] shows the spatial distribution of the real part of the
density change, while the bottom row [panels (b, d, f, h)] shows the imaginary
part of the induced density. The first column [panel (a) and (b)] displays the
density change for the electron beam passing right through the center of the
cluster (b = 0 nm) at 3.45 eV. The beam trajectory is clearly seen represented
by a blue pillar of induced charge (blue color means a deficiency of electrons,
i.e., positive charges). The second column of Figure 6.3.3 [panels (c) and (d)]
represents the density change for an electron beam passing at a distance b = D/4
from the cluster center (the beam trajectory is still clearly visible) at 3.34 eV.
In the third column [panels (e) and (f)], the beam is passing just at the edge of
the cluster (b = D/2) at 3.33 eV and for the fourth column [panels (g) and (h)],
the beam is located at 1 nm from the cluster edge (b = D/2 + 1 nm) at 3.31 eV.
The color scales of Figure 6.3.3 have been saturated at 10% of their respective
maximum intensity, in order to identify easily the patterns created by the density
change distribution. Thus, no quantitative comparison of their intensity can be
done as the color scale changes from panel to panel.

For b 6= 0 (second, third and fourth columns), a clear dipolar pattern of
the density is present at the cluster surface, which is particularly clear in the
imaginary part of the induced density in the lower panels. The dipolar pattern
is expected when the electron beam is passing far from the surface [panels (g)
and (h)], for which the optical polarizability is almost identical to the EELS
[see panel (f) of Figure 6.3.1]. Moreover, the perturbation created by the beam
inside the cluster does not forbid the presence of the SP, and the pattern of the
density change induced by the charged particles is similar to the one created by
an optical excitation. In contrast to optical excitations, the d-electrons near the
beam trajectory are affected in a less homogeneous manner by the passage of the
charged particles.

When the electron beam crosses the cluster right through its center, the sur-
face dipole is not discernible in the plot [see panel (b) of Figure 6.3.3], and the
frequency of the plasmon is shifted by 0.15 eV compared to the other trajectories.
For this specific location of the beam, a torus is formed by the induced density at
the cluster surface [red color on panel (b)] while a strong lack of electrons occurs
at the extremities of the column created by the beam. The charge distributions
of the d-electrons is as well strongly affected, forming dipoles with different ori-
entations in the inner part of the cluster. The dominant mode for the central
beam position b = 0 as already been mentioned in some publications [236, 265]
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and referred to as dark surface plasmon (DSP). The name DSP points to the
impossibility of exciting the mode with light. The DSP is difficult to observe
experimentally because the excited cluster must have a high degree of spatial
symmetry and the probe beam must be targeting the center of the cluster with
a high precision.

6.3.2 Dependence of EELS on the velocity of the probing
electrons

In this section, we study the large silver cluster Ag923, analyzing how the EELS
spectra depend on the velocity of the probing electrons. We focus on the central
beam position, i.e. the beam passes through the center of the cluster. The
normalized EELS are shown in Figure 6.3.4 on panel (a) for the probe-electron
velocities of 1 a.u. (blue line), 5 a.u. (orange line), 10 a.u. (green line), 15 a.u.
(red line), 20 a.u. (purple line) and 75 a.u. (brown line). The frequencies of
EELS maxima ωmax are shown on panel (b) as function of the velocity of probing
electrons.
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Figure 6.3.4: EELS and resonance frequencies for different probe-electron velocity v . Panel (a)
shows the normalized EELS spectra obtained for the Ag923 cluster with the probe-electron passing
right through the center of the cluster for different velocities v . Panel (b) shows plasmon frequency
ωmax as function of the electron’s velocity v .

For 10 < v ≤ 75 a.u., the resonance frequency ωmax is almost constant and
only slightly red shifts as the velocity v diminish. However, the broadening of
the plasmon resonance appears to increase as the velocity of the probe decreases.
For v = 10 a.u., the surface plasmon suddenly and visibly red shifted from 3.47
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to 3.37 eV with a strong broadening of the peak. Indeed it is clear that the peak
is composed by a main component at the new lower frequency and a shoulder
at the resonance frequency observed for higher velocities. Further decrease of
the velocity to v = 5 a.u. causes only a tiny red shift of the resonance ωmax
by 0.02 eV and a substantial decrease of the effective peak broadening. Finally,
for v = 1 a.u., the spectrum gets very broad, although an excitation can still
be identified at 3.5 eV. The blue shift of ωmax for v = 1 a.u. is curious since it
reverses the trend.

The range of the probe-electron velocities is rather wide. In fact, one may
argue that the initial assumption about the uniformity of the probe-electron
motion is unlikely to hold when this velocity is comparable to the Fermi velocity of
the cluster electrons (vF ∼ 0.635 a.u. [240]). Leaving aside the impartial critique
about the validity of the assumed approximations, we focus on the mathematical
origins of the described behavior. The described phenomenology of the EELS
velocity dependence suggests the existence of two resonance modes at about 3.37
and 3.47 eV which are excited selectively or collectively, depending on the velocity
of the probe-electrons. To directly identify the resonant modes, we will plot the
induced density at the frequency of respective maxima for a set of the probe-
electron velocities.

The spatial distributions of the induced density δn in the plane cutting the
center of the cluster and along the electron beam trajectory are represented in
Figure 6.3.5 for all mentioned velocities except v = 15 a.u. which bears a close
resemblance to the case of v = 20 a.u. The first row shows the density change
for v = 1 a.u., the second row for v = 5 a.u., the third row for v = 10 a.u., the
fourth row for v = 20 a.u. and the last row for v = 75 a.u. The first column
represents the real part of the induced density while the second column shows the
imaginary part. The density change distributions are represented at the resonance
frequencies ωmax indicated on panel (b) of Figure 6.3.4. The induced density for
two largest velocities are very similar (see panels (g-j) in Figure 6.3.4). The
charges are expelled from the center of the cluster, along the beam trajectory,
creating a column of positive charges (blue color of the maps meaning a lack
of electrons, i.e. positive charges, and the red color an excess of electrons, i.e
negative charges), while a torus of negative charges is formed at the surface of
the cluster. The induced density exhibits an almost perfect symmetry along
the x- and z-axes for the two largest velocities (20 and 75 a.u.). However, we
can appreciate a slight deterioration of the symmetry along z-axis, i.e. along
the beam direction, for the second large velocity v = 20 a.u. For even smaller
velocities v = 10, 5 and 1 a.u., the symmetry along z-axis vanishes completely.
For velocity v = 10.0 a.u., the column of positive charges is disturbed, changing
sign at the end of the cluster as seen on panel (f) in the imaginary part of the
induced density. The real part of the induced density [see panel (e)] shows an
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Figure 6.3.5: Maps of the induced density change for the Ag923 for an electron beam passing right
through the center of the cluster. The first column represents the real part of the density change
while the second column represents the imaginary part. Each row represent the induced density for
a particular electron velocity at the plasmon frequency ωmax, i.e. at the frequency of the maximal
EELS response. In the first row the velocity is v = 1 a.u., in the second row v = 5 a.u., in the next
row v = 10 a.u., in the fourth row v = 20 a.u. and in the last row v = 75 a.u.
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intense positive density change at the bottom of the cluster while the top is
mostly dominated by negative charges. For even smaller velocities [panels (a-d)],
the density change inside the cluster is oscillating along z-axis. These oscillations
are well visible in the vicinity of the probe-electron beam. The induced density
exhibits alternating signs along the beam trajectory. The oscillations are clearly
different from the 4d-electron, screening dipole patterns we observed in optical
excitations (see chapter 5). These oscillations can be understood by Fourier
transforming the external potential δVext(r; t) = |r − vt|−1 to the frequency
domain, in cylindric spatial coordinates

δVext(ρ, z;ω) = f (|ρ|;ω) e−iωv z, (6.2)

where z is the coordinate along the electron beam direction, ρ the polar vector
perpendicular to z and f (|ρ|;ω) is the amplitude of the external potential. Be-
cause of the factor e−i(ω/v)z, it is clear that the external potential (6.2) will show
oscillation as a function of the velocity v. We can now ask an important ques-
tion: when the bright or the dark SP will be excited for these highly symmetric
trajectories going through the center of the particle?

The answer is quite obvious from eqn. (6.2). When the external potential has
an odd number of oscillations across the structure, we will preferentially excite
the bright SP. On the contrary, for an even, or zero, number of oscillations the
dark SP will be preferentially excited. Intermediate situation, will produce the
excitations of the two modes with different relative intensities.

We can now translate this argument to velocities. The first preferential exci-
tation of the bright SP will happen when the condition (ωL)/v = π is satisfied,
implying the external potential changes sign when moving from one side to the
opposite side of the structure. Here L is the characteristic dimension of the sys-
tem along the trajectory. Thus, we can obtain the threshold velocity at which
we can find a fully-developed dipolar plasmon peak

vth = ωL

π
. (6.3)

In the present case we have L ∼ 60 a.u., ω ∼ 3.4 eV or 0.125 a.u., and we get
vth ∼ 2.4 a.u. We should take into account that this is only a rough estimation
that does not consider the complex structure of the object on the estimation of
the parameter L.

As we decrease v below vth, the external potential at frequency ω, will pro-
gressively evolve from having odd to an even number of oscillations across the
length of the structure L. This means that for v < vth, the maximum of the
EELS spectrum will oscillate between the bright and dark SP. In particular, for
v = 1 a.u. we can estimate the accumulated phase across the structure to be
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ωL ∼ 7.5 ∼ 2.4π. Therefore, we have a full oscillation of the external perturba-
tion and, as a consequence, we find the main loss peak at the frequency of the
dark SP.

On the other hand, for v � vth the main mode excited is always the dark SP.
For v = 75 a.u., we are clearly in this regime (see panels (i) and (j) in Figure 6.3.5)
For intermediate velocities v > vth we should see a continuous transition from
EELS maximum at dark SP to bright SP, as clearly seen in Figure 6.3.5.

The velocity dependence of EELS originates in the spatial variation of the
Coulomb field created by probe-electrons. In particular, the spatial variation of
the slowly moving probe-electrons becomes so short length that this is noticeable
in the induced density change of small clusters, containing as little as 1000 atoms.

6.3.3 EELS of Silver Cluster Dimers
In this section, we analyze the EELS of metallic nanogaps that are formed by
placing two metallic nanoparticles in a close proximity. In such nanogaps, the
coupling of plasmonics modes generates new hybridized solutions that, in the
optical response, give rise to a red-shift of dominant resonance with respect to
the original resonances of the individual particles [11, 138]. We constructed the
cluster dimers using two Ag309 clusters in a “tip-to-facet” mutual orientation as
shown by the cartoon in Figure 6.3.6 (d). Silver cluster dimers have been studied
experimentally [227, 229] using TEM. However, this is the first atomistic ab initio
study of the EELS in silver cluster dimers to the best of our knowledge.

In Figure 6.3.6, we compare the optical polarizability (eqn. 2.91) and EELS
stopping probability (eqn. 2.124) as function of the inter-cluster separation d.
The inter-cluster separation d is measured as the distance between closest atoms
belonging to different monomers. We varied the inter-cluster separation d be-
tween 2 and 12 Å in step of 1 Å. The optical polarizability is shown by the color
plot on panel (a). We computed the EELS stopping probability for two beam
positions shown by the blue and green dots on panel (d) of Figure 6.3.6. Both
probing beams are perpendicular to the dimer axis. The first beam locates at a
relatively large distance of 1 nm from the left cluster independently on the sep-
aration d. The second beam locates in the midpoint of the dimer independently
on the cluster separation d. The EELS stopping probability is shown by the color
plots on panels (b) and (c) for the first and second beam locations correspond-
ingly. As expected, the spectra on panels (a) and (b) are rather similar. Both
the optical polarizability as well as the EELS stopping probability exhibit the
bonding dimer plasmon (BDP) at approximately 3.28 eV for large inter-cluster
separation of 12 Å. The BDP slightly red shifts at smaller separation distances
down to approximately 5 Å. The red shifting of the BDP is a well-known phe-
nomenon [11, 92, 93]. At even smaller distances of d = 2 . . . 5 Å, a strong red

134



6.3 Analysis of Silver Clusters and Cluster Dimers EELS spectra

shift and attenuation occurs due to the tunneling effect. At these separations,
the stopping probability reveals a more pronounced mode with a frequency of
maximum at approximately 3.4 eV. We demonstrate the similarities between the
optical polarizability and stopping probability by comparing them at a given ex-
citation frequency of 3.28 eV and different inter-cluster separations d on panel (d)
of Figure 6.3.6. The normalized spectra are very similar up to as large separation
distance as 7 Å which is comparable to the beam-cluster distance of 1 nm. The
cluster geometries were kept fixed while the different separation distances d were
examined. Therefore, the jump-to-contact instability that would occur otherwise
(see Ref. [266] and chapter 4) is absent in these calculations.

The stopping probability for the beam position at the midpoint between clus-
ters is shown on panel (c) of Figure 6.3.6. The stopping probability is substan-
tially different to both the optical polarizability [panel (a)] and the stopping
probability for the off-dimer incidence [panel (b)]. The midpoint stopping prob-
ability exhibits a larger loss into the higher frequency excitations ω > 5 eV. The
low-frequency resonance locates at a slightly higher frequency of 3.45 eV instead
of 3.28 eV as in the other spectra in the study. Moreover, the low-frequency
resonance is not red shifting at the reduced cavity size d. The midpoint stopping
probability at the fixed frequency 3.45 eV and for different cavity sizes d is shown
by the green dotted line on panel (d). This graph gives further evidence of the
surmised difference between the BDP excited in previous cases and the current
“mid-point” plasmonic mode. Namely, for the mid-point trajectory the stopping
presents a weaker dependence at short distances and vice versa—it diminishes
faster as the clusters retreat as compared with the previous two spectra (blue
solid line and red dashed line).

In order to get more information on the spectra, we computed the induced
density in Cartesian space, at the frequencies of the respective resonances. The
imaginary part of the corresponding induced density (eqn. 2.60) and induced
electric field (eqn. 2.97) are plotted on panels (a,b,c) and (d,e,f) of Figure 6.3.7,
respectively. The cavity size d is chosen to be 5 Å, while the fields are plotted in
the plane bisecting the dimer. First column shows the induced density and electric
field for the optical excitation at resonance (ωsp = 3.28 eV). The induced density
and electric field computed from the EELS spectra with a beam passing far from
the dimer surface and at the center of the dimer cavity are shown on the second
and third column respectively. Similarly to the spectra in Figure 6.3.6, the maps
of the induced density δn(r;ωsp) obtained from the two perturbations (optical
and external trajectory) show great resemblances. The direction of the external
field and the positions of the electron beams are indicated with red arrows and red
dots respectively. The BDP charge distribution can be recognized through the cut
done along the dimer axis. Each cluster presents a dipolar charge distribution.
A strong charge accumulation at the tip of the cavity occurs, leading to a strong
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Figure 6.3.6: Calculated optical [panel (a)] and EELS spectra [panel (b) and (c)] as function of the
frequency and cavity size for silver cluster dimers containing two clusters composed of 309 atoms.
Panel (b) shows the EELS spectra for a beam passing at 1 nm from the dimer surface, while panel (c)
for a beam passing right through the cavity center. Panel (d) shows the polarizability and stopping
probabilities at a fixed frequency of 3.28 eV for the optical and off-center EELS and 3.45 eV for
the mid-point EELS as function of the inter-cluster separation d . For EELS calculations the kinetic
energy of the probing electrons is 100 keV. A cartoon representation of the cluster dimer geometry
is shown in the inset on panel (d). Further details in the text.

induced field. This enhancement is created due to the collective motion of the
cluster electrons which is commonly referred to as “lightning rod effect”. The total
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Figure 6.3.7: Imaginary part of induced density change (top row) and intensity of the induced
electric field (lower row) maps for optical (first column) and EELS (second and third columns)
calculations. The size of the dimer’s cavity is 5 Å. For optical calculations [panels (a) and (d)], the
red arrow indicates the direction of the external field (parallel to the dimer axis). In second and
third column, the position of the beam is indicated by the red dots. Panels (b) and (e) show the
density change and electric field for an electron beam passing outside the dimer, while the electron
beam is passing right through the center of the cavity in panels (c) and (f).

enhancement can be split into the enhancement due to atomic-size protrusion at
the surface of the cluster and due to the plasmon resonance associated with the
whole cluster, as we demonstrated previously [83, 146] for sodium clusters and
cluster dimers (see chapter 3).
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The density map on panel (c) of Figure 6.3.7 permits to identify the mid-point
plasmonic mode as a symmetric surface mode with respect to the center of the
cavity. The dimer’s electrons are expelled from the cavity because of the presence
of the beam and they gather at the extremities of the dimer far from the beam.
This mode is known as the anti-BDP and is referred as a “dark mode” because
it can not be excited with light.

Panels (d,e,f) of Figure 6.3.7 show the moduli of the induced electric field
corresponding to the induced density shown on panels (a,b,c). The maxima of
the induced field locates in the cavity for all types of excitations. Moreover, we
can clearly see a stronger participation of the inner atoms in case (panel e) of
the off-cluster EELS as compared to the optical excitation (panel d). In the case
of mid-point beam position (panel f), the maximum of the induced field locates
closer to the tip atom as compared to the other excitation modes.

It is interesting to note the correlation of the stopping probabilities between
the single cluster [panel (d) of Figure 6.3.3] and the dimer [panel (b) of Fig-
ure 6.3.7]. We can deduce that the mode observed at 3.45 eV for the single
cluster [panels (b) and (e) Figure 6.3.3] is a dark mode.

6.4 Conclusion
In this chapter we have shown that the real-space implementation of electron
energy loss spectroscopy presented in section 2.3.6 can correctly predict the in-
teraction of swift electrons with nanoparticles. This method combined with the
efficient TDDFT codes MBPT-LCAO or PySCF-NAO permits to compute the
EELS spectra of isolated systems containing thousands of atoms. To the best
of our knowledge, it is the only implementation of linear-response TDDFT for
EELS capable to reach such large sizes using atomistic ab initio theory. To vali-
date the implementation, we compared calculations for carbon and boron nitride
nanotubes with existing experimental results. The calculated and experimental
spectra for the tubes show a qualitatively good agreement. Furthermore, we per-
formed a deeper analysis of silver clusters and silver cluster dimers. First, we
have shown that the internal atomic arrangement in the cluster and the trajec-
tory of the electron beam are crucial to get good agreement with experimental
results, specifically to excite the bulk plasmon at 3.8 eV. Secondly, we analyzed
the response of icosahedral clusters as function of the beam location. For large
separation between the beam trajectory and the cluster surface, the EELS spec-
tra were very similar to the polarizability obtained from optical excitation. As
the beam approaches the cluster, higher order modes were excited and the signal
deviated from the optical one. However, a clear resonance peak corresponding
to the bulk plasmon was only observed for clusters whose internal structure re-
cover the correct FCC lattice of Ag. When the electron beam crosses the system
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right through its center, a clear resonance corresponding to the excitation of a
dark surface plasmon mode was observed for the icosahedral clusters. Finally, we
studied the response of a plasmonic cavity formed by two silver clusters in a “tip-
to-facet” configuration. By manipulating the beam location, we could excite the
bonding dimer plasmon or anti-bonding dimer plasmons. The former excitation
is similar to the optical excitations, while the latter dark mode cannot be ex-
cited by optical means. This theoretical study emphasizes the uniqueness of the
electron energy loss spectroscopy for a detailed characterization of the collective
electronic excitation in nanometer-size systems.
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Chapter 7

Raman and Infrared
Spectroscopy from Ab Initio
Calculations

Raman and infrared (IR) spectroscopies are vibrational spectroscopy techniques
capable of providing molecular finger print information for chemical identifica-
tion. Both techniques have been widely used in various fields such as chemical
analysis, material science and biomedical applications. Recently, the combina-
tion of Raman and IR spectroscopies with the plasmonic fields in the vicinity of
metallic surfaces, clusters and tips led to the enhanced sensitivity of the spectro-
scopic techniques. The enhanced sensitivity allows to characterize tiny amounts
of matter, down to a few [267, 268] or even a single molecule [108, 268, 269]. To
calculate the Raman and IR spectra, we use the well known harmonic approxi-
mation method that was already implemented for IR in the Atomic Simulation
Environment (ASE) [19] package. We extented this implementation to Raman
scattering. In order to calculate the Raman intensity of the vibrational modes
of a molecule, one needs to provide the polarizability of the molecules, obtained
from TDDFT calculations. Combining SIESTA, ASE, and our TDDFT code, we
can calculate the IR and Raman spectra within the ab initio atomistic frame-
work. The chapter is organized as follows. In section 7.1.1, we briefly summarize
the basics of the Raman spectroscopy and our implementation of the harmonic
approximation. In section 7.2, we reproduce the IR and Raman signals for the
well-studied CO2 molecule, while in the section 7.3 we conclude on the method.
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7.1 Brief Introduction to Raman Scattering
Raman was awarded the Nobel Prize in 1930 for his discovery of inelastic light
scattering from molecules. The phenomenon, which now carries his name, refers
to the absorption and reemission of optical photons mediated by the vibrational
and rotational modes of the scattering molecules. During Raman scattering,
the optical photon changes its frequency while the excess energy excites some
vibrational or rotational mode of the molecule [270, 271]. In contrast to Ra-
man (inelastic) scattering, the Rayleigh (elastic) scattering does not change the
frequency of the scattered optical photons [272]. We depicted the Rayleigh scat-
tering on panel (a) of Figure 7.1.1 for the sake of comparison with the more
complex Raman scattering. The energy carried by the photon ~ω0 gets absorbed
by the electrons of the molecule changing their ground state |g〉 (of energy ~ωg)
to an excited state |e〉 (of energy ~ωe). The state |e〉 can be considered to be true
excited state of the system, in which case we are describing resonant process, or
it can be considered a virtual excitation, in which case we are dealing with a non-
resonant processes. In the case of the inelastic Raman scattering this gives rise
to two possibilities, the so-called resonant and non-resonant Raman processes. It
is worth to emphasize already here that the finite-difference numerical approach
that we carried out in this chapter, in principle, is only appropriate to study
the non-resonant processes. The excited state |e〉 decays radiatively back to the
ground state |g〉 reemitting the photon of the same energy ~ωs = ~ω0 = ~ωe−~ωg
although the propagation direction of the reemitted photon can change.

|g〉

|e〉h̄ω0 h̄ωs

(a) Rayleigh scattering

|g,0〉

|e,0〉
|e,1〉

|g,1〉

h̄ωevib

h̄ωgvib

h̄ω0 h̄ωs

(b) Stokes scattering

|g,0〉

|e,0〉

|g,1〉 h̄ωgvib

h̄ω0

h̄ωs

(c) Anti-Stokes scattering

Figure 7.1.1: Rayleigh (a), Stokes (b) and anti-Stokes (c) scattering phenomena

The Raman scattering is mediated by the vibrational (nuclei) degrees of free-
dom as shown on panel (b) of Figure 7.1.1. The energy spectrum of a molecule
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consists of closely spaced (small-gap) levels associated with different vibrational
excitations at a given electronic state, e.g., for a molecule in its ground-state and
with a single vibrational mode we can label the levels as |g, 0〉, |g, 1〉, ... with
the second integer corresponding to the vibrational quantum number. The en-
ergy distance between the vibrational levels is ~ωgvib , with ωgvib the frequency
of the corresponding vibrational mode. Collections of levels associated with dif-
ferent electronic configurations are usually well-separated (wide-gap) in energy,
corresponding to the electronic excitation energies. Let us now consider that the
system gets excited from its ground-state |g, 0〉 (at low temperature the initial
population of other vibrational levels will be negligible) to an excited state of the
molecule |e,n〉 by a photon with energy ~ω0. The molecule can subsequently de-
cay back to its electronic ground state, but in a different vibrational state |g,m〉.
Thus, the molecule is left in a vibrational excited state. Correspondingly the
energy of the scattered (emitted) photon ~ωs is smaller than that of the initial
photon ~ω0. The energy difference has gone into the vibrational excitation of the
molecule. Therefore, ~ω0 − ~ωs = m × ~ωgvib . The scattering events in which
ωs < ω0 are called Stokes scattering [270, 272].

Besides the Stokes scattering ωs < ω0, there is a possibility for the reemitted
photon to carry higher energy ~ωs than the energy of the absorbed photon ~ω0.
The so-called anti-Stokes scattering is less probable than the Stokes scattering.
We depicted the energy diagram of a simplest anti-Stokes scattering event on
panel (c) of Figure 7.1.1. Because of the Bolzmann distribution, the molecule
could be in a vibrationally excited ground state |g,n〉 while absorbing the incom-
ing photon of energy ~ω0 and getting excited to the excited state |e,m〉. If the
excited state |e,m〉 decays radiatively into the ground-state of the system with a
lower level of vibration excitation |g, j〉 with j < n, for example to the vibrational
ground state |g, 0〉, then the emitted photon will have larger energy ~ωs > ~ω0
than the initial photon.

The energy difference ∆ω = ~ωs − ~ω0 is the quantity tracked down in the
Raman scattering experiments. The probability of Raman scattering depends
critically on the energy difference ∆ω. The scattering probability peaks at certain
resonant frequencies determined by the vibrational spectrum of the molecule. We
computed the vibrational frequencies and Raman scattering cross-section within
harmonic approximation for the restoring forces acting on the molecular nuclei.
The harmonic approximation is summarized in the following section.

7.1.1 Harmonic Approximation in Vibrational Spectroscopies
Vibrational spectroscopies can be explained within the Born-Oppenheimer ap-
proximation [270] (see also chapter 1). The many-body wave function describing
the coupled motion of electrons and nuclei is separated into nuclear and electronic
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wave functions within the Born-Oppenheimer approximation. Because the nuclei
are much heavier than the electrons, in most cases they can be further treated
as classical particles. In the ground state, the nuclei and electrons are at equilib-
rium. At equilibrium, the nuclei assume some positions dictated by the minimum
energy principle in which the internal forces compensate. If a nucleus position is
perturbed, then a collective back-action of other nuclei and electrons will exert
a restoring force. The restoring forces are harmonic, i.e. linearly proportional
to the spatial perturbations in the limit of small displacements. Obviously, there
are at most 3N−3 spring constants, describing vibrations in a N -atom molecule.
For vibrational spectroscopy, we would like to determine the linearly independent
vibrations of the whole molecule rather than the spring constants of each atom.
The following description is based on the work from Ref. [273].

In the harmonic approximation, the vibrational eigenmodes are determined
by solving an eigenvalue problem [271, 273]

3N∑
α=1

(Hjα − λqMjα)Xαq = 0, j ∈ [1, 3N ] λq = (2πνq)2,

3N∑
α,l=1

XαqMαlXlj = δqj , Mαl = δαlmn, n = [l/3] + 1.
(7.1)

In eqn. (7.1), H is the dynamical or Hessian matrix of the system, mn is the
mass of the nth atom. The eigenvectors Xαq and eigenfrequencies νq represent
the linearly independent vibration modes of the molecule. A displacement Uαq
in the direction of the ith eigenvector can be written as

Uαq = QqXαq, (7.2)

where Qq is referred to as a normal mode coordinate, assuming that Xαq is prop-
erly normalized. The scattering cross-sections of IR and Raman spectroscopies
depend on derivatives of the dipole moment µ and the dynamical polarizability
P with respect to the normal modes Qq, correspondingly. If the derivatives of
a physical property A are already known with respect to the Cartesian atomic
coordinates Rα, then the required derivative dA/dQq is obtained by the chain
rule dA

dQq
=
∑3N
α=1

∂A
∂Rα

Xαq. The first-order IR intensity of the q-th mode is given
by [271]

IIRq = N π

3c

∣∣∣∣ dµdQq
∣∣∣∣2 , (7.3)

where N is the particle density, c is the velocity of light and µ is the electric
dipole moment of the molecule. The square of the derivative |dµ/dQq|2 is the

144



7.1 Brief Introduction to Raman Scattering

only molecular property entering the formula (7.3). Therefore, it is often re-
ferred to as the absolute IR intensity. The dipole moment is a property of the
electronic ground state and it can be easily estimated within DFT. If the IR in-
tensity (7.3) are measured at normal conditions—temperature 0◦C and pressure
1 atm, then it is related to the absolute IR intensity as following: 1 (D/Å)2 amu−1

= 171.65 cm−2 atm−1.
The evaluation of Raman-scattering intensities is slightly more complicated.

Following Refs. [273, 274], the first-order differential Raman cross-section for the
Stokes component of the ith eigenmode far from electronic resonances is given by

dσq
dΩ = (2πνS)4

c4

∣∣∣∣eS
∂P

∂Qq
eL

∣∣∣∣2 h(nbq + 1)
8π2νq

, (7.4)

with nbq =
[
e
hνq
kT − 1

]−1
. (7.5)

In eqn. (7.4), νS is the frequency of the scattered light, eS and eL are the
unit vectors of the electric field direction (polarization) for the scattered and the
incident light, P is the polarizability tensor obtained from TDDFT calculations
(see eqn. (2.91)), and nbq is the Bose-Einstein statistical factor. Since molecules
in the gas phase may be oriented randomly, this expression has to be appropri-
ately averaged. The result of this averaging procedure depends on the relative
orientations of the direction and polarization of the incident and scattered beams.
In most of the experiments, the direction of the incident beam, the polarization
direction of this beam and the direction of observation are perpendicular to each
other. Under these circumstances, one yields a Raman cross section

dσq
dΩ = (2πνS)4

c4
h(nbq + 1)

8π2νq

IRamq

45 , (7.6)

where the Raman scattering activity IRamq is the only quantity depending on the
intrinsic molecular properties

IRamq = 45〈 dα
dQq
〉2 + 7

(
dβ

dQq

)2
= 45〈α′〉2 + 7β′2. (7.7)

The derivative 〈α′〉 is the mean polarizability derivative

〈α′〉2 =
[

1
3
(
P ′xx + P ′yy + P ′zz

)]2
, (7.8)

145



CHAPTER 7. RAMAN AND INFRARED SPECTROSCOPY FROM AB
INITIO CALCULATIONS

and the derivative β′ is an anysotropy parameter of the polarizability tensor,
respectively

β′2 = 1
2

[(
P ′xx − P ′yy

)2 + (P ′xx − P ′zz)
2 +

(
P ′yy − P ′zz

)2 +

6
(
P

′2
xy + P

′2
xz + P

′2
yz

)]
.

(7.9)

Primes denote derivatives with respect to the normal mode coordinate P ′ij =
∂Pij
∂Qq

. The optical polarizability Pij is computed at a given frequency, being the
only frequency entering in the calculation, this is justified by the fact that the
vibrational energies are usually negligible as compared to the electronic excitation
energies. All the equations given above are derived within the double harmonic
approximation. Thus, the higher-order changes of the energy, dipole moment,
and polarizability with respect to the normal-mode coordinate Q are neglected.

7.1.2 Implementation of the Harmonic Approximation
The theory summarized above was implemented using the finite-differences meth-
od to compute the derivatives of the dipole moment µ and the optical polarizabil-
ity P (ω = 0) with respect to the normal coordinates Qq. The necessary calcu-
lations were organized using ASE, SIESTA (DFT) and PySCF-NAO (TDDFT)
packages. ASE is used as a driver, ordering necessary calculations, gathering the
data and combining it into the scattering cross-sections (7.3) and (7.7). At the
beginning, we determine the ground-state geometry with a small tolerance on
the remaining internal forces and the same DFT parameters that will be used
later across the other calculations. The equilibrium geometry is the only input
data used in the calculation of the vibrational modes and their respective Raman
intensity.

In the next step, the six small displacements are applied for each atom to
determine the force constants H and the derivatives of dipole moment µ′ and
the optical polarizability tensor P ′ij . The whole calculation is similar to the
usual normal-mode determination in the vibrational spectroscopy. It consist of
6N + 1 independent DFT+TDDFT calculations with slightly different molecular
geometries. The calculations can be rather time-consuming (especially TDDFT
calculations of the optical polarizability). Therefore, the independence of the
calculations can be optionally preserved. Moreover, the generated data are stored
in separate files for each of the 6N+1 DFT and TDDFT calculations. In the last
step, the stored data are read from files, the normal vibrational modes (eqn. 7.1)
are identified, and the calculated dipole moment and polarizabilities are combined
into the IR and Raman scattering cross-section. An example of Python script is
shown in Figure E.2.1 of appendix E.2.
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7.2 Vibrational Spectra of the CO2 Molecule

In order to check the implementation described in the previous section, we
computed the vibrational modes and their IR and Raman intensities of a CO2
molecule. CO2 is a good molecule for such check since it is composed only of three
atoms, therefore, just 19 calculations (DFT+TDDFT) are necessary in order to
get its vibrational modes, and each calculation takes a few minutes to complete.
Furthermore, the vibrational modes of CO2 have been extensively studied and
are well understood [275–277]. Linear triatomic molecules such as CO2 possess
four vibrational modes but only three fundamental vibration frequencies because
two modes are degenerate. As its name indicates, the symmetric stretching mode
is fully symmetric, thus, it is inactive in IR spectra and active in Raman spectra.
The asymmetric stretching vibration and the degenerate bending vibrations are
IR active and Raman inactive.

To compute the vibrational modes, we first must relax the molecule with care.
This step was performed using the SIESTA suite. Once an equilibrium geometry
has been found, we can start to run the vibrational calculations (an example of
script is shown in appendix E.2). In the ground-state calculations, the core elec-
trons were removed by means of Troullier-Martins pseudo-potentials [122]. We
used the Perdew-Burke-Erzenhorf density functional (GGA-PBE) [35] for geome-
try relaxations and force constants calculations. A double-ζ polarized basis set of
numerical orbitals generated using an energy shift of 10 meV was used. The fine-
ness of the real-space grid used to compute the Hartree and exchange-correlation
contribution to the energy and Hamiltonian corresponds to a plane-wave cut-off
of 450 Ry. Another parameter that has a dramatic impact on the accuracy of
the method, is the atomic displacement delta. While choosing an appropriate
value, one must find a compromise between the smallness necessary for the har-
monic approximation to remain valid and having a sufficiently large variation of
the computed magnitudes to obtain meaningful numerical derivatives. For this
particular calculations, optimal frequencies were obtained for delta=0.015Å.

Quantum Espresso (QE) [278] calculations of the vibrational modes of CO2
were performed as a reference for our calculations. We used PBE functional as in
our calculations to determine the frequencies of vibrational modes and IR intensi-
ties. The Raman intensities were computed with Perdew-Zunger LDA functional,
because this is the only possibility allowed in QE. The results are gathered in
table 7.1. The vibrational frequencies differ by less than 23 cm−1 (2%) and some-
what more (125 cm−1 or 9%) comparing to experimental data [277]. The bending
and asymmetric stretching modes are IR-active and Raman-silent, while the sym-
metric stretching mode is Raman active and IR-silent in both implementations,
as expected.

We demonstrated that it is feasible to use the iterative TDDFT also in the cal-
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Modes 1 2 3
bending stretching asymmetric stretching

ω (cm−1) exp 667.00 1330.00 2349.00
ASE 619.30 1248.40 2244.40
QE 608.45 1271.13 2223.67

IR ((D/Å)2 amu−1) ASE 0.43 0.00 11.99
QE 0.45 0.02 12.33

Raman (Å4 amu−1) ASE 0.00 24.57 0.00
QE 0.00 23.82 0.00

Table 7.1: CO2 vibrational modes with their respective IR and Raman intensities. First row compares
the frequencies of the three vibrational modes from experimental data [277], our implementation and
Quantum Espresso [278] calculations. The second row shows the IR intensities of the corresponding
modes while the third row shows the Raman intensities.

culation of the Raman scattering intensities. In the current section, we achieved
a proof-of-principle implementation. Moreover, this method could be used for
more complex simulations. We explored the possibility to apply this method to
simulate surface-enhanced Raman spectroscopy (SERS) [279] and tip enhanced
Raman spectroscopy (TERS) [280] by placing a molecule inside a cavity formed
by metallic clusters (such as the one show in chapter 3, 4 and 6). However, for
such systems, where the vibrational modes are localized in one small portion of
the total system, the finite differences approach presented here did not provide
sufficient accuracy to determine meaningful Raman scattering cross-section. The
next step would be to develop some scheme (based on Mulliken population anal-
ysis [44, 281]) to project the result onto the region of interest, thus, increasing
the resolution of the calculations. Unfortunately, this has proven to be a difficult
task so far.

7.3 Conclusions
In this chapter, we gave an account on yet another type of spectroscopy—the
vibrational scattering spectroscopy. Vibrational spectroscopies explore relatively
small energy changes of a molecule caused by the oscillations of molecular nu-
clei. The infrared and Raman spectroscopies are widely used vibrational spectro-
scopies, which can serve as very sensitive detectors for molecules. Coupling of the
infrared and Raman spectroscopies with near-field plasmonic enhancement in the
vicinity of surfaces, tips or clusters allows to increase sensitivity of the detection
up to a single-molecule level. Theoretically, the vibrational spectroscopies can be
simulated in atomistic ab initio frameworks, using a plausible harmonic approx-
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imation to get the restoring forces felt by the nuclei slightly displaced from their
equilibrium positions. In fact, the calculation of vibrational frequencies is part
of many ab initio DFT packages. However, the estimation of scattering cross-
sections involves more steps, particularly the Raman scattering. To estimate the
probability of non-resonant Raman scattering one can track changes of the op-
tical polarizability along the normal mode vibrations. One of the advantages of
this implementation of Raman spectroscopy, is its potential capacity to calculate
the Raman intensities of the vibrational modes of large systems made possible
by the efficiency of our iterative TDDFT implementation.
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Chapter 8

Conclusions

As J.D. Wilson and C.A. Hernández-Hall state in Ref. [282]: “Experimental mea-
surement is the cornerstone of the scientific method, which holds that no theory
or model of nature is tenable unless it predicts are in accord with experiment.”
However, not all the characterization of condensed matter systems can be done
exclusively with experimental measurements. The kind of experiments necessary
are often time consuming, difficult to perform and to reproduce, requiring costly
instrumentations and can even be dangerous for the operator. Furthermore, there
is simply not enough researchers, time and resources to explore experimentally
the vast potential of modern science. Simulations are revealed to be crucial to
accelerate the progress in science, and particularly in nanosciences. Simulations
allow to run “virtual” experiments that are sometimes faster and cost less than
“real” experiments, permitting to select potential materials and the conditions
required to obtain the desired effects. Modeling is also often necessary to validate
an experiment and to better understand the physical phenomena observed. Be-
yond the simple reproduction of experimental measurements, simulations permit
to examine unphysical conditions and non-existing materials. By studying the
impossible, we can get a better understanding of what is possible.

In this thesis we focused on a particular kind of modeling, the simulation of
electrons in matter and their interaction with the environment using atomistic
ab initio theory. Specifically, we modeled the behavior of plasmons in nanostruc-
tures composed of different materials using density functional theory (DFT) and
time-dependent DFT (TDDFT). The foundations of DFT and TDDFT are sum-
marized in chapter 2 together with a detailed description of the methods to realize
linear-response TDDFT calculations with numerical atomic orbitals (NAO). To
apply the atomistic TDDFT to the metallic clusters containing sometimes thou-
sands of atoms, several improvements and extensions were realized in the TDDFT
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code MBPT-LCAO, its successor PySCF-NAO and in the ASE suite. Below, we
list the major extensions and technical improvements realized during this work.

• Implementation of the real-space Electron Energy Loss Spectroscopy;

• Improvement of the iterative procedure that permitted unprecedentedly
large calculations;

• Efficient computation of the induced electric field in Cartesian coordinates;

• Implementation of the Raman scattering spectroscopy for molecules;

• Parallelization of several parts of the code, most notably of the iterative
procedure, for its use on Graphical Processing Units (GPU);

• Other technical improvements such as support of Hierarchical Data Format
(HDF) and optimization of the random access memory use.

The contributions listed above allowed to model the electronic excitations in
several scenarios relevant for modern nanoscience and previously unexplored in
ab initio simulations. The simulations performed during this work are summa-
rized below.

In chapter 3, by means of first-principles atomistic TDDFT calculations we
demonstrated [44, 83, 146, 264, 266] that the distribution of the near-field close to
plasmonic nanoparticles exhibits subnanometric hot spots. The hot spots reflect
the atomic-scale features at the nanoparticle surface. These features consist of
vertices and edges at the contact of the crystallographic facets of the particles. In
particular, for the plasmonic dimer, we have shown that the field localization and
enhancement inside the plasmonic nanogaps can be very different depending on
whether the distribution of the atoms at the gap define a flat surface, or present
atomic-scale tip-like protrusions. We obtained that the far-field also depends on
the atomic configuration but in a less marked manner.

Our findings provide new insights into the limits of plasmonic localization.
The presence of atomic-size features, e.g., formed by edges and vertices between
crystalline facets in a nanoparticle, gives rise to near-fields localized in regions
of a few Ångstroms, i.e., literally of atomic size. This effect can be related to
the classical divergence of a field due to the presence of sharp edges. Indeed,
the vertex ending by a single atom, as the one considered in this thesis, would
be the example of the sharpest possible tip. Furthermore, the field enhanced at
the atomic-scale hot spots is intensified by the presence of the overall plasmonic
background enhancement, following a cascade effect. Based on this parallelism,
we can establish an atomic-scale analogy with the macroscopic plasmonic lens of
self-similar antennas [135, 146].
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We compared classical simulations of small metal clusters with our ab ini-
tio atomistic simulations and found that the predictions of the former can be
significantly improved when the atomic-scale geometrical features are taken into
account [146]. Nevertheless, only full ab initio atomistic calculations are able to
provide a fair description of the response of the system under external pertur-
bation [83, 283], when quantum phenomena play an important role. As demon-
strated in section 3.3 of chapter 3, in a realistic nanogap, the key features of
the field enhancement can easily reach the atomic-scale. Therefore, a descrip-
tion of the plasmonic response based on smooth interface profiles, either classical
or quantum, might not be able to address this atomic-scale near-field regime.
To understand and optimize certain experimental situations operating in the
subnanometer-scale, it might be mandatory to develop computational schemes
that account for the atomistic structural details and basic quantum mechani-
cal effects. Such sensitivity to the atomic details of a structure could explain
the lack of reproducibility between apparently similar experiments [267], but
could also provide a hint for further optimization of morphologies. The depen-
dence of the far-field optical spectroscopy on the atomic-scale features at the
nanoparticle(s) surface, is a remarkable finding that might provide new insights
into the limits of plasmon localization, and has important consequences for the
limits of optical resolution in field-enhanced spectroscopies [284, 285] and micro-
scopies [126, 128, 141].

Chapter 4 describes how atomic-scale structural reorganizations are crucial
to determine the optical properties of plasmonic cavities [266]. Besides the im-
portance of jump-to-contact events, which can almost completely eliminate any
signature of the plasmonic tunneling regime, the effects are dramatic when a
metal nanocontact is formed across the cavity. This is due to the strong depen-
dence of the plasmonic response of the system on the quantized current flowing
through the connecting neck.

The mechanical response of atom-sized necks is characterized by sudden re-
arrangements of the atomic structure which frequently involve just a few atoms
in the thinner part of the contact. Since the electron transport through thin
metal nanocontacts is quantized, the corresponding changes of the current flowing
across the junction are necessarily discontinuous. Our calculations demonstrate
that this common observation under small applied dc biases can be extrapolated
to the optical frequencies of the plasmon resonances of the cavity, at least for
the short ballistic contacts considered here. These jumps in the current translate
onto abrupt changes in the plasmonic response of the system. Thus, the dis-
continuous evolution of the spectral position, width and intensity of the charge
transfer plasmon mode observed in our simulations is a direct consequence of the
transport quantization in the connecting neck.
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The correlation is clearly demonstrated, showing that remarkably, optics fol-
lows the atoms. This is absolutely important in the design of subnanometric-scale
optical modulators that rely on slight changes of the optical response against
tiny configurational modifications. In our case, we have analyzed structures in-
side plasmonic cavities formed by relatively small icosahedral sodium clusters,
however, we expect to find a similar behavior for other materials suitable for
electronic applications, such as gold.

The effect of single-atom motion on the optical properties of a nanoscopic
object as the one reported in chapter 4, which can be probably extended to some-
what larger objects, has important consequences in optical engineering, molecular
electronics, and photochemistry, where the optical response could be tailored by
a few atoms.

Thanks to improvements to the software that have been implemented during
this thesis, we were able to calculate the polarizability and the induced charge
density for metallic clusters of sizes ranging from a few atoms up to more than
5000 atoms as presented in chapter 5. This allowed us to study the size dispersion
of surface plasmon frequency of these large systems with atomistic ab initio meth-
ods for the first time. The calculations presented in chapter 5 prove that current
ab initio theories can be used to successfully describe and gain understanding on
the plasmonic properties of nanostructures of different chemical compositions. In
our simulations, we studied the surface plasmon resonances in silver and sodium
clusters comparing their dependence on the cluster sizes. In particular, we have
revealed the competition between the size dispersion determined by the quan-
tum confinement (QC) and the Coulomb interaction, the former dominating in
silver clusters due to the screening of the d-electrons that weakens the effective
electron-electron interaction.

Comparing the pictures provided by the classical and quantum mechanical
theories, we see that most of the classical explanations are based on some surface
models (either of the modifications of the average electron density or of the dis-
tribution of the induced density close to the surface). In our quantum mechanical
approach, we can explain the different size dispersion of Na and Ag as a result
of the competition between QC and the strength of the Coulomb interaction be-
tween conducting electrons. The latter is weakened due to the screening caused
by the bound d-electrons in the case of silver clusters. Our calculations in the
non-interacting case testify that the crucial effect governing the size dispersion is
QC. Moreover, the classical microscopic picture of the induced density clumping
at the surface can be confirmed only for sodium clusters.

The improved ab initio picture, will help guiding the design of plasmonic par-
ticles by controlling their composition or their coating.
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In chapter 6, we study the electron energy loss spectra (EELS) of carbon
nanotubes, boron nitride nanotubes, silver clusters and silver dimers. There are
several experimental studies of the mentioned systems. We find a qualitative
agreement between our calculations and experimental data in all the cases. The
good agreement between theory and experiment in the characterization of such
chemically different systems as metallic clusters and organic compounds confirms
the chemical sensitivity of the implemented method. The method of computing
EELS includes several approximations. Firstly, the probe electrons are modeled
as classical point particles moving uniformly in a straight-line trajectory and
perturbing the probed condensed matter system via the instantaneous Coulomb
interaction. Secondly, the induced density of the perturbed condensed matter
system is modeled within the linear-response TDDFT, using the iterative meth-
ods similar to those utilized to explore the optical spectroscopy of nanobjects in
chapters 3, 4 and 5.

Similarly to the optical spectroscopy, in most cases EELS is capable to excite
the dipolar modes in the probed quantum system. However, the EELS proves to
be more versatile than optical spectroscopy. For instance, EELS signal strongly
depends on the probing beam positioning. We demonstrate the dependence of
the EELS on the beam positioning unambiguously in our calculations both for
nanotubes and metal clusters. Besides the dipolar excitations, EELS is sensi-
tive to the higher multipolar modes. Such higher multipolar modes are usually
called dark modes because they are normally inaccessible using optical (light)
spectroscopy. In our calculations, we demonstrate the excitation of dark surface
plasmon modes in silver clusters and silver cluster dimers. The conditions for the
dark surface plasmon mode to dominate in EELS are a central positioning of the
probing electron beam and the spatial symmetry of the probed system. Under
these conditions, the dipolar modes are not (or weakly) excited and the dark
modes dominate the loss spectra. Unfortunately, these conditions (particularly
the requirement of high symmetry) might be difficult to achieve with sufficient
accuracy in experimental setups, which explains the scarcity of the experimental
studies of dark modes.

The iterative TDDFT applied to EELS permitted to characterize finite sys-
tems containing several hundreds of atoms. Our implementation is the only ab
initio atomistic framework capable to cope with such large quantum systems to
the best of our knowledge. However, the experimentally characterized systems
are typically much bigger than we can afford in the calculations and we needed
to design carefully our calculations to obtain qualitatively correct and quanti-
tatively reasonable results. For instance, we compared our calculations against
the experimental measurements for some 20 nm silver clusters, containing about
one million atoms. A direct ab initio determination of the cluster geometry for
such a large cluster is currently impossible. However, since the surface to volume
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ratio of the computed and measured clusters differs by an order of magnitude, it
is reasonable to assume that the internal structure of such large clusters is sim-
ilar to the lattice of bulk silver rather than to the icosahedral geometry that we
have used to model small clusters. A comparison of the calculated EELS against
experimental data indicate that this implication is correct. Namely, the experi-
mental EELS for central incidence shows a bulk plasmonic resonance at 3.8 eV
in very good agreement with the experimental observation. This resonance fre-
quency differs significantly from the surface plasmon frequency at about 3.3 eV.
On the theoretical side, the EELS for icosahedral clusters show only a slightly
blue-shifted resonance at 3.4 eV, while the EELS for a cubic chunk of silver pre-
serving the bulk lattice shows the plasmonic resonance at 3.8 eV, matching the
experimental spectra more accurately.

In chapter 7, we gave an account on yet another type of spectroscopy—
vibrational scattering spectroscopy. Vibrational spectroscopy originates in rel-
atively small energy changes of a molecule caused by the nuclear motion, i.e., the
excitation of vibrations. Infrared and Raman spectroscopies are widely used vi-
brational spectroscopies, which can serve as a very sensitive detectors for specific
molecules. Theoretically, vibrational spectroscopies can be simulated in atomistic
ab initio frameworks, using the harmonic approximation to obtain the restoring
forces felt by the nuclei slightly displaced from their equilibrium positions. In fact,
the calculation of vibrational frequencies is part of many ab initio DFT packages.
However, the estimation of scattering cross-sections involves more steps, particu-
larly for Raman scattering. To estimate the probability of non-resonant Raman
scattering, one can track the changes of the optical polarizability along the nor-
mal mode vibrations. The calculations of optical polarizability can be relatively
fast with our iterative TDDFT, allowing to estimate polarizabilities of molecules
in the vicinity of relatively large metallic clusters to account for the enhanced
Raman spectroscopy. In this chapter, however, we demonstrate only proof-of-
principle calculations of Raman (and infrared) cross sections for small molecules,
speculating on how the harmonic approximation could be extended to simulate
directly the enhanced Raman spectroscopies necessary for the detection of single-
molecule signal.

Nanophotonics is a key in the development of many new technologies. We
believe that atomistic ab initio theoretical approaches are necessary to properly
describe processes at the atomic scale as those presented in this work. We pre-
sented a theoretical study of several types of spectroscopies at the DFT and
TDDFT levels of theory. Several methods were developed and improved dur-
ing the thesis, allowing to realize many calculations that were impossible before
this work. We believe that the extensions of the implemented methods towards
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higher accuracy (using improved DFT functionals) and towards accounting for
yet unexplored physical observables and situations will contribute to advances in
nanophotonics and in a broader scope, in nanosciences.
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Appendix A

The SIESTA program

The following appendix is based on the description of the SIESTA program from
Federico Marchesin’s PhD thesis [286]. SIESTA is both a method and computing
code inspired by the ab initio Tight-Binding (TB) technique developed by Sankey
and Niklewski [287] which became a popular ab initio code for electronic structure
calculations [1, 2, 44, 83, 205, 266]. SIESTA is an ab initio DFT code designed
to perform electronic ground-state calculations for periodic and finite systems.
The use of localized basis sets and linear-scaling algorithms results in a highly
efficient code for electronic structure and molecular dynamics simulations. Start-
ing with version 4.0 in spring 2016, the SIESTA package became GPL (General
Public Licence) and also adopted a modern approach for developing open-source
software [288].

In this appendix, as a short introduction to the program, we will show one
example of SIESTA input file and explain some selected parameters. Although
the thesis is mainly focused to the study of optical properties, quality of the
ground-state calculations are of fundamental importance as it directly influences
the response of the system to an external perturbation. Two of the most influen-
tial parameters will be discussed separately in sections A.2 (basis set multiplicity)
and A.3 (energy shift).

A.1 SIESTA Input File
An example of SIESTA input file is shown in Figure A.1.1. The input file cor-
responds to a simple diatomic silver system. The meaning of all parameters
is explained in the SIESTA documentation [289]. Below, we discuss only five
parameters that are essential for the quality of a subsequent TDDFT calculation.

161



APPENDIX A. THE SIESTA PROGRAM

• MeshCutOff : parameter defining the fineness of the 3D real-space grid.
Although the real-space quantities are not directly imported in our imple-
mentation of TDDFT, the number of grid points affects the overall quality
of the numerically computed matrix elements and thus the quality of the
whole DFT output—Kohn-Sham states, molecular geometries etc.

• DM.Tolerance: parameter controlling the convergence of the density matrix
(DM) during the Kohn-Sham self-consistent loop. It is important to use a
small value (less than 10−4) and also to ensure the actual convergence of the
self-consistent loop to achieve reproducibility of the TDDFT calculations.

• PAO.BasisSize: parameter to set the basis set multiplicity of pseudo-atomic
orbitals (PAO). The multiplicity defines a set of atomic orbitals. In this
work, we were using mostly the default double-ζ polarized (DZP) basis set.
DZP basis set is sufficient to reproduce qualitatively most of features of
optical response. To improve quantitatively the results, user might want to
increase the basis set multiplicity at the cost of some computational per-
formance loss. More details on this parameter are provided in section A.2.

• PAO.EnergyShift: parameter to control the spatial extend of atomic orbitals
globally. The energy shift parameter is designed to control the extend of all
atomic orbitals at once, but appropriately for each radial orbital. Smaller
energy shifts lead to more extended orbitals which is better for the quality
of the basis set but worser for the computational performance. In this work,
we normally used longer-than-default orbitals. Further details are available
in section A.3.

• COOP.Write: boolean parameter causing to export the Kohn-Sham Hamil-
tonian and eigenstates at the end of the Kohn-Sham self-consistent loop.
This data is used in the subsequent linear-response TDDFT calculations.
Therefore, it must be set to True in most of our SIESTA calculations.
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A.1 SIESTA Input File

SystemName Ag2
SystemLabel siesta

NumberOfAtoms 2
NumberOfSpecies 1

%block ChemicalSpeciesLabel
1 47 Ag

%endblock ChemicalSpeciesLabel

AtomicCoordinatesFormat Ang
%block AtomicCoordinatesAndAtomicSpecies

-0.00000 0.00000 -0.00000 1
2.40600 0.00000 -1.48699 1

%endblock AtomicCoordinatesAndAtomicSpecies

XC.functional GGA
XC.authors WC

MD.TypeOfRun CG
MD.NumCGsteps 400
MD.MaxForceTol 0.02 eV/Ang

MeshCutOff 250 Ry

DM.MixingWeight 0.01
DM.Tolerance 0.0001
DM.NumberKick 40
DM.NumberPulay 4
DM.KickMixingWeight 0.15
DM.UseSaveDM .True.
DM.MixSCF1 .True.

SolutionMethod Diagon
MaxSCFIterations 1500

PAO.BasisType split
PAO.EnergyShift 100 meV
PAO.BasisSize DZP

WriteCoorXmol .True.

### Exports .DIM and .PLD files
WriteDenchar .True.

### Exports .WFSX, .HSX
COOP.Write .True.

Figure A.1.1: SIESTA input file for two silver atoms.
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A.2 Basis Set Multiplicity
SIESTA uses a linear combination of atomic orbitals to expand the Kohn-Sham
eigenstates

ψn(r) =
∑
a

Xn
a f

a(r). (A.1)

The expansion coefficients Xn
a are determined in the Kohn-Sham self-consistent

loop (see chapter 2). The atomic orbitals fa(r) are given by a product of radial
functions and spherical harmonics. The size of the basis, i.e. the number of
orbitals per atom included in the calculation can be tuned by the user (block
PAO.Basis as in Figure B.0.1). However, to facilitate the use, a parameter sets
the number of Atomic Orbital (AO) generated by the program. Different types
of basis sets can be easily chosen by the user: single, double or triple ζ (SZ,
DZ, TZ). Polarized orbitals can be added in the same fashion: single, double or
triple-ζ polarized (SZP, DZP, TZP). The SZ basis set is the minimal basis set
available. It has one single radial function per angular momentum channel, i.e.
carbon atom’s valence orbital 2s2p is described by four functions, one for the
s-type orbital and three for the p-type orbital. By adding a second function per
channel the DZ basis set is obtained. In this case a carbon atom is described
with 8 atomic functions. The default basis set in SIESTA is the DZP, which adds
polarization orbitals, i.e. orbitals with a higher angular momentum component.
For instance, in case of the carbon atom described by a DZP basis, five d-type
extra orbitals are added to the DZ basis set. Thus, valence electrons are described
with a total of 13 functions per carbon atom when using the DZP basis set.

As we add orbitals, the basis set becomes more accurate. A larger basis set
is usually providing a more accurate and reliable results due to the better com-
pleteness of the high-ζ basis sets. However, these larger basis set are naturally
more computationally demanding and there is typically a trade-off between the
accuracy and computational performance of the calculation. SIESTA’s default
DZP basis set is a good compromise between accuracy and computational per-
formance. Therefore, it is used in most of the calculations in this work.

A.3 Energy Shift Parameter
The radial orbitals in SIESTA are given on a numerical grid. The atomic or-
bitals defined on a radial grid are usually referred as numerical atomic orbitals
(NAO). Moreover, the pseudo-potentials are obligatory in SIESTA and, by anal-
ogy, the atomic orbitals are referred as pseudo-atomic orbitals (PAO). The shape
of PAOs is determined by solving a radial Schrödinger equation and they are
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strictly zero beyond a radial distance. The orbitals’ confinement can be con-
trolled by the PAO.EnergyShift parameter rather than the value of the cutoff
radius itself. Solving the radial part of the Schrödinger equation. SIESTA adds
the energy shift to the precise eigenenergy of an orbital, causing the outward
solution to cross the abscissa axis rather than to strive to zero at infinity r →∞.
The cross point is taken as the radial cutoff beyond which the radial orbital is
not represented. This is similar to define a spherical box with infinite walls at
the radial cutoff. Usually, a common energy shift is fixed for all the chemical
species avoiding the task to define different cutoff radii for different atoms and
angular momenta. The higher is the energy shift, the more contracted are the
generated orbitals. Left panel of Figure A.3.1 shows the 2p orbitals of carbon
generated using an energy shift of 50 meV (red line) and 100 meV (blue line),
the right panel shows the same comparison but for the polarization orbital with
d-symmetry. Obviously, the extension of the orbitals affects the results of the cal-

Figure A.3.1: The effect of the energy shift parameter on the shape of the radial orbitals. Smaller
energy shift leads to more extended orbitals, from Ref. [286].

culation. More extended orbitals (small energy shift) provide in principle more
accurate results, however, calculations will be more costly. Thus, it is important
to perform convergence studies in order to make sure that reasonable values of
the PAO.EnergyShift parameter are used.
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Appendix B

TDDFT Calculations
Example: Silver Clusters

In this appendix, we describe optical calculations of the series of icosahedral silver
clusters presented in chapter 5. Once the geometry of the system is defined,
the first step to perform is the calculations of the ground-state using SIESTA.
We show our SIESTA input file in Figure B.0.1. Not all the data to be used
in a subsequent linear-response TDDFT is exported by default, therefore it is
mandatory to set the flag and COOP.Write to True. The main parameters of the
SIESTA input are described in appendix A.

Once the ground-state calculations are finished, we used MBPT-LCAO [3–5]
to compute the polarizability of the clusters. The input file for MBPT-LCAO
for these specific calculations is shown in Figure B.0.2. These are the most
optimal parameters which will give the best performance (CPU time and RAM
usage) while not compromising the accuracy of the results. A more complete
description of the parameters of MBPT-LCAO can be found on a wiki page [290].
The polarizability along the xx-axis for this series of silver clusters (from 13 to
2057 atoms) is shown in Figure B.0.3. The data (running time and memory
consumption) extracted from these calculations were used for the Figures 2.3.1
and 2.3.2 in the main text of the thesis. The input files for these calculations can
be downloaded from Ref. [291].
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%block PAO.Basis
Ag 2
n=5 0 2 P E 50.0 7.0

0.000 0.000
n=4 2 2 E 50.0 4.0

0.000 0.000
Ags 1
n=5 0 1 P E 50.0 7.0

0.000
%endblock PAO.Basis

SystemLabel siesta

%include "geometry.siesta.fdf"

MD.TypeOfRun CG
XC.functional GGA
XC.authors WC
MD.NumCGsteps 400

MD.MaxForceTol 0.02 eV/Ang

MeshCutOff 250 Ry
DM.MixingWeight 0.01
DM.Tolerance 0.0001
DM.NumberKick 40
DM.NumberPulay 4
DM.KickMixingWeight 0.15
SolutionMethod Diagon
MaxSCFIterations 1500
PAO.BasisType split

DM.UseSaveDM .True.
DM.MixSCF1 .True.

PAO.EnergyShift 100 meV
PAO.BasisSize DZP
WriteCoorXmol .True.
WriteDenchar .True.
COOP.Write .True.

Figure B.0.1: SIESTA input file for silver clusters
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prod_basis_type AC_DIRECT
biloc_interm_storage SM
prod_basis_procedure ONLY-PB
solver_type 3

gmres_eps 0.003
gmres_itermax 200
gmres_restart 250
gmres_verbose 20

xc_ord_lebedev 14
xc_ord_gl 48

eigmin_local 1e-04
eigmin_bilocal 1e-06

d_omega_win1 0.05
freq_eps_win1 0.15
omega_min_tddft 0.0
omega_max_tddft 5.0
omega_max_win1 5.0

ext_field_direction 1.0 0.0 0.0
dr 0.2 0.2 0.2

chi0_v_algorithm 13
para_type MATRIX
save_temp 1

comp_dens_chng_and_polarizability 1
store_dens_chng 1
enh_given_volume_and_freq 0
diag_hs 0
check_basis 0
no_wfsx 0
plot_freq 3.6

ihartree 1
iexchange 1
icorrelation 1

do_tddft_iter 1

tddft_iter_solver_op N
gwa_initialization SIESTA_PB

kernel_algorithm BCRS
bcrs_mv_block_size 15

Figure B.0.2: MBPT-LCAO input file for silver clusters
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Figure B.0.3: Polarizability of silver clusters from 13 (purple) to 2057 (red) atoms calculated using
SIESTA and MBPT-LCAO programs.
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PySCF-NAO Script
Examples

The code shown in Figure C.0.1 can be used to calculate the optical polarizability
of a molecule in a dipole approximation. The script should be executed in the
same folder where the preceding SIESTA calculation is finished. The SIESTA
calculation should export certain data that are not exported by default for the
TDDFT calculation to start successfully. For example, the Kohn-Sham eigen-
values will be taken from an XML output. The Kohn-Sham eigenstates will be
taken from the WFSX binary files. In order to demand the export of the data
used by PySCF-NAO, one should add the following options to the SIESTA fdf
file

XML.Write .True.
COOP.Write .True.

The Python script in Figure C.0.1 was used to compute the optical polarizability
of the silver icosahedral clusters on panel (a) of Figure 2.3.4. After the un-
avoidable import commands, a tddft_iter object is constructed. The object is
versatile, but the presence of option label tells to import the data from SIESTA
files defined by the SystemLabel=siesta. The other options present in the con-
structor of the tddft_iter object are suitable for a pseudo-potential starting
points which is the case for any SIESTA calculation. During the execution of
the constructor, the data will be imported, the SIESTA’s atomic orbitals will
be remapped to logarithmic grids, the product basis will be constructed and
the matrix elements of TDDFT kernel will be computed. Later in the script,
the non-interacting and interacting polarizabilities will be computed and stored
into text files for a set of frequencies by calling appropriate methods of the class
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tddft_iter.

from __future__ import print_function, division
import numpy as np
import sys
from pyscf.nao import tddft_iter

from ase.units import Ry, eV, Ha
from timeit import default_timer as timer

# initialize tddft calculations: calculate vertices and kernel
t1 = timer()
td = tddft_iter(label="siesta", iter_broadening=0.15/Ha, xc_code=’LDA,PZ’,

level=0, tddft_iter_tol=1e-3, tol_loc=1e-4, tol_biloc=1e-6)
t2 = timer()
print("time tddft_iter = ", t2-t1)

# non interacting polarizability first
omegas = np.arange(1.0, 6.05, 0.05)/Ha + 1j*td.eps
t3 = timer()
pxx = -td.comp_polariz_nonin_xx(omegas).imag
t4 = timer()
print("time chi0 = ", t4-t3)

data = np.zeros((omegas.shape[0], 2))
data[:, 0] = omegas.real*Ha
data[:, 1] = pxx
np.savetxt(’polarizability_nonin_siesta.pxx.txt’, data)

# calculate interacting polarizability
t5 = timer()
pxx = -td.comp_polariz_inter_xx(omegas).imag

t6 = timer()
print("time chi = ", t6-t5)
data = np.zeros((omegas.shape[0], 2))
data[:, 0] = omegas.real*Ha
data[:, 1] = pxx
np.savetxt(’polarizability_inter_siesta.pxx.txt’, data)

print("nb call:")
print("rf0_ncalls = {0}, matvec_ncalls = {1}".format(td.rf0_ncalls,

td.matvec_ncalls))
t7 = timer()
print("total time = ", t7-t1)

Figure C.0.1: Python script for PySCF-NAO. In the script, we organize the calculation of the optical
polarizability component Pxx (ω) for a set of frequencies, using the data from a preceding SIESTA
run.
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Appendix D

Analysis of EELS Spectra
for a Silver Cube

In chapter 6, we have seen that the experimental bulk plasmon frequency [233,
234] at 3.8 eV is possible to reproduce in the calculation for a cubic chunk of bulk
silver, while the calculation for an icosahedral geometry delivers the frequency of
EELS maximum at 3.45 eV. In this appendix, we show more calculations for the
cubic chunk of bulk silver for different beam trajectories.

In Figure D.0.1 the EELS spectra of five beam trajectories are shown. Four
of the trajectories are oriented along the z-axis (full lines), perpendicular to the
facet they cross. The fifth trajectory is directed along the cube diagonal (dashed
line) as shown by the inset of the Figure. The first trajectory (blue line) the beam
crosses the cluster through its center (b = 0 nm). The second trajectory (orange
line) bisects the cluster at half distance to the surface (b = D/4). The third
trajectory (green line) is passing just near the surface of the cluster (b = D/2).
While the last trajectory is passing at 1 nm from the cluster surface (b = D/2+1
nm). When the beam is directed along the z-axis (full lines), two modes are
excited. The SP at 3.25 eV, except when the beam is passing right through the
center of the cluster (blue line), and the bulk plasmon at 3.8 eV, except when
the beam is far from the cluster (red line). The fact that the SP is not excited
when the beam passes right through the center can be justified by invoking the
symmetry of the external potential in the relevant range of frequencies. While it
is obvious that the bulk plasmon can not be excited if the beam is not crossing
the particle. The presence of the bulk plasmon for the silver cube is the main
difference with the icosahedral geometry for which no excitations were observed
at 3.8 eV (Figure 6.3.2). Yet, when the beam is directed along the diagonal of
the cube (dashed blue line), but still passing through the center of the cluster,
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Figure D.0.1: Computed EELS spectra of a silver cube composed of 500 atoms with an edge length
of D ∼ 20 Å and a FCC lattice. The spectra were obtained for five beam trajectories. Four of
them along the z-axis (full lines) and the fifth one along the diagonal of the cube (dashed line).
Four impact parameters were used. The first one (blue lines) crossing the cluster right through its
center (b = 0 nm). The second (orange line) passing at half-distance between the cluster center
and its surface (b = D/4). The third trajectory (green line) passing just at the surface of the cluster
(b = D/2). The last one (red line) passing at 1 nm from the cluster surface (b = D/2 + 1 nm).
The cluster geometry used for the calculations together with the beam trajectories are represented
in the figure. The colors of the beams are matching the colors of the lines. The kinetic energy of
the probing electrons is 100 keV.

the bulk plasmon does not give rise to a well-developed peak, but it seems to
appear a slightly red-shifted shoulder of the main resonance. Instead an intense
peak rises at 3.4 eV, blue shifted of 0.15 eV compared to the SP. This is the
exact same behavior that for the icosahedral clusters which was explained in
section 6.3.1. This comparison of EELS spectra for silver cube and icosahedral
clusters demonstrate that we are capable to reveal the bulk plasmon from ab
initio method in silver. It also shows that the intensity of the bulk plasmon is
greatly sensitive to the cluster internal structure and to the beam position and
orientation.
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PySCF-NAO Calculator and
Raman Scattering
implementations in ASE

The atomic simulation environment (ASE) [19] is a software package written
in the Python programming language with the aim of setting up, steering, and
analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The
powerful syntax of Python combined with the NumPy library make it possible
to perform complex simulations. For example, a sequence of calculations may
be performed with the use of a simple “for-loop” construct. Calculations of
energy, forces, stresses and other quantities are performed through interfaces to
many external electronic structure codes or force fields using a uniform interface.
On top of this calculator interface, ASE provides modules for performing many
standard simulation tasks such as structure optimization, molecular dynamics,
handling of constraints, and many other modules.

E.1 SIESTA-PySCF Calculator
During this thesis, the SIESTA calculator had been greatly improved by Mads
Englund (mads_engelund001@ehu.es) whom I helped and I added some more
functionalities to the calculator. The main functionality I added is the the com-
putation of optical polarizability using PySCF-NAO package. An example of
script that can be used to compute the polarizability using the combination of
SIESTA-PySCF-ASE in Python is show in Figure E.1.1.
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from ase.units import Ry, eV, Ha
from ase.calculators.siesta import Siesta
from ase import Atoms
import numpy as np

# Define the geometry of the molecule
Na8 = Atoms(’Na8’,

positions=[[-1.90503810, 1.56107288, 0.00000000],
[1.90503810, 1.56107288, 0.00000000],
[1.90503810, -1.56107288, 0.00000000],
[-1.90503810, -1.56107288, 0.00000000],
[0.00000000, 0.00000000, 2.08495836],
[0.00000000, 0.00000000, -2.08495836],
[0.00000000, 3.22798122, 2.08495836],
[0.00000000, 3.22798122, -2.08495836]],

cell=[20, 20, 20])

# enter SIESTA input
siesta = Siesta(

mesh_cutoff=150 * Ry,
basis_set=’DZP’,
pseudo_qualifier=’’,
energy_shift=(10 * 10**-3) * eV,
fdf_arguments={

’SCFMustConverge’: False,
’COOP.Write’: True,
’WriteDenchar’: True,
’PAO.BasisType’: ’split’,
’DM.Tolerance’: 1e-4,
’DM.MixingWeight’: 0.01,
’MaxSCFIterations’: 300,
’DM.NumberPulay’: 4,
’XML.Write’: True})

Na8.set_calculator(siesta)

# run DFT calculation with SIESTA
e = Na8.get_potential_energy()

# run TDDFT calculations using PYSCF
siesta.pyscf_tddft(label="siesta", jcutoff=7, iter_broadening=0.15/Ha,

xc_code=’LDA,PZ’, tol_loc=1e-6, tol_biloc=1e-7,
freq = np.arange(0.0, 5.0, 0.05))

Figure E.1.1: Python script that compute the ground-state (SIESTA) and the polarizability (PySCF)
of a molecule using the ASE package. The calculated polarizability tensor can be found in the variable
siesta.results["polarizability inter"].
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E.2 Raman Intensity with ASE, SIESTA, PySCF-
NAO

The ASE package has a vibration module that can be used to compute the vi-
brational frequencies using finite difference method and the infrared intensities as
presented in chapter 7. In chapter 7, we discussed how the Raman scattering in-
tensity can be estimated theoretically within the harmonic approximation. Here,
in Figure E.2.1, we show a Python script used to compute the Raman spectra of
a molecule. Several packages must be orchestrated to perform this calculation.
The presented script relies on ASE, SIESTA and PySCF-NAO to compute the
Raman intensities. During the execution of the script, a set of 6N + 1 DFT/T-
DDFT calculations will be performed, where N is the number of atoms to be
displaced.

The script presented on Figure E.2.1 is used to calculate the Raman spectra
of a molecule, it does not need any input files since ASE will take care to run
SIESTA and PySCF. The output of the script consists both of a formatted re-
port on the vibrational modes and Raman intensities as well as of a set of pickle
files (binary, Python-readable) containing the data gathered after each of the
DFT/TDDFT calculations. The calculation of Raman intensities can be easily
parallelized. To parallelize the calculation, we use the option indices to indi-
cate a subset of atoms which must be treated during the construction of the class
SiestaRaman. The method .run() executes DFT/TDDFT calculations produc-
ing the binary pickle output files. If the expected pickle file exists already, then
the corresponding DFT/TDDFT calculation is skipped and the necessary data
are just read from the file. Such design makes the calculation of Raman spectra
parallelizable and restartable.

1 from ase.units import Ry, eV, Ha
2 from ase.calculators.siesta import Siesta
3 from ase.calculators.siesta.siesta_raman import SiestaRaman
4 import ase.io as io
5 import numpy as np
6

7 # Load the relaxed geometry of the molecule
8 mol = io.read("path_to_relax_geo.xyz")
9

10 # enter siesta input
11 siesta = Siesta(
12 mesh_cutoff=450 * Ry, # Large meshcutoff
13 basis_set=’DZP’,
14 xc="GGA",
15 pseudo_qualifier=’gga’,
16 energy_shift=(10 * 10**-3) * eV,
17 fdf_arguments={’SCFMustConverge’: False,
18 ’COOP.Write’: True, # necessary for TDDFT
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19 ’WriteDenchar’: True, # necessary for TDDFT
20 ’PAO.BasisType’: ’split’,
21 "PAO.SoftDefault": True, # can help to get better accuracy
22 ’DM.Tolerance’: 1e-4, ’DM.MixingWeight’: 0.01,
23 ’MaxSCFIterations’: 1500,
24 ’DM.NumberPulay’: 4, "MD.MaxForceTol": 0.01,
25 "MD.NumCGsteps": 0, # No relaxation
26 "DM.UseSaveDM": True, # better to use previous density matrix
27 # to speed up siesta calculation
28 ’XML.Write’: True # necessary for TDDFT
29 })
30

31

32 mol.set_calculator(siesta)
33 list_atoms_disp = [0, 1, 2] # list of the atoms to displace in order to
34 # compute the vibrational modes
35

36 ram = SiestaRaman(mol, siesta, label="siesta", jcutoff=7,
37 iter_broadening=0.15/Ha,
38 xc_code=’LDA,PZ’, # better to have good tolerance
39 tol_loc=1e-6, tol_biloc=1e-7, # keep in mind that this method is
40 freq = np.arange(0.0, 4.0, 0.05) # correct only far from resonnance
41 delta = 0.01, indices=list_atoms_disp)
42

43 ram.run() # run calculations
44 ram.summary(intensity_unit_ram=’A^4 amu^-1’) # print summary
45 ram.write_spectra(start=200, # write continuous
46 intensity_unit_ram=’A^4 amu^-1’) # spectra to file

Figure E.2.1: Python script to compute the Raman spectrum of a molecule. This script uses the
Siesta calculator to perform DFT/TDDFT calculations for a set of perturbed molecular geome-
tries around the equilibrium geometry given by reading an xyz file (other formats are accepted)
at the beginning of the script. The list of the atoms to displace is given by the parameter
indices=list_atoms_disp in line 41. By default, all the atoms of the molecule are displaced.
This parameter can be used to parallelize the calculations over the atoms. Each computer running
the calculations for the motions of one or few atoms.
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Iterative Procedure: GPU
Parallelization

We gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Tesla K40 GPU used for this research.

As we explained in the section 2.3.2.2, the most expensive part of the program,
particularly for large systems, is the χ0 algorithm that scales as O(N3) with the
number of electron N . Even by using OpenMP and the Intel MKL [292] library
for the basic linear algebra subroutine (BLAS) [293], the calculations are still very
heavy because of the large matrix-matrix multiplications. It can be advantageous
to use graphical processing units (GPU) to accelerate scientific software [294].
Nowadays, after more than a decade of development, this technology is becoming
more mature and easy to use. We choose the CUDA [295] environment from
NVIDIA since it is one of the most advanced for scientific computing with GPU.
Particularly, we did a heavy use of the cuBLAS library to replace the BLAS
routines by their GPU versions. In the columns below, we compare the routine
chi0_13_matrix (left column) and its GPU version chi0_13_matrix_gpu (right
column). These subroutines are the implementation of the equation (2.88). For
simplification, we show only the code corresponding to the calculations of the
real part of the matrix. The imaginary part is calculated with a similar code.

To illustrate the performance of the code, we performed the same calculation
with both BLAS and cuBLAS parallelization methods. We used a silver dimer
composed of 618 atoms of silver and 504 silver ghost atoms for a total of 1122
atoms (see section 6.3.3 in chapter 6). The calculation was performed on a
relatively old machine with 16 Intel Xeon CPU E5620 at 2.40GHz with 12 MB of
cache. This CPU is relatively old (2010). We added to this machine two recent
GPUs GeForce GTX 1050 Ti that are low-end GPU. Only one GPU was used
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during the calculation.

MATRIX parallelization: OpenMP
and GEMM Blas routine.

!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(aux, VV, vKS_re) &
!$OMP PRIVATE(n,i, j, si, fi)
!$OMP DO
do n = 1, aux%nloop

si = aux%si(n, :); fi = aux%fi(n, :);
do j = lbound(aux%Vertex_array(n)%array, 2), &

ubound(aux%Vertex_array(n)%array, 2)
do i = lbound(aux%Vertex_array(n)%array, 1), &

ubound(aux%Vertex_array(n)%array, 1)
VV(si(1)+i-1, si(2)+j-1) = &

sum(aux%Vertex_array(n)%array(i, j, :)* &
vKS_re(si(3):fi(3)))

enddo
enddo

enddo
!$OMP ENDDO
!$OMP ENDPARALLEL
call sgemm(’N’, ’N’, norb, nocc, norb, 1E0, &

VV, norb, aux%X4, norb, 0E0, XVV, norb)

call sgemm(’T’, ’N’, nvirt, nocc, norb, 1E0, &

aux%X_aF, norb, XVV, norb, 0E0, XXVV_re, nvirt);

!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(aux, omega, eps, XXVV_re, XXVV_im, nocc) &
!$OMP SHARED(nvirt, vm) &
!$OMP PRIVATE(E, F, XVXz_FE, Emf, odiff)
!$OMP DO
do E=vm,aux%nocc;

XXVV_re(1:E-vm+1, E) = 0;
XXVV_im(1:E-vm+1, E) = 0;

enddo
!$OMP ENDDO

!$OMP DO
do F=1,aux%nvirt

do E=1,min(F+aux%norbs-aux%nvirt,aux%nocc)
odiff = aux%n2occ(aux%Fmin+F-1) - aux%n2occ(E)
EmF = aux%DFT_E_occ(E) - aux%DFT_E_virt(F);
XVXz_FE = cmplx(XXVV_re(F,E), XXVV_im(F,E))
XVXz_FE = XVXz_FE*(odiff/cmplx(omega-EmF,eps) - &

odiff/cmplx(omega+EmF,eps))
XXVV_re(F,E) = real(XVXz_FE);
XXVV_im(F,E) = aimag(XVXz_FE);

enddo
enddo
!$OMP ENDDO
!$OMP ENDPARALLEL

call sgemm(’N’, ’N’, norb, nocc, nvirt, 1E0, &

aux%X_aF, norb, XXVV_re, nvirt, 0E0, XVV, norb);

call sgemm(’N’, ’T’, norb, norb, nocc, 1E0, &

XVV, norb, aux%X4, norb,0E0, VV, norb);
chi0_vKS(1:nprod) = 0
do n = 1, aux%nloop

si = aux%si(n, :); fi = aux%fi(n, :);
do k = lbound(aux%Vertex_array(n)%array, 3), &

ubound(aux%Vertex_array(n)%array, 3)
do j = lbound(aux%Vertex_array(n)%array, 2), &

ubound(aux%Vertex_array(n)%array, 2)
do i = lbound(aux%Vertex_array(n)%array, 1), &

ubound(aux%Vertex_array(n)%array, 1)
chi0_vKS(si(3) + k-1) = chi0_vKS(si(3) + k-1) + &

aux%Vertex_array(n)%array(i, j, k)*VV(si(1)+i-1, &
si(2)+j-1)

enddo
enddo
enddo

enddo

MATRIX_GPU parallelization:
OpenMP and CUDA.

!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(aux, VV, vKS_re) &
!$OMP PRIVATE(n,i, j, si, fi)

!$OMP DO
do n = 1, aux%nloop

si = aux%si(n, :); fi = aux%fi(n, :);
do j = lbound(aux%Vertex_array(n)%array, 2), &

ubound(aux%Vertex_array(n)%array, 2)
do i = lbound(aux%Vertex_array(n)%array, 1), &

ubound(aux%Vertex_array(n)%array, 1)
VV(si(1)+i-1, si(2)+j-1) = &

sum(aux%Vertex_array(n)%array(i, j, :)*vKS_re(si(3):fi(3)))
enddo
enddo

enddo
!$OMP ENDDO
!$OMP ENDPARALLEL

call chi0_mv_noxv_set_first_vv(VV, norb)
call chi0_mv_noxv_step1_re_gpu(norb, nocc, nvirt, Fmin)
call chi0_mv_noxv_step2_gpu(omega, eps, norb, nocc, nvirt, Fmin)
VV= 0
call chi0_mv_noxv_step3_re_gpu(VV, norb, nocc, nvirt, Fmin)
call chi0_mv_noxv_get_last_VV(VV, norb)
V = 0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V, aux, VV) &
!$OMP PRIVATE(n,k) &
!$OMP PRIVATE(si, fi)

!$OMP DO REDUCTION(+: V)
do n = 1, aux%nloop

si = aux%si(n, :); fi = aux%fi(n, :);
do k = lbound(aux%Vertex_array(n)%array, 3), &

ubound(aux%Vertex_array(n)%array, 3)
V(si(3) + k-1) = V(si(3) + k-1) + &
sum(aux%Vertex_array(n)%array(:, :, k)*VV(si(1):fi(1), si(2):fi(2)))

enddo
enddo
!$OMP ENDDO
!$OMP ENDPARALLEL

chi0_vKS(1:nprod) = chi0_vKS(1:nprod) + cmplx(0.0, V(1:nprod), 4);
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The first loop is the calculation of the coefficient αcd = V cdν zν that was ex-
plained in the section 2.3.2.2. In fact this loop is very fast compared to the other
part of the routine, for the CPU version it represents less than 1% of the full
time of the χ0 routine, therefore we chose to keep it with OpenMP in the GPU
version in order to save memory on the GPU.

do n = 1, aux%nloop
si = aux%si(n, :); fi = aux%fi(n, :);
do j = lbound(aux%Vertex_array(n)%array, 2), ubound(aux%Vertex_array(n)%array, 2)
do i = lbound(aux%Vertex_array(n)%array, 1), ubound(aux%Vertex_array(n)%array, 1)

VV(si(1)+i-1, si(2)+j-1) = sum(aux%Vertex_array(n)%array(i, j, :) &
*vKS_re(si(3):fi(3)))

enddo
enddo

enddo

For the GPU version, this loop takes 5.6% of the time spend in the algorithm,
but since it is possible to overlap this loop with calculations performed on the
GPU, its impact is reduced. Then, there are two matrix multiplications

call sgemm(’N’, ’N’, norb, nocc, norb, 1E0, VV, norb, aux%X4, norb, 0E0, XVV, norb)
call sgemm(’T’, ’N’, nvirt, nocc, norb, 1E0, aux%X_aF, norb, XVV, norb, 0E0, &

XXVV_re, nvirt);

The aux%X4 variable contains the occupied-states eigenvector, while aux%X_aF
contains the virtual-states Kohn-Sham eigenvectors. These two matrix operations
are very heavy for large systems and in our example they represent 60.6% of the
χ0 routine in the CPU case. Therefore, we start the GPU parallelization with
these routines

call chi0_mv_noxv_set_first_vv(VV, norb)
call chi0_mv_noxv_step1_re_gpu(norb, nocc, nvirt, Fmin)

The routine chi0_mv_noxv_set_first_vv transfer the αcd (noted VV in the code)
matrix to the GPU in order to start the calculations

extern "C" void chi0_mv_noxv_set_first_vv_(float *VV_re, int *norbp)
{

int norb = *norbp;
checkCudaErrors(cublasSetMatrixAsync(norb, norb, sizeof(float), VV_re, norb,

VV_mat_d, norb, 0));
}

One of the bottle necks of GPU computing is the data transfer between the
host (CPU) and the device (GPU). In order to minimize this data transfer,
all the matrices that are constant in this routine are send to the device be-
fore the start of the iterative procedure. Only the matrix VV is in fact send
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to the device and then send back to the host at each iteration. The routine
chi0_mv_noxv_step1_re_gpu performs the two GEMM operations on the GPU.
It is defined as following

extern "C" void chi0_mv_noxv_step1_re_gpu_(int *norbp, int *noccp, int *nvirtp,
int *Fminp)

{
int norb = *norbp, nocc = *noccp, nvirt = *nvirtp, Fmin=*Fminp;
float alpha, beta;
alpha = 1.0;
beta = 0.0;

cublasSgemm(handle_mat, CUBLAS_OP_N, CUBLAS_OP_N, norb, nocc, norb, &alpha,
VV_mat_d, norb,aux_X4_mat_d, norb, &beta, XVV_mat_d, norb);

cublasSgemm(handle_mat, CUBLAS_OP_T, CUBLAS_OP_N, nvirt, nocc, norb, &alpha,
&aux_X4_mat_d[(Fmin-1)*norb], norb, XVV_mat_d, norb, &beta,
XXVV_mat_re_d, nvirt);

}

The same routine is implemented for the imaginary part. The next step is
the division by the energy denominator XXV V

ω−(E−F+iε)

do E=vm,aux%nocc;
XXVV_re(1:E-vm+1, E) = 0;
XXVV_im(1:E-vm+1, E) = 0;

enddo

do F=1,aux%nvirt
do E=1,min(F+aux%norbs-aux%nvirt,aux%nocc)

odiff = aux%n2occ(aux%Fmin+F-1) - aux%n2occ(E)
EmF = aux%DFT_E_occ(E) - aux%DFT_E_virt(F);
XVXz_FE = cmplx(XXVV_re(F,E), XXVV_im(F,E))
XVXz_FE = XVXz_FE*(odiff/cmplx(omega-EmF,eps)-odiff/cmplx(omega+EmF,eps))

XXVV_re(F,E) = real(XVXz_FE);
XXVV_im(F,E) = aimag(XVXz_FE);

enddo
enddo

This step is also very fast, for the CPU version it takes only 0.34% of the runtime.
Even if this operation is very fast, we decided to perform it on the GPU device in
case of the GPU parallelization in order to avoid data transfer. The GPU version
of the previous routine look as following

__global__ void calc_XXVV_mat_mat(float *XXVV_mat_re, float *XXVV_mat_im,
double *aux_n2occ, float *aux_DFT_E_mat_occ, float *aux_DFT_E_mat_virt,
double omega, double eps, int norbs, int nocc, int nvirt, int Fmin)

{
int i = blockIdx.x * blockDim.x + threadIdx.x; //nocc
int j = blockIdx.y * blockDim.y + threadIdx.y; //nvirt
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double odiff = 0.0, Re = 0.0, Im = 0.0;
float EmF = 0.0, old_Re = 0.0, old_Im = 0.0;
double d1 = 0.0, d2 = 0.0;

if (j < nvirt)
{
if (MIN(j + norbs-nvirt, nocc) >= 0)

{
if (i<MIN(j + norbs-nvirt, nocc))
{

odiff = aux_n2occ[Fmin+j-1] - aux_n2occ[i];
EmF = aux_DFT_E_mat_occ[i] - aux_DFT_E_mat_virt[j];
d1 = (omega-EmF)*(omega-EmF) + eps*eps;
d2 = (omega+EmF)*(omega+EmF) + eps*eps;
Re = ((omega-EmF)*d2 - (omega+EmF)*d1)/(d1*d2);
Im = eps*((d1-d2)/(d2*d1));
old_Re = XXVV_mat_re[i*nvirt + j];
old_Im = XXVV_mat_im[i*nvirt + j];
XXVV_mat_re[i*nvirt + j] = old_Re*odiff*Re - old_Im*odiff*Im;
XXVV_mat_im[i*nvirt + j] = old_Re*odiff*Im + old_Im*odiff*Re;

}
}

}
}

This routine is launched with the following line
calc_XXVV_mat_mat<<<dimGrid, dimBlock>>>(XXVV_mat_re_d, XXVV_mat_im_d, aux_n2occ_mat_d,

aux_DFT_E_mat_occ_d, aux_DFT_E_mat_virt_d, omega,eps, norb, nocc, nvirt, Fmin);

After this part, there is two more matrix multiplications similar to the previous
one (as the GPU one).

call sgemm(’N’, ’N’, norb, nocc, nvirt, 1E0, aux%X_aF, norb, XXVV_re, nvirt, 0E0, &
XVV, norb);

call sgemm(’N’, ’T’, norb, norb, nocc, 1E0, XVV, norb, aux%X4, norb,0E0, VV, norb);

This step is the last one done on the GPU device. After these matrix multipli-
cations are finished, we copy the data back to the host resulting matrix.

call chi0_mv_noxv_get_last_VV(VV, norb)

Finally, the last step of the algorithm is similar to the first one and is per-
formed on the host (CPU)

do n = 1, aux%nloop
si = aux%si(n, :); fi = aux%fi(n, :);
do k = lbound(aux%Vertex_array(n)%array, 3), ubound(aux%Vertex_array(n)%array, 3)

V(si(3) + k-1) = V(si(3) + k-1) + &
sum(aux%Vertex_array(n)%array(:, :, k)*VV(si(1):fi(1), si(2):fi(2)))

enddo
enddo
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As can be seen from this appendix, the programming to achieve the GPU
parallelization is relatively straightforward with CUDA if large matrix-matrix
operations must be parallelized. Table F.1 summarizes the runtime of the algo-
rithm for CPU and GPU versions. The speed-up obtained for this system on
this machine is appreciable (∼ 12), taken into account that we used rather old
CPUs1 and one of the cheapest GPU2 at the moment of writing. The speedup
obtained with High-end GPU such as the Tesla P100 would be much larger. In
this specific application, the usage of low-end GPUs can be seen as a way to
improve the potential of old machine for relatively little money (∼ 400$ for two
GPUs).

code part CPU runtimes (h) GPU runtimes (h) speed-up
χ0 55.25 4.61 11.99

Iterative part 61.57 11.54 5.33
Full program 72.29 22.286 3.24

Table F.1: Comparison of runtimes for the Ag618 cluster dimer between CPU and GPU parallelization
of the χ0 alogorithm.

116 Intel Xeon CPU E5620 at 2.40GHz with 12 MB of cache.
2GeForce GTX 1050 Ti
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