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Abstract

Semiconducting single-walled carbon nanotubes (s-SWNTs) have outstanding physical properties such as high ther-
mal stability, scattering-free (ballistic) charge carrier transport with charge carrier mobilities of up to >100,000
cm2/Vs, and high current densities. In addition, s-SWNTs have large and tunable optical absorption over a wide
spectral range due to the specific band gaps of different tube chiralities. All these remarkable properties make semi-
conducting carbon nanotubes promising materials for a new generation of highly efficient organic photovoltaics
(OPVs). Unfortunately, the implementation of s-SWNTs has so far not lead to the expected increase in power con-
version efficiencies of OPVs. It is exactly on this topic which we focus in the theoretical studies presented in this
work.

To begin, we find efficient ways to model polymer-SWNT heterojunctions. Using linear dielectric response
(LDR) time-dependent density functional theory (TDDFT) claculations within the random phase approximation
(RPA), we find that the electronic properties of the copolymer of 9,9-dioctylfluorenyl-2,7-diyl and bipyridine (PFO-
BPy) are sufficiently described by the subunit Py-PFO-Py. This result can be used to perform studies on polymer-
SWNT interactions and supramolecular structure analysis of polymer-SWNT heterojunctions. Knowing the transi-
tion dipole moment of polymers allows us to extract the orientation of the polymer with respect to the SWNT axis
from polarized angle-dependent absorption spectra. We show that linear response (LR) TDDFT is a good tool for
identifying the direction of the polarized light absorbed by a certain transition in the PFO-BPy spectrum.

Further, we explore the mechanisms of exciton generation, diffusion, decay, and splitting into free charge carriers
in polymer-SWNT blends. This is done by evaluating the transient spectrum, which provides direct information
about photoexcitation processes. The existence of a photoinduced absorption (PA) peak in the transient spectrum
of SWNTs and polymer-SWNT heterojunctions, and how it depends on such systems, is still an active subject of
investigation. We model the transient spectrum of a polymer:fullerene:s-SWNT blend from its ground and excited
state difference spectrum using LDR-TDDFT-RPA. Based on our results, we are able to explain the origin of the PA
peak in transient spectra of s-SWNT systems and the electronic dynamics linked to it.

Finally, we evaluate the internal quantum efficiency (IQE) of different donor–acceptor blends by carrying out
density functional theory (DFT) calculations of the excited state formation energy, charge transfer, and zero-bias
conductance of prototypical donor–acceptor heterojunctions in the singlet ground state and triplet excited state. We
calculate the Landauer-Bütticker conductance of electron and hole charge carriers from donor to acceptor across
the heterojunction based on the DFT tight-binding Hamiltonians using a multiterminal implementation of the non-
equilibrium Green’s function (NEGF) method. We find a dependence of the conductivity on the level alignment,
which demonstrates the importance of considering the hybridization of donor–acceptor levels in the excited state.
By improving the level alignment of the polymer and s-SWNT through the use of larger band gap s-SWNTs, one
may obtain a dramatic improvement in OPV efficiency.

In summary, our results provide a deeper insight into the photoexcitation and electronic processes in polymer–
s-SWNT heterojunctions and thus support the development of more efficient polymer–s-SWNT OPVs.

i





Acknowledgements

I would like to express my special appreciation to my supervisors Angel Rubio and Duncan Mowbray, for the
incredible opportunity they gave me, their guidance, support, and trust in me. I want to thank Angel for giving me
the freedom to choose my projects and letting me develop my own ideas. Duncan I want to thank for his endless
patience teaching me as much as possible. None of these projects, including writing the thesis, would have been that
successful without his help, criticism, ideas, and know-how. Much more, I want to thank Duncan for his friendship
and the good times outside of the office.

I thank all the people of the POCAONTAS network for the fantastic and stimulating times during the meetings.
Many thanks go to the people who hosted me during the last years. I thank Tobias Hertel and Florian Späth for
the fruitful discussions, the great time in Würzburg and at all the conferences, I want to thank Jorge Morgado and
Rajesh Veeravarapu for the good times at the IST in Lisbon, and last but not least I thank Guglielmo Lanzani, Diana
Gisell Figueroa del Valle, Isis Maqueira, and Francesco Scotognella for having me 3 months at the IIT in Milano
and for the successful collaboration we had.

Special thank goes to Cecilia Benguria, Izaskun Ibarbia, and Kate Chabarek for the help with all the paper work
during these years.

I want to thank all my colleagues and friends of the Nano-Bio Spectroscopy Group, for the great working
atmosphere, the support when things were not running, and the wonderful times during lunch, coffee breaks, and
outside of working hours. Without you this last years would not have been the same. Especially, I want to thank
Ask for his friendship and for making magic with GPAW and python.

Thanks go to Bruce for all the fun times we had during his visits and the stimulating discussions.
Vielen Dank an meine Freunde, die mich all die Jahre unterstützt und besucht haben. Ihr seid die Besten!
Muchisimas gracias a mi suegra Silvia por la ayuda cuidando a Lia mientras escribia esta tesis.
Grossen Dank geht an meine Familie, an meine Schwester Andrea, meinen Vater Emil, und meine Mutter Elis-

abeth, ohne die das alles gar nicht möglich gewesen wäre. Ganz herzlich möchte ich meiner Mutter danken für die
grenzenlose Unterstützung durch all die Jahre hindruch.

I want to thank my husband, Marcos, for his support during the stressful but wonderful time, for his love, his
care, and the future he plans with me.

Finally, I acknowledge funding from from the European Projects POCAONTAS (FP7-PEOPLE-2012- ITN-
316633), DYNamo (ERC-2010-AdG-267374), MOSTOPHOS (SEP-210187476), and EUSpec (COST Action MP-
1306), and CRONOS (280879-2 CRONOS CP-FP7); Spanish Grants (FIS2012-37549-C05-02, FIS2010-21282-
C02-01, PIB2010US-00652, JCI-2010-08156); and Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-578-
13); and the computational time from the BSC Red Espagnola de Supercomputacion.

iii





Contents

List of Figures vii

List of Tables x

List of Papers xi

1 Introduction 1
1.1 Modelling Polymer–SWNT Heterojunctions by Modelling Polymers from Oligomers . . . . . . . . 5
1.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunctions . . . . . . . . . . . . . . 6
1.3 Modelling Transient Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Modelling Conductance Across Heterojunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical & Computational Background 13
2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The Schrödinger Equation and the Many-body Problem . . . . . . . . . . . . . . . . . . . 14
2.1.2 The Hartree-Fock Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Hohenberg-Kohn Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Kohn-Sham Self-consistent Field Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Exchange and Correlation Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Modelling Extended Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Plane-Wave Expansion of the Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Real-Space Grid Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Locally Centred Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 Projector Augmented Wave Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Linear Response Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Runge-Gross Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Linear Dielectric Response within the Random Phase Approximation . . . . . . . . . . . . 29

2.4 Conductance in the Quantum Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Landauer-Büttiker Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



2.4.2 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Non-equilibrium Green’s Function Method (NEGF) . . . . . . . . . . . . . . . . . . . . . 35

2.5 Calculation of Charge Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Electron Hole Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Bader Charge Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Single-Walled Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.1 Structure Classification and Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.2 Tight Binding Band Structure of Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.3 Band Structure of Single-Walled Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . 46

3 Results & Discussion 49
3.1 Modelling Polymers from Oligomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Monomer, Dimer, Trimer, and Polymer Absorption Spectra . . . . . . . . . . . . . . . . . . 51
3.1.3 Electron and Hole Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Twisting and Side Chain Independence of the Absorption Spectra . . . . . . . . . . . . . . 54

3.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunctions . . . . . . . . . . . . . . 56
3.2.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Optical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 Polarized Angle-Dependent Absorption Measurements . . . . . . . . . . . . . . . . . . . . 57
3.2.5 Linear Response TDDFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Modelling Photoinduced Transient Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Optical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.5 Differential Transmission Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.6 Interpreting Differential Transmission as a Difference Spectra . . . . . . . . . . . . . . . . 66
3.3.7 Modelling Optically Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.8 LDR-TDDFT-RPA Simulated Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.9 Role of Charge Carrier Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.10 Influence of Photobleach Peak Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Modelling Conductance Across Heterojunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.2 Energy Gaps and Band Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.3 Triplet Formation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.4 Donor to Acceptor Charge Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.5 Conductance from Donor to Acceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



4 Conclusions & Outlook 83
4.1 Modelling Polymer–SWNT Heterojunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunctions . . . . . . . . . . . . . . 85
4.3 Modelling Transient Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Modelling Conductance Across Heterojunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Power Conversion Efficiency 89

B LCAO TDDFT-RPA 91

Bibliography 93

Abbreviations 111

vii





List of Figures

1.1 Schematics of an OPV device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cartoon of a polymer-SWNT bulk heterojunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Kohn-Sham self-consistent scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Schematics of 4-terminal transport across a polymer/nanotube junction . . . . . . . . . . . . . . . . 31
2.3 Non-equilibrium Green’s function scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Rectangular slicing of graphene to obtain nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Real and reciprocal space lattices of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Energy dispersion relation for graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Hexagonal Brillouin zone of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8 Band structure of (5,5), (9,0), and (10,0) SWNTs . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Density of states for (10,0) and (9,0) SWNTs and graphene . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Chemical structure of Py-PFO-Py and PFO-BPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Schematic of Py-PFO-Py on a SWNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 TDDFT adsorption spectra of Py-PFO-Py, PFO-BPy, and BPy-PFO-BPy . . . . . . . . . . . . . . . 51
3.4 LDR-TDDFT-RPA absorption spectra of Py-PFO-Py . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Exciton densities for PFO-BPy, Py-PFO-Py, and BPy-PFO-BPy . . . . . . . . . . . . . . . . . . . 53
3.6 Exciton densities for PFO-BPy and Py-PFO-Py dimers and trimers . . . . . . . . . . . . . . . . . . 54
3.7 Angular dependence of TDDFT absorption spectra for Py-PFO-Py . . . . . . . . . . . . . . . . . . 55
3.8 Side chain dependence of TDDFT absorption spectra for Py-PFO-Py and PFO-BPy . . . . . . . . . 55
3.9 Schematic of polarized angle-dependent spectroscopy setup . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Polarized angle-dependent spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.11 LR-TDDFT absorption spectrum of Py-PFO-Py unit with dipole oscillator stength contributions in

the x, y, z directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.12 Schematic of a femtosecond transient absorption spectroscopy setup . . . . . . . . . . . . . . . . . 61
3.13 Schematic of the PT/PCBM/(6,5) SWNT system . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.14 Differential transmission of SWNT and P3HT/PCBM/SWNT . . . . . . . . . . . . . . . . . . . . . 64
3.15 Absorption and differential transmission of SWNT and P3HT:PCBM:SWNT . . . . . . . . . . . . 65
3.16 Differential transmission of SWNT and P3HT/PCBM/SWNT versus pump-probe delay . . . . . . . 66
3.17 Excited electron transition model of pump-probe process . . . . . . . . . . . . . . . . . . . . . . . 67
3.18 LDR-TDDFT-RPA absorbance of a (6,5) SWNT in the ground and excited states . . . . . . . . . . 69

ix



3.19 Electron and hole densities of PT/PCBM/(6,5) SWNT . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.20 LDR-TDDFT-RPA absorbance of (6,5) and (7,5) SWNTs in ground and various excited states . . . 71
3.21 Broadening dependence of LDR-TDDFT-RPA change in absorbance for (6,5) and (7,5) SWNTs . . 73
3.22 Electron and hole densities for PT or P3MT and C60 chain, (6,5), (6,5), or (10,5) SWNTs . . . . . . 75
3.23 Transmission across polymer–C60 junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.24 Transmission across a polymer–single-walled carbon nanotube (SWNT) junction . . . . . . . . . . 82

4.1 LR-TDDFT absorption spectrum of a 9,10-(N-ethyl-2,5-pyrrolidin-dione)-3,7-dihodroxy-anthracene
with dipole oscillator stength contributions in the x, y, z directions . . . . . . . . . . . . . . . . . . 86

4.2 Molecular structure of MEH-PPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Ideal I − V sweep with maximum power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.1 Influence of LFEs on TDDFT-RPA absorbance of a (6,5) SWNTs . . . . . . . . . . . . . . . . . . 91

x



List of Tables

3.1 Kohn-Sham band gaps, photoluminescence transitions, and triplet excited state formation energies . 77
3.2 Donor to acceptor charge transfer in ground and excited states . . . . . . . . . . . . . . . . . . . . 79
3.3 Conductance from donor to acceptor in ground and excited states . . . . . . . . . . . . . . . . . . . 80

xi





List of Papers

[1] Glanzmann, L. N.; Mowbray, D. J.; Rubio, A. PFO-BPy Solubilizers for SWNTs: Modelling Polymers from
Oligomers. Phys. Stat. Solidi B 2014, 251, 2407–2412.

[2] Glanzmann, L. N.; Mowbray, D. J.; Figueroa del Valle, D. G.; Scotognella, F.; Lanzani, G.; Rubio, A. Photoin-
duced Absorption within Single-Walled Carbon Nanotube Systems. J. Phys. Chem. C 2015, 120, 1926–1935.

[3] Glanzmann, L. N.; Mowbray, D. J. Theoretical Insight into the Internal Quantum Efficiencies of Polymer/C60

and Polymer/SWNT Photovoltaic Devices. J. Phys. Chem. C 2016, 120, 6336–6343.

xiii

http://dx.doi.org/10.1002/pssb.201451171
http://dx.doi.org/10.1021/acs.jpcc.5b10025
http://dx.doi.org/10.1021/acs.jpcc.5b12611




Chapter 1

Introduction

Since Bell Laboratories produced the first silicon-based solar cell in 19541, the public interest in this safe, clean,
and renewable energy source has grown substantially, with the photovoltaic market reaching a global total of 227
GW in 20152. However, although the sun provides several times more energy than the world population consumes3,
only around 1% of the total world electricity demand is met by photovoltaics.2 This stems from the high production
costs of silicon-based solar panels. Although their price has decreased significantly in the last few years, the cost of
silicon-based solar panels still can not compete with the inexpensive supply of fossil fuels or nuclear power.4

Cheap organic compounds may help to overcome this obstacle. The last decades gave rise to numerous novel
organic materials from conducting polymers5–8 to carbon-only structures such as graphene9,10, fullerenes11 and
carbon nanotubes12–15. All these materials have a conjugated π-system over which the electrons are delocalized.
When the electrons in this one dimensional electronic band become mobile, the compound shows conductivity. This
is the case when the band is partially emptied or filled, for example, when the material is "doped" via oxidation or
reduction. For the discovery and the development of conductive polymers Alan J. Heeger, Alan MacDiarmid and
Hideki Shirakawa were awarded the 2000 Nobel Prize in Chemistry.16 Undoped conjugated polymers are typically
semiconductors rather than metals or insulators. Their band gaps show absorption from the ultraviolet spectral
region (UV) to the near infrared spectral region (NIR), which makes them suitable for photovoltaic applications. In
addition, organic compounds are light and flexible compared to their inorganic counterparts, which broadens their
scope of application. But are they competitive in photovoltaic devices regarding their efficiencies?

For inorganic p-n junction solar cells, power conversion efficiency (PCE) of 25%17,18 have been reached, as
described in Appendix A. Although this may sound low, Schockley and Queisser have shown that with an optimal
bandgap of 1.1 electronvolt (eV), the maximum efficiency obtainable for an inorganic p-n junction under ideal
conditions is 30%.19 In principle, the maximum efficiency for organic photovoltaics (OPVs) should be higher due
to their lower refractive index.20 Nevertheless, so far the highest PCE reached for OPVs is ∼ 10%.21

To improve the performance of OPVs, we must take a closer look at the physical properties of organic materials
and the working principle of such devices. Figure 1.1 provides a schematic description of a type II heterojunction,
where the valence band (VB) and conduction band (CB) of the acceptor lie energetically lower but close to the VB
and CB of the donor.20 Upon irradiation a singlet exciton, i.e., a Coulomb-bound electron-hole pair, is created via
photo-excitation of an electron from the VB to the CB of the donor material.22 The donor is typically a semiconduct-
ing polymer such as poly(3-hexylthiophen-2,5-diyl) (P3HT) , in which the exciton extends over 1 nm and exhibits
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Figure 1.1: Schematic working principle of an OPV device; (1) exciton generation within the donor material (P3HT),
(2) diffusion to the donor–acceptor (P3HT-PCBM) interface, (3) exciton splitting, and (4) electron (hole) transport
as bound polaron pair through the acceptor’s (donor’s) conduction (valence) band to the metal electrode (ITO).

a binding energy BEex between 0.35 and 0.5 eV.20 In comparison to the weakly bound delocalized Wannier-Mott
exciton found in silicon-based devices, this more localized Frenkel exciton is so strongly bound that its binding
energy exceeds the thermal energy.23,24 In addition, its relatively short (< 1 ns) exciton lifetime requires fast charge
separation in order to achieve charge generation.25 For this reason, next to the donor material, OPVs need an ac-
ceptor material to facilitate exciton splitting.26,27 At the donor–acceptor interface the process of charge separation
then needs to occur within 100 fs.28 The acceptor is preferably an organic semiconducting nanostructure that will
enable charge carrier transport. Most often fullerenes, such as phenyl-C61-butyric acid methyl ester (PCBM), are
used as the organic acceptor material.29 Ideally, the donor and the acceptor are not separate layers but intermixed to
form a so-called bulk heterojunction (BHJ).30 Such a donor–acceptor blend provides exciton diffusion lengths from
creation in the donor material to the donor–acceptor interface of less than 10 nm.31

Next to their strong exciton binding, organic semiconductors have two other major drawbacks. First is their
narrow absorption widths, which only covers part of the visible spectral region (VIS).29 In comparison, inorganic
devices absorb over the whole visible spectrum and beyond to more than 1000 nm. This means inorganic de-
vices have much larger absorption cross sections, even though organic semiconductors show very high absorption
coefficients. Another issue is their low charge carrier mobilities. These are expected to produce recombination
losses in the Langevin regime.32–34 Interestingly, a reduced Langevin recombination was recently found in OPVs.35

The Onsanger description of bimolecular recombination is valid when the charge transfer (CT) state of a pair of
Coulomb-bound charges is more likely to dissociate again than to recombine.36 Veldman et al. suggested that next
to the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) difference of the
donor acceptor pair, the energy of this charge transfer state defines the open-circuit voltage, VOC.37 This is important
as VOC is significantly lower in inorganic devices. Burke et al. derived an equation, which successfully explains the
observed dependence of VOC on the interfacial energetic disorder, temperature, and dielectric constants.38

In summary, the efficiency of OPV materials is limited by (1) the optical losses arising from their narrow absorp-
tion widths, (2) any misalignment of the donor and acceptor material, (3) exciton losses due to either insufficient
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diffusion of excitons to the next donor–acceptor interface or inefficient exciton dissociation, and (4) charge carrier
losses due to non-radiative recombination or insufficient charge mobilities.39

One way to overcome these limitations is by optimizing the device fabrication. This could include the use of
thin layers40 to shorten charge carrier travelling paths, bulk-heterojunctions30 to decrease diffusion lengths, and
nanocrystallinity41 with enhanced contact surfaces to improve charge mobilities. Also, more efficient charge collec-
tion can be achieved by additional electron collecting layer (ECL) or hole collecting layer (HCL).42–44 Depending
on whether the device architecture is standard (the metal electrode is the anode) or inverted (ITO is the anode), the
transparent HCL or ECL, respectively, is next to the ITO. Thin films of doped conjugated polymers like poly(3,4-
ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) or a thin oxide layer (e.g. MoO3) are used to collect
holes, while fulleropyrolidine or different oxides improve the extractions of electrons. In addition, the introduction
of the inverted design helps to prevent fast electrode degradation.45

Another approach to increasing efficiency is through the use of novel organic materials that exhibit broader
absorption widths to increase exciton yields, higher dielectric constants to reduce the exciton binding energy, and
higher charge carrier mobilities to improve transport.29 Note that an increased mobility only leads to higher ef-
ficiency when combined with an efficient charge extraction, since longer extraction times also lead to a higher
probability of recombination.34,46

Due to their exceptional physical properties, semiconducting single-walled carbon nanotubes (s-SWNTs) have
attracted an enormous amount of attention in the field of electronic applications.47 Like polymers, carbon nanotubes
are solution processable and have large and tunable optical absorption. However, in contrast to polymers, no chem-
ical changes are needed to shift their absorption spectrum, as a wide spectral range may be covered by nanotubes
with different band gaps, corresponding to different tube chiralities.48,49 A detailed explanation of the structure
classification and physical properties of single-walled carbon nanotubes (SWNTs) is given in section 2.6. In addi-
tion, some semiconducting nanotubes show strong absorption peaks in the infrared next to the visible regions, with
band gaps between 1 and 1.3 eV. Other advantages of SWNTs over polymers are their high thermal stability50,51,
scattering-free (ballistic) charge carrier transport52 with charge carrier mobilities of up to >100,000 cm2/Vs53–56,
and high current densities57. All these remarkable properties make semiconducting nanotubes promising materials
for photovoltaics.

Recent works show one can obtain charges directly upon photoexcitation of s-SWCNTs.58–62 The absorption
in the near infrared region results from energy gaps between 1 and 1.3 eV, which lie very close to the Shockley-
Queisser optimum. The elementary photoexcitations in s-SWNTs are singlet excitons with a large binding energy of
about 400 meV.48,63–67 Since nanotubes have intermediate exciton binding energies when compared to other organic
materials, their physical properties make them possible donor materials. Devices with carbon nanotubes as light
harvesting material showed high internal and external quantum efficiencies, but only when referred to the infrared
region.68–74 This reflects the stronger binding energy within organic materials compared to inorganic semiconduc-
tors.

Since another limiting factor of OPVs are their low charge carrier mobilities, this might be overcome by replacing
the acceptor material with s-SWNTs.75–77 Figure 1.2 shows a polymer-SWNT blend, where the polymer absorbs
light }ω and transfers an electron e− to the SWNT. The introduction of nanotubes was recently shown to enhance
the photoconductance and carrier lifetime in P3HT:SWNT blends.78 Yan et al. improved the performance of the
device by 10% after introducing carbon nanotubes in the active layer.79 Nevertheless, an efficient prototype type
II heterojunction with carbon nanotubes as acceptors has not yet been produced.80–83 The highest PCE obtained
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Figure 1.2: Cartoon of a polymer-SWNT hybrid system as photoactive layer in a BHJ.

from a polymer:SWNT blend is 3.02%, whereas polymer:fullerene cells have PCEs of ∼ 6.5%.20,84 Another path
towards improving efficiencies is by adding s-SWNTs as ECLs between the active layer and the metal electrode
(ITO/P3HT:PCBM/s-SWNT/metal) to enhance electron extraction (chapter 3.3). An increase of almost 30% from
1.24% reference to 1.58% was achieved, mainly due to an increase of short-circuit current, ISC.85,86

A summary of carbon nanotube containing photovoltaic devices is given in Refs. 87 and 88. Both reviews
make clear that including carbon nanotubes in OPVs has so far not lead to a significant increase in efficiency. It
is exactly here we focus in the theoretical studies presented in this work. Through modelling of polymer–SWNT
blends and the undergoing photo-electric processes under illumination we reveal the interactions within the hybrid
system, the mechanisms upon excitation, and the distribution and transport of charges. In this way our results
support the development of more efficient polymer-SWNT OPVs. Specifically, we address different fields of in-
vestigation for SWNT containing OPVs: the modelling of the polymer–SWNT heterojunctions using monomers
or oligomers, supramolecular structure evaluation of polymer–SWNT heterojunctions, transient absorption spec-
troscopy on polymer–s-SWNT systems, and device performance of s-SWNT OPVs, as introduced in the following
sections.



CHAPTER 1. INTRODUCTION 5

1.1 Modelling Polymer–SWNT Heterojunctions by Modelling Polymers
from Oligomers

One major hurdle to the use of nanotubes in electronics arises from having mixtures of nanotube chiralities that
include metallic tubes. Such mixtures are the result of the synthesizing processes, which include arc discharge89,
laser ablation90, chemical vapor deposition (CVD)91, high-pressure carbon monoxide disproportionation (HiPco)92,
and the cobalt-molybdenum catalyst (CoMoCAT®) process93. While some attempts have been made to use mixtures
of semiconducting chiralities as donor material to broaden the spectral range of the device94, chirality enhanced or
single chirality samples are preferred74. This is because several experiments have shown exciton transfer between
tubes of different chiralities.95,96 This results in electron–hole trapping on the nanotube with the smallest band gap.74

For this reason, impurities of metallic tubes significantly reduce the efficiencies of the devices due to both a decrease
in long-lived carrier population and an increase in the number of charge carrier recombination centers.78,97 Another
advantage to using chirality sorted SWNTs is the possibility of employing specific tubes with the optimal band gaps.
This would allow the tuning of the donor–acceptor (polymer–SWNT) interface.71,75,76,98

For these reasons it is essential to find an efficient path to untie, sort and isolate tubes based on their diameters
and chiralities.99 A suitable medium to disperse the tubes is required to prevent bundling due to van der Waals
interactions. Only noncovalent strategies come into consideration because covalent bond formation on the nanotube
wall causes modification of their electronic properties.100 The use of surfactants (sodium dodecyl sulphate (SDS))
delivers dispersions of high concentration (>1 mg/mL) in water101. Unfortunately, this method allows neither sort-
ing of metallic and semiconducting tubes nor sorting by diameter. Density-gradient ultracentrifugation using a
bile acid salt (e.g., sodium cholate)102 or single-stranded deoxyribonucleic acid (ssDNA) wrapped SWNTs103,104,
dielectrophoresis105, and gel chromatography106 have all proved effective for sorting SWNTs.

An efficient and simple way to both disperse and sort SWNTs is through the use of different conjugated polymers
and block copolymers.107–111 The conjugated backbone of the polymer wraps around the nanotube wall through van
der Waals interactions, while the side chains support dispersion of isolated hybrids in common organic solvents.
In 2011 Ozawa et al. were able to produce a 97% enriched dispersion of (6,5) SWNTs using a copolymer of 9,9-
dioctylfluorenyl-2,7-diyl and bipyridine (PFO-BPy) as a solubilizer.112 A summary of the performance of sorting
polymers is given in Refs. 88 and 99. Photoluminescence quantum yieldss (PLQYs) showed that selection by
sorting polymers is increased by an order of magnitude compared to the use of surfactants.113 Sorting small band
gap nanotubes with photoactive polymers would be a straightforward approach to the production of polymer-SWNT
thin films for OPVs.

The effectiveness of the physisorption, that is, the optimization of π − π interactions with the nanotube and
following its dispersion in a solvent, depends on a complex interplay between the conjugated polymer’s main chain
structure, its chain length, and the length and structure of its side chains.88,99 So far, there is no recipe for producing
polymers with specific sorting abilities, since the sorting process itself is still not completely understood. To gain
a deeper insight it is important to know (1) the supramolecular structure of the polymer-nanotube hybrid and (2)
which electronic interactions play a role. The supramolecular structure could reveal how efficient wrapping depends
on the polymer main chain structure and the tube diameter, whereas the kind of electronic interactions could identify
whether selective sorting relies on the nanotube’s electronic band structure and electronic density.

Molecular dynamic simulations of polymer–SWNT conjugates showed that 9,9-dioctylfluorenyl-2,7-diyl (PFO)
prefers to wrap.114 In addition, the hybrids show more stable wrapping with high chiral angle tubes. In other
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studies, the efficient wrapping is linked to the number of polymer repetition units115, their arrangements and con-
formation116, or stiffness117. Still, modelling of such large and computationally demanding systems, including all
possible conformations and solvent effects, is rather difficult. Moreover, the energy surface of the van der Waals
interaction within the polymer–SWNT interface is rather flat.118 For this reason we take an alternative approach to
studying polymer–SWNT junctions. By modelling a polymer using oligomers we can describe the heterojunction
as a periodically repeated oligomer–SWNT unit. To ensure an accurate description of the polymer, it is important
to have an oligomer unit that describes the physical properties of the polymer as closely as possible. In the case of
photoactive polymers this implies a similar absorbance spectrum. Linear dielectric response (LDR) time-dependent
density functional theory (TDDFT) calculations within the random phase approximation (RPA) is useful and effi-
cient tool for simulating absorbance spectra of molecules by extracting excitation energies from transitions in the
molecule’s ground-state.119,120 We show that the spectrum of copolymer PFO-BPy can be properly modelled by
sandwiching the PFO unit between the pyridine (Py) units, and that already the monomer copolymer of pyridine,
9,9-dioctylfluorenyl-2,7-diyl and pyridine (Py-PFO-Py) describes the polymer qualitatively good description of the
polymer.121

1.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunc-
tions

Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have produced high resolution and high
contrast images of nanoscale structures such as carbon nanotubes.127,128 Nevertheless, resolving in detail polymer–
SWNT conjugates has not yet been achieved. Shea et al. analyzed the orientation of the polymer backbone with
respect to the SWNT axis using anisotropic fluorescence spectroscopy.129 The angle-dependent emission yielded
adsorption angles of 12 to 17 degrees between the SWNT axis and the PFO polymer backbone. This is quite close
to a parallel alignment and implies only a loose wrapping of the SWNT by the polymer.

With less technical effort and no need for advanced technical equipment, the SWNT–polymer angle can also be
measured using polarized angle-dependent absorption spectroscopy. This experiment is performed with a common
UV/VIS/NIR absorption spectrometer incorporating a broadband polarizer (Glan-Thompson-prism). The orienta-
tion of the polymer and the SWNT can then be reconstructed knowing the transition dipole moment (TDM) of the
measured absorbance peaks. For SWNTs the TDM of the most intense transitions, e.g from the ground-state to
the first excited state in SWNTs (E11), and second excited state, E22, are polarized along the tube axis.130,131 For
conjugated systems it is expected that the TDM is along the conjugated backbone. However, for some polymers
the assignment of the different absorbance peaks to the orientation of the backbone proves to be more complicated.
With the help of linear response (LR) TDDFT we evaluate the TDM of the transitions of polymer units by plotting
a spatially resolved spectrum and explicitly highlighting the involved Kohn-Sham (KS) orbitals within the unit. In
so doing we can identify the orientation of PFO-BPy within polymer–SWNT supramolecular structures.
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1.3 Modelling Transient Absorption Spectroscopy

Visualization of the ultrafast processes occurring during photoabsorption of the excited state in carbon nanotubes
and polymer-nanotube blends displays the mechanisms of exciton generation, diffusion, decay, and splitting into
free charge carriers. This data provides an informative basis for making improvements in the device’s composition.
Most of the energy dissipation and transfer processes occur on a time scale longer than 100 fs.132 Pump-probe
spectroscopy is a powerful tool for studying optical properties and exciton dynamics over the femtosecond to mi-
crosecond time domain.133 With a pulsed laser a molecule’s electrons are excited from the ground state to higher
energy excited states, while a probing light source with a time delay τ is used to obtain the time-dependent absorp-
tion spectra of the excited state with . 50 fs resolution. The collection of a difference absorption spectrum as a
function of the delay and pump wavelength, ∆A(τ, λ), is known as transient spectroscopy. As an example, the size
of the exciton and its diffusion in the incoherent regime have been experimentally estimated for (6,5) SWNTs134

using the phase space filling model.135 Also, the energy of relaxation from higher energy exciton states to the first
exciton E11 transition has been measured, yielding a very short decay time of 50 fs. This is a peculiarity of one
dimensional systems, such as SWNTs, and the strong coupling to highly energetic optical phonons.136 The strong
electron-phonon coupling is evident in the large Raman cross-section, extensively studied with standard continuous
wave techniques. The most intense Raman active modes, radial breathing modes and G modes, have been detected
in transient coherent Raman experiments.137,138

An added complication is the presence of other photoexcited species, resulting from highly nonlinear phenom-
ena that might occur in SWNTs, besides singlet excitons. For this reason, the interpretation of transient spectra for
SWNTs becomes complicated due to contributions of such species, e.g., triplets77, biexcitons139,140, trions141,142,
and charge-carrier photogeneration62,143. Previous transient absorption measurements144,145 have found a photoin-
duced absorption (PA) peak at ∼ 950 nm for predominantly (6,5) SWNT samples when pumped in the VIS region.
The structure of this PA feature provides direct information about the photoexcitation processes within the SWNT.
The structure and origin of this PA peak, and how it depends on the SWNT system, is still an active subject of
investigation.

In silico simulations of photon-matter interactions allow the calculation of excitation energies, transition mo-
ments, and even the undergoing relaxation processes of the compound. This information can assist with the inter-
pretation of spectroscopic data. TDDFT146, described in section 2.3, has been routinely used to study the electron
dynamics in condensed matter by computing the linear or non-linear response properties of systems in the ground
state. For example, the absolute rate of charge separation and recombination at the P3HT:fullerene interface was
calculated to be 10−11 − 10−9s−1 based on the Marcus rate equation147 and TDDFT calculations.148,149 Extensive
theoretical studies of polymer:fullerene heterojunctions all confirm the formation of an exciplex, an excited poly-
mer:fullerene complex, and an energetic favourable CT state for the electron transfer to the fullerene.150–155 Even
non–equilibrium dynamical processes of a P3HT:fullerene blend were simulated within quantum electrodynamical
(QED) TDDFT.156 For simulating pump-probe experiments it is essential to extend the ground-state TDDFT for-
malism, since the system is driven out of equilibrium by the initial pulse. In this work, we present a simple method
on the basis of ground-state TDDFT to model a transient absorption spectrum of a system pumped in the lowest
excited state. From the expansion of the ∇ operator in a locally centered atomic orbital (LCAO) basis set, the di-
electric matrix in reciprocal space at q → 0+ can be derived.157 The absorption spectrum is then obtained from the
imaginary part of the macroscopic dielectric tensor.158 This description makes TDDFT calculations of periodically
repeated systems significantly faster, making tractable the study of optical and dielectric properties of infinite crystal
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structures, isolated or bundled carbon nanotubes, as well as extensive polymer:SWNT bulk systems. As a result,
for the first time a transient absorption spectrum of a polymer:fullerene:SWNT blend could be efficiently modelled,
which is presented in chapter 3.3. Based on our results, we are able to explain the origin of the PA peak in transient
spectra of SWNT samples.

1.4 Modelling Conductance Across Heterojunctions

The internal quantum efficiency (IQE) (see Appendix A) of a type II bulk heterojunction within an OPV device is
simply the ratio of free charge carrier generation to photon absorption at a given photon energy.159 As such, the IQE
depends on both the ease of separating electron and holes and the resulting current through the OPV. The former
depends on the electron-hole binding, charge transfer from donor to acceptor, and electron-hole recombination,
while the later depends on the conductance from donor to acceptor across the bulk heterojunction.

To estimate the relative exciton binding between type II bulk heterojunctions, one may compare the first transi-
tion for the isolated acceptor, e.g., the E11 transition of a nanotube, with the formation energy E f (↑↑) of the triplet
excited state from the singlet ground state, i.e., their difference in total energy. A much smaller triplet formation en-
ergy for the isolated acceptor, E f (↑↑) � E11, suggests electron-hole separation may prove difficult. This is the case
for SWNTs, where the measured singlet exciton binding is ∼ 0.4 eV48,63–66. On the other hand, if the triplet forma-
tion energy in the bulk heterojunction is smaller than that for the isolated acceptor, this is indicative of hole transfer
to the donor for type II bulk heterojunctions. In this way, the triplet formation energy can be used to compare the
relative ease or difficulty of electron hole separation and the probability of recombination in bulk heterojunctions.

The ease of electron-hole separation in the bulk heterojunction may also be directly probed by considering
the difference in charge transfer from donor to acceptor between the triplet excited state and the singlet ground
state.160,161 However, although a greater charge transfer in the triplet excited state means the electron and hole are
separated onto different molecules in the bulk heterojunction, it does not address whether the separated electron and
hole are free charge carriers, or remain bound within the junction.

To determine whether separated electrons and holes truly behave as free charge carriers, the degree of scattering,
and the resulting current through the OPV, one should compute the conductance across the bulk heterojunction from
the donor to the acceptor in the excited state. In particular, one should consider the conductance at the Fermi level
of the excited electron/hole to determine the number of free electron/hole carriers.

To study the IQE of different bulk heterojunctions, we carry out density functional theory (DFT) calculations of
the excited state formation energy, charge transfer, and zero-bias conductance of prototypical donor–acceptor bulk
heterojunctions in the singlet ground state and triplet excited state. Additionally, we calculate the Landauer-Bütticker
conductance of electron and hole charge carriers from donor to acceptor across the bulk heterojunction based on the
DFT tight-binding Hamiltonians using a multiterminal implementation162 of the non-equilibrium Green’s function
(NEGF) method163–166. We find a dependence of the conductivity on the level alignment, which demonstrates
the importance of considering the hybridization of donor–acceptor levels in the excited state. By improving the
level alignment of the polymer and SWNT through the use of larger band gap SWNTs, one may obtain a dramatic
improvement in OPV efficiency.

As we see, the optimization of SWNT OPVs requires a combined theoretical and experimental approach to reveal
the supramolecular structure of polymer–SWNT heterojunctions, to differentiate between the different adsorption
processes and interfacial interactions, and to understand the photoelectric and transport processes within polymer–
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SWNT blends. Only in so doing can we take full advantage of the outstanding physical properties of SWNTs and
develop highly efficient OPVs. The following section provides a short overview of the content of the thesis.

1.5 Overview

This thesis begins by providing the reader an introduction to the theoretical and computational background in chap-
ter 2. In section 2.1 DFT is presented, which allows one to find the ground-state energy using the electron density
distribution. We will see that DFT is a useful alternative to many-body wavefunction approaches based on the
Schrödinger equation (section 2.1.1), which are intractable for the many-electron systems we are interested in. An-
other wavefunction approach is the Hartree-Fock approximation, which is discussed in section 2.1.2. It describes the
electronic structure of atoms by a set of self-consistent single particle equations. In section 2.1.3 we will learn about
the Hohenberg-Kohn Theorem, which states that the ground state density of a bound system of interacting elec-
trons in some external potential is uniquely determined. On this basis we rely on the KS self-consistent equations,
which allows one to find the exact ground state energy by varying trial densities (section 2.1.4). The only missing
piece to the exact theory is the form of the exchange and correlation (xc) term, which needs to be approximated for
many-electron systems. We will present the xc functionals used in this work in section 2.1.5.

In section 2.2, we will address the descriptions and parameters that are used for the calculation of extended
systems. For example, we can describe particles in a periodically repeating environment using Bloch’s Theorem
(section 2.2.1). Motivated by Bloch’s Theorem, we can calculate periodically repeated systems by expanding the
KS equations in plane-waves, both within and without the unit cell, as we will show in section 2.2.2. In section
2.2.3 the reader becomes familiarized with the real-space description of the wavefunctions, which makes it possible
to perform accurate calculations for large systems due to simple and very scalable parallelization through domain
decomposition. Further, LCAOs are introduced as a basis set of atomic orbital-like functions that allow more
efficient calculations compared to grid-based wavefunctions, although the accuracy depends on the quality of the
chosen basis set (section 2.2.4). Finally, the projector augmented wave (PAW) method allows us to describe the
all-electron (AE) wavefunction near the core of the atom while using smooth pseudo (PS) wavefunctions to describe
their spatial extent (section 2.2.5).

The reader will be introduced to LR-TDDFT in section 2.3. First, we will take a look at the time-dependent
extension to the KS equations, which is a valid expression according to the Runge-Gross theorem (section 2.3.1).
However, we are only interested in optical properties such as excitation energies, transition moments, and polariz-
abilities. For weak external perturbations these can be obtained simply from linear response theory within the KS
framework as we will see in section 2.3.2. Further, we will illustrate in section 2.3.3 how to calculate the absorp-
tion spectrum of extended systems using the imaginary part of the macroscopic dielectric function obtained from
LDR-TDDFT-RPA.

In section 2.4 we will discuss how to compute the conductance, that is, the electronic transport properties, of
nanosystems. We will derive the Landauer formula in section 2.4.1, which describes a current through a single-
level channel. In section 2.4.2 we provide a basic introduction to two-point Green’s functions that represent the
electron propagation between points in space and time. Finally, in section 2.4.3, we will show how to calculate
the Landauer-Bütticker conductance of an electron passing through a polymer-carbon nanotube junction using the
NEGF method.

Sections in 2.5 provide paths to calculate charge distributions in heterojunctions, which gives an estimation of
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the charge transfer state at the donor–acceptor interface. The reader will learn how the electron and hole densities
can be evaluated in section 2.5.1 and that the charge transfer between molecules is calculated using the Bader charge
analysis (section 2.5.2).

Section 2.6 provides a guide to the fundamentals of SWNTs. The reader becomes familiar with how the symme-
tries of SWNT structures are classified into achiral and chiral (non-symmorphic) nanotubes, and how the former can
be further separated into zigzag and armchair nanotubes (section 2.6.1). Further, it is shown how the band structure
of nanotubes may be derived from the band structure of graphene in section 2.6.2. Finally, the reader will learn what
makes nanotubes metallic or semiconducting in section 2.6.3.

Chapter 3 encompasses all the results and discussion contained within this thesis. We begin with the modelling
of polymers from oligomers in section 3.1. To perform computational studies on large polymer–carbon nanotube
systems, we must first find an oligomer with the minimal size of a polymer building block that reproduces the prop-
erties of interest of the full polymer. Only in so doing can we hope to reduce the computational costs sufficiently to
subsequently model complex hybrid systems. Our results show that by using LDR-TDDFT-RPA the optical prop-
erties of PFO-BPy can be efficiently described by just the monomer unit Py-PFO-Py, where the PFO is sandwiched
between two Pys.

We will see in section 3.2 that we can make use of such a polymer building block to identify the transition dipole
moment of a polymer. This is useful in combination with angle-dependent polarized absorption spectroscopy to
evaluate the supramolecular structure of the polymer–SWNT heterojunction by making use of the polarization of
the material in a cristalline matrix.

In section 3.3 we discuss the modelling of photoinduced transient absorption in carbon nanotube systems. It
is unclear what is causing the PA peak in transient pump-probe experiments of carbon nanotubes (systems) and
how it can be used to interpret the electron dynamics of polymer-carbon nanotube junctions. It has previously been
suggested that the PA peak arises due to a subsequent excitation of the carbon nanotube’s excited electron. We
modelled transient spectra from a ground and excited state difference spectra both obtained from LDR-TDDFT-
RPA. Our results suggest that a subsequent excitation occurs next to the pumped exciton, which involves an electron
in the valence band of the opposite spin channel. This excitation is blue shifted in energy due to gap widening as a
result of the charge loading in the other spin channel.

In section 3.4 we present the modelling of charge transport across heterojunctions. In this case we consider not
only polymer–carbon nanotube junctions, but as well polymer–C60 junctions. We aim to provide insight into the
IQEs of OPVs consisting of different donor–acceptor materials by comparing the excited state formation energy,
charge transfer, and zero-bias conductance within the Non-Equilibrium Green’s Function method in the ground and
excited state. We find the (6,5) and (10,5) SWNTs, with their smaller band gaps, have quite low conductivities,
whereas for (6,4) SWNTs the conductivity is significantly larger.

In chapter 4 we will discuss the conclusion and the outlook of this work. In section 4.1 we begin with the
conclusions made from modelling polymers from oligomers. The good representation of the optical properties
of the polymer PFO-BPy by the monomer unit Py-PFO-Py is due to the weak π-conjugation between the ortho-
linked bipyridines. This suggests that excited state transitional are localized on the Py-PFO-Py unit. Altogether, we
demonstrate that LDR-TDDFT-RPA is a good tool for ensuring that the electronic properties of a full polymer are
well represented by a polymer subunit.

In section 4.2 we conclude that angle-dependent polarized absorption spectroscopy combined with LR-TDDFT
offers a good tool to evaluate the supramolecular structure of a polymer–SWNT heterojunctions. Our results suggest



CHAPTER 1. INTRODUCTION 11

that the TDM of the Py-PFO-Py unit is along the backbone of the polymer. Further, the angle-dependent polarized
absorption spectrum of PFO-BPy sorted (6,5) SWNT shows that both, the polymer and the SWNT, have the same
angle devolution and therefore polarization. From all our results we can suggest that the polymer PFO-BPy is
alinged stretched out parallel to the tube axis, not wrapped as initially thought.

The conclusion of modelling photoinduced transient absorption in carbon nanotube systems are summarized in
section 4.3. We conclude that due to the size of the extended system, two excitons may coexist next to each other.
Hence, the blue shifted probe bleach causes the PA peak in the transient spectrum. The intensity and the visibility
of the PA peak depends on the charge carrier density, but mainly on the peak width. The widths can be significantly
increased due to charge transfer to other tubes. Altogether, we think that the PA peak may be used as a qualitative
measure of exciton density and charge transfer within SWNT systems.

In section 4.4 we conclude from the results of our modelling of transport across heterojunctions that it is im-
portant to consider the hybridization of donor–acceptor levels in the excited state, and the resulting dependence on
level alignment of the conductivity. As well, we conclude that by improving the level alignment of the polymer and
SWNT through the use of larger band gap SWNTs, one may obtain a dramatic improvement in OPV efficiency.

Finally, we want to point out some potential sources for the low efficiencies of SWNT containing OPVs and
approaches for possible improvements. As well, we will discuss the limitations of the applied theoretical tools for
modelling optical and electronic processes in polymer–carbon nanotube heterojunctions and will suggest next steps
for further studies.

Atomic units (} = me = e = a0 = 1) have been used throughout unless stated otherwise.





Chapter 2

Theoretical & Computational Background

2.1 Density Functional Theory

The Schrödinger equation is the fundamental equation from which one can extract all physical observables for a
nonrelativistic quantum system. While the time-dependent Schrödinger equation describes the dynamics of the
system’s quantum states, the stationary solutions of the time-independent equation give the discrete energy levels
of a system. Unfortunately, the many-electron wavefunction Ψ(r1, . . . , rN) depends on every electron’s position
r1, . . . , rN . Thus, solving the electronic Schrödinger equation is far too complex for systems with many electrons
N, especially for the bulk heterojunctions we are interested in herein. The development of computational methods
that determine the ground-state energy as a functional of the electron density distribution n(r), that depends only on
the 3 coordinate r(x, y, z), made quantum mechanical calculations accessible to scientific fields studying nanoscale
systems. One of the most used theories for the simulation of electronic structures and quantum phenomena at the
nanoscale is the Density Functional Theory167. In the following sections we will illustrate how the ground-state
energy and the electronic structure of a system with N electrons in an external potential (e.g. the electrostatic
potential due to the nuclei) is calculated.

In section 2.1.1 we begin with the fundamentals of the Schrödinger equation and the limitations of wavefunction
methods. We find that the Hartree-Fock Approximation, a wavefunction based method, can be simplified by using
single-electron equations to represent the many-electron wavefunction Ψ(r1, . . . , rN) in section 2.1.2. The underly-
ing basis of Density Functional Theory is explained in section 2.1.3, where the most important breakthough is the
description of a variational principle based on trial densities ñ(r) instead of trial wavefunctions Ψ̃(r1, . . . , rN). In
section 2.1.4 the reader is familiarized with the Kohn-Sham (KS) Self-consistent Field Theory, where the KS System
combines single-electron equations and the trial-density-based variational principle. In section 2.1.5 approximations
to the exact exchange and correlation (xc) functional are introduced. A proper description of the exact xc functional
is the missing piece to the exact theory. We begin with the local density approximation (LDA) and continue with
the extension of the LDA, the generalized gradient approximation (GGA). Finally, the xc functionals used for our
projects are the GGA Perdew-Burke-Ernzerhof xc functional (PBE) and the van der Waals xc functional (vdW-DF).
The latter has an additional long-range interaction term, which is needed to describe van der Waals interactions of
close lying molecules within bulk heterojunction.

13
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2.1.1 The Schrödinger Equation and the Many-body Problem

The state of a molecular system, which is determined by the positions of the nuclei and the electrons, can be
represented by its corresponding wave vector state Ψ,

Ψ(r1, s1, . . . , rN , sN ; R1, S 1, . . . ,RNn+ , S Nn+ ), (2.1)

which is a function of N electronic coordinates r and spins s and Nn+ nuclear coordinates R and spins S . Further,
the electronic and nuclear kinetic energies and interactions are described by the many-body Hamiltonian Ĥ,

Ĥ = −
1
2

∑
i

∇2
ri
−

∑
i

∑
I

ZI

|ri − RI |
+

1
2

∑
i, j

1
|ri − r j|

−
1
2

∑
I

1
MI
∇2

RI
+

1
2

∑
I,J

1
|RI − RJ |

, (2.2)

where ∇2
r = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and ∇2
R = ∂2

∂X2 + ∂2

∂Y2 + ∂2

∂Z2 are the Laplacians of the electronic and nuclear coordinates,
r and R, respectively, and Z and M are the atomic number and mass of the nucleus, respectively. The first term of
the many-body Hamiltonian Ĥ is the electronic kinetic energy operator T̂e− , the second term is the potential energy
arising from the attraction of the negatively charged electrons with the the positively charged nuclei Ve−n+ , the third
term is the electron-electron interaction Ve−e− , the fourth term is the nuclear kinetic energy operator T̂n+ , and the last
term is the nuclear-nuclear repulsion Vn+n+ . So we can write the many-body Hamiltonian Ĥ simply as

Ĥ = T̂e− − Ve−n+ + Ve−e− + T̂n+ + Vn+n+ . (2.3)

If we now are interested in the system’s evolution over time t, we have to take a look at the linear transformation of
the vector state Ψ under the operation of the Hamiltonian Ĥ,

ĤΨ(x, t) = i}
∂

∂t
Ψ(x, t), (2.4)

where i is the imaginary number, } = h
2π is the reduced Planck constant h, and for simplicity all nuclear, elec-

tronic, and spin coordinates are represented by x ≡ {r1, s1, . . . , rN , sN ; R1, S 1, . . . ,RNn+ , S Nn+ }. This differential
wave equation is known as the time-dependent Schrödinger equation168, from which all physical observables for
non-relativistic quantum systems can be deduced. However, in this work we are only interested in the electronic
structures and ground-state energies. Since the nuclei are much heavier than electrons and therefore moving much
slower, we may assume the nuclei remain stationary as the electrons relax. Hence, we can separate the complete
many-body electron-nuclear wavefunction Ψ into an electronic and a nuclear part as follows,

Ψ(r1, s1, . . . , rN , sN ; R1, S 1, . . . ,RN+
n , S N+

n ) = Ψe− (r1, s1, . . . , rN , sN)Ψn+ (R1, S 1, . . . ,RNn+ , S Nn+ ), (2.5)

where Ψe− and Ψn+ are electronic and nuclear wavefunctions, respectively. The separability of the electron-nuclear
wavefunction is known as the Born-Oppenheimer approximation (BOA)169. The electronic wavefunction then de-
pends on the nuclear coordinates only parametrically, through the potential. The full many-body Hamiltonian than
reduces to the electronic Hamiltonian Ĥe− ,

Ĥe− = −
1
2

∑
i=1

∇2
ri

+
1
2

∑
i, j

1
ri − r j

+ V
R1,...,RNn+

ext (r1, . . . , rN), (2.6)

where Vext is the potential due to the external environment, e.g. the electrostatic potential due to the nuclei. If we are
only interested in finding the ground-state energy E of a molecular system with fixed nuclear positions, we do not
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need to consider a time-dependent evolution. In the time-independent case we simply obtain an eigenvalue equation.
Thus, from the stationary solutions of the N-electron time-independent Schrödinger equation,

Ĥe−Ψe− (r1, s1, . . . , rN , sN) = EΨe− (r1, s1, . . . , rN , sN), (2.7)

we can obtain the ground-state energy E0 consisting of the N lowest electronic eigenenergies.
One way to find the ground-state energy E0 is by applying the variational principle170, where the expectation

value of the Hamiltonian Ĥ for a guessed trial wavefunction Ψ̃ is equal to or an upper bound for the true ground
state energy E0. Hence, the ground state energy E0 of any state Ψ can be approached by varying over trial functions
Ψ̃ using the minimal principle for the expectation value E0,

E0 ≤
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

. (2.8)

Since the quality of the trial function Ψ̃ depends on some parameters p1, p2, . . . , pM , the energy is a function of these
parameters, E = E(p1, p2..pM). To achieve an acceptable accuracy, there is a number (3 ≤ p ≤ 10) of parameters
needed. Including just spatial coordinates, the number of parameters required for N electrons is

M = p3N , 3 ≤ p ≤ 10. (2.9)

The exponential in equation 2.9 severely limits the range of N that can be simulated. This is known as the exponential
wall.

For example, let us imagine a calculation including one carbon atom with 6 electrons. Considering the case
where storing one parameter requires 8 bits, we need 103×6 = 1018 bytes to store this many parameters. This
is almost a million Terabytes of memory. We clearly see that the memory requirements alone make solving this
problem unfeasible. However, the wavefunction contains more information than we need. So, as we will see in the
next sections, we can avoid using the (N-electron) wavefunctions if we only need the ground state energy of the
system.

2.1.2 The Hartree-Fock Approximation

In 1928, Douglas R. Hartree171 proposed describing the electronic structure of atoms by a set of self-consistent
single particle equations. However, single particle equations can not be formed that easily since the eigenfunctions
cannot be written as a Hartree Product of the orbitals,

Ψ(ri, si; r j, s j) , ψ(ri, si)ψ(r j, s j). (2.10)

Hence, the Hamiltonian is not separable. This is due to the fact that we can not distinguish identical particles because
the wave function Ψ changes only by a phase factor (e.g. + for bosons and for fermions) when two particles are
interchanged. Thus, an exchange of electrons i and j in the spin orbitals leads to a change in the symmetry of the
wavefunctions as follows

Ψ(ri, si; r j, s j) = −Ψ(r j, s j; ri, si). (2.11)

Two years later, Vladimir A. Fock172 suggested using a Slater determinant of individual one-electron eigenfunc-
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tions,

ΨHF(r1, s1; r2, s2; . . . ; rN , sN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1(r1, s1) ψ2(r1, s1) · · · ψN(r1, s1)
ψ1(r2, s2) ψ2(r2, s2) · · · ψN(r2, s2)

...
...

. . .
...

ψ1(rN , sN) ψ2(rN , sN) · · · ψN(rN , sN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.12)

which is a linear combination of the Hartree Products. Following the Hartree-Fock Approximation results in a single
electron Schrödinger-like equation,

F̂ψi(ri, si) = εiψi(ri, si), (2.13)

where ψi are the N single-electron wavefunctions, εi their orbital energies, and F̂ is the one-electron Fock operator,

F̂ =

N∑
i

−1
2
∇2

ri
+

Nk∑
k

Zk

|ri − Rk |

 +

N∑
i

(∫
n(r j)
|ri − r j|

d3r j + V̂x(ri, si)
)
. (2.14)

The first two terms of the Fock operator F̂ consist of the sum of the non-interacting kinetic energy and the external
potential caused by the Coulomb attraction of the ith electron to all nuclei, with their charges given by their atomic
numbers Zk. The third term is the Coulomb repulsion of the ith electron to the other electrons in terms of their
average density distribution n(r j), also called a mean field description. The last term is the exchange potential, here
written as integral operator,

V̂x[ψi](ri, si) =

 N∑
j=1

∫
ψ∗j(r j, s j)

1
|ri − r j|

ψi(r j, s j)d3r j

ψ j(ri, si), (2.15)

which has no classical representation. This description of the ith electron depends on the wavefunctions of all other
electrons. It represents the interchange of identical electrons and leads to an exchange of variables in two spin
orbitals. Therefore, the Hartree-Fock methods treats the exchange interaction between electrons with the same spin
exactly. As well, the Hartree-Fock (HF) method is self interaction free, since the Coulomb and exchange terms
cancel each other exactly for the case of an electron interacting with itself.

If we want to know the ground-state energy E0 within the HF Approximation, we begin by constructing the
one-electron wavefunction ψi from a complete set of M basis functions φµ, with the linear combination of atomic
orbitals ansatz,

ψi =

M∑
µ=1

ci,µφµ. (2.16)

The coefficients ci,µ can be obtained from the variational principle. From the general eigenvalue problem we obtain
the following equations, known as Roothaan-Hall equations173,174,

M∑
µ,ν=1

c∗i,µci,ν〈φµ|F̂|φν〉 = εi

M∑
µ,ν=1

c∗i,µci,ν〈φµ|φν〉, (2.17)

where F̂µ,ν = 〈φµ|F̂|φν〉 are the Fock matrix elements and and S µ,ν = 〈φµ|φν〉 the overlap matrix elements. The
nontrivial solutions of these equations

[F̂µ,ν − εiS µ,ν] = 0, (2.18)

give as diagonal elements M eigenvalues ε, of which the N lowest eigenvalues correspond to the occupied states.
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However, using a wavefunction based method for many electron systems is computationally very time consum-
ing. Additionally, the mean field treatment of the Coulomb repulsion neglects the instantaneous electron correlation.
This results in the "Hartree-Fock-limit", an upper bound of the exact energy. Especially for chemical bonding, a
proper description of the correlation energy is significant. Hence, for calculations of binding energies, a more
accurate description including a correlation term is preferable.

2.1.3 Hohenberg-Kohn Variational Principle

We already know that the many-body wavefunction, if known, can be used to evaluate all observables for a physical
system. However, we are not interested in all physical properties, but only a few. Specifically, we are interested in
the system’s ground state energy and electronic structure. We have seen that the ground-state energy can be found
by applying the Rayleigh-Ritz minimal principle170. Applying this to an electronic Schrödinger(-like) equation and
considering only the spatial coordinates ri yields

E0 ≤
〈Ψ̃(r1 . . . , rN)|Ĥ|Ψ̃(r1 . . . , rN)〉
〈Ψ̃(r1 . . . , rN)|Ψ̃(r1 . . . , rN)〉

, (2.19)

where Ψ̃(r1, . . . , rN) is a normalized trial wavefunction which yields an electron density

n(r) = N
∫
|Ψ(r1, . . . , rN)|2dr2 . . . drN . (2.20)

So, it should be possible to obtain an equation in terms of the electron density n(r) alone. This reduces the problem
from one in terms of the many-electron wavefunction Ψ(r1, . . . , rN), with 3N coordinates, to one in terms of the
electron density n(r), which is dependent on only a single three dimensional coordinate r. In exchange we will lose
all other information contained in the many-body wavefunction.

Already in the Thomas-Fermi Theory175,176 we can find a simplified one-to-one implicit relation between the
effective potential veff and the density distribution n(r), considering the electrons moving in a given external potential
vext(r),

n(r) = γ(µ − veff(r))3/2 (2.21)

where µ is the r-independent chemical potential, γ = 1
3π2 ( 2m

}2 )3/2, and veff is the effective potential

veff ≡ vext(r) +

∫
n(r′)
|r − r′|

d3r′. (2.22)

consisting of the external potential vext minus the classical electrostatic potential.
On the basis of the Thomas-Fermi Theory, Pierre Hohenberg and Walter Kohn177 proved by reductio ad ab-

surdum, that there does not exist a second effective potential veff resulting in the same non-degenerate ground state
density n(r), Theorem 1.

Theorem 1 (Hohenberg-Kohn). The ground state density n(r) of a bound system of interacting electrons in some
external potential vext(r) is uniquely determined.

In 1964, Hohenberg and Kohn published a formulation of the minimal principle using trial densities ñ(r). They
defined a constrained energy minimum with a fixed ñ(r) and minimized in a second step over all ñ,

E = min
ñ

Ev[ñ] = min
ñ

{∫
vext(r)ñ(r)d3r + F[ñ]

}
, (2.23)
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where F[ñ] represents the sum of the kinetic and interaction energy. F[ñ] is a universal functional of the density
ñ and requires no knowledge of the external potential vext(r). This formulation simplified the problem of finding
the energy minimum of a 3N-dimensional wavefunction to finding the minimum of Ev[ñ] with respect to a three
dimensional trial function ñ(r), although, only when F[ñ] is well defined.

2.1.4 Kohn-Sham Self-consistent Field Approach

Based on Hartree’s idea and knowledge of the unique mapping of n(r) to the external potential vext(r), Walter Kohn
and Leu Sham178 devised the KS system.

Definition 1 (KS System). The KS system is a fictitious system of non-interacting electrons, which has the same
ground state density as the real interacting system.

Now, we can find the ground state density n(r), energy E0, and forces FI by following the self-consistent KS
scheme178 depicted in Figure 2.1. This involves the following five steps:

(1) Making an initial guess n0(r) for the trial density ñ(r).

(2) Constructing an effective potential

veff[ñ](r) = vext(r) +

∫
ñ(r)
|r − r′|

d3r′ + vxc[ñ](r), (2.24)

where vext(r) is the external potential from the nucleus, the second term is the Hartree potential caused by
the average density of the electrons, and vxc is the local exchange-correlation potential. The vxc term includes
all corrections for the kinetic energies and electron-electron interactions, and thus the difference between the
interacting and non-interacting system.

(3) Solving the single-electron Schrödinger equation with effective potential veff[ñ](r) to obtain the KS wavefunc-
tions ϕi, (

−
1
2
∇2 + veff[ñ](r) − εi

)
ϕi(r) = 0. (2.25)

(4) Calculating a new trial density ñ′(r) by summing over the N lowest eigenvalues ϕi,

ñ′(r) =

N∑
i=1

|ϕi|
2, (2.26)

(5) Repeating steps (2), (3), and (4) until the density is converged, that is, ñ′(r) ≈ ñ(r) → n(r). This means ñ′(r)
from equation 2.26 is within a defined accuracy of ñ(r), the latest input density to equation 2.24.

From the ground state density n(r) and eigenvalues εi, the ground state energy E0 can be calculated from

E0 =

N∑
i=1

εi + Exc[n] −
∫

vext(r)n(r)d3r +
1
2

"
n(r)n(r′)
|r − r′|

d3rd3r′. (2.27)

Neither the KS orbital energies εi nor the KS orbitals ϕi have any physical meaning other than the fact that the
energy of the highest occupied orbital εN relative to the vacuum level gives the ionization energy, and that ϕi gives
the true physical density n(r). Other than the fact that an exact expression for vxc can only be obtained for systems
with a few atoms so that vxc needs to be approximated for many-electron systems, the KS Theory and its equations
are exact.
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(1) Make Initial Guess for Density
n0(r) → ñ(r)

(2) Construct an Effective Potential

veff[ñ](r) = vext(r) +

∫
ñ(r)
|r − r′|

d3r′ + vxc[ñ](r)
ñ′(r) → ñ(r)

(3) Solve Single-Electron Schrödinger Equation(
−

1
2
∇2 + veff[ñ](r) − εi

)
ϕi(r) = 0

(4) Calculate Electron Density

ñ′(r) =

N∑
i

|ϕi(r)|2
(5) Self Consistent?
ñ′(r) ≈ ñ(r)→ n(r)

Output Ground State
Density n(r), Energy E0, and Forces FI

No

Yes

Figure 2.1: Kohn-Sham self-consistent scheme.

2.1.5 Exchange and Correlation Functionals

The xc energy Exc of a particle at position r depends primarily on the electron density n(r′) at positions r′ near
r. More quantitatively, the xc energy depends on the density within a neighbourhood with a radius of the Fermi
wavelength λF(r) = 2π[3π2n(r)]−

1
3 , the shortest de Broglie wavelength for non-interacting electrons.179 Therefore,

the xc energy is a nearsighted functional of n(r′) and has a quasi-local description,

ELDA
xc [n] =

∫
εLDA

xc [n]n(r′)d3r′, (2.28)

where εLDA
xc [n] is the xc energy of a uniform electron gas of density n.178,179 This LDA is obviously exact for a

uniform electron gas. But for atomic systems, where the densities are not slowly varying and electron-electron
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interaction effects dominate, such as in heavy fermion systems, LDA often fails. Nevertheless, LDA gives use-
ful results for most applications with surprising accuracies of 1% for bond-lengths and geometries of molecules
and solids. This can be ascribed to the fact that LDA includes a normalization of the exchange-correlation hole
nxc(r, r′)179. This means that the exchanged electron density at position r leaves a hole in the average density n(r′)
in comparison to the conditional electron density g(r, r′)

nxc(r, r′) = g(r, r′) − n(r′), (2.29)

where g(r, r′) is the conditional density at r′ given that there is one electron at r. The “screening” electron at r′

integrates to one, so that ∫
nxc(r, r′)d3r′ = −1. (2.30)

The xc energy Exc,

Exc =
1
2

"
n(r)ñ(r, r′)
|r − r′|

d3rd3r′, (2.31)

resulting from the average xc hole density ñ(r, r′), was proven to be exact for the uniform electron gas.180–182

Unfortunately, the LDA potential decays too fast in finite systems, which can lead to a poor description of orbital
binding, especially for electron-rich species. This is mainly because the xc energy Exc[n] does not only depend on
the density at a given point r but also on the density nearby, that is, within some neighbourhood |r′ − r| . λF(r). To
account for this, the density at r′, n(r′), can be expanded around r,

n(r′) ≈ n(r) + (r′ − r) · ∇n(r) +
1
2

(r′ − r) · ((r′ − r) · ∇)∇n(r) + · · · . (2.32)

Substituting the expansion 2.32 in equation 2.31 (the full derivation is more complex and found in Ref. 178) leads
to the gradient expansion

Exc = ELDA
xc +

∫
G2[n](∇n(r))2d3r +

∫
G4[n](∇2n(r))2d3r + · · · , (2.33)

where G2[n] and G4[n] are universal functionals of n. In atomic systems this expansion produced worse results than
LDA183.

Over the years, important progress has been made towards more successful “generalized” gradient approxima-
tions, or GGAs. In this work, the density functional theory (DFT) calculations were performed with the GGA
functional developed by John P. Perdew, Kieron Burke, and Matthias Ernzerhof (PBE)184. This functional has a
gradient fitted with parameters, which are fundamental constants and thus not derived from fits of experimental
data. Specifically,

EPBE
xc = ELDA

xc +

∫ κεLDA
x [n]

1 − (
1 +

µ

4κ(3π2n)2⁄3

|∇n|2

n2

)−1 +
βc

16(3n/π)1⁄3

|∇n|2

n2

 n(r′)d3r, (2.34)

where κ = 0.804 to ensure the Lieb-Oxford bound185 is satisfied186, µ = 0.21951 to ensure cancellation of the second
order xc terms186, and βC = 0.0066725 as derived by Ma and Brueckner187. It includes an accurate description of
the linear response of the uniform electron gas, correct behaviour under uniform scaling, and a smoother potential.

The vdW-DF xc functional developed by Maxime Dion, H. Rydberg, Elsebeth Schöder, David C. Langreth,
and Bengt I. Lundqvist124 provides an improved description of the binding between molecular fragments at large
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distances. The first term of the vdW-DF is the short-ranged correlation, which is evaluated in the local density
approximation. The second term is the long-range part of a fully nonlocal correlation functional Enl

c ,

Enl
c =

1
2

"
d3rd3r′n(r)φ(q|r − r′|, q′|r − r′|)n(r′), (2.35)

where φ(q|r− r′|, q′|r− r′|) is the vdW-DF kernel, and q and q′ are the values of a universal function q0(n(r), |∇n(r)|)
evaluated at the two points r and r′.188
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2.2 Modelling Extended Systems

Even though DFT’s KS equations are much easier to solve than the full many-body Schrödinger equation, the
computational effort of calculating extended systems remains high. For condensed matter systems we can take
advantage of their crystal-like structure and model an extended system using its periodically repeated unit cell.
Calculations with open boundaries allow one to study extended one, two, or three dimensional structures such as
nanotubes, graphene, or bulk systems, respectively. In addition, several numerical approximations can be made to
reduce the computational cost even further. Such approximations include the treatment of the core electrons and the
region near the atomic nuclei using pseudopotentials and the discretization of the description of the wavefunctions
using plane-waves, real-space grids, and localized orbitals. This section provides an overview of the aforementioned
approximations, which are all implemented in the gpaw code125,126.

In section 2.2.1 we use Bloch’s Theorem to describe particles in a periodically repeating environment. Bloch’s
Theorem provides motivation for employing a plane-wave expansion of the KS equations, as described in section
2.2.2. In section 2.2.3 we introduce the real-space description, which makes it possible to perform accurate calcu-
lations for large systems due to simple and very scalable parallelization through domain decomposition. In section
2.2.4, locally centered atomic orbital (LCAO) are introduced, a basis set of atomic orbital-like functions, that allow
even more efficient calculations compared to grid-based wavefunctions due to the use of very compact basis sets.
Finally, in section 2.2.5 we provide an overview of the projector augmented wave (PAW) method, which allows us
to describe the all-electron (AE) wavefunction near the core of the atom using smooth pseudo (PS) wavefunctions.

2.2.1 Bloch’s Theorem

Particles in a periodically repeated environment, such as in crystals or condensed matter systems, can be represented
by a Bravais lattice. The Bravais lattice constructs a certain periodic system under translation of the system’s unit
cell or supercell by a lattice vector R,

R = N1a1 + N2a2 + N3a3, (2.36)

where aα are linearly independent vectors that span the lattice, that is, supercell or unit cell vectors, and N = N1N2N3

gives the total number of unit cells spanned by R.
We can describe electrons in crystal lattices by plane-waves based on the idea of Felix Bloch189,190 that the

periodicity of the lattice also enters in the potential of the system, so that U(r + R) = U(r).

Theorem 2 (Bloch’s Theorem). The eigenfunctions Ψn,k(r) of the wave equation for a periodic potential are the
product of a plane wave eik·r times a function un,k(r) with the periodicity of the crystal lattice

Ψn,k(r) = eik·run,k(r), (2.37)

where k are the allowed wave vectors in the primitive cell and n is the band index, which corresponds to independent
eigenstates of different energies but with the same k.

The wave vectors k have a unit of inverse length based on the de Broglie relation |k| = 2π/λ. It is convenient
to define a reciprocal lattice in k-space that is related to the real space lattice, which we will discuss further in
section 2.6.

Wave vectors that differ by a reciprocal lattice vector k are equivalent, k = k + K, in the sense that they
characterize the same set of Bloch states Ψn,k(r). Thus, any value of k outside the first Brillouin zone can be
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reduced to the first Brillouin zone. The reciprocal lattice vector K can be composed from the reciprocal space
vectors bβ with coefficients Mβ,

K = M1b1 + M2b2 + M3b3 (2.38)

where the real and reciprocal space vectors are related by aα · bβ = 2πδαβ (δαβ = 0 if α , β and 1 if α = β) so that
ei2πMαNα = 1.

The Bloch expansion of the KS equations allows us to perform calculations with periodic boundary conditions in
three dimensions. Every periodic calculation must be converged with respect to the Brillouin zone sampling, which
in our case is a k-point mesh after Monkhorst and Pack191. It is based on the idea of an equally spaced mesh in the
Brillouin-zone with

Mr =
2r − qr − 1

2qr
, (2.39)

where Mr is the integer of the reciprocal space vector, and qr determines the number of k-points in the r-direction.
The sums over k are performed over all Brillouin zone vectors, but can be reduced to sums on the irreducible
Brillouin zone by taking advantage of the space group of the lattice. Hence, an integral of a function, F(k), which
is 1

ΩBZ

∫
BZ F(k)dk, where ΩBZ is the volume of the Brillouin zone, can be weighted as

∑
k wkF(k), where the sum

is over all k-points in the irreducible Brillouin zone and wk are the weighting factors corresponding to the original
number of k-points of the reducible Brillouin zone. The "rule of thumb" we usually employ for the k-point meshes,
e.g., grid spacings, is ∆k < 0.25 Å−1. In the case of a non-periodic calculation the boundary conditions force both
the density and KS wavefunctions to be zero at the boundary, so we include just one k-point, the Γ-point.

We will see in the next section (2.2.2) how just as we made use of Bloch’s Theorem for periodic systems to
describe the long-ranged behaviour of the KS wavefunctions outside the unit cell, we may similarly expand the KS
equations into plane-waves to describe their short-ranged behaviour inside the unit cell. These methods may be used
for calculating periodic systems such as isolated one dimensional nanotubes or three dimensional bulk structures.

2.2.2 Plane-Wave Expansion of the Kohn-Sham Equations

We have seen that we can describe particles in a periodically repeated environment by expanding the wavefunctions
into plane-waves. The most natural but not exclusive basis in that case is a plane-wave basis set, which has for a
given unit cell with volume Ω the form

un(r) =
1
√

Ω

∑
G

ũn,GeiG · r, (2.40)

where the reciprocal lattice vectors are usually denoted by G and satisfy the periodicity of the lattice by

Gi, j,k =

(
i −

M1

2

)
b1 +

(
j −

M2

2

)
b2 +

(
k −

M3

2

)
b3, (2.41)

with 0 ≤ i < M1, 0 ≤ j < M2, and 0 ≤ k < M3. To obtain a finite basis, the infinite basis is truncated by defining a
cut-off energy Ecut.

If we now apply Bloch’s theorem on the KS system, we can rewrite the KS wave-functions ϕn,k(r) in terms of a
plane-wave basis as follows

ϕn,k(r) =
∑

G

cn,G(k)
1
√

Ω
ei(k+G)·r. (2.42)
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The KS equations can then be expressed simply using the Bloch function coefficients cn,G(k),∑
G′

ĥG,G′ (k)cn,G′ (k) = εn,kcn,G(k), (2.43)

where the Hamiltonian ĥG,G′ is a function of the wave vector k. From this it follows that for a given k, we get n
different eigenvalues εn,k, such that the n bands at different k-points describe the band structure of the material. The
Hamiltonian ĥG,G′ with k-dependence is

ĥG,G′ (k) =
1
2
|k + G|2δG,G′ + vext(G −G′) + vH(G −G′) + vxc(G −G′). (2.44)

The first term is the kinetic energy term, which is diagonal in reciprocal space. Thus, the kinetic energy can
be accessed straightforwardly. The potentials, that is, the external potential vext(G − G′), the Hartree potential
vH(G − G′), and the xc term vxc(G − G′) are described in terms of their Fourier components. To compute the xc
potential vxc(G − G′) it is more efficient to use the real space density. Since we have a different system of KS
equations for each k, we need to sum over all k-point densities in the irreducible Brillouin zone,

n(r) =
∑
n,k

wk|ϕn,k(r)|2, (2.45)

with weighting factors wk, and all occupied states n. The density of the nth wavefunction |ϕn,k(r)|2 is expanded into
plane-waves as follows,

|ϕn,k(r)|2 =
1
Ω

∑
G,G′

c∗n,G(k)cn,G′ (k)ei(G−G′)·r. (2.46)

Hence, we just need to know the coefficients of the KS orbitals and convert them to the real space grid using the
fast Fourier transform (FFT) algorithm to get the real space density from which we can calculate the xc potential
vxc[n] =

δExc[n]

δn(r) . The Hartree potential vH(G) = 4π n(G)
|G|2 can easily be obtained from the density in momentum space

n(G) = 1
Ω

∑
n,k,G′ wkc∗i,G(k)ci,G′ (k).

Nevertheless, a plane-wave basis imposes periodic boundary conditions, whereas uniform real space grids or
localized basis sets can flexibly treat free, mixed and periodic boundary conditions, as we will see in sections 2.2.3
and 2.2.4.

2.2.3 Real-Space Grid Description

Wavefunctions, electron densities, and potentials can be represented by their values at discrete grid points, which
makes uniform real-space grids192–195 a simple discretization tool for the KS and Poisson equations. Both the
kinetic energy operator of the KS equations and Poisson’s equation contain the Laplacian operator. This can be
approximated with high-order finite difference techniques to control the error of the Laplacian. For an orthorhombic
unit cell, where aα (α = 1, 2, 3) are the lattice vectors, with Nα grid points along the three directions, and a grid
spacing of hα = aα/Nα, the Laplacian of the kinetic energy is discretized as

∇2ψ(r) =

3∑
α=1

N∑
n=−N

cN
n ψ(r + nhα)

h2
α

+ O(h2N
α ), (2.47)

where cN
n are the Nth order finite difference coefficients for the second derivative expansion. Accuracy of the

calculation depends on the finite difference stencil O(h2N
α ) and can be improved systematically by decreasing the
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grid spacing h = maxα hα, which is a single convergence parameter. The computational costs of operating on the
wavefunction is proportional to the numbers of grid points. Accurate results are normally obtained by combining a
grid spacing of h = 0.2 Å and a finite difference stencil with O(h6) error for the kinetic energy.

The advantage of real-space grids over discretizing by plane-wave basis sets lies in their flexible boundary con-
ditions. The boundary conditions can be chosen to be non-periodic for finite systems, periodic for bulk systems, and
mixed for one dimensional wires for example. As well, plane-waves are difficult to parallelize efficiently due to the
non-local nature of the operations, whereas the real-space grid can be efficiently divided between different proces-
sors, called domain decomposition. Since the Laplacian is nearly local, only a minimal amount of communication
between processors is required.

2.2.4 Locally Centred Atomic Orbitals

The gpaw code has also implemented LCAO196, a basis set of atomic orbital-like functions for representing the
Hamiltonian instead of on a real-space grid. This is important in situations where the higher accuracy real-space
grid is too inefficient and the finite basis of LCAO describes the electronic density sufficiently that is, it spans the
space of wavefunctions. The LCAO basis function φ centered at atom a has the form

φa
nlm(r) = Ra

nl(|r − Ra|)Ylm(r − Ra), (2.48)

where n, l, and m are the principal, angular, and magnetic quantum numbers, respectively, Ra is the position of
nucleus a, Ra

nl is a radial function which vanishes beyond a certain cut-off radius, and Ylm are the spherical harmon-
ics. We obtain the basis set by solving the radial AE KS equations for the isolated atom after selecting a cut-off

radius196–198. This gives the localized atomic-like orbitals φAE , from which the basis functions are then obtained
using φ(r) = T−1φAE(r), where T is the transform matrix.

In the LCAO mode the KS pseudo wavefunction ψ̃n,s(r) for the nth band spin s are expanded using a set of
atomic-like orbitals φν,s(r)

ψ̃n,s(r) =
∑
ν

cν,n,sφν,s(r), (2.49)

where cν,n,s are the coefficients, which are the quantities we have to minimize and solve for in the eigenvalue problem
for the Hamiltonian Hµ,ν, overlap matrix S µ,ν, and eigenvalues εn,s,∑

ν

Hµ,ν,scν,n,s =
∑
ν

S µ,ν,scν,n,sεn,s. (2.50)

The matrix elements then can be expressed as

〈ψn,s′ |∇|ψm,s〉 =
∑
µν

c∗ν,n,s′cµ,m,s
[
〈φ̃ν|∇|φ̃µ〉 +∑

a,i, j

Pa∗
i,n,s′

[
〈φa

i |∇|φ
a
j〉 − 〈φ̃

a
i |∇|φ̃

a
j〉
]

Pa
j,m,s

]
, (2.51)

where φ̃ν and φa
i are the pseudo and all-electron LCAOs and Pa∗

i,n,s′ are the PAW projectors (see section 2.2.5),

Pa∗
i,n,s′ = 〈ψ̃n,s′ | p̃a

i 〉, (2.52)

of the nth spin s′ pseudo KS wavefunction ψ̃n,s′ onto the ith LCAO orbital of atom a.
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The use of LCAO basis sets allows us to store the coefficients for each wavefunction in the basis of locally
centered atomic orbitals, instead of storing the wavefunction itself at each of the grid points in real space. In
comparison, for an isolated C atom, we would have a real space grid of (10 Å/0.2 Å/point)3 = 125 000 points per
wavefunction, whereas using an LCAO basis yields 13 coefficients. Hence, the efficiency of LCAO is mainly due to
the fact that localized functions can provide a very compact basis set.

One modified atomic orbital for each valence electron forms the smallest atomic basis set, the single-zeta (SZ)
basis set. Extra radial basis functions with the same angular momentum l (multiple-zeta) are constructed for each
valence electron using the split-valence technique199, that is, matching a polynomial to the tail of the atomic orbital.
Next to the radial flexibility, the angular flexibility of the basis can be improved by adding to the lowest unoccupied
angular momentum polarization functions. A double-zeta polarized (DZP) basis set for an atom with 2s and 2p
valence electrons, such as carbon, which contains of two radial functions for each valence state, plus a polarization
function of type d or f yields a total of 5 distinct radial functions. Each will be degenerate by 2l + 1, meaning that
gpaw will use a total of 13 basis functions to represent the atom during a calculation.

It is an important point that changing the basis set in LCAO calculations does not necessarily provide a systematic
means for improving the accuracy of the results, whereas for plane wave and real space calculations, increasing the
energy cutoff or reducing the grid spacing almost always provides a more accurate description of the wavefunctions.
Normally, DZP basis set results are in good agreement with the grid based values, particularly for structural proper-
ties. Cohesive energies are more difficult to describe with a localized basis set. Atomic energies are systematically
overestimated, leading to stronger binding. In summary, when we have long range interactions, or wavefunctions are
significantly perturbed, so that they cannot be decomposed into atomic orbitals, then using an LCAO basis set will
cause problems. This is not the case for real space or plane wave codes, as the spatial distribution of the wavefunc-
tions is unspecified, and much more flexible. The gpaw combines localized basis functions with the PAW method
and reuses most of its implementations. Only the evaluation of overlap integrals and matrix elements of the kinetic
energy operator are done differently, in the sense that the integrals of the LCAO are expressed in terms of two-center
integrals.199

We chose for our purposes LCAO DZP basis sets to ensure high efficiency and good accuracy. In addition, the
use of a spatially localized basis set, such as LCAO, is a requirement for electron transport calculations within the
non-equilibrium Green’s function approach, as described in section 2.4.

2.2.5 Projector Augmented Wave Method

Near the nuclei the kinetic energy of electrons is large, resulting in rapid oscillations of the wavefunctions. On
the other hand, the large kinetic energy makes the wavefunction “stiff” regarding their response to changes in
the environment. Thus, small basis sets are sufficient to represent the wavefunctions in the core, whereas in the
bonding region the opposite is true. To describe single-particle AE wavefunctions near the core accurately, grid-
based methods require a very fine mesh. The PAW method200,201 is a linear transformation of the AE wavefunctions,
Ψn, into PS wavefunctions, Ψ̃n,

Ψn = T̂ Ψ̃n, (2.53)

where T̂ is the transformation operator,

T̂ = 1 +
∑

a

∑
i

(|ϕa
i 〉 − |ϕ̃

a
i 〉)〈 p̃

a
i | (2.54)
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given in terms of atom-centered AE partial waves, ϕa
i , the corresponding smooth partial waves, ϕ̃a

i , and projector
functions, p̃a

i of atom a. The projector functions are localized inside the predefined atom-centered augmentation
spheres and are constructed as shown in Ref. 200, where the smooth partial waves, ϕ̃a

i , are constructed by a smooth
continuation of ϕ̃a

i such that outside the augmentation spheres the AE partial waves and smooth PS partial waves are
equal.

The smooth Coulomb potential is calculated from the PS charge density, which has a Gaussian-type function and
the same multipole moments as the AE charge density. The smooth effective potential ṽeff is additionally smoothed
by a zero-potential, that is, a local potential, va that must be zero outside the augmentation sphere.

ṽeff =
∂Ẽ
∂ñ

= vH + vxc +
∑

a

va (2.55)

where vH is the Hartree potential and vxc is the xc potential. This zero-potential va can be used to improve the
accuracy of a PAW calculation when using a finite number of partial waves and projector functions. The PAW
approximation contains all the information about the nodal structure of wavefunctions near the nuclei. Therefore, it
is always possible to reconstruct the AE wavefunctions from the PS wavefunctions. Hence, PAW provides access to
the all-electron density, which will integrate to the number of electrons in the system, without the need to partition
or separately consider valence and core electrons. This is in an important point for performing Bader calculations,
which we will see in section 2.5.2. In essence, the PAW method avoids transferability problems related to the
pseudopotential approach.
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2.3 Linear Response Time-Dependent Density Functional Theory

To study time-dependent properties such as excited state dynamics we can apply the time-dependent density func-
tional theory (TDDFT), which relates the time-dependent density of the KS system to the corresponding time-
dependent potential. Unfortunately, the energy of the time-dependent state cannot be obtained by minimization of
the energy functional, so that time-dependent properties need to be calculated in a different way. Herein, we are
only interested in optical properties such as excitation energies, transition moments, and polarizabilities. These
can be obtained simply from linear response theory within the KS framework, where the non-interacting density-
density response function χ0 relates the induced change in density nind(r, t) due to a weak external potential vext that
perturbs the system. The following sections shall describe how we calculate optical properties of extended system.
Specifically, we calculate the absorption spectrum from the dielectric matrix within the random phase approximation
(RPA).

In section 2.3.1 we extend the KS equations to their time-dependent form, which is a valid expression according
to the Runge-Gross theorem. The derivation of the linear response for small perturbations due to weak external
potentials is explained in section 2.3.2, where the non-interacting density-density response function χ0 is the func-
tional derivative of the induced density nind with respect to the external potential vext. Finally, we show how the
absorption spectrum of extended systems is calculated by reformulating χ0 in reciprocal space to get the dielectric
matrix ε0

GG′ . From the imaginary part of the macroscopic dielectric function, which is the reciprocal of the inverse
of the dielectric matrix, the absorption spectrum is obtained.

2.3.1 Runge-Gross Theorem

By extending the Hohenberg-Kohn Theorem, Erich Runge and Eberhard K. U. Gross showed that the time-dependent
density n(r, t) is uniquely determined and the corresponding map from a time-dependent potential v(r, t) → n(r, t)
is invertible.202

Theorem 3 (Runge-Gross). Two potentials, v(r, t) and v′(r, t), which differ by more than a purely time-dependent
function c(t)2, cannot produce the same time-dependent density, n(r, t).

Hence, we can extend the KS equations to a time-dependent form,

i
∂

∂t
ϕn(r, t) =

[
−

1
2
∇2 + veff(r, t)

]
ϕn(r, t), (2.56)

where ϕn(r, t) are the KS wavefunctions and the Hamiltonian in brackets consisting of kinetic term and the effective
potential veff(r, t).

Since the total energy is not a conserved quantity in time-dependent systems, it cannot be derived by mini-
mization of the energy functional. Moreover, the full solution of the time-dependent KS equations can be quite
demanding for very large systems. Nevertheless, we can calculate time-dependent observables such as excitation
energies, polarizabilities or transition moments from the linear response formalism within the KS framework as we
will see in the next section.
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2.3.2 Linear Response

Let us consider a perturbation of a system by a small external potential, small in the sense that the perturbing
external potential vext is much smaller than the external potential caused from the nuclei vext � v(0). The system,
which was before t0 (t < t0) only subject to the nuclear potential, v(0), is after t0 (t > t0) also subject to the weak
perturbation by the potential vext so that the total external potential is vtot = v(0) + vext. For weak perturbations, we
may expand until only the linear term vext. In the same way, we may expand the density in a perturbative series, such
that n(r, t) = n(0)(r, t) + nind(r, t), where n(0) is the ground-state density for t < t0 and nind(r, t) the induced change
in density after t0. We may express the induced change in density nind(r, t) in terms of the response of the system to
the weak external perturbation vext as follows,

nind(r, t) = −i
∫ t

t0
dt′

∫
dr′χ(r, t; r′, t′)vext(r′, t′) = 〈Ψ(t)|n̂(r, t)|Ψ(t)〉 − 〈Ψ0(t)|n̂(r, t)|Ψ0(t)〉 (2.57)

where Ψ0 and Ψ refer to the ground state and perturbed state, respectively, and n̂(r, t) is the density operator. The
key quantity in equation 2.57 is the density-density response function χ(r, t; r′, t′), which describes the resulting
change in density nind(r, t) under the small change of the weak external potential vext,

χ(r, t; r′, t′) =
δnind(r, t)
δvext

= −i〈[n̂(r, t), n̂(r′, t′)]〉0, (2.58)

that is, the equilibrium average of the commutator of the density operators at n̂(r, t) and n̂(r′, t′), according to the
Kubo formula.203 Looking at equation 2.58 makes it clear that the linear response to a perturbation is not related
to the perturbation and only depends on the properties of the sample, in the sense that it relates a given change in
external charge density to the resulting change in charge density of the system which does the screening.

Using the equations 2.57 and 2.58, we can derive the non-interacting density-density response function χ0(r, r′, ω)
in the frequency space for the KS system with effective potential veff,

χ0(r, r′, ω) =
δnind(r, t)
δveff

= lim
η→0+

∑
jk

( fk − f j)
ϕ j(r)ϕ∗j(r

′)ϕk(r′)ϕ∗k(r)

ω − (ε j − εk) + iη
, (2.59)

as a summation over all KS wavefunctions, ϕ j and ϕk, whose occupation is given by f j and fk, with respect to
their single-electron orbital energy differences (ε j − εk). The optical absorption spectrum can be obtained from the
polarizability tensor,

αµ,ν = −
1
π

Im〈µ|χ(ω)|ν〉, (2.60)

by summing over the diagonal elements of the 3 × 3 (µ, ν = x, y, z) matrix of the imaginary part of χ, which is also
called the spectral function of χ.

When one needs to take into account local crystal field effects, for example, for ions or metals, one should solve
the Dyson equation which includes matrix invertion over reciprocal vectors GG′. However, in our case, including
local crystal field effects is not essential as we will show later. The greatest difficulty we have is the underestimation
of the energy gap, which strongly affects the results of linear response calculations. However, we can usually match
the experiment by simply performing a scissors operation, that is, applying a constant shift to the energies.
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2.3.3 Linear Dielectric Response within the Random Phase Approximation

The RPA204 is known as an orbital-dependent energy functional obtained by applying the time-dependent Hartree
approximation to the density response function. The exact-exchange plus correlation RPA is attractive due to (1) the
exact-exchange energy cancellation of the spurious self-interaction error present in the Hartree energy, (2) the non-
local correlation energy including long-range van der Waals (vdW) interactions, and (3) the electronic screening,
which makes RPA applicable to small-gap or metallic systems where finite-order many-body perturbation theories
fail. The non-local dependence of the exact xc functional is especially important in calculations of optical properties
of long conjugated molecular chains or non-metallic solids such as wide-band gap semiconductors. This becomes
even more important when looking at junctions with non-covalent interactions. In these cases the adiabatic local
density approximation (ALDA) tends to fail, since it is local both in space and time coordinates.205,206

On the one hand, RPA has the same shortcomings present in LDA and GGA to the xc functionals. These
include their systematic underestimation of binding energies, their failure to describe stretched radicals, and their
underestimation of reaction barrier heights.204 On the other hand, RPA usually describes the mentioned physical
properties better than GGA PBE. However, these discrepancies do not influence the results of the studies presented
herein.

For our purposes RPA is particularly advantageous, since it combines accuracy and tractability with transferabil-
ity across different chemical environments and dimensionalities, such as molecules, clusters, tubes, surfaces, and
solids. Therefore, it is especially suitable for linear response calculations of extended systems.

To calculate the linear non-interacting density-density response function χ0 for systems with periodic boundary
conditions, as explained in section 2.2.2, we may perform a Fourier transform in space, going from a function of
two positions r and r′, to a function of two reciprocal lattice vectors G and G′,

χ0
GG′ (q, ω) =

1
Ω

∑
k

∑
nm

∑
ss′

fns′k − fmsk+q

ω + εns′k − εmsk+q + iη
〈ϕns′k|e−i(q+G)·r|ϕmsk+q〉〈ϕns′k|ei(q+G′)·r′ |ϕmsk+q〉 (2.61)

where η is the electronic broadening, i.e., twice the inverse lifetime Γ of the transitions, Ω is the supercell volume,
fns′k is the Fermi-Dirac occupation, εns′k is the eigenenergy, and ϕns′k is the KS wavefunction of the nth band in spin
channel s′ at k-point k.

To calculate the absorption spectrum we first need to derive the inverse dielectric function ε−1, which relates the
total electric field E in a material to the external electric field Eext,

E = ε−1Eext, (2.62)

and can be approximated in the long-wavelength limit as

ε−1 =
vtot

vext
= 1 + vH

nind

vext
, (2.63)

where vext is the potential that induces the change in charge density nind, whereas vtot = v(0) + vext is the total,
“screened” potential generated by the total charge density n(r, t), and vH is the Hartree potential or Coulomb kernel
4π/‖q + G‖2.

The dielectric matrix within linear dielectric response (LDR)-TDDFT-RPA119,120,207 in reciprocal space is given
by

ε0
GG′ (q, ω) = δGG′ −

4π
‖q + G‖2

χ0
GG′ (q, ω), . (2.64)
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The optical absorption spectrum is obtained from the imaginary part of the macroscopic dielectric function for
G = G′ = 0,

Absorption = Im
[
εM(q, ω)

]
= lim

q→0

1
ε−1

00 (q, ω)
. (2.65)

Although q is close to zero, we cannot simply set q = 0 because the Coulomb kernel vG(q) = 4π/‖q + G‖2 diverges
at q = G = 0. Instead, taking the limit as q→ 0+, the matrix elements in equation 2.61 then reduce to

〈ϕns′k|e−i(q+G)·r|ϕmsk+q〉 = −iq ·
〈ϕns′k|∇|ϕmsk+q〉

εns′k − εmsk
. (2.66)

Slowly varying external fields cause rapid oscillations on the microscopic scale, which are called local field ef-
fectss (LFEs). Neglecting LFEs, parallel to q, i.e., êq, ε(ω) = ε00(ω), is valid for materials that are also homogeneous
on the microscopic scale and results in εM = ε00.

Substituting equations 2.61 and 2.66 into equation 2.64, and suppressing k-point dependence, we obtain the
simplified form

Im[ε(ω)] =
4πη
Ω

∑
nm

∑
ss′

fms − fns′

(ω − εns′ + εms)2 + η2

(
êq · 〈ϕns′ |∇|ϕms〉

εns′ − εms

)2

. (2.67)

where êq is a unit vector parallel to q.



32 2.4. CONDUCTANCE IN THE QUANTUM REGIME

2.4 Conductance in the Quantum Regime

In the next sections we will discuss the description of currents, which allows us to compute the conductance, that
is, the electronic transport properties, of nanosystems. Using the Landauer formula we can obtain the conductance
of a perfectly transmitted current through a single-level channel. Quantum effects such as quantum tunnelling are
important and significant in the nanoregime. Properly describing conductance at the nanoscale needs to take these
effects into account. So it requires a full quantum description given by the Landauer-Bütticker formalism. A suitable
method to calculate the Landauer-Bütticker conductance is the non-equilibrium Green’s function (NEGF) method,
which can be used to efficiently describe electron and hole propagation in multi-level systems. We will see how we
can make use of the NEGF method to calculate the transmission probability of an excited electron passing from a
polymer to a carbon nanotube. This shall reflect the photoinduced current in organic photovoltaics (OPVs), from
which we can deduce the internal quantum efficiency (IQE) of the device.

Section 2.4.1 begins with a derivation of the Landauer formula, which describes the current through a single-
level channel in terms of the rate electrons enter the channel and the difference in potential of each electron reservoir
placed at the terminals of the channel. For perfectly transmitting spin degenerate channels the Landauer conductance
reduces to the quantum of conductance, G0 = 2e2

h . In section 2.4.2 we provide a basic introduction to two-point
Green’s functions, which can be used to calculate electron propagation between points in space and time. Finally, in
section 2.4.3, we will show how we set up a 4-terminal Hamiltonian to calculate the Landauer-Bütticker conductance
using the NEGF method. From this we obtain the transmission probability of an electron passing a more complex
channel with four terminals, e.g., a polymer-carbon nanotube junction shown schematically in Figure 2.2.

Figure 2.2: Schematic of a polymer/nanotube junction in a 4-terminal transport calculation resulting in the trans-
mission probability of an excited electron to pass from the input lead (polymer) through the scattering region (het-
erojunction) to the output lead (nanotube) (blue arrow).



CHAPTER 2. THEORETICAL & COMPUTATIONAL BACKGROUND 33

2.4.1 Landauer-Büttiker Conductance

Let us consider a nanotube acting as a channel for electronic transport, in the sense that electrons can move through
a valence band from one end of the tube to the other. The part of the tube acting as a channel has to be sufficiently
long that the contacts at the tube’s ends are not interacting with each other, but only with the adjacent part of channel.
We model the contacts as semi-infinite leads, which means that they are periodically repeated at the open ends of
the tube. For simplicity, let us assume that only the lowest of the transverse eigenstates within the nanotube channel
has an energy below the Fermi level, such that the channel becomes a one dimensional single-level channel. The
leads are then ideal electron reservoirs, having no changes in potential, which are filled up to the chemical potential
µin according to the Fermi-Dirac distribution f (ε),

f (ε) =
1

1 + e(ε−εF )/kBT , (2.68)

where εF = µ + V is the Fermi energy, which in our case is the sum of the chemical potential µ and the applied bias
V . In addition, we suppose that at zero Kelvin the potential of the input lead is slightly higher than the potential
from the output lead µout due to additional electron filling. From this it follows that all states between µin and µout

are fully occupied and electrons flow from the input lead through the channel to the output lead. The current due to
the difference in potential (µin − µout) is given by

I = −(µin − µout)eve
∂n
∂µ
, (2.69)

where ∂n/∂µ is the density of states including spin degeneracy, ve is the velocity component along the tube at the
Fermi surface, and e the electronic charge.208 Since ∂n/∂µ = 2/hve, we have a net current flow of

I = −
2e
h

(µin − µout) (2.70)

We see that the current is the rate at which electrons jump into the channel multiplied by the difference in potential of
the input and output leads. The zero-bias conductance of an ideal one dimensional conductor at the applied potential
Vin − Vout =

µin−µout
e is then

G =
I

Vin − Vout
=

2e2

h
. (2.71)

Equation 2.71 is known as the quantum of conductance G0 = 2e2/h, which was derived by Rolf Landauer209, and
can be extended to n perfectly transmitting spin degenerate channels,

G = n
2e2

h
. (2.72)

If we have any kind of obstacle within the channel, which can be a localized barrier or a more extended and complex
potential profile, the conductance G will be proportional to the transmitting probability T of that obstacle, such that
G becomes

G = G0T . (2.73)

Thus, describing the transmission from one lead to another can be done by relating the conductance to the transmis-
sion probability.210
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Equation 2.73 can be generalized for channels that involve more than one transverse eigenstate with energy be-
low the Fermi level. This extension is referred to as Landauer-Bütticker formalism211, which includes a transmission
matrix t̂t̂† of the scattering obstacle with the transverse eigenstates of the channel as a basis,

G = G0 Tr[t̂t̂†]. (2.74)

In this way the transmitted wavefunctions relative to the incident wave can be evaluated.
We will see in section 2.4.3 that the Non-equilibrium Green’s function method within the Landauer-Bütticker

formalism offers an elegant way to calculate the transmission T of a polymer-carbon nanotube junction as shown in
Fig. 2.2. First, we will discuss the basics of Green’s functions in the next section.

2.4.2 Green’s Functions

When we want to solve inhomogeneous differential equations of the form

Lr[u(r)] = f (r), (2.75)

where Lr is a linear differential operator in r and f (r) is a known function of r, then we can express the solution
u(r) in terms of f (r) and a two-point Green’s function G(r, r′) as

u(r) =

∫
G(r, r′) f (r′)dr′ (2.76)

where Lr[G(r, r′)] ≡ δ(r − r′), so that

Lr[u(r)] = Lr

[∫
G(r, r′) f (r′)dr′

]
=

∫
Lr

[
G(r, r′)

]
f (r′)dr′ =

∫
δ(r − r′) f (r′)dr′ = f (r). (2.77)

The Green’s function G(r, r′) reflects the action of u(r) due to the application of f (r).212,213 A good example of such
a problem is that of determining a potential Φ(r) generated by the charge density n(r). Under the application of the
Poisson equation and Coulomb’s law ∇2Φ = n(r), and we obtain the solution for Φ(r),

Φ(r) =

∫
n(r′)
|r − r′|

dr′. (2.78)

The Green’s function G(r, r′) to this equation is then the Coulomb kernel

G(r, r′) =
1

|r − r′|
, (2.79)

which is the integrand of the integral operator converting n(r) in Φ(r),

Φ(r) =

∫
G(r, r′)n(r′)dr′. (2.80)

Similarly, we can use two-point one-particle Green’s functions G(r, t; r′, t′) to describe the propagation of a
particle between two points in space and time (r, t) and (r′, t′),

iG(r, t; r′, t′) =
〈ΨN

0 |T̂ [â(r, t), â†(r′, t′)]|ΨN
0 〉

〈ΨN
0 |Ψ

N
0 〉

, (2.81)
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where G(r, t; r′, t′) is constructed from the N-particle ground-state ΨN
0 and the Heisenberg operators consisting of

the annihilation operator â = eiĤtΨ(r)e−iĤt, and the creation operator â†. T̂ is the time-ordering operator, which
returns the time-ordered product when applied to two operators

T (â(r, t), â†(r′, t′)) =

â(r, t)â†(r′, t′), if t < t′

â†(r′, t′)â(r, t), if t > t′
. (2.82)

From the time-ordered Green’s function it then follows that for t < t′ (lesser) an electron is created at (r′, s′, t′), then
propagated and annihilated at (r, s, t), and for t > t′ (greater) a hole is created at (r, s, t) and annihilated at (r′, s′, t′).

The Green’s function can be written in terms of ‘retarded’ and ‘advanced’ Green’s functions, which are easier
to analyze. The retarded Gr and advanced Ga Green’s functions are defined by

Gr(r, r′; t − t′) = Θ(t − t′)〈ΨN
0 |â(r, t)â†(r′, t′)|ΨN

0 〉, (2.83)

Ga(r, r′; t − t′) = −iΘ(t′ − t)〈ΨN
0 |â(r, t)â†(r′, t′)|ΨN

0 〉, (2.84)

where Θ is the Heaviside step function,

Θ =

0, if t < t′

1, if t > t′
. (2.85)

Equations 2.83 and 2.84 reflect a pair of linear response functions, where the operators â(r, t) and â†(r′, t′) give the
expectation values in the presence and absence of the applied field, respectively. The retarded Green’s function Gr

describes the effect after the action and is therefore only nonzero for t > t′,

Gr(r, r′; t − t′) =

0, if t < t′

−ieiĤt, if t > t′
. (2.86)

In the equilibrium case retardedGr and advancedGa Green’s functions are functions of the time difference (t−t′)
only. The transform over time difference τ = t − t′ of the retarded Green’s function Gr(ε) is

Gr(ε) = lim
η→0+

∫ ∞

0
Gr(τ)ei(ε+iη)τ/}dτ, (2.87)

where η → 0+ is a small positive complex part to which makes this integral well behaved in the upper limit,
since equation 2.87 oscillates at long times. The Fourier-transformed retarded and advanced functions are complex
conjugates of each other, so that Gr(ε) = (Ga(ε))†.

The physical meaning of the Green’s functions is more illustrative in the form of the spectral function A(ε),

A(ε) = i (Gr(ε) − Ga(ε)) = i
(
G>(ε) − G<(ε)

)
, (2.88)

where G< and G> are the kinetic lesser and greater Green’s functions, respectively. Equation 2.88 is a valid expres-
sion in the wide-band limit (t → ∞), at the energies ε − ε0 � 0. There, A(ε)/2π can be interpreted as the available
density of states. Hence, the density of states (DOS) can be obtained by tracing over the spectral function,

DOS = Tr[A(ε)]. (2.89)

In the next section we will see how we can make use of the Green’s functions to describe the propagation of electrons
(and holes) within the transport formalism referred to as the NEGF method.



36 2.4. CONDUCTANCE IN THE QUANTUM REGIME

2.4.3 Non-equilibrium Green’s Function Method (NEGF)

NEGF163,214–217 offer a way to predict electronic transport properties of a variety of systems such as superconduct-
ing nanostructures, resonant tunneling systems and junctions. The non-interacting one-electron description within
NEGF is valid for coherent transport, where phase-coherence is preserved during the electron motion across the
system. This means that there is no inelastic scattering due to electron-electron or electron-phonon collisions within
the channel. That is the case for ballistic transport, where the mean free path between elastic collisions is longer
than the dimension of the medium through which the electron travels. In this regime the momentum of the electron
is constant and only limited by scattering with the boundaries of the sample. Experiments have shown that we find
ballistic transport in carbon nanotubes, since the coherence length for nanotubes is quite long. Hence, NEGF is the
perfect tool to study transport properties within carbon nanotube systems.

Before we can make use of the Landauer formula to calculate the transmission probabilities of an electron
passing through a carbon nanotube, we have to include the full quantum description of the tube’s KS orbitals. In the
case of an isolated carbon nanotube, the Hamiltonian is written as

Ĥ =



. . .
. . . 0 0 0 0 0 0 0

. . . ĤL
in V̂in 0 0 0 0 0 0

0 V̂†in ĤL
in V̂inC 0 0 0 0 0

0 0 V̂†inC ĤC V̂CC 0 0 0 0
0 0 0 V̂†CC ĤC V̂CC 0 0 0
0 0 0 0 V̂†CC ĤC V̂Cout 0 0
0 0 0 0 0 V̂†Cout ĤL

out V̂out 0

0 0 0 0 0 0 V̂†out ĤL
out

. . .

0 0 0 0 0 0 0
. . .

. . .



(2.90)

where ĤL
in and ĤL

out are Hamiltonians of the semi-infinite input and output leads and ĤC are the Hamiltonians of
the channel. When we construct the Hamiltonian matrix it is essential that the size of the leads and the channel is
sufficient so that the ends of the channel or the leads are not interacting with each other. Only when the interactions
are limited to two adjacent principle layers is the Hamiltonian matrix tridiagonal, so that the off-diagonal terms
V̂in/outC , V̂CC and V̂in/out describe channel-to-lead, channel-to-channel and lead-to-lead coupling, respectively. As
well, the Hamiltonian should be Hermitian, so we have

V̂Cin = V̂†inC , V̂CC = V̂†CC , V̂Cout = V̂†outC . (2.91)

However, we are not interested in the transmission probability of an electron passing through a carbon nanotube,
since we know that ballistic transport occurs at 100%. Rather we would like to know the probability of an excited
electron passing from a polymer across a junction to the carbon nanotube. These results can be linked to the internal
efficiency of a donor–acceptor blend in OPV devices. For a polymer-carbon nanotube junction, we have to construct
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a 4-terminal Hamiltonian,

Ĥ =



ĤCNT
in 0 V̂CNT

in 0 0
0 ĤP

in V̂P
in 0 0

V̂CNT
in V̂P

in ĤC V̂P
in V̂CNT

Cout

0 0 V̂P
in ĤP

out 0
0 0 V̂CNT

out 0 ĤCNT
out


, (2.92)

where ĤCNT
in/out, ĤP

in/out, and ĤC are the Hamiltonians for the carbon nanotube input/output leads, the polymer in-
put/output leads, and the channel, respectively. The channel includes the carbon nanotube junction. All the Hamilto-
nians can be extracted from independent periodic calculations, where the periodic boundary conditions are removed
from the Hamiltonian. The coupling matrices V̂CNT

in/out of the carbon nanotubes can be obtained from an isolated peri-
odic carbon nanotube calculation and inserted identically for the input and output leads as well as for the complex
conjugates. This is reasonable to do when the junction itself is far away from the lead-channel contact and we have
only tube-tube interactions close to the lead-channel contact. A similar procedure can be employed to obtain the
coupling matrices V̂P

in/out of the polymers. We may similarly construct the 4-terminal overlap matrix,

Ŝ =



S CNT
in 0 S CNT

in 0 0
0 S P

in S P
in 0 0

S CNT
in S P

in S C S P
in S CNT

Cout

0 0 S P
in S P

out 0
0 0 S CNT

out 0 S CNT
out


. (2.93)

Since our focus is on what happens within the channel, all quantities of interest can be obtained just from the
channel’s retarded Green’s function Gr

C given by

Gr
C =

(ε + iη)S C − ĤC −
∑
α

Σα

−1

, (2.94)

where S C is the overlap matrix, η = 25 meV is the electronic broadening at the room temperature, and Σα are
the contact self-energies of the four leads. The concept of self-energy is used in many-body physics to describe
electron-electron and electron-phonon interactions. Here, it is used to describe the effect of a semi-infinite contact,
where only the coupling between adjacent layers of the reservoir (µ × ν) and the channel (m × n) are taken into
account and the whole reservoirs themselves are neglected. The self-energy Σα of lead α is given by

Σα =
[
(ε + iη)S Cα − V̂Cα

]
Gα

[
(ε + iη)S †Cα − V̂†Cα

]
, (2.95)

where Gα is the surface Green’s function, a much smaller µ× ν matrix to invert to obtain the self-energies. Thus, the
self-energy Σα is determined only by the energy E = ε + iη, the coupling overlaps S Cα and Hamiltonians V̂α of the
channel’s end sites to the leads and the surface Green’s function of the leads Gα,

Gα =
[
(ε + iη)S α − Ĥ0

α

]−1
. (2.96)

From this it follows that the contact self-energy is independent of the state of the nanosystem itself and just describes
the influence of the leads. The coupling strength is described by the complex self-energy, where the real part gives
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the energy shift of the level, and the imaginary part gives the broadening. The process of coupling to the channel
inevitably broadens the level, which is described by the broadening, or coupling to the lead input/output, Γin/out,

Γin/out = i
(
Σin/out − Σ

†

in/out

)
. (2.97)

In the wide-band limit the real part of the self-energy can be neglected, so that there is only level broadening. The
self-energy of the lead then becomes

Σin/out = −i
Γin/out

2
. (2.98)

Returning to the conductance G through a device, this is given in the Landauer formalism by

G = G0T (ε), (2.99)

where T (ε) is the transmission probability at energy E. This can be obtained using the NEGF formalism by including
the channel’s retarded Gr

C and advanced Ga
C Green’s functions in addition to the broadenings of the leads Γα as

T (ε) = Tr
(
Ga

CΓinG
r
CΓout

)
= Tr

(
GCΓinG

†

CΓout

)
, (2.100)

since Gr
C = (Ga

C)†. The transmission T (ε) gives the probability for an electron to pass through the available densities
of states. The available density of states is given by the spectral function A(ε) = i(Gr(ε) − Ga(ε)) weighted by the
broadening with respect to the amount of coupling to the leads Γin/out. If we want to know the conductance G of a
polymer-carbon nanotube junction, we choose the polymer to be the input lead and the nanotube to be the output
lead to obtain the transmission of an electron passing from the polymer to the nanotube.

In summary, an NEGF calculation in gpaw follows the scheme depicted in Figure 2.3. This involves the following
five steps:

(1) Generating the Hamiltonian and overlap matrices such as those provided in equations 2.92 and 2.93. These may
be obtained from density functional theory calculations employing locally centered atomic orbitals or maximally
localized Wannier orbitals, or based on tight-binding models.

(2) Calculating the influence of the leads on the scattering region by the surface Green’s function and the self energy
using equations 2.95 and 2.96. This step only requires the inversion of the smaller µ×ν surface Green’s functions
Gα.

(3) Calculating the retarded Green’s function of the channel from equation 2.94. Since this step requires the inver-
sion of the larger m × n channel Green’s function GC , it is the bottle-neck of the NEGF calculation.

(4) Calculating the coupling to the input and output lead using equation 2.97.

(5) Calculating the transmission T (E) with equation 2.100. Note that steps (2–5) must be repeated for each energy
E to obtain the conductance as a function of energy G = G0T (E).

Even though the NEGF method is rather sophisticated, it is only valid for coherent transport, as its self-consistent
mean-field description does not include electron interactions and correlation effects. This is of importance for
nanoscale devices with weak coupling to contacts such as the floating gate in flash memory devices. There, Coulomb
blockade has been experimentally observed for systems where the charging energy U0 exceeds the broadening
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(1) Generate Hamiltonian and Overlap Matrices

Ĥ =



ĤCNT
in 0 V̂CNT

in 0 0
0 ĤP

in V̂P
in 0 0

V̂CNT
in V̂P

in ĤC V̂P
in V̂CNT

Cout

0 0 V̂P
in ĤP

out 0
0 0 V̂CNT

out 0 ĤCNT
out


εmin → ε

(2) Calculate Self Energy of Each Lead
Σα =

[
(ε + iη)S αC − V̂αC

] [
(ε + iη)S α − Ĥ0

α

]−1 [
(ε + iη)S †αC − V̂†αC

] ε + ∆ε → ε

(3) Calculate Channel’s Green’s Function

GC =

(ε + iη)S C − ĤC −
∑
α

Σα

−1

(4) Calculate Input/Output Lead Coupling
Γin/out = i

(
Σin/out − Σ

†

in/out

)

(5) Calculate Transmission
T (ε) = Tr

(
GCΓinG

†

CΓout

) ε ≥ εmax?

Output T (ε) Stop

No

Yes

Figure 2.3: NEGF Scheme

γ = γL + γR and kBT due to the connection to the surroundings. This leads to a split of the up and down spin density
of states into two parts separated by the single-electron charging energy

U0 ≡ e2/C. (2.101)

where C is the capacitance of the junction. In this case very little current flows when a small bias is applied, since
there are few states between µL and µR. Nevertheless, the NEGF method can be extended to include the Coulomb
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interaction with the help of the Anderson-Hubbard Hamiltonian ĤAH = 1
2
∑
α,β Uα,βn̂αn̂β in the form of a density-

density interaction to take into account Coulomb blockade amongst other phenomena.218 For non-coherent transport
it is possible to include the self-energy of the channel and the scattering region ΓC .219 As well, the NEGF method
can be extended by the electron-vibron model to study the effect of vibrations on the transport properties.218 This
versatility makes the NEGF method an interesting playground for studying quantum charge transport in different
regimes.



CHAPTER 2. THEORETICAL & COMPUTATIONAL BACKGROUND 41

2.5 Calculation of Charge Distributions

For OPVs the charge transfer state within the donor–acceptor interface plays an essential role, since the degree of
exciton splitting allows one to qualitatively compare the efficiency of donor–acceptor materials. A simple method
to estimate charge transfer states is to calculate the amount of electrons transferred from the donor to the acceptor
material or to localize the excitonic electron-hole pair within the heterojunction. Basically, all we need for this is
to calculate some charge density distributions. Even in the case of the exciton, we can obtain the average electron
and hole charge densities from ground-state calculations, either by extracting the two-point excitonic wavefunction
for the electron-hole pair Ψn(re, rh) from a linear response calculation or by calculating the difference in electron
densities between the triplet (excited) and singlet ground state. The triplet often gives a reasonable estimation of the
singlet excited state and can easily be obtained by fixing a total magnetic moment µ in the ground-state calculation.
After all, we have to keep in mind that charge distributions do not provide any direct information about the amount
of exciton splitting, since we do not know the bound and dissociated electron and hole binding energies. Still, it
allows us to estimate qualitatively the ability of the donor and the acceptor material to act as hole and electron
acceptors, respectively.

In the following two sections we will illustrate methods for evaluating electron and hole densities (section 2.5.1)
and calculating the charge transfer between molecules using the Bader charge analysis (section 2.5.2).

2.5.1 Electron Hole Densities

We can express the two-point excitonic wavefunction Ψn(re, rh) for the nth electron-hole pair in terms of the occu-
pied, φi(rh), and unoccupied, φ j(re) KS wavefunctions as

Ψn(re, rh) =

nocc∑
i=0

nunocc+nocc∑
j=nocc+1

fni jφi(rh)φ j(re), (2.102)

where fni j is the contribution of the i → j transition to the nth excitation, so that
∑

f 2
ni j = 1, and re and rh are the

positions of the electron and hole, respectively.
The spatial distribution of a particular excitonic wavefunction Ψn(re, rh) may be quantified in terms of the av-

erage density of the electron ρe(re) and the average density of the hole ρh(rh). The electron/hole average density is
obtained by integrating the density of the excitonic wavefunction with respect to the hole/electron’s position, i.e.

ρe(re) =

∫
drhΨn(re, rh)Ψ∗n(re, rh)

=

∫
drh

∑
i,i′

∑
j, j′

fni j fni′ j′φi(rh)φ j(re)φ∗i′ (rh)φ∗j′ (re)

=

nocc∑
i=0

nunocc+nocc∑
j, j′=nocc+1

fni j fni j′φ j(re)φ∗j′ (re) ≈
nocc∑
i=0

nunocc+nocc∑
j=nocc+1

f 2
ni jφ j(re)φ∗j(re) (2.103)

ρh(rh) =

nocc∑
i,i′=0

nunocc+nocc∑
j=nocc+1

fni j fni′ jφi(rh)φ∗i′ (rh) ≈
nocc∑
i=0

nunocc+nocc∑
j=nocc+1

f 2
ni jφi(rh)φ∗i (rh). (2.104)

To compute the average electron/hole densities, we include transitions ranked by their weight fni j until
∑

f 2
ni j > 0.95.
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2.5.2 Bader Charge Distribution

An intuitive way of partitioning charge between molecules and atoms is using the charge density minima between
the atoms. In more detail, this can be done by determining the zero flux surfaces, that is, where the gradient of the
charge density is zero along the surface normal. This is known as the Bader analysis.220 We use the Bader analysis
to define charge distributions after comparing the charge enclosed within the Bader volume with the total electronic
charge of an atom or a whole molecule. This way we can compute where the partial charges are localized and if any
charge transfer occurs between molecules.

Explicitly finding and representing the dividing surfaces is a challenging task. Therefore in GPAW125, Henkel-
man et al.221 implemented a fast and robust algorithm, that associates the Bader charge region with grid points
instead. This is done by following a path of steepest ascent along the 26 possible directions, r∆i,∆ j,∆k, towards
adjacent grid points, using

∇ni,j,k · r∆i,∆ j,∆k =
∆n
|∆r|

=
ni+∆i, j+∆ j,k+∆k − ni,j,k

|ri+∆i, j+∆ j,k+∆k − ri,j,k|
(2.105)

where the steepest ascent step selected, r∆i,∆ j,∆k, is the one that maximizes the positive values of ∇ni,j,k until the
point ri, j,k associated with a charge density maximum is found.222 The total electronic charge of each Bader region
is then given by summing over the grid points assigned to that region, that is, all points along paths of steepest ascent
which terminate at the region’s maximum. The computational time scales linearly with the number of grid points
and analyzing a given charge density grid requires approximately 50 arithmetic operations per grid point.

However, for large systems with more than 100,000 grid points, this process can still prove quite demanding.
Moreover, the above method typically associates a separate Bader region with each atom. To estimate the charge
transfer between molecules, much of this partitioning between atoms proves unnecessary. For molecules which
are well separated along the z-axis, one may partition the density into that associated with the lower and upper
molecules using the projection of the density onto the z-axis, nk =

∑
i, j ni, j,k. The projected density is then partitioned

by locating the point kmin which minimizes the projected density mink nk in between the molecules, with the charge
associated with the lower and upper molecules being

∑
i, j,k<kmin

ni, j,k and
∑

i, j,k>kmin
ni, j,k, respectively.

If the lower charge density region is further partitioned between two molecules separated along the y-axis, we
may similarly partition the density in the lower region into a portion associated with the left and right molecules using
the projection of the density onto the y-axis in the lower region, n j =

∑
i,k<kmin

ni, j,k. The projected density can again
be partition by locating the point jmin which minimizes the projected density min j n j in between the molecules, with
the charge associated with the left and right molecules being

∑
i, j< jmin,k<kmin

ni, j,k and ni, j> jmin,k<kmin ni, j,k, respectively.
Such methods are exceedingly efficient, as they employ a Newton’s method to find a minimum, and only need to
consider one coordinate direction at a time.
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2.6 Single-Walled Carbon Nanotubes

There are different ways of folding a graphene sheet which each form distinctly different carbon nanotubes. The
resulting symmetry of the honeycomb lattice within the nanotube, that is, the orientation and the number of six
membered carbon rings along the circumference, gives rise to different bandstructures. In the next sections we will
discuss how the symmetry influences the bandstructure and why there are metallic and semiconducting nanotubes.

In section 2.6.1 we will take a look at the different folding possibilities and the structure classification that can be
made from it. Then we will discuss the tight binding band strucure of graphene and the resulting energy dispersion
relation in section 2.6.2. Imposing periodic boundary conditions in the circumferential direction results in the band
structure of single-walled carbon nanotubes, which we will show in section 2.6.3. Finally, we will discuss the
resulting electronic properties from the different band structures.

2.6.1 Structure Classification and Symmetry

Single-walled carbon nanotubes (SWNTs) are cylindrical graphene sheets with a diameter of about 0.7 to 1.0 nm,
with the majority of those observed having diameters smaller than 2 nm.223,224 Due to their large length to diameter
ratio of about 104 to 105, SWNTs are considered to be one dimensional nanostructures.

The orientation of the six-membered carbon ring within the lattice relative to the axis of the nanotube depends on
which carbons of the graphene sheet are linked while folding. The different folding possibilities give rise to different
lattice symmetries. The primary symmetries are classified into achiral (symmorphic) and chiral (non-symmorphic)
nanotubes. The achiral nanotubes have identical mirror images and can be separated into two types named after
the carbon sequence along the circumference of the nanotubes: zigzag (blue line) and armchair (red line) nanotubes
shown in Figure 2.4. Chiral SWNTs have mirror images that cannot be superposed onto the original SWNT due to
the spiral symmetry of the lattice. As a result, their circumferences have mixed patterns. All nanotubes terminate in
so-called end caps, which resemble hemispheres of fullerenes.

Figure 2.4: Rectangular slicing of graphene by chiral (Ch) and translational (T) vector to obtain zigzag (n, 0) (blue),
armchair (n, n) (red), or chiral (n,m) nanotubes depending on chiral angle θ.
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Figure 2.4 shows the chiral vector Ch, which points along the circumference of the tubes and is normal to the
translational vector T along the nanotube axis. The symmetry of the nanotube is defined by the chiral angle θ
between the chiral vector Ch and the real space lattice vector a1, which coincides with the zigzag line. The chiral
angle θ is 0◦ for zigzag, 30◦ for armchair, and 0◦ < θ < 30◦ for chiral nanotubes. The chiral vector Ch, expressed by
the real space unit vectors a1 and a2 of the hexagonal lattice, is

Ch = na1 + ma2 ≡ (n,m), (2.106)

where n and m are integers (0 ≤ m ≤ n). From this it follows that armchair nanotubes correspond to the case of
n = m, that is Ch = (n, n) and zigzag to m = 0, or Ch = (n, 0). The chiral angle θ can be obtained from the inner
product of Ch and a1,

cos θ =
Ch · a1

|Ch||a1|
=

2n + m

2
√

n2 + m2 + nm
, (2.107)

where the circumference is
C = |Ch| =

√
Ch · Ch = a

√
n2 + m2 + nm, (2.108)

where the lattice constant a ≈ 1.42 ×
√

3 ≈ 2.49 Å.
The translational vector T can also be expressed in terms of the basis vectors a1 and a2,

T = t1a1 + t2a2 ≡ (t1, t2), (2.109)

with t1 = 2m+n
dR

and t2 = − 2n+m
dR

. dR is the greatest common divisor (gcd) of (2m + n) and (2n + m), which can be
related to d the gcd of n and m by

dR =

d if n − m is not a multiple of 3d

3d if n − m is a multiple of 3d
(2.110)

The length L of the translational vector T is then given by

L = |T| =
√

3C/dR. (2.111)

From this it follows that the length L is greatly reduced when (n,m) have a common divisor or when (n − m) is a
multiple of 3d. In fact, this leads to very short unit cells for symmetric nanotubes such as the (5,5) SWNT, where
dR = 3d = 15 and so L = a. This is an important point when performing periodic calculations on SWNTs, where L
is the length of the repetition unit. For the case of (6,5) and (7,5) SWNTs, which have L > 40 Å, the computational
effort is significantly increased due to the size of the calculation box and the number of atoms. However, nanotubes
with short unit cells can still have significant numbers of atoms for large diameter nanotubes.

Perhaps at a first glance the lattice symmetries may not seem so critical. From other chiral molecules it is known
that rarely do intramolecular or physical properties change with chirality, with the exception of the optical activity.
However, in the case of carbon nanotubes, the carbon atom periodicity within the lattice has a huge impact on the
band structure and therefore the electronic properties of SWNTs. The dependence of the band structure on the
symmetry of SWNTs is explained in the next sections (2.6.2 and 2.6.3).
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2.6.2 Tight Binding Band Structure of Graphene

To understand the band structure of SWNTs and its dependence on the lattice symmetry, we need to first take a look
at the band structure of graphene.225,226 The periodicity of crystals means that many levels of energy are possible for
a given momentum and that some energies might not be available at any momentum. The collection of all possible
energies and momenta is known as the band structure of a material.

The wavefunction ansatz is given by Bloch’s Theorem

ψk =
∑

R

eik·Rφ(r − R) (2.112)

where R are lattice vectors and φ is the atomic wavefunction of the pz orbital. The unit cell of graphene consists of
two inequivalent sublattices A and B, with the environments of the corresponding atoms being mirror images of one
another. Since the unit cell includes the two orbitals, φ1 and φ2, the total function φ is a linear combination of φ1

and φ2

φ(r) = b1φ1(r) + b2φ2(r). (2.113)

Since there are two unknown parameters b1 and b2 in equation 2.113, two equations are required to solve this
eigenvalue problem. These are given by projecting ψk onto φ1 and φ2,

Ek〈φ j|ψk〉 = 〈φ j|U j|ψk〉 (2.114)

where U j is only the potential of the Hamiltonian (Ĥ = K + U), since the kinetic energy is set to ε1 = ε2 = ε2pz = 0
for both electrons. When only on-site and nearest-neighbour overlaps are taken into account, 〈φ j|ψk〉 is obtained
from

〈φ j|ψk〉 = b j + biγ0(1 + e−ik·a1 + e−ik·a2 ) (2.115)

and 〈φ j|U j|ψk〉 from
〈φ j|U j|ψk〉 = biγ1(1 + e−ik·a1 + e−ik·a2 ) (2.116)

where γ0 = 〈φ j|φi〉 and γ1 = 〈φ j|U j|φi〉 are the overlap integrals, which are both considered to be real and the change
of indices should not matter due to symmetry. In this way the eigenvalue problem can be formulated as Ek α (γ0Ek − γ1)

α† (γ0Ek − γ1) Ek

 b1

b2

 =

00
 , (2.117)

where α = 1 + e−ik·a1 + e−ik·a2 . Making use of the fact that γ0 is small, the approximate dispersion relation is227

Ek ≈ ±γ1|α(k)| = ±γ1
√

3 + 2 cos (k · a1) + 2 cos (k · a2) + 2 cos (k · (a2 − a1)). (2.118)

This equation can be reformulated expressing k in its (x, y) components226,228,

E(kx,ky) = ±γ1

√
1 + 4 cos

 √3kxa
2

 cos
(

kya
2

)
+ 4 cos2

(
kya
2

)
, (2.119)

where a =
√

3a0 is the lattice constant. Switching from real space vectors to k-space results in expressing the energy
dispersion in reciprocal space.

For graphene, the reciprocal lattice points (grey) also from a hexagonal lattice as shown in Figure 2.5. It is
constructed from the reciprocal lattice vectors b1 and b2, which are defined to be normal to the real space lattice
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Figure 2.6: Energy dispersion relation of graphene with bonding states at Ek < 0 (red) and anti-bonding states
Ek > 0 (blue).

vectors a1 and a2. The first Brillouin zone (FBZ) is then obtained by dividing all connecting lines between reciprocal
points in half by normal intersections. The FBZ consists of high symmetry points, the Γ-point in the center, the K-
points at the corners, and the M-points at the midways of the intersections.

Plotting the dispersion relation such as in Figure 2.6 yields bands with Ek < 0 for the antisymmetric wave-
functions, which are the bonding states, and bands with Ek > 0 for the symmetric wavefunctions, which are the
antibonding states. As well, it is shown that Ek is zero for k = 4π

3
√

3a0
êy, which is exactly at the corners, or K-points,

of the Brillouin zone. There, the two states are degenerated and the DOS of the bonding state goes to zero. This
point is called Dirac point, and the energy dispersion close to the K-point is called the Dirac cone. Since the DOS
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is filled up to the Dirac point and empty above, the Fermi level is located exactly at the Dirac point. This means 2D
graphite is a semimetal. It will exhibit some conduction at finite temperatures, since the carriers are easily excited
into the conduction band. However, it does not conduct like a metal, since only a few electrons can pass the narrow
Dirac point.

The existence of a zero gap at the K-points comes from a symmetry requirement that the two carbon sites A
and B in the hexagonal lattice be equivalent to each other. If they are not equivalent, as is the case for hexagonal
boron-nitrite, the differences in on-site energies ε2pz will open a band gap. In the next section (2.6.3) we will discuss
how changes in symmetry and quantization along the circumference of the SWNT will influence its band structure
and the band gap.

2.6.3 Band Structure of Single-Walled Carbon Nanotubes

In comparison to the unit cell of graphene, the unit cell of a carbon nanotube is given by the rectangle generated
by the chiral vector Ch and the translational vector T as explained in section 2.6.1.223,224 The unit cell includes 2N
carbon atoms, and therefore N bonding and N anti-bonding π bands, where N is the number of hexagons.

The nanotube’s reciprocal lattice vectors B1 and B2 are obtained from the relations

Ch · B1 = 2π, T · B1 = 0,
Ch · B2 = 0, T · B2 = 2π.

(2.120)

In terms of the reciprocal lattice vectors b1 and b2 of graphene, B1 and B2 can be expressed as

B1 =
1
N

(−t2b1 + t1b2), B2 =
1
N

(−mb1 + nb2). (2.121)

The electronic structure of a single-walled carbon nanotube can be simply obtained from that of graphene by
using periodic boundary conditions in the circumferential direction. This implies that the wave vector associated
with the Ch direction becomes quantized. Note that we consider the wave vector associated with the translational

K
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K

KK

K

Γ
B1

B1

B 1

k

k

Figure 2.7: Hexagonal Brillouin zone of graphene with the first Brillouin zones of the (9,0) SWNT (red dashed),
(10,0) SWNT (blue) and (5,5) SWNT (green dashed) carbon nanotubes.
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,
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vector T to be continuous due to the macroscopic length of SWNTs. For short SWNTs, the wave vector associated
with T would be discrete. The quantization of the wave vector associated with C gives rise to parallel line segments
along the B1 direction, as depicted in Figure 2.7. This irreducible set of equidistant cutting-lines is the SWNT’s first
Brillouin zone. Hence, the first Brillouin zone of a nanotube is a subset of the unfolded graphene Brillouin zone.

As shown before, the indices (n,m) uniquely specify the geometry of a nanotube, such as the diameter, the chiral
angle, the length of the unit cell along the tube axis, and the number of graphene unit cells inside the SWNT unit
cell. This implies that the spacing, the length, the orientation, and the number of the cutting lines depends on the
indices (n,m). The spacing between cutting lines is inversely proportional to the SWNT circumference (2π/C), the
length of the lines is inversely proportional to the length of the SWNT unit cell along the tube axis (2π/L), and the
orientation of the cutting lines depends on the SWNT chiral angle θ. Since there are N graphene unit cells inside the
SWNT unit cell, there are N wave vectors µB1(µ = 0, · · · ,N − 1) giving rise to N discrete k vectors. This means
any two wave vectors which differ by NB1 are equivalent.

When a cutting line crosses graphene’s Brillouin zone’s K-points, the SWNT is metallic. This is the case for
(9,0) and (5,5) as shown in Figure 2.7. Such a crossing occurs when 2n+m

3 is an integer, which means the K-point can
be folded onto the Γ-point. This means that for metallic nanotubes the condition n − m ≡ 0 (mod 3) is also valid.
When n − m ≡ 1 (mod 3), the SWNT is semiconducting such as the (10,0) SWNT, as shown in Figure 2.7. It has
to be mentioned that the effects of curvature can be reasonably neglected for large diameter nanotubes. However,
small diameter nanotubes can have metallic features even when n − m , 0 (mod 3), such as for the (5,0) SWNT.

The energy dispersion relations E(kx,ky) are obtained by applying appropriate periodic boundary conditions along
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Figure 2.9: DOS of (a) semiconducting (10, 0) SWNT with band gap and (b) metallic (9, 0) SWNT with constant
non-zero DOS at Fermi level (E = 0), both superposed on DOS of graphene (dotted lines).

the direction of Ch. This is done by substituting kx and/or ky by the small number of allowed wave vectors kα,q
(α = x, y; q = 1, · · · , 2n), which are n

√
3kx,qa = 2πq for the armchair nanotube and nky,qa = 2πq for the zigzag

nanotube. For the (n, n) armchair nanotube, this boundary conditions invoke a crossing of the valence and conduction
bands at two thirds of the distance from Γ to the zone boundary at X, as shown in Figure 2.8 (a). For the case of
metallic zigzag nanotubes a crossing occurs at the Γ-point (Figure 2.8 (b)), whereas for semiconducting zigzag
nanotubes there is a band gap, as shown in Figure 2.8 (c).

A clear picture of the differences between SWNTs and graphene is given by comparing their density of states,
as provided in Figure 2.9. Of particular interest is the DOS near the Fermi level EF located at E = 0. On the one
hand, for a metal nanotube the DOS is non-zero. Moreover, the DOS per unit length along the nanotube axis is
constant. This is the case for all metal nanotubes, independent of their diameter and chirality. On the other hand,
semiconducting nanotubes have a zero DOS at the Fermi level and a band gap. It was shown229 that the size of the
energy gap Eg depends upon the reciprocal nanotube diameter dt

Eg =
|γ1|a0

dt
, (2.122)

and is independent of the chiral angle of the semiconducting nanotube. Another difference can be found in the
fluctuation of the DOS. At certain energies, where the dispersion relation has an extremum, the DOS diverges.
These Van Hove singularities give rise to certain energy levels and occur more often in 1D SWNTs than in 2D
graphene.





Chapter 3

Results & Discussion

3.1 Modelling Polymers from Oligomers*

Sorting small band gap nanotubes with photoactive polymers would be a straightforward approach to the production
of polymer-single-walled carbon nanotube (SWNT) thin films for organic photovoltaics (OPVs). Still, the polymer–
SWNT interface is not well understood. To be able to perform computational studies on such hybrid systems,
we must first find an oligomer with the minimal size of a polymer building block that reproduces the properties
of interest of the full polymer. Only in so doing can we hope to reduce the computational costs sufficiently to
subsequently model complex hybrid systems.

In this section we show that the electronic properties of PFO-BPy, such as optical absorption and electron hole
densities of the polymer, are already well described by the monomer unit of Py-PFO-Py, shown schematically in
Figure 3.1. This is accomplished by performing time-dependent density functional theory (TDDFT) calculations
of the optical absorption spectra for isolated monomers, dimers, and trimers of Py-PFO-Py and PFO-BPy, and the
periodically repeated polymer. Further, we compare the calculated spectra for diethyl (R1 = CH2CH3) and dioctyl
(R1 = (CH2)7CH3) side chains. These results suggest one may accurately model a complex polymer-SWNT hybrid
heterojunction using the simplified monomer–SWNT hybrid system including Py-PFO-Py depicted in Figure 3.2.

3.1.1 Computational Details

All density functional theory (DFT) calculations were performed with the real-space projector augmented wave
(PAW) method code gpaw125,126. We used a grid spacing of 0.2 Å for representing the density and the wavefunc-
tions and the Perdew-Burke-Ernzerhof xc functional (PBE) exchange and correlation (xc)-functional184. Structural
minimization was performed within the atomic simulation environment (ASE)230, until a maximum force below
0.05 electronvolt (eV)/Å was obtained.

Non-periodic boundary conditions were applied for the isolated polymer units, employing more than 5 Å of
vacuum to the cell boundary, where both the electronic density and wavefunctions are set to zero. To model an
infinitely long polymer, we repeated one Py-PFO-Py unit periodically along the polymer’s length, and obtained a

*The work described in this section was performed in collaboration with Duncan John Mowbray and Angel Rubio and is adapted from
“Solubilizers for SWNTs: Modelling Polymers from Oligomers”, Phys. Stat. Solidi B 2014, 251, 2407–2412.

51
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Figure 3.1: Chemical structure of a Py-PFO-Py unit (upper panel) and the PFO-BPy unit (lower panel) of the PFO-
BPy polymer.

Figure 3.2: Schematic of Py-PFO-Py monomer adsorbed on a SWNT.

converged separation between repeated Py-PFO-Py units of L = 14.866 Å.
The optical absorption spectra were calculated from the transition dipole matrix elements, which were obtained

with linear response TDDFT231. For these calculations we increased the number of unoccupied bands included
nunocc to twice the number of occupied levels nocc. We find this resulted in a converged optical spectra up to 6 eV.

To compare directly with the full polymer, we have also performed calculations for the periodically repeated
monomer unit. In this case, the optical absorption has been calculated from the imaginary part of the macroscopic
dielectric response function εm(ω) obtained from linear dielectric response (LDR) TDDFT within the random phase
approximation (RPA)), as recently implemented within gpaw119,120. The macroscopic dielectric function is calcu-
lated including local field effectss (LFEs) by solving Dyson’s equation in terms of the non-interacting density-density
response function. To ensure the 1D Coulomb kernel retains all interactions within the unit cell, while excluding
spurious interactions between periodic images, we have doubled the unit cell dimensions in the non-periodic direc-
tions, “padding” the Kohn-Sham (KS) wavefunctions with zeros, and employed a Coulomb cutoff R equal to the
original unit cell dimensions in the non-periodic directions.232
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Figure 3.3: TDDFT absorption spectra of the (a) monomer Py-PFO-Py, dimer (Py-PFO-Py)2, and trimer (Py-PFO-
Py)3, (b) monomer (PFO-BPy), dimer (PFO-BPy)2, and trimer (PFO-BPy)3, and (c) monomers of PFO-BPy and
Py-PFO-Py and the extended monomer BPy-PFO-BPy.

3.1.2 Monomer, Dimer, Trimer, and Polymer Absorption Spectra

The TDDFT spectra for the monomer, dimer, and trimer of the PFO-BPy polymer are shown in Figure 3.3, based
on the (a) Py-PFO-Py and (b) PFO-BPy units. In both cases there is no significant red shift from the dimer to the
trimer (∼ 0.05 eV). The absorption peak of the low energy transition band of the monomer PFO-BPy is blue shifted
up to the absorption of the bipyridine part. In comparison to the peak maximum of the monomer, Py-PFO-Py is
found only 0.15 eV higher in energy than its corresponding dimer. This is in contrast to PFO-BPy, which is more
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Figure 3.4: LDR-TDDFT-RPA absorption spectra, =[εm(ω)], for the monomer Py-PFO-Py, dimer (Py-PFO-Py)2,
and repeated polymer (Py-PFO-Py)∞.

than 0.2 eV higher in energy. Perhaps more importantly, the relative intensities of the two lowest energy peaks differ
qualitatively between the PFO-BPy monomer and either the dimer or trimer.

In Figure 3.3(c) we compare the spectra of the two monomers with the spectrum of the extended monomer BPy-
PFO-BPy. The BPy-PFO-BPy monomer has on each side an additional terminating pyridine forming bipyridine.
With the inclusion of these terminating pyridine units in BPy-PFO-BPy, the peak maximum of the spectrum is found
to be identical to the dimer (Py-PFO-Py)2. This suggests there is only a rather weak π-conjugation between subunits
of the polymer.

The LDR-TDDFT-RPA absorption spectra are shown in Figure 3.4 for the periodically repeated polymer (PFO-
BPy)∞, dimer (PFO-BPy)2 and monomer (PFO-BPy). Although, all spectra are red shifted up to 0.5 eV compared
to linear response TDDFT shown in Fig 3.3(a), we still find the oligomer spectra quickly converged to that of an
infinitely long polymer. Furthermore, the monomer and the dimer peak positions differ by only 0.1 eV, which is
even less than with linear response TDDFT, as shown in Figure 3.3(a). Moreover, the difference between the dimer
and the infinite chain is around 0.08 eV.

Within linear response TDDFT, 90% of the brightest excitation is a highest occupied molecular orbital (HOMO)-
lowest unoccupied molecular orbital (LUMO) transition. Given a calculated HOMO-LUMO band gap of 2.6 eV for
the monomer, LDR-TDDFT-RPA reproduces a fully HOMO-LUMO transition, whereas linear response TDDFT
includes more higher lying terms. This is due to tha fact that screening included in LDR-TDDFT-RPA suppresses
the linear response (LR)-TDDFT higher lying terms.

3.1.3 Electron and Hole Densities

To understand the spatial distribution of the exciton, we next consider the averaged densities of the electron and
hole within the most intense low energy peak in the spectra shown in Figure 3.3(c). In Figure 3.5 the isosurfaces
of the average density of the hole (red) and the average density of the electron (blue) for the most intense excitonic
transition of the monomers PFO-BPy (a), Py-PFO-Py (b), and the extended monomer BPy-PFO-BPy (c) are plotted.
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Figure 3.5: Isosurfaces of the average electron (blue) and hole (red) densities, ρe(re) and ρh(rh), of the exciton
belonging to the most intense transition of the low energy absorbance band, i.e. the peak maximum, for (a) PFO-
BPy, (b) Py-PFO-Py, and (c) BPy-PFO-BPy.

For all the monomers, the hole is mainly located on the 9,9-dioctylfluorenyl-2,7-diyl (PFO) with small weights on
the neighbouring pyridines. For the monomer PFO-BPy, the density of the electron is almost only located on the
bipyridine, whereas for Py-PFO-Py and BPy-PFO-BPy it is distributed over the same space as the hole densities
within the antibonding π-system. More importantly, we clearly see a localization of the electron-hole pair on the
central Py-PFO-Py portion of the BPy-PFO-BPy unit, which has only a minor weight of the electron on the additional
terminating pyridines in BPy-PFO-BPy. This suggests that the PFO-BPy polymer lacks significant π conjugation
between Py-PFO-Py units.

The dimer (Py-PFO-Py)2, and the trimer (Py-PFO-Py)3 in Figure 3.6 show the same excitonic structure as the
latter oligomers repeating with every attached unit. In the dimer, there is some weight of the electron densities on the
pyridines, whereas for the trimer this is almost completely lost. The exciton and the absorption band of the polymer
seem to be composed of a sum of repeating excitons located on the Py-PFO-Py units. For the dimer (PFO-BPy)2

and the trimer (PFO-BPy)3, it is found that there are fewer excitons. Since for PFO-BPy units there is no stabilizing
pyridine next to the PFO on one end, there is no exciton on this side contributing to that transition. Nevertheless,
there is almost no blue shift of these larger PFO-BPy oligomers compared to the Py-PFO-Py oligomers, as shown
in Figure 3.3(a) and (b).
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(a) (b) (c) (d)

Figure 3.6: Isosurfaces of the average electron (blue) and hole (red) densities, ρe(re) and ρh(rh), of the exciton
belonging to the most intense transition of the low energy absorbance band, i.e. the peak maximum, for (a) (Py-
PFO-Py)2, (b) (PFO-BPy)2, (c) (Py-PFO-Py)3, and (d) (PFO-BPy)3.

3.1.4 Twisting and Side Chain Independence of the Absorption Spectra

In Figure 3.7 we compare the absorption spectra for the dimer (Py-PFO-Py)2 and monomer Py-PFO-Py spectra with
that of a (Py-PFO-Py)2 dimer which has been twisted to break its π-conjugation. Specifically, we rotated the Py-Py
bond of the dimer (Py-PFO-Py)2, twisting both monomer units 90 degrees to each other (θ = 90◦). In this way, one
Py-PFO-Py unit is perpendicular to the other. The resulting spectra of the dimer (Py-PFO-Py)2 θ = 90◦ now consists
of two components. The spectrum maxima lies between the peak maxima of dimer (Py-PFO-Py)2 θ = 0◦ and the
monomer Py-PFO-Py, forming a broad band which includes the monomer spectrum.

By completely breaking the π-conjugation of the dimer, we obtain an average spectra which is much closer to
that of the monomer. This indicates that the small red shift of ∼ 0.15 eV of the dimer (Py-PFO-Py)2 is related to
the small degree of π-conjugation between the monomer units seen in Figure 3.6(a). This shift is also captured by
using a BPy-PFO-BPy monomer model, as shown in Figure 3.3(c). Here, it is related to an extension of the exciton’s
electron into the terminating Py rings, shown in Figure 3.3(c).
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on the PFO.

To test whether a Py-PFO-Py monomer model would include the steric influence of the side chains on the
adsorption on the tube, we reduced the length of the side chain to an ethyl group. The spectra for both monomers
as well as for the dimer (Py-PFO-Py)2 show no peak shift in the absorption spectrum after reducing the length of
the side chains, as shown in Figure 3.8. These results clearly demonstrate that the length of the side chains has little
influence on the optical absorption spectra of the polymer.

This is consistent with what was found by Namal et al. while studying the effect of alkyl chain length on the
electrochemical properties of fluorine and benzimidazole containing conjugated polymers233. In this case, the first
absorption band in the visible at 425 nm experiences a blue shift of 20 nm when the length of the side chains is
doubled. The slight shift and the measured change of the optical band gap by only 0.08 eV is ascribed to a better
solubility of the polymer and a stronger conjugation of the π–system233.
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3.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunc-
tions*

Knowing the supramolecular structure of heterojunctions is an important step towards understanding the mecha-
nisms behind the interactions at the interfaces and the sorting behaviour of polymers. The angle of the polymer
backbone with respect to the nanotube axis is a key element when defining the supramolecular structure of the
polymer–carbon nanotube heterojunction. This angle can be identified using polarized angle-dependent absorp-
tion spectroscopy. The experiment can be performed simply with a broadband polarisator (Glan-Thompson-prism)
and a ultraviolet spectral region (UV)/visible spectral region (VIS)/near infrared spectral region (NIR) absorption
spectrometer. The technique makes use of the anisotropy in a crystalline matrix. The polarization direction of the
absorbed light provides information about the orientation of the molecules within the matrix, yet only in the case
where one knows the transition dipole moment (TDM) of the molecules. For conjugated polymers the TDM is typ-
ically along the polymer’s backbone. In cases where there is uncertainty, LR-TDDFT is a good tool for evaluating
the TDM. We can illustrate the polarization direction of the light absorbed by resolving the LR-TDDFT spectrum
in the x, y, and z directions of the dipole oscillator strengths, whose magnitudes are proportional to the TDM. As
shown in the previous section, only the subunit is needed to simulate the spectrum. We used angle-dependent ab-
sorption spectroscopy in combination with LR-TDDFT to determine the orientation of the PFO-BPy with respect to
the (6,5) SWNT. Our results show that the PFO-BPy is aligned nearly parallel to the nanotube axis. The finding of
a straight alignment of the polymer on the SWNT has an impact on the development of future selective polymers.

3.2.1 Sample Fabrication

The sorted PFO-BPy–(6, 5) SWNT heterojunctions and the (6, 5) SWNT as well as the PFO-BPy references were
dissolved in chlorobenzene. Polystyrol was then added to the dispersion. The probe was brought onto a glass
substrate and heated to 175◦C until the solvent was evaporated. The probe was pushed together by tweezers, then
pressed to a thin film between two glass substrates before cooling down. These steps were repeated until a trans-
parent film was obtained. The 2D matrix was heated again and stretched with tweezers to the final thin film while
being adsorbed on one side onto a glass substrate. The detailed sample fabrication can be found in Ref. 234.

3.2.2 Optical Characterization

The PFO-BPy–SWNT and SWNT films were placed in the holder in front of a Glan-Thompson-prism, which was
incorporated in the measurement chamber of a Cary 5000-Spectrometer (Varian/Agilent). From each probe the
spectrum of parallel polarized light Ip was recorded rotating the probe along the z-axis from 0◦ to 90◦ in 15◦ steps
as shown in Figure 3.9. From all spectra the corresponding reference spectrum was subtracted. The data was fitted
by global analysis using IGOR Pro 6.3 (WaveMetrics). The detailed measurement procedure and fitting of the data
can be found in Ref. 234.

*The experimental work described in this section was performed by Florian Späth and is adapted from “Präparation und Charakterisierung
einwandiger Kohlenstoffnanorohr-Polyfluoren-Komplexe”, Ph.D. thesis, Julius-Maximilians-Universität Würzburg, 2015.
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3.2.3 Computational Details

All DFT calculations were performed with locally centered atomic orbitals (LCAOs) and the PAW implementation
within the gpaw code125,126,196. We used a double-zeta polarized (DZP) LCAO basis set and a grid spacing of 0.2 Å
for representing the density and the wavefunctions and the PBE xc-functional184. All structural minimizations were
performed within the Atomic Simulation Environment (ASE)230, until a maximum force below 0.05 eV/Å was
obtained. We employed more than 5 Å of vacuum to the cell boundaries.

The dipole spectra for the singlet excitations were obtained from transition dipole matrix elements, which we
obtained from LR-TDDFT calculations using the local density approximation (LDA) exchange correlation (xc)-
functional.

The electron/hole average density is obtained by integrating the density of the excitonic wavefunction with
respect to the hole/electron’s position. To compute the average electron/hole densities, we include transitions ranked
by their weight fni j until

∑
f 2
ni j > 0.95, as explained in section 2.5.1.

3.2.4 Polarized Angle-Dependent Absorption Measurements

When the polymer–SWNT systems are brought into a 2D matrix, the systems are forced into an ordered network.
The ordered, in this case parallel, arrangement of the SWNTs leads to an anisotropic behaviour of the matrix. The
TDM of the SWNTs first excited state in SWNTs (E11) and second excited state in SWNTs (E22) transitions are along
the tube axis.130,131 Therefore, both transitions occur when light polarized parallel to the SWNT axis is absorbed, as
shown in the angle-dependent spectra in Figure 3.10 (a). The strongest absorption occurs when the SWNT’s axes
are along the x-direction in the experimental setup, that is, when the sample is at 0◦. In Figure 3.10 (b) the angle
devolutions of the SWNT (red) and PFO-BPy (blue) are shown. We clearly see that the polymer absorbance has the

L
ig

h
t 

S
o

u
rc

e

Figure 3.9: Schematic of polarized angle-dependent spectroscopy setup: Rotating transition dipole moment vector
dik due to rotation of probe from 0◦ to 90◦ around the x-axis, projected partial absorption of parallel polarized light Ip

on the y-axis and orthogonal polarized light Io on the z-axis, and the detection of the % absorbed of parallel/vertical
polarized light after its retrieval from a polarizer (Glan-Thompson-prism).
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Figure 3.10: (a) Polarized angle-dependent spectra or spectra of parallel polarized light of PFO-BPy–SWNT sample
with rotation from 0◦ (blue) to 90◦ (red). (b) Angle devolution of SWNT (red) and PFO-BPy (blue) components.

same angle-dependence as the carbon nanotubes and therefore the same polarization. Knowing the polarization of
the polymer, its orientation with respect to the SWNT can be determined by the TDM of the polymer’s transitions
at 365 nm. It has to be mentioned that the PFO-BPy reference sample shows anisotropic behaviour as well due
to the stretching of the matrix. However, the reduction of the peak intensity from 0◦ (blue) to 90◦ (red) in the
PFO-BPy–SWNT sample is 1.7 times stronger compare to the PFO-BPy Ref. 234.

3.2.5 Linear Response TDDFT Calculations

A parallel polarized electromagnetic wave has its electric field vector Ep (red) oscillating in the y-direction, as
shown in Figure 3.9. A single-photon transition including the molecules’ states i → k depends on the polarization
(direction) of the transition given by the TDM, dik, relative to the polarization of electric field of the wave, E.
Thus, the intensity of light absorption is maximal or zero, respectively, in the case the electric field vector Ep of the
excitation wave oscillates parallel or orthogonal to dik, respectively.

Figure 3.11 shows the LR-TDDFT absorption spectrum of the Py-PFO-Py unit, the dipole oscillator strengths
contributions in the x, y, and z directions, and the molecular structure of the Py-PFO-Py unit. The hydrogen atoms
marked in black in the Py-PFO-Py unit denote the links of the units in the polymer. The results reveal that the Py-
PFO-Py transitions occur when the electric field is polarized along the y-direction (blue), that is, along the polymer’s
backbone. From this it follows that the PFO-BPy polymer backbone has to be streched out along the y direction in
the experimental setup shown in Figure 3.9, when the sample is at 0◦. Only when aligned in the y-direction does
Py-PFO-Py absorb parallel polarized light, Ep, which oscillates in the y direction.
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Figure 3.11: Comparison of the average (black) LR-TDDFT absorption spectrum (solid lines) of the Py-PFO-Py
unit, and dipole oscillator strength contributions in the x (red), y (blue), and z (green) directions, with the measured
spectra (black dashed line) before (light thin lines) and after (dark thick lines) applying a common energy shift of
∆E = 0.2 eV. The molecular structure of the Py-PFO-Py unit aligned in the y-direction is shown as an inset, with
C and H atoms depicted by cyan and white balls, respectively, while black balls denote links between units in the
polymer.
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3.3 Modelling Photoinduced Transient Absorption Spectroscopy*

In this work, we employ state-of-the-art pump-probe transient absorption spectroscopy to measure the excited
state dynamics of a (6,5) and (7,5) SWNT mixture, and combined with poly(3-hexylthiophen-2,5-diyl) (P3HT)
and phenyl-C61-butyric acid methyl ester (PCBM) in P3HT:PCBM:SWNT blended samples in the NIR. We then
employ LR TDDFT in frequency-reciprocal space within the RPA to model the measured transient spectra for (6,5)
and (7,5) SWNTs and blended P3HT:PCBM:SWNT samples.

We begin by providing details of the sample fabrication in section 3.3.1, optical characterization of the sample in
section 3.3.2, the theoretical methods employed in section 3.3.3, and computational parameters used in section 3.3.4.
In section 3.3.5 we provide a detailed comparison of the absorbance and differential transmission spectra obtained
for our SWNT and blended P3HT:PCBM:SWNT samples with those available in the literature in the near-infrared
spectral region (IR) region as a function of the pump-probe delay. We show in section 3.3.6 how the differential
transmission spectra may be interpreted in terms of a difference in absorption spectra. After briefly justifying
our method for modelling optically excited states in section 3.3.7, we employ LDR-TDDFT-RPA calculations of
(6,5) SWNTs, (7,5) SWNTs, and a combined polythiophene (PT):PCBM:(6,5) SWNT system in section 3.3.8 to
simulate the measured differential transmission spectra, and explain the dependence of the observed photoinduced
absorption (PA) peak on charge carrier density in section 3.3.9 and the photobleach (photobleach (PB)) peak width
in section 3.3.10. This is followed by concluding remarks. A derivation of the LDR-TDDFT-RPA formalism, and
the influence of LFEs on the SWNT spectra are provided in Appendix B.

3.3.1 Sample Fabrication

The glass substrates were pre-cleaned with acetone and isopropanol and dried under a flow of dry nitrogen. For
preparation of the samples, regular P3HT poly(3-hexylthiophene-2,5-diyl) and PCBM ([6,6]-phenyl-C61-butyric
acid methyl ester) were dissolved in ortho-dichlorobenzene (ortho-dichlorobenzene (ODCB)) at a 1:1 ratio. We em-
ployed 704148-SWNTs produced using the cobalt-molybdenum catalyst (CoMoCAT®)® catalytic chemical vapour
deposition (chemical vapor deposition (CVD)) method. The SWNTs were also dispersed in ODCB and then soni-
cated for 1 hour. No debundling or removal of metallic SWNTs was performed on the sample, which was most likely
aggregated. The resulting solution was then spin-coated on top of the glass substrates to obtain the SWNT sample.
In the case of the P3HT:PCBM:SWNT sample, the dispersed SWNTs were added to the P3HT:PCBM solution at a
1:1:1 ratio and then sonicated for 1 hour. The solution was then spin-coated on top of the glass substrates at 1000
rpm for 2 minutes. All the materials were bought from Sigma-Aldrich.

3.3.2 Optical Characterization

The ground state absorption spectra were collected with a PerkinElmer spectrophotometer (Lambda 1050 WB In-
GaAs 3D WB Detection Module). The laser system employed for ultrafast transient absorption was based on a
Ti-Sapphire chirp pulse amplified source; with a maximum output energy of about 800 µJ, 1 kHz repetition rate,
central wavelength of 780 nm and pulse duration of about 180 fs. Excitation pulses at 590 and 900 nm were gener-
ated by noncollinear optical parametric amplification in a β-barium borate (BBO) crystal, with a pulse duration of

*The work described in this section was performed in collaboration with Duncan John Mowbray, Diana Gisell Figueroa del Valle, Francesco
Scotognella, Guglielmo Lanzani, and Angel Rubio and is adapted from “Photoinduced Absorption within Single-Walled Carbon Nanotube
Systems”, J. Phys. Chem. C 2015, 120, 1926–1935.

http://dx.doi.org/10.1021/acs.jpcc.5b10025
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Figure 3.12: Schematic of simplified femtosecond transient absorption spectroscopy setup; (1) pulse generation in
self-mode-locked Ti:sapphire laser, (2) beam splitting, (3) second harmonic generation (SHG) by BBO crystal to
obtain pump pulses, (4) white light continuum generation by sapphire plate to obtain probe pulse, (5) detection
of pump and delayed probe by spectrometer with fast optical multichannel analyzer (OMA) with a dechirping
algorithm.

around 100 fs. Pump pulses were focused in a 200 µm diameter spot. Probing was achieved in the visible and near
IR region by using white light generated using a thin sapphire plate. Chirp-free transient transmission spectra were
collected by using a fast optical multichannel analyzer (OMA) with a dechirping algorithm. The measured quantity
is the differential transmission, ∆T = T (t) − T (t = 0). Once normalized, the differential transmission ∆T/T may
be directly compared with the change in absorbance ∆ Im[ε] = Im[ε(t = 0)] − Im[ε(t)]. The excitation energy has
been set to 11 nJ when pumping at 590 nm and then increased to 200 nJ when pumping at 900 nm, i.e., selectively
pumping the SWNTs. All measurements were performed in air at room temperature.

3.3.3 Theoretical Methods

To model differential transmission measurements, we use the difference between the optical absorption of the system
in the ground and excited states. We model the system in the excited state within DFT by fixing the total magnetic
moment µ, and through the addition of charge Q to the system. Specifically, we use the singlet (S = 0) to model the
ground state, the triplet (S = 1) to model a single exciton, the quintet (S = 2) to model a pair of excitons, and the
quartet (S = 3/2) with an additional charge Q = −e to model a negative trion, i.e., a pair of excited electrons and a
single hole.

The optical absorption spectra are obtained via LDR-TDDFT-RPA119–121,207,232, from the imaginary part of the
macroscopic dielectric function, Im[ε(q, ω)], in the limit ‖q‖ → 0+. Details of our implementation are provided in
Appendix B.

To model an excited singlet state of the system based on a fixed magnetic moment calculation, we “swap”
between the spin channels (s ∈ {↑, ↓} or {0, 1}) the eigenvalues and eigenfunctions of the levels beyond half the
number of electrons, Ne/2. More precisely, we define

s′ =

 s + 1 mod 2 if n > Ne/2
s otherwise

(3.1)
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In this way we obtain the electronic structure of a singlet excited state that is constrained to have the same total
electron density as the triplet ground state, ρS =0

ex (r) ≡ ρS =1
gs (r).

Note that, as we are primarily interested herein with the absorption spectra near their onsets, LFEs may be
neglected without impacting our results. This is demonstrated in Appendix B, where we compare ground state
LDR-TDDFT-RPA spectra for a (6,5) SWNT with and without including LFEs.

3.3.4 Computational Details

All DFT calculations were performed with LCAOs and the projector augmented wave (PAW) implementation within
the gpaw code125,126,196. We used a double-zeta polarized (DZP) basis set for representing the density and the
wavefunctions and the PBE exchange correlation (xc)-functional184. All calculations employed a room temperature
Fermi filling (kBT ≈ 25 meV), with total energies extrapolated to T → 0 K, i.e., excluding the electronic entropy
contribution to the free energy −S T . In this was we avoided an unrealistic smearing of the excited electron and
hole in the triplet calculations. We included 2⁄3Ne many bands within the calculations, which has been shown to be
sufficient to converge the first π→ π∗ transitions within graphene232.

Structural minimization was performed within the Atomic Simulation Environment (ASE)230, until a maximum
force below 0.05 eV/Å was obtained. We employed more than 5 Å of vacuum to the cell boundaries orthogonal to
the (6,5) SWNT, (7,5) SWNT and polythiophene (PT), and obtained optimized unit cells parameters of 40.92, 44.79,
and 7.87 Å along their axes, respectively. Here, PT is modeled using two thiophene units in s-trans configuration.
We have used PT as a simplified model for P3HT, that is, removed the hexyl side chains of P3HT, since the influence
of the P3HT side chains on the level alignment and charge transfer is negligible121,233. Moreover, as we shall see in
section 3.3.5, the influence of P3HT/PT on the IR spectrum of the SWNT is solely through hole-transfer.

The PT:PCBM:(6,5) SWNT bulk was modeled by a 39.34 × 40.92 Å2 layered structure of ten thiophene units
orthogonal to the SWNT axis, as shown in Figure 3.13(a). In so doing, this configuration describes the limit of
a minimal SWNT–PT overlap. To determine the impact of increasing the SWNT–PT overlap, we also consider a
truncated ten unit PT chain aligned with the SWNT and PCBM as shown in Figure 3.13(b).

It has previously been shown that changes in the orientations of PCBM next to P3HT only cause energy differ-
ences within the accuracy of DFT118. Since the potential energy surface is rather flat118, we have chosen a smallest
C–C intramolecular distance of ∼ 3.3 Å between the relaxed P3HT, PCBM, and SWNT structures, and performed
single-point calculations for the resulting configurations shown in Figure 3.13. Although this C–C separation is
0.1 Å smaller than the interlayer distance of multi-walled carbon nanotubes (MWNTs) and graphite235, it has been
chosen to ensure an overlap between the SWNT and PT outer LCAO orbitals. An increase of the PT–PCBM:SWNT
distance to ∼ 3.4 Å changes the total energy by less than 50 meV, i.e., within the accuracy of DFT. In each case we
found the repulsive forces for the close lying C atoms were . 0.1 eV/Å.
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Figure 3.13: Schematic of the PT:PCBM:SWNT system with (a) a periodically repeated PT polymer aligned or-
thogonal to the SWNT and (b) a finite ten unit PT chain aligned with the SWNT. C, H, O, and S atoms are depicted
by gray, white, red, and yellow balls, respectively.

3.3.5 Differential Transmission Measurements

Figure 3.14 shows the transient spectra of the SWNT and blended P3HT:PCBM:SWNT samples versus probing
delay times up to 5 ps. In both spectra, we find a peak with a maximum around 1025 nm. Comparing the transient
spectra with the absorbance (black) in Figure 3.15(a), this peak can be assigned to the photobleach (PB) of mainly
(6,5) and (7,5) SWNT E11 transitions237. For the blended sample, we have an additional PA peak around 960 nm.
The samples show a remarkable difference in the decay rate of the PB peak. In the case of the SWNT sample, the
E11 transitions seem to be completely accessible again after 1 ps, while the decay of the E11 exciton in the blended
sample is 4–5 times longer.

The UV/VIS/NIR absorption spectra of the SWNT sample are shown as an inset to Figure 3.15(a). The E22

transitions of (6,5) and (7,5) SWNTs are clearly visible, with the E11 transition of (11,5) SWNTs seen as a shoulder.
By comparing the transient spectra of the SWNT sample (black) at delay times of 0.2, 0.3, and 1 ps with the

spectra of similar SWNT samples of the literature at the same delay times, we found a discrepancy within the
measured peak width and structure of the SWNT sample spectrum and those of the literature144,145,236, as shown in
Figure 3.15(b-d). The (6,5) SWNT enriched samples of Refs 144 (blue) and 145 (magenta) show a much smaller
peak width and an additional PA peak between 940 and 975 nm. The PA peak in the sample of Ref. 236 (cyan) is
overlaid by the PB of the (8,3) SWNT (∼ 966 nm)237 and therefore not strongly pronounced. As well, the width is
broader due to the mixture of tubes. This is consistent with the differential transmission of our SWNT sample.

To determine whether the pump energy has an influence on the peak width, the SWNT sample was pumped at
two different wavelengths: 590 nm in the VIS and 900 nm in the IR. These pump energies are comparable to those
reported the literature144,145,236. For example, Ref. 236 pumped in the infrared region at 930 nm, while the pump
beams at 570 nm employed in Refs 144 (blue) and 145 (magenta) were tuned to the E22 transition.

As shown in Figure 3.15(b,c,d), the differential transmission spectra for our SWNT sample is rather insensitive
to whether pumping is in the VIS or IR. This suggests that the broader PB peak within our SWNT sample, shown in
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Figure 3.14: Normalized differential transmission ∆T/T of (a) SWNT and (b) P3HT:PCBM:SWNT devices ver-
sus pump-probe delay in ps and probe wavelength in nm. Pump-probe delays of 0.2, 0.3, and 1.0 ps (spectra
in Figure 3.15) are marked by vertical lines, while photobleach (PB) and photoabsorption (PA) peaks (spectra in
Figure 3.16) are marked by horizontal lines.

Figure 3.15(a), is related to the sample itself. It has previously been argued that SWNT mixtures have an increased
exciton transfer and electron-hole trapping between tubes74,97. Thus, the greater PB peak width in our SWNT
sample may be related to having a mixture of both (6,5) and (7,5) SWNTs. However, having a SWNT mixture does
not explain the occurrence of the PA peak in the blended P3HT:PCBM:SWNT sample (red).

Taking a closer look at the transient spectrum of the SWNT sample in Figure 3.15(b,c,d), we notice it exhibits
a small asymmetry. Nevertheless, including a range of ±50 nm from the peak maximum, this asymmetry cannot be
completely verified, as it is within the noise of the measurement. Thus, the PA appears to completely vanish in the
spectra of the SWNT sample.
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Figure 3.15: Normalized (a) absorption and (b-d) differential transmission ∆T/T versus probe wavelength in nm for
our SWNT sample (black) pumped at 900 nm (solid line) and 590 nm (squares), combined P3HT:PCBM:SWNT
device (red) and from Refs 144 (blue), 236 (cyan), and 145 (magenta) for pump-probe delays of (b) 0.2 ps, (c) 0.3
ps, and (d) 1.0 ps. Wavelengths of the E11 transitions for (8,3), (6,5), and (7,5) SWNTs from Ref. 237 are marked
above.
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Figure 3.16: Normalized differential transmission ∆T/T as a function of the pump-probe delay in ps measured at the
maximum of the photobleach (PB) peak (solid lines) and photoabsorption (PA) peak (dashed lines) for our SWNT
sample (black), combined P3HT:PCBM:SWNT device (red), and for (6,5) SWNTs from Ref. 144.

The recovery time dynamics of the PB and PA peaks for the mixed SWNT sample and the P3HT:PCBM:SWNT
blended sample are shown in Figure 3.16.

We find the mixed SWNT sample’s recovery time is much shorter than that of the blended P3HT:PCBM:SWNT
sample, with the recovery time reported in Ref. 144 for a predominantly (6,5) SWNT sample even longer. In each
case, the PA peaks seem to recover as fast as the PB peaks or slightly slower.

The main reason for the extinction of the PA peak is the large peak width, which is crucial for the visibility of
the PA peak. However this does not explain its origin.

3.3.6 Interpreting Differential Transmission as a Difference Spectra

Zhu et al.144 found a PA peak, and suggested it is due to a biexcitation. In a subsequent paper, Zhu145 suggested
coupling to the radial breathing mode as a reason for the PA peak.

Evaluating the experimental data of Ref. 145 shown in Figure 3.17, we identified the peak causing the PA
peak by taking the difference between the normalized absorbance (violet) and the normalized transient spectrum
(magenta). This results in the difference spectrum of the probe beam (green), when the system is fully excited by
the pump beam, that is, all electrons of the E11 transition are in the conduction band minimum (CBM). In this case,
the excited system gives rise to an absorbance of more than 50% of the PB peak but at the energy of the PA peak.

Suppose the PA peak is due to absorption by an excited electron, i.e., an excited electron transition E∗∗, as
depicted schematically in Figure 3.17. It should be noted that the single particle picture employed here refers to the
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Figure 3.17: Normalized initial absorbance (violet) and differential transmission ∆T/T with a pump-probe delay of
1 ps (magenta) from Ref. 145, and their difference (green) versus probe wavelength in nm and energy in eV relative
to the E11 transition. A Lorentzian fit to the difference between the initial absorbance and differential transmission
is also shown. An excited electron transition E∗∗ model for the measured absorbance/differential transmission is
shown schematically in the upper left/right inset.

system being excited, rather than the excitation process itself. When the system is initially excited by the pump,
the difference in filling for the E11 transition, ∆ f11 = 2, while the difference in filling for the E∗∗ transition’s levels
∆ f∗∗ = 0. When the system is subsequently excited by the probe, that is, in the presence of an exciton, ∆ f ′11 = 0,
while ∆ f ′∗∗ = 1. Since a transition’s intensity is proportional to the difference in filling, the 2:1 ratio between PB and
PA peaks is already accounted for by ∆ f11 : ∆ f ′∗∗. This requires the E11 and E∗∗ transitions to have almost the same
overlaps.

Although this does not rule out the possibility of an E∗∗ transition being responsible for the PA peaks close to
the PB peaks within the SWNT systems, it makes it rather unlikely. More importantly, it suggests the PA and PB
peaks most likely arise from the same E11 transition. In fact, in section 3.3.8 we will show that the E11 transition is
blue shifted by a band gap widening in the excited state, potentially explaining the origin of the PA peak.
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3.3.7 Modelling Optically Excited States

As discussed in section 3.3.3, we model the optically excited state using a singlet excited state whose total electron
density is constrained to be that of the triplet ground state. This singlet excited state is a suitable approximation
to the optically excited state if the spin densities associated with the KS valence band maximum (VBM) and CBM
eigenfunctions, |ψVBMs|

2 and |ψCBMs|
2, are only weakly dependent on the spin channel s. In other words, if the two

spin channels in the triplet DFT calculation are basically equivalent up to a phase factor, i.e., |〈ψS =1
n↑ |ψ

S =1
n′↓ 〉| ≈ δnn′ ,

the optically excited state should have a similar electron density. If, moreover, the singlet and triplet ground state
eigenfunctions are also basically equivalent up to a phase factor, i.e., |〈ψS =1

ngs |ψ
S =0
n′gs 〉| ≈ δnn′ , this singlet excited state

should describe the optically excited state quite well.
We find this is indeed the case for the (6,5) and (7,5) SWNTs, with the KS eigenfunctions having approximately

the same spatial distribution in the singlet and triplet ground states. For the blended SWNT/PT/PCBM systems, the
KS eigenfunctions have similar spatial distribution in both spin channels for the triplet DFT calculation, but differ
from the singlet ground state KS eigenfunctions. In particular, the occupied CBM level of the triplet DFT calculation
is a hybridization of the first three conduction band (CB) eigenfunctions from the singlet ground state calculation.
This is indicative of charge transfer in the blended SWNT/PT/PCBM system.

Overall, these results strongly suggest that the total electron density of the triplet DFT calculation should be quite
similar to that of the optically excited state. This justifies our use of the singlet excited state electronic structure,
obtained by "swapping" between spin channels the CB eigenvalues and eigenfunctions of the triplet ground state, to
model the optically excited state.

3.3.8 LDR-TDDFT-RPA Simulated Spectra

The differential transmissions in the long term limit of the (6,5) SWNT (black) and bulk PT:PCBM:SWNT systems
(red) in Figure 3.18 are calculated using the difference between the LDR-TDDFT-RPA ground state (violet) and
excited state (green) absorbances. The ground state absorbance of the bulk system (dashed) shows the onset of
PT absorbance at ∼ 925 nm, orthogonal to the E11 transition. In the range of 925 to 1100 nm, both systems, the
(6,5) SWNT and the bulk, overlap. This suggests that neither PT nor PCBM transitions are involved within this
energy range, and there are only (6,5) SWNT transitions. The excited state absorbances (green) of both systems
show two significant changes: the PB peak is shifted to higher energy and there is a new transition at ∼ 880 nm.
This new peak with rather low intensity is absorbing orthogonal to the tube axis, and can be assigned to an intratube
interband transition E∗∗ of the excited electron in the CBM to an energy level ∼ 1.1 eV above the CBM. However,
this peak vanishes when LFEs are included, as shown in Appendix B, which may be related to modelling debundled
SWNTs238.

The schematic in Figure 3.18 explains the origin of the E11 transition shifts in the excited states. As discussed
in section 3.3.3, we modeled the excited state by computing a triplet state in the first step. The singlet excited state
is obtained by swapping the eigenenergies and eigenfunctions between spin channels for the originally unoccupied
states, i.e., n > Ne/2. In this way, the electron and the hole are arranged in the same spin channel. As a result, the
bands including the electron and hole are shifted closer in energy (electron-hole binding), while the other channel
with the electron in the valence band (valence band (VB)) increases its band gap. This is not seen in the triplet
calculation itself. Due to this widening of the band gap, the second excitation of an electron in the VB is at higher
energy.
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Figure 3.18: The LDR-TDDFT-RPA absorbance Im[ε] of a (6,5) SWNT (solid lines) and for the combined
PT:PCBM:SWNT system depicted in Figure 3.13(a) (dashed lines) and (b) (diamonds) in the ground/excited state
by the pump/probe (violet/green) as depicted schematically in the upper left/right inset, and change in absorbance
between the ground and excited state for a (6,5) SWNT (black) and a combined PT:PCBM:SWNT system (red) ver-
sus wavelength in nm and energy in eV relative to the E11 transition. Total absorbance (thick lines) and absorbance
for light polarized perpendicular to the SWNT axis (thin lines) are shown.

In the changes of the absorbance, i.e., differential transmission in the long term limit, the E∗∗ transitions give
rise to negative peaks. However, they are at much higher energy than the PA peaks measured experimentally. On
the other hand, the shifts ∆ of the E11 transitions in the excited state cause a reduction of the transient absorbance
peaks at ∼ 960 nm. The larger shift within the (6,5) SWNT system even leads to a small negative peak in the change
in absorption. Overall, the (6,5) SWNT difference spectrum agrees qualitatively with that of Ref. 144, shown in
Figure 3.15(b).

This is exactly the opposite from what we see in the experimental data obtained from the SWNT and the blended
samples. There, we have no PA in the transient spectrum of the SWNT sample, but a more pronounced reduction of
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the peak at the higher energy end for the blended sample spectrum. To understand the origin of this discrepancy, we
consider the role of charge carrier loading, i.e., addition and removal of electrons and holes, and peak broadening
on the differential transmission spectra in the following sections.

3.3.9 Role of Charge Carrier Loading

Figure 3.19: Electron (blue) and hole (red) densities for a combined PT:PCBM:SWNT system from the DFT total
electron density difference between the excited and ground state. The charge transfer upon excitation of −0.13e
from the PT to the (6,5) SWNT and of −0.10e from PT to PCBM is depicted schematically. C, H, O, and S atoms
are depicted by gray, white, red, and yellow balls, respectively.

We calculated the excited electron (blue) and hole (red) densities as the difference between the electron density
in the ground state and triplet configuration, as shown in Figure 3.19.

In this way we include all electron redistributions in the VB and CB. The difference in the densities reveals
a hole located mainly on P3HT/PT, whereas the electron is predominantly on the (6,5) SWNT and the PCBM.
This results in a net charge transfer of 0.23 electrons from the PT to its neighbouring molecules. The amount of
calculated charge transfer within the bulk system is in agreement with previous DFT results for P3HT–fullerene and
P3HT–SWNT heterojunctions160,161.

The charge transfer within the bulk system partially fills the hole in the excited state. This transfer of charge
from PT into the (6,5) SWNT VBM stabilizes it, making the band gap widen less than in the isolated (6,5) SWNT
system. Even though the transition is more intense, due to the additional electrons, the reduction of the PB peak at
the high energy end is less pronounced due to the smaller shift ∆.

To determine how the amount of hole transfer from the SWNT and higher loading of charge carriers influences
the shape of the transient spectrum at the E11 transition of SWNT systems, we have increased the amount of charge
carriers on the (6,5) and (7,5) SWNTs from 0.24 and 0.22 to 0.49 and 0.45 e/nm, respectively. In Figure 3.20 we
compare the change in LDR-TDDFT-RPA absorption Im[ε] (from eq 2.67 of Appendix B) of (6,5) and (7,5) SWNTs
with (a) a single exciton, (b) a negative trion, i.e., a pair of excited electrons and a single hole, and (c) a pair of
excitons. Unsurprisingly, with the addition of a second exciton, as shown in Figure 3.20(c), the widening of the band



CHAPTER 3. RESULTS & DISCUSSION 73

Figure 3.20: LDR-TDDFT-RPA absorbance Im[ε] of a (6,5) SWNT (solid lines) and (7,5) SWNT (dashed-dotted
lines) in the ground/excited state by the pump/probe (violet/green) as depicted schematically in the upper left/right
inset, and change in absorbance between the ground and excited state versus wavelength in nm and energy in eV
relative to the E11 transition of a (6,5) SWNT. The excited state is modeled by (a) a single exciton, (b) a negative
trion, and (c) a pair of excitons. Total absorbance (thick lines) and absorbance for light polarized perpendicular to
the SWNT axis (thin lines) are shown.

gap ∆ is significantly increased, resulting in a stronger PA peak at higher energy (∼ 940 nm for the (6,5) SWNT).
These results are consistent with the predominantly (6,5) SWNT measurements of Ref. 145 after a 1 ps pump-probe
delay, as shown in Figure 3.15(d). There, the PA peak is at ∼ 950 nm and even gains half of the intensity of the PB
peak. Additionally, the existence of a second exciton within a 4 nm unit cell is quite reasonable, as compared to the
calculated exciton size of ∼ 2 nm134. In Figure 3.20(b) one of the holes is filled, e.g., through charge transfer from
P3HT to a SWNT, the PB peak becomes more asymmetric, and the PA peak becomes less intense. These results
are more in agreement with the measurements after a 0.2 ps pump-probe delay of Ref. 144 shown in Figure 3.15(b).
Overall, this suggests the strength of the PA peak, and the degree to which it is blue shifted from the PB peak ∆,
may be used as qualitative measures of the charge transfer and charge carrier load within SWNT systems.

Unfortunately, this still does not explain, why the blended P3HT:PCBM:SWNT sample has a more pronounced
PA peak, since actually we would expect the opposite considering the amount of charge carriers, that is, the amount
of hole, on the SWNT.

Comparing the calculated change in absorbance for (6,5) and (7,5) SWNTs in Figure 3.20, we find the (7,5) SWNT
exhibits a less pronounced PA peak than the (6,5) SWNT for a single exciton, a negative trion, and a pair of excitons.
In each case, the (7,5) SWNT excited state calculation gave a smaller gap widening ∆ than the (6,5) SWNT. More
importantly, the (7,5) SWNT PA peak overlaps with the PB peak of the (6,5) SWNT. This suggests that for a mixture
of (6,5) and (7,5) SWNTs, a PA peak will only be visible when excited electrons remain on the (6,5) SWNT.
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3.3.10 Influence of Photobleach Peak Width

It was already shown that the intensity and visibility of a PA peak decreases, if the broadening is too high140. To see
what happens with the width and the shape of the peak for different broadenings, we modeled the SWNT sample
spectrum by combining the calculated (6,5) and (7,5) SWNT transient spectra for various broadenings Γ.

In Figure 3.21 the combined (6,5) and (7,5) SWNT differential transmission spectra for peak widths of 0.05, 0.1,
and 0.2 eV for the ground state and excited state absorbance are shown. A peak width of 0.05 eV for the independent
tube absorbances is in good agreement with the peak width of the transient spectrum of Ref. 144 (blue). A peak
width of 0.05 eV is also consistent with the absorption FWHM of Ref. 145, shown in Figures 3.15(a). However,
in comparison to the spectrum of our SWNT sample, the combined transient spectrum has a much smaller peak
width and is shifted to higher energy. This suggests that the SWNT sample shows a significant contribution due to
(7,5) SWNTs. Furthermore, the transient spectrum of Ref. 144 shows a clear asymmetry due to the reduction of the
peak at the higher energy end, consistent with our LDR-TDDFT-RPA calculations. This asymmetry becomes less
pronounced the greater the broadening of the transitions. A peak width of 0.2 eV results in a spectrum similar to
our SWNT sample measurements. This is also consistent with the absorption FWHM of our SWNT mixture shown
in Figure 3.15(a).

A broader peak width for the SWNT and blended P3HT:PCBM:SWNT samples compared to those in the lit-
erature144,145,236 might be due to having (6,5) and (7,5) SWNT mixture. Exciton transfer from the (6,5) to the
(7,5) SWNT may be expected to occur, leading to electron-hole trapping on the (7,5) SWNT. Already, a 20% im-
purification can cause a decrease in power conversion efficiency (PCE) of an OPV by more than 30 times due to
electron-hole trapping74. However, the peak width of the blended sample is significantly narrower than that of the
SWNT system, as seen in Figure 3.15(a). The calculated energy differences between the excited (triplet) and ground
states of the (6,5) SWNT and the bulk PT:PCBM:SWNT system suggest that an exciton within the bulk is more
stable by about 0.08 eV. A potential source for the increased stability, and hence exciton lifetime, for the bulk sys-
tem is electron and hole delocalization. This might explain the smaller width of the blended P3HT:PCBM:SWNT
absorbance and resulting increase in visibility of the PA peak.
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Figure 3.21: LDR-TDDFT-RPA change in absorbance between the ground and excited state for a (6,5) SWNT
(solid thin lines), (7,5) SWNT (dash-dotted lines), and their normalized sum (solid thick lines) for broadenings
Γ of (a) 50 meV, (b) 100 meV, and (c) 200 meV versus wavelength in nm and energy in eV relative to the E11

transition. Normalized differential transmission ∆T/T for our SWNT sample (black dots) and from Ref. 144 (blue)
for a pump-probe delay of 0.2 ps also provided.
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3.4 Modelling Transport Across Heterojunctions*

In this study, we carry out DFT calculations of the excited state formation energy, charge transfer, and zero-bias
conductance of prototypical donor–acceptor bulk heterojunctions69–71,74–78,88,97,98,239–241 in the singlet ground state
and triplet excited state. For the donor molecule we employ the prototypical photoactive polymers: polythio-
phene (PT)242 and poly(3-methylthiophene-2,5-diyl) (poly(3-methylthiophen-2,5-diyl) (P3MT))243. For the accep-
tor molecule we compare fullerene (C60) chains with semiconducting (6,4), (6,5), and (10,5) SWNTs, whose band
gaps range between 1 and 1.4 eV244. These systems exhibit only a minor structural relaxation in the triplet excited
state (<25 meV). This justifies our neglect of molecular vibration as a first approximation,245 as done in previous
studies of photovoltaic efficiencies.246–248

We model the excited state formation energy using the total energy difference between the triplet excited state and
the singlet ground state from DFT. To obtain the charge transfer from donor to acceptor in the bulk heterojunction we
perform a simplified Bader analysis220 of the DFT all-electron density. Finally, we calculate the Landauer-Bütticker
conductance of electron and hole charge carriers from donor to acceptor across the bulk heterojunction based on the
DFT tight-binding Hamiltonians using a multiterminal implementation162 of the non-equilibrium Green’s function
(NEGF) method163–166. In this way, we obtain the conductance from the isolated polymer, through the polymer–
SWNT or polymer–C60 heterojunction, and out the SWNT or C60 chain, in the quantum coherent regime. Our use
of the NEGF method for calculating the conductance across polymer–SWNT and polymer–C60 heterojunctions is
justified by the ballistic transport, long coherence length, and high thermal conductivity of SWNTs15,162,224,249,250,
and the dominance of tunneling in transport processes across C60 chains. This method provides a more sophisticated
description of the transport processes, and internal quantum efficiency (IQE) of the device, than previous studies
employing the Newns-Anderson model.246–248

3.4.1 Computational Details

All DFT calculations were performed with LCAOs and the PAW implementation of the gpaw code125,126,196, within
the generalized gradient approximation (GGA) PBE184 for the xc-functional. We employed a DZP LCAO basis
set for representing the density, wavefunctions, and tight-binding Hamiltonian, which yields transmission functions
in quantitative agreement (∆ < 50 meV) with plane-wave codes and maximally localized Wannier functions251.
All calculations employed a room temperature Fermi filling (kBT ≈ 25 meV), with total energies extrapolated to
T → 0 K, i.e., excluding the electronic entropy contribution to the free energy −S T . In this was we avoided an
unrealistic smearing of the excited electron and hole in the triplet excited state calculations. We included two thirds
of the number of electrons (2⁄3Ne) many bands within the calculations. This has been shown to be sufficient to
converge the first π→ π∗ transitions of graphene232 and SWNT/polymer hybrid systems252, and the optical spectra
of polymers and oligomers121 in the RPA.

Structural optimization was performed within the ASE230, until a maximum force below 0.05 eV/Å was ob-
tained. We employed more than 5 Å of vacuum to the cell boundaries orthogonal to the C60 chain, (6,4), (6,5),
(10,5) SWNTs, PT, P3MT, and P3HT, and obtained the optimized unit cells parameters along their axes L‖ =

18.811, 40.915, 11.348, 7.867, 7.846, and 7.797 Å, respectively. Here, PT, P3MT, and P3HT are modeled using
two thiophene, 3-methylthiophene, and 3-hexylthiophene units, respectively, in s-trans configuration. To sample the

*The work described in this section was performed in collaboration with Duncan John Mowbray and is adapted from “Theoretical Insight
into the Internal Quantum Efficiencies of polymer–C60 and polymer–SWNT Photovoltaic Devices”, J. Phys. Chem. C 2016, 120, 6336–6343.

http://dx.doi.org/10.1021/acs.jpcc.5b12611
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Figure 3.22: Electron (blue) and hole (red) densities at isosurface values of ±1e/nm3 from donor (PT or P3MT) to
acceptor (C60 chain, (6,4), (6,5), or (10,5) SWNTs) from the DFT total charge density difference ρ(r) between the
excited triplet (↑↑) and singlet (↑↓) ground state.

Brillouin zone, we included 3 k-points along the axis of PT, P3MT, P3HT, (6,4) SWNT, and (10,5) SWNT and 1
k-point along the axis of the (6,5) SWNT.

The polymer–C60 junctions were modeled by aligning 10 thiophene/3-methylthiophene units orthogonal to a
chain of three C60 molecules, and fully relaxing the resulting structure, shown in Figure 3.22. The polymer–SWNT
junctions were modeled by aligning 6 thiophene/3-methylthiophene units for the smaller (6,4) and (6,5) SWNTs and
8 thiophene/3-methylthiophene units for the (10,5) SWNT orthogonal to the tube which was repeated once along its
axis, and performing single-point calculations for the resulting configurations shown in Figure 3.22. This repetition
of the thiophene/3-methylthiophene units makes a single k-point sampling along the polymer axis sufficient for
describing the Brillouin zone.

By orienting the polymer and SWNT orthogonal to each other, this configuration describes the limit of a minimal
polymer–SWNT overlap. In fact, by orienting diagonally across the SWNT axis a ten thiophene unit oligomer, which
should provide a reasonable description of PT121, one obtains a greater charge transfer and stronger hybridization
between the polymer and SWNT252.

For the polymer–SWNT junctions, the intermolecular distances were fixed between one carbon atom located
at the centered C–C single bond of the polymer and a carbon atom of the tube, which were both aligned in the
axis orthogonal to the tube and the polymer axis as shown in Figure 3.22. The alignment was achieved by shifting
the polymer along the tube axis. This chosen intermolecular C–C distance is 3.35 for PT and 3.39 Å for P3MT.
We slightly increased the P3MT intermolecular distance to reduce the repulsive forces from the hydrogen atoms
of the methyl group. Both minimum distances employed are consistent with the interlayer distance of MWNT and
graphite235, of ∼ 3.4 Å.

We performed DFT calculations for each system in both the singlet ground state (↑↓) and triplet excited state
(↑↑). The triplet excited state calculations were performed by fixing the total magnetic moment µ of the system,
and using separate Fermi levels for the spin majority and minority channels, ε↑F and ε↓F, respectively. The Fermi
levels associated with electron εe

F and hole εh
F charge carriers are then simply ε↑F and ε↓F, respectively. For the singlet

ground state calculations, εe
F is approximately the CBM εCBM, while εh

F is approximately the VBM εVBM.
The charge densities associated with the excited electron ρe(r) and hole ρh(r) in the triplet state are the negative

and positive regions, respectively, of the all-electron charge density difference between that of the triplet excited



78 3.4. MODELLING CONDUCTANCE ACROSS HETEROJUNCTIONS

state (↑↑) and singlet ground state (↑↓), i.e., ∆ρ(r) = ρ↑↑(r) − ρ↑↓(r).
To quantify the charge transfer from donor to acceptor, we perform a simplified Bader analysis220 of the all-

electron charge density in the singlet ground state ρ↑↓(r) and triplet excited state ρ↑↑(r). We begin by integrating the
charge density over the plane A of the donor and acceptor axes to obtain the linear charge density

λ(z) =

"
A
ρ(r, ϕ, z)rdϕdr. (3.2)

We then partition λ(z) at its minimum zmin in between the polymer and C60 chain or SWNT. The charge transfer
from donor to acceptor is then

Q =

∫ zmin

0
λ(z)dz + eNacc

e , (3.3)

where Nacc
e is the total number of electrons on the isolated acceptor molecule.

We employ a similar partitioning to assign a KS orbital ψ(r) to the donor or acceptor molecule of the bulk
heterojunction. The fraction of the nth KS orbital ψn(r) on the acceptor molecule is then∫ zmin

0

"
A
|ψn(r, ϕ, z)|2rdϕdrdz. (3.4)

The periodic DFT Hamiltonian and overlap matrices in the LCAO basis, H and S, are employed within the
NEGF formalism to calculate the Landauer-Bütticker conductance for a multiterminal configuration162,164,166. To
do so, one must first remove overlap elements between atomic sites separated by more than half the length of the
unit cell along the transmission direction, i.e., 1⁄2L‖, to obtain non-periodic Hamiltonian and overlap matrices H and
S .

The coupling matrix to the semi-infinite leads V for the SWNTs is obtained by repeating the periodic DFT
Hamiltonian matrix for the isolated SWNT

H2×2 =

 H (H − H)†

H − H H

 , (3.5)

and removing overlap elements between atomic sites separated by more than L‖, yielding the non-periodic Hamil-
tonian for semi-infinite lead α

Hα =

 H V
V† H

 . (3.6)

This is reasonable for the SWNTs considered herein, for which L‖ & 20 Å. In this way we avoid performing a DFT
calculation with a repeated unit cell to obtain the Hamiltonian of the principle layer, H, which only couples to the
next principle layer through the coupling matrix V . We then align the semi-infinite lead Hamiltonian Hα to the non-
periodic DFT Hamiltonian for the bulk heterojunction using the first onsite energy of the same SWNT carbon atom
at the cell boundary. This is unnecessary for PT, P3MT, and C60 as their lead Hamiltonians are extracted directly
from the bulk heterojunction Hamiltonian. In these cases two thiophene units, two 3-methylthiophene units, and a
C60 molecule comprise a principle layer, with couplings to the next nearest layer numerically zero.

The Hamiltonian matrix for the bulk heterojunction central region, HC , is then generated by augmenting the non-
periodic DFT Hamiltonian for the junction with the principle layer Hamiltonians H and coupling matrices V of the
semi-infinite SWNT leads. The same procedure is employed to obtain the overlap matrix for the bulk heterojunction
central region, SC .
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Table 3.1: KS Band Gaps EKS
gap, Photoluminescence E11 Transitions, and Triplet Excited State Formation Energy

Ef(↑↑) in Electronvolts of Acceptors (C60 chain, (6,4), (6,5), and (10,5) SWNTs) Isolated (—) and in Heterojunctions
with a Donor (PT or P3MT)

species EKS
gap E11 E f (↑↑)

aaaaaaa
acceptor

donor — — — PT P3MT

C60 chain 1.46 1.9a 1.508 0.842 0.622
(6,4) SWNT 1.08 1.420b 1.101 0.967 0.843
(6,5) SWNT 0.92 1.272b 0.853 0.804 0.689
(10,5) SWNT 0.74 0.992b 0.858 0.712 0.626
aRef. 253, bRef. 244.

Following the multiterminal NEGF procedure described in Ref. 162, the zero-bias conductance at the Fermi
level εF is G = G0 Tr[GCΓinG

†

CΓout]|ε=εF , where G0 = 2e2/h is the quantum of conductance, GC(ε) is the Green’s
function of the bulk heterojunction central region, and Γin/out is the coupling to the semi-infinite input and output
leads. The four-terminal conductance across the bulk heterojunction from donor to acceptor is then obtained when
the input lead is that of a semi-infinite polymer, and the output lead is that of a semi-infinite C60 chain or SWNT.

The conductance of electron and hole charge carriers is then obtained by simply evaluating the transmission at
their associated Fermi levels εe

F and εh
F, respectively. However, to understand the origin of differences in conductivity

between the various donor–acceptor bulk heterojunctions considered herein, we shall find it useful to also consider
the transmission within an energy window around the acceptor’s VBM and CBM. In this way we may differentiate
between differences in conductivity owing to an improved level alignment between donor and acceptor, an increased
overlap of their levels, or a greater number of available transmission channels.

3.4.2 Energy Gaps and Band Gaps

To quantify the differences in electronic properties amongst the donors (PT, P3MT, and P3HT) and acceptors (C60

chain, (6,4), (6,5), and (10,5) SWNTs), we first consider the energy gaps for the isolated polymers and the band
gaps of the isolated fullerene chain and SWNTs. Amongst the three functionalized thiophene polymers considered,
both the calculated KS energy gaps and those measured via photoluminesence240,242,243 differ by less than 50 meV,
with the largest difference from PT occurring with the first methyl functionalization group (P3MT). For this reason,
along with the accompanying reduction of computational effort, we shall restrict consideration from hereon to PT
and P3MT as donors.

The acceptors considered have been intentionally chosen to provide a range of electronic band gaps, as shown
in Table 3.1, from 1 eV for the (10,5) SWNT to 1.9 eV for the C60 chain. In each case, the calculated KS band gaps
differ from the first E11 transition measured in photoluminescence (PL) experiments244,253 by about 25%. This is
consistent with previous results, and may be addressed through many-body GW corrections to the self energy254–256.
However, for our purposes, it is more relevant to note that the difference is rather systematic amongst the carbon-
based materials considered herein.
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3.4.3 Triplet Formation Energy

A more reliable descriptor for differences in exciton binding between bulk heterojunctions is the triplet excited state
formation energy E f (↑↑), provided in Table 3.1. This is obtained from the total energy difference between a system
in the triplet excited state and the singlet ground state, i.e., E f (↑↑) = E(↑↑) − E(↑↓). Since E f (↑↑) depends only on
DFT total energies, and not on KS eigenvalues, this quantity is in principle exact up to the approximation for the
xc-functional.

Comparing the measured E11 transition energy and the calculated triplet formation energy E f (↑↑) for the isolated
C60 chain and (6,5) SWNT, we find their difference is ∼ 0.4 eV. This is consistent with the measured singlet exciton
binding energy in SWNTs48,63–66. Although differences between the excited singlet and triplet states may occur,
this demonstrates that the triplet excited state provides a reasonable approximation to the singlet excited state for
fullerenes and SWNTs. For the (6,4) SWNT, we obtain a somewhat smaller energy difference (0.3 eV), while for the
(10,5) SWNT it is significantly reduced to 0.1 eV. The latter is related to the reduction of the E11 transition energy
for the (10,5) SWNT, while the E f (↑↑) is unchanged relative to the (6,5) SWNT. Altogether, this is indicative of a
strong exciton binding in the isolated C60 chain, (6,4) SWNT, and (6,5) SWNT, with a much weaker exciton binding
in the (10,5) SWNT. This suggests charge separation for isolated SWNTs may be easier for those with a smaller
band gap.

To compare performance between different acceptors in bulk heterojunctions, it is more relevant to compare
the difference between the triplet formation energy of the acceptor in the bulk heterojunction and in isolation.
For a type II bulk heterojunction, a lower triplet formation energy in the bulk heterojunction suggests the hole is
transferred to the donor. From Table 3.1 we see that E f (↑↑) is reduced for all the acceptors studied when in the bulk
heterojunction. Further, the triplet formation energy is in all cases lower for the P3MT bulk heterojunction than the
PT bulk heterojunction. We also clearly see that the C60 chain in the triplet state is significantly more stabilized
upon inclusion in the PT or P3MT bulk heterojunction compared to the SWNTs. There, E f (↑↑) is stabilized by
about 0.1 eV upon inclusion in a PT bulk heterojunction, and a further 0.1 eV for the P3MT bulk heterojunction,
for all three SWNTs studied. Qualitatively, this suggests a significantly greater electron-hole separation for the C60

chain compared to the SWNTs, which should all be rather similar, with P3MT bulk heterojunctions having a more
facile electron-hole separation than PT bulk heterojunctions.

3.4.4 Donor to Acceptor Charge Transfer

Alternatively, we may describe the degree of electron-hole separation directly by quantifying the charge transfer in
the bulk heterojunction. This is obtained by partitioning the DFT all-electron density between the donor and acceptor
species in the bulk heterojunction via a simplified Bader analysis. The charge transfer from donor to acceptor for
each bulk heterojunction in the triplet excited state, singlet ground state, and their difference, is provided in Table 3.2.

From Table 3.2 we observe the following trends in the charge transfer: (1) it is always from donor to acceptor,
(2) it is always more for P3MT than PT bulk heterojunctions by about -0.1 e, (3) for SWNTs it is always about −1⁄4e
for P3MT bulk heterojunctions and −1⁄6e for PT bulk heterojunctions, and (4) it is significantly greater (−1⁄2e) for
C60 chains. All four findings are consistent with our previously mentioned expectations based on the triplet excited
state formation energy.

To determine the origin of these trends in the bulk heterojunctions’ charge transfer, it is useful to consider the
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Table 3.2: CT in e from Donor (PT or P3MT) to Acceptor (C60 chain, (6,4), (6,5), or (10,5) SWNTs) for the Singlet
Ground State (↑↓), the Triplet Excited State (↑↑), and their Difference (↑↑ − ↑↓)

donor acceptor ↑↓ ↑↑ ↑↑ − ↑↓

PT C60 chain −0.01 −0.48 −0.47
P3MT C60 chain −0.04 −0.61 −0.57
PT (6,4) SWNT −0.05 −0.22 −0.17
P3MT (6,4) SWNT −0.10 −0.34 −0.24
PT (6,5) SWNT −0.16 −0.31 −0.16
P3MT (6,5) SWNT −0.23 −0.50 −0.27
PT (10,5) SWNT −0.10 −0.29 −0.18
P3MT (10,5) SWNT −0.19 −0.43 −0.24

spatial distribution of the difference in all electron density between triplet excited state and singlet ground state
shown in Figure 3.22. For each bulk heterojunction studied, the hole density is mostly localized on the π bonding
HOMO of PT or P3MT, with the electron density on π anti-bonding levels of the C60 chain or SWNT. Comparing the
PT and P3MT bulk heterojunctions, we notice that the hole density clearly extends onto the methyl groups of P3MT.
We expect this spatial delocalization of the hole density onto the methyl groups of P3MT makes hole transfer easier
in P3MT than PT bulk heterojunctions. For the (6,4), (6,5) and (10,5) SWNT bulk heterojunctions, the electron
and hole densities shown in Figure 3.22 are rather consistent, with the electron density on the upper surface of the
SWNT neighbouring the PT or P3MT. On the other hand, for the C60 chain, the electron density is delocalized over
the entire surface of all three fullerenes. This suggests the greater charge transfer onto the C60 chains compared to
the SWNTs may have a geometrical origin.

3.4.5 Conductance from Donor to Acceptor

However, although these results clearly demonstrate a charge transfer from donor to acceptor, it remains unclear
whether the excited electron and hole are truly free charge carriers, or remain bound at the donor–acceptor interface.
To address this issue, we provide the zero-bias conductance at the energy of the excited electron εe

F and hole εh
F in

the singlet ground state and triplet excited state in Table 3.3.
Note that these conductances are across a single polymer–fullerene or polymer–SWNT junction. This is because

within the NEGF formalism, the fullerene chain, SWNT, and polymer are all modeled as semi-infinite leads. For
this reason, the conductances provided in Table 3.3 may be considered to be per absorbed photon. Further, as there is
only a single PT or P3MT band for this energy range through which current may flow, the quantum of conductance,
G0 = 2e2/h, provides a theoretical upper bound on the conductance across the junction.

Overall, the conductances quoted in Table 3.3 vary by over six orders of magnitude, from G0 × 10−7 to 0.1G0.
Particularly impressive is the PT–(6,4) SWNT junction, with conductances of 9% and 5% of G0 for free hole and
electron carriers, respectively. While the (6,4) SWNT junctions clearly provide the highest conductivity in the
triplet excited state, the P3MT–C60 chain junction is clearly the most active in the singlet ground state. Comparing
the conductance for the junction in the singlet ground state and the triplet excited state, we find the conductance
is generally significantly greater when the system is in the triplet excited state. This suggests that the level hy-
bridization related to the charge transfer observed in Figure 3.22 facilitates tunnelling across the donor–acceptor
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Table 3.3: Conductance G in G0×10−3 from Donor (PT or P3MT) to Acceptor (C60 chain, (6,4), (6,5), or
(10,5) SWNTs) for Hole Carriers at εh

F and Electron Carriers at εe
F in the Singlet Ground State (↑↓) and the Triplet

Excited State (↑↑)
hole carriers electron carriers

donor acceptor ↑↓ ↑↑ ↑↓ ↑↑

PT C60 chain 0.0007 0.003 0.003 0.02
P3MT C60 chain 0.3 0.0007 0.09 0.6
PT (6,4) SWNT 0.05 88 0.02 46
P3MT (6,4) SWNT 0.0005 1 0.01 16
PT (6,5) SWNT 0.0007 0.007 0.02 0.005
P3MT (6,5) SWNT 0.0002 0.01 0.0003 0.004
PT (10,5) SWNT 0.01 0.01 0.002 0.003
P3MT (10,5) SWNT 0.0003 0.04 0.0002 0.002

gap. However, the opposite is true for the P3MT–C60 chain junction. We also find the (6,5) and (10,5) SWNTs, with
their smaller band gaps, have quite low conductivities. This is consistent with recent experimental findings, which
showed P3HT:PCBM:(6,5) SWNT bulk heterojunctions perform rather poorly88.

To provide insight into the reasons behind the great variability in the free carrier conductance provided in Ta-
ble 3.3, and the origin of the high conductance across the (6,4) SWNT junctions in the triplet excited state, we plot
the transmission function T (ε) = Tr[GCΓinG

†

CΓout] near the VBM and CBM for the polymer–C60 and polymer–
SWNT junctions in Figures 3.23 and 3.24, respectively.

For the polymer–C60 junction, depicted schematically as an inset in Figure 3.23, we provide the conductance
through the polymers (PT→PT and P3MT→P3MT), along the C60 chain (C60 →C60), and across the junction
(PT→C60 and P3MT→C60). The transmission along the polymers is simply G0 for energies below the HOMO, zero
within the energy gap, and G0 above the LUMO. This amounts to a simple counting of the number of bands below
the VBM and above the CBM.

In the singlet ground state, the HOMO of PT/P3MT is pinned to the LUMO of C60 at the Fermi level, while
in the triplet excited state, the LUMO of PT/P3MT becomes pinned to the LUMO of C60 at the Fermi level of the
excited electron εe

F. This means any differences in band gap between PT and P3MT do not play an important role
for the polymer–fullerene bulk heterojunctions, as the donor HOMO and LUMO are pinned to the LUMO of the
acceptor in the ground and excited state, respectively.

Conduction through the C60 chain is rather different. It instead exhibits narrow plateaus centered on the HOMO
and LUMO of the C60 chain. As a result, conduction across the polymer–fullerene junction is limited to these narrow
plateaus where the C60 chain is conductive. It is this limitation in the conductivity of C60 chains, which limits their
effectiveness within OPV bulk heterojunctions, and motivates their replacement with SWNTs240.

Unlike the C60 chain, the transmission through semiconducting SWNTs exhibits broad plateaus, and is typi-
cally 2G0 below the VBM, zero within the band gap, and 2G0 above the VBM. As was this case for transmission
through the polymers, this amounts to a simple counting of the number of bands below and above the VBM and
CBM, respectively. As the transmission through the polymers and SWNTs is rather trivial, up to scattering due to
transmission across the junction, it has been omitted in Figure 3.24. Instead, we plot the HOMO, SOMO, SUMO,
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Figure 3.23: Transmission across a polymer–C60 junction, depicted schematically as an inset, versus energy ε in eV
relative to the Fermi level εF in the (a) singlet ground state (↑↓) and (b) triplet excited state (↑↑), for PT–C60 (thin
dark lines) and P3MT–C60 (thick light lines).

and LUMO energies below/above which the transmission from PT→PT and P3MT→P3MT is G0.
For polymer–SWNT junctions, we find the conductance is intimately related to the alignment of the SWNT/poly-

mer HOMO and LUMO levels (cf. Figure 3.24). In fact, the conductance at εe
F and εh

F depends exponentially on the
alignment of the SWNT and polymer HOMOs and LUMOs257.

For the (6,4) SWNT, with a KS band gap a bit smaller than PT and P3MT, we find both the HOMO and LUMO
levels of the polymer and SWNT are align in the triplet excited state. Although the resulting charge transfer is rather
similar to the other SWNTs studied (cf. Table 3.2), the improvement in level alignment places εh

F and εe
F at or near the

polymer HOMO and LUMO, respectively. This results in a very high conductivity across the polymer–(6,4) SWNT
junctions in the triplet excited state (cf. Table 3.3). On the other hand, the level alignment for the (10,5) SWNT is
the poorest of those considered, as the CBM of the nanotube is shifted down relative to the LUMO of the polymer
as the band gap decreases.

In fact, if the transmission were measured above or below the polymer LUMO or HOMO, respectively, the
conductance across all three polymer–SWNT junctions studied would be > 1% of G0. This is not the case for the
C60 chain, which is only conductive within a narrow range of the chain’s HOMO and LUMO.
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Figure 3.24: Transmission across a polymer–SWNT junction, depicted schematically as an inset, versus energy ε in
eV of (a,c) the hole relative to the VBM εVBM, and (b,d) the electron relative to the CBM εCBM in the (a,b) singlet
ground state (↑↓) and (c,d) triplet excited state (↑↑), with PT (thick light lines) and P3MT (thin dark lines) as donors
and a (6,4) (blue), (6,5) (green), and (10,5) SWNT (red) as acceptors. DFT eigenenergies of the HOMO, SOMO,
SUMO, and LUMO of P3MT/PT are marked by thin vertical lines. Filling in (c/d) denotes hole/electron charge
carriers above/below the Fermi level of the VB/CB in the triplet excited state.

Essentially, the conductance across polymer–SWNT heterojunctions can be dramatically improved by a better
alignment of the polymer’s HOMO and LUMO levels with the SWNT’s VBM and CBM, respectively. This may be
accomplished using a SWNT with a larger band gap, e.g., a (6,4) SWNT. However, improving the level alignment
too much may lead to a reduction of the electron and hole transfer.



Chapter 4

Conclusions & Outlook

In this work, we guided the reader through different aspects of modelling polymer–carbon nanotube heterojunctions
and the electronic processes that occur upon photexcitation and during transport across the junction. In the beginning
we discussed the possibility of modelling polymers from oligomers, which allows us to study the interactions at the
interface of the polymer–SWNT heterojunction with less computational effort. In section 4.1 we will conclude
from our results obtained from linear dielectric response (LDR) time-dependent density functional theory (TDDFT)
within the random phase approximation (RPA) calculations that the copolymer of 9,9-dioctylfluorenyl-2,7-diyl and
bipyridine (PFO-BPy) can be modelled by the monomer unit of the copolymer of pyridine, 9,9-dioctylfluorenyl-
2,7-diyl and pyridine (Py-PFO-Py) with shortended side chains, since the optical properties within the polymer are
reasonably well described by the monomer unit. Further, we will suggested possible studies on interactions at the
monomer–SWNT interface.

We also were able to show that linear response (LR) TDDFT calculations on monomers can be used to identify
the x, y, z contributions of the dipole oscillator strengths and thefore the transition dipole moments (TDMs) of
transitions from the ground to excited state in the polymer unit spectrum. In section 4.2 we will argue that LR-
TDDFT is a useful tool in combination with angle-dependent absorption spectroscopy to evaluate the supramolecular
structure of polymer–single-walled carbon nanotube (SWNT) heterojunctions. From our combined results, that are
the experimental PFO-BPy–SWNT angle-dependent absorption spectrum and the LR-TDDFT spectrum of the Py-
PFO-Py unit, we can conclude that the PFO-BPy is aligned along the carbon nanotube’s axis and not wrapped as
initially thought. In addition, we will present planned experiments on other polymer–SWNT heterojunctions.

We discussed as well the transient absorption spectra of SWNTs and polymer:SWNT blends. The occurance
of a photoinduced absorption (PA) peak in transient pump probe spectra of SWNT samples has motivated many
hypotheses in the field. It is thought that the structure of this peak bears important information about the dynamical
processes upon photoexcitation. In section 4.3, we will infer that we effectively modelled the PA peak in the transient
spectra of SWNT samples using LDR-TDDFT-RPA. We will discuss the reason for the PA peak and that it could
be used to evaluate different charge loadings of the SWNT samples. In addition, we will suggest further methods to
model the singlet excited state more accurately.

Finally, we took a look at the performance of polymer–C60 and different polymer–SWNT heterojunctions in or-
ganic photovoltaics (OPVs) by calculating the Landauer-Bütticker conductance obtained using the non-equilibrium
Green’s function (NEGF) method. These results demonstrate the importance of considering the hybridization of

85
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donor–acceptor levels in the excited state, and the resulting dependence of the conductivity on the level alignment,
which we will explain in section 4.4. We will look at possible extensions of the NEGF description by including
explicit time-dependence and the perturbation of the system. Finally, we will suggest polymers and nanotubes that
may improve the efficiency of OPVs and the possible use of theoretical methods to predict materials with optimal
level alignment and lower exciton binding energies.

4.1 Modelling Polymer–SWNT Heterojunctions

We have found that there is almost no red shift occurring while extending the π-system through the attachment of the
Py-PFO-Py oligomer units. This suggests that conjugation of the π-system is broken due to the ortho conjugation
of the bipyridine. As well, the electron and hole densities reveal that the exciton is only located on the Py-PFO-Py
monomer unit in the polymer. On the other hand, the PFO-BPy monomer is electronically completely different from
either the dimer or the trimer. By extending the PFO-BPy oligomers, the PFO-BPy system converges to the Py-PFO-
Py system, albeit more slowly. We have also confirmed that the oligomer spectra converges to that of the infinitely
long polymer chain using TDDFT within the RPA. We find that TDDFT-RPA underestimates the transition more
than linear response TDDFT, and the TDDFT-RPA highest occupied molecular orbital (HOMO)-lowest unoccupied
molecular orbital (LUMO) absorption peak coincides precisely with the density functional theory (DFT) HOMO-
LUMO energy gap.

The small shift in the spectra between PFO-BPy and Py-PFO-Py systems indicates there is only a weak conju-
gation between the single monomer units. By breaking the conjugation through a rotation of the pyridine (Py)-Py
bond in the dimer, the dimer only experiences a small blue shift relative to the monomer. This suggests that the
shifts might also have other origins, such as the increasing molecular weight.

Additionally, we confirmed that there is no electronic influence of the octyl side chains in 9,9-dioctylfluorenyl-
2,7-diyl (PFO), beyond the first ethyl group, as expected. This is consistent with previous studies of the polymer
chain length’s effect on the absorption properties of such polymers233.

Overall, we find the Py-PFO-Py unit with shortened ethyl side chains describes the PFO-BPy polymer suffi-
ciently well to be used when modelling electronic and optical absorption properties of a hybrid polymer-SWNT sys-
tem. These results have important implications for the reliability of such simplified models for describing polymer-
SWNT heterojunctions258.

In another study we compared the adsorption enthalpies of Py-PFO-Py and derivatives on SWNTs by subtracting
the ground-state energies of the isolated monomer unit and the SWNT from the ground-state of the Py-PFO-Py–
SWNT heterojunction. We have found that the physisorption is quite strong, with around 1 electronvolt (eV) of
energy. Unfortunately, comparing different monomer units and their adosrption behaviour emerged difficult because
of several points (1) the van der Waals xc functional (vdW-DF) functional is very demanding for such huge systems,
(2) small chemical changes, like the exchange of some atoms, have almost no influence on the energies considering
that we look at a system with around 1000 atoms, (3) including the effect of the solvent is rather difficult, (4) a huge
impact on the calculation of the adsorption enthalpy have the rotations of the 6-membered rings in the polymer unit.
Polymers, whose ground-state structure is stronger twisted, show smaller adsorption enthalpies. This is due to fact
that the polymer physisorbs more stable on the SWNT when being planar. Hence, different conformers need to be
considered in such a study. The strength of the polymer twist might as well be the reason for the selective sorting of
certain tube sizes. This is an important point, which needs to be studied further. As well, the electronic influence of
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the physisorption on the SWNT can be evaluated by looking at the density of states of the SWNT with and without
physisorbed polymer units. We plan to study the mechanism of polymer sorting further to get a better understanding
of what influences the selectivity. Our results shall support the development of polymers that selectively sort tubes
of the wished size/chirality.

4.2 Supramolecular Structure Evaluation of Polymer–SWNT Heterojunc-
tions

From the polarized angle-dependent absorption spectrum of PFO-BPy sorted (6,5) SWNT samples that were em-
bedded in a crystalline polystyrol matrix, we could deduce that the polymer absorption peak and the first excited
state in SWNTs (E11) and second excited state in SWNTs (E22) transitions of the (6,5) SWNTs have the same
angle dependence. This result suggest that in this sample the polymer PFO-BPy and the SWNTs have the same
polarization.

Using LR-TDDFT calculations, we were able to extract a dipole strength direction resolved absorption spectrum
of the Py-PFO-Py unit. The Py-PFO-Py unit is representative for the full PFO-BPy polymer as discussed in sec-
tion 4.1. In the spectrum we see that the transition is perturbed by an electric field polarized along the y direction,
that is, along the polymer’s backbone. Comparing this result with the polarized angle-dependent spectrum, we are
able to verify that in the experimental setup the polymer has to be aligned vertically, that is, in the y direction, when
the sample is at 0◦. Only in this position will the polymer absorb parallel polarized light as it does in the experiment.

A strongly wrapped polymer would show a helical-like structure and would therefore absorb light polarized
along 45◦, when the nanotubes are aligned vertically at 0◦. In addition, the absorption would be significantly
reduced, since 50% of the wrapped polymer would be aligned at 135◦. Even though the reference sample of the
PFO-BPy shows polarization in the same direction due to the stretching of the matrix, we can exclude that a strongly
wrapped polymer would stretch out in the same way in the PFO-BPy sorted (6,5) SWNT sample. Moreover, it is
unlikely that the polymer stretches out to account for a 1.7 times stronger absorption. In summary, all our combined
results suggest that the compolymer PFO-BPy has to be aligned stretched out along the tube axis.

We have shown that polarized angle-dependent absorption spectroscopy in combination with LR-TDDFT is an
efficent and dependable tool for identifying the supramolecular structure of polymer–SWNT heterojunctions. This
result is of importance for the evaluation of the supramolecular structure of polymer–SWNT heterojunctions and
further supports the understanding of the polymer selective dispersion of nanotubes.

Further projects are under discussion regarding the evaluation of the supramolecular structure of other polymer–
SWNT heterojunctions. Specifically, we are interested in identifying how a polymer of 9,10-(N-octyl-2,5-pyrrolidin-
dione)anthracene units* (shown in Figure 4.1 with ethyl side chain and hidroxy linkers) adsorbs on SWNTs. In order
to achieve the optimal physisorption, the “clamp”-like structure of the antracene side (red) should adsorb orthogonal
to the tube axis. We can see in Figure 4.1 that peaks in the experimental spectrum are in good agreement with the LR-
TDDFT spectrum. In addition, all peaks show contributions to the average dipole strengths in different directions.
This might be useful for deteriming the orientation of the “clamp” on the SWNT using polarized angle-dependent
absorption spectroscopy.

*The experimental work shown in Figure 4.1 was performed by Ina Bodoky. The absorption spectrum was kindly provided in a private
communication.



88 4.3. MODELLING TRANSIENT ABSORPTION SPECTROSCOPY

240 260 280 300 320 340
Wavelength (nm)

Ab
so

rb
an

ce
 (a

rb
. u

ni
ts

)

ΔE = 0.12 eV

x

y

z

N O

O

HO
OH

Figure 4.1: Comparison of the average (black) LR-TDDFT absorption spectrum (solid lines) of the 9,10-(N-ethyl-
2,5-pyrrolidindione)-3,7-dihodroxy-anthracene, and dipole oscillator strength contributions in the x (red), y (blue),
and z (green) directions, with the measured spectra of unit with octyl instead of ethyl side chains (black dashed line)
before (light thin lines) and after (dark thick lines) applying a common energy shift of ∆E = 0.12 eV. The molec-
ular structure of the 9,10-(N-ethyl-2,5-pyrrolidindione)-3,7-dihodroxy-anthracene unit aligned in the x-direction is
shown as an inset.

4.3 Modelling Transient Absorption Spectroscopy

Using LDR-TDDFT-RPA calculations of the ground and excited states of (6,5) and (7,5) SWNTs, we are able to
qualitatively explain the measured differential transmission spectra of the probed lowest energy excited state, the E11

transition. Our results confirm that the observed PA peak is due to a blue shift ∆ of the E11 transition after pumping.
The PA peak is therefore an artifact of excitations within the spin channel, which experience a widening of the band
gap after electron and hole stabilization within the other spin channel.

The intensity and the visibility of the PA peak depends on the charge carrier density, but mainly on the peak
width. If the peak width is greater than the blue shift of the main absorption peak, the transient spectrum will be dom-
inated by the photobleach (PB) peak140. Further, our SWNT sample contains a mixture of (6,5) and (7,5) SWNTs.
This SWNT sample exhibits rather broad absorption peaks, approximately 4 times broader than previously mea-
sured (6,5) SWNT samples144,145. We suggest that this is related to having a mixture of SWNTs with similar energy
gaps. The different types of SWNTs are causing an overlap of the peaks, but more importantly, the mixture enables
an exciton transfer from the (6,5) to (7,5) SWNTs. This both shortens the exciton lifetime on the (6,5) SWNTs
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and inhibits a widening of the band gap. As a result, the differential transmission spectrum of the (6,5) SWNT has
almost no PA peak.

For the blended poly(3-hexylthiophen-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM):SWNT
sample, the exciton is locally stabilized on the (6,5) SWNT due to the hole transfer to the P3HT. As a result, the PA
peak intensity and position in the differential transmission spectra may be used as a qualitative measure of exciton
density and charge transfer within SWNT systems.

These results are important for the understanding of the origin of the PA peak in pump-probe spectroscopy and
will help to interpret the exciton dynamics within SWNT systems.

In future studies on transient spectra of extended system we may attempt to create better models and descriptions
of the singlet excited states. We have already attempted to model the singlet excited state with the delta self-
consistent field (∆SCF) method, which adds the density of a specified orbital to the total density in each step of the
self-consistency cycle. The extra charge is usually taken from the Fermi level to keep the system neutral. By creating
a hole density in the SWNT’s HOMO and adding a negative charge to the occupied states, we have obtained the
unoccupied electronic Kohn-Sham (KS) densities, whereas putting an electron in the SWNT’s LUMO and adding
a positive charge to the occupied levels resulted in the occupied hole KS densities. However, we were unable to
converge the band structure due to the many close lying, nearly degenerate KS levels present in the (6,5) SWNT.
One might attempt to model the singlet excited state using equation-of-motion coupled cluster (EOM-CC), single
excitation configuration interaction (CIS), or TDDFT. If we are able to find a way to model the excited states of
extended systems, we would be able to simulate more reliable transient spectra, as well at that of higher energy
excited states.

4.4 Modelling Conductance Across Heterojunctions

We have employed four descriptors: (1) the triplet state formation energy E f (↑↑), (2) the donor to acceptor charge
transfer, (3) the conductance of free electron carriers G(εe

F), and (4) the conductance at free hole carriers G(εh
F), to

assess the relative performance of OPV bulk heterojunctions with polythiophene (PT) and poly(3-methylthiophen-
2,5-diyl) (P3MT) as acceptors, and C60 chains, (6,4), (6,5), and (10,5) SWNTs as acceptors. We find P3MT, with
its larger band gap, and greater ability to absorb a hole, generally exhibits a greater charge transfer and conductance
than PT. The C60 chain accepts significantly more charge (∼1⁄2e) than the SWNTs (∼1⁄4e), which are rather consistent
for all the SWNTs considered. These results are also consistent with the calculated formation energies for the triplet
excited state.

However, the conductance across the junctions via free hole and electron carriers differs by six orders of mag-
nitude amongst the bulk heterojunctions considered here. In the singlet ground state the P3MT–C60 chain junction
has the greatest conductivity of those considered (0.03% and 0.06% of G0), while the PT–(6,4) SWNT junction
shows a dramatic increase in conductivity in the triplet excited state (9% and 5%). This suggests by improving the
level alignment of the polymer and SWNT through the use of larger band gap SWNTs, one may obtain a dramatic
improvement in OPV efficiency.

Altogether, these results demonstrate the importance of considering the hybridization of donor–acceptor levels
in the excited state, and the resulting dependence on level alignment of the conductivity. This dramatic dependence
on the level alignment observed herein provides significant motivation for future studies including the dependence
on the vibrational modes of the molecules245, and more advanced quasiparticle calculations including anisotropic
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Figure 4.2: Molecular structure of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)

screening effects259–263 in the polymer–SWNT level alignment. Furthermore, a reformulation of the NEGF method
to describe photoinduced quantum transport is required to describe the optical absorption dependent photovoltaic
efficiency of OPV devices. The techniques employed herein provide a road map for the computational design of
OPV bulk heterojunctions in silico.

It is planned to extend the NEGF formalism to describe photoinduced quantum transport across a bulk het-
erojunction. This may be accomplished by introducing the screened vector potential of solar irradiation into the
Hamiltonian as a coupling between initial and final absorption states.

Further, we suggest perfoming studies to find the optimal level alignment of SWNTs with poly[2-methoxy-
5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), as shown in Figure 4.2. This polymer is used for light
emmiting diodes (LEDs) although its potential use in SWNT-based OPVs has received little attention264,265 The
interesting thing about poly(p-phenylene vinylene)s (PPVs) is that they can be functionalized differently, which re-
sults in different band gaps. The introduction of extended functional groups might as well lower the exciton binding
energy due to more efficient electron/hole separation. In summary, MEH-PPVs or a polymer of a PPV derivative
could result in a promising polymer for an optimal level alignment with SWNTs. This could be investigated via
calculations of the Landauer-Bütticker conductance using the NEGF method.

4.5 Final Remarks

Thanks to our studies we were able to gain a deeper understanding of the electronic processes that occur upon
photoexcitation within polymer–SWNT heterojunctions. We have successfully demonstrated that we can model
experimental pump probe data of the lowest energy excited state in SWNT systems and in so doing facilitate their
interpretation. Our results have shown that the photoinduced absorption in transient spectra can reveal the localiza-
tion or delocalization of charges and therefore can be used to qualitatively compare charge transfer states and exciton
binding in materials. In addition, we were able to provide an explanation for the low internal quantum efficiencies of
SWNT-based OPVs. We found that improving their donor–acceptor level alignment increases the internal quantum
efficiency by several orders of magnitude. In addition, we have shown that it is essential to include the energy levels
of the excited state in order to properly describe the donor–acceptor level alignment. Our achievments pave the way
for the use of theoretical tools to predict potential materials for the development of more efficient OPVs.

I would like to thank the reader for his/her interest in this work on polymer–carbon nanotube heterojunctions
and their use in organic photovoltaic applications. I hope it stimulates new ideas for future scientific work.



Appendix A

Power Conversion Efficiency

The power P in Watts of an organic photovoltaic (OPV) device is given by the equation P = IV , from which as
well the maximum power Pmax quadrant is obtained as shown in Figure A.1.266 Although the amount of power is
essential, the actual quality of a solar cell is defined by the fill factor (FF), which is the ratio of maximum power

Figure A.1: Ideal I − V sweep with maximum power Pmax quadrant and theoretical power PT quadrant.
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Pmax to the theoretical power PT ,

FF =
Pmax

PT
=

IMP · VMP

IS C · VOC
. (A.1)

The larger the FF, the more ideal and square-like is the I-V sweep. This is normally hampered by the internal shunt
and series resistances, which decrease the current respectively make the voltage drop. This has an impact on Pmax

and therefore on the powerconversione f f iciency(PCE) of the cell, which is given by

PCE =
Pout

Pin
=⇒ PCE =

IS C · VOC · FF
Pin

, (A.2)

where Pin is the product of the irradiation of the incident light (W/m2 or in suns 1000W/m2) and the surface area of
the solar cell (m2), and Pout is the power output of the device. This external efficiency includes optical losses from
reflection and transmission.

In section 3.4, the internal quantum efficiency (IQE) is studied, which refers to the percentage of absorbed
photons that are converted to electric current. Note that unlike the photovoltaic efficiency,267 the IQE is independent
of the device’s optical absorption spectra, that is, the number of absorbed photons, as it is calculated per absorbed
photon.159



Appendix B

LCAO TDDFT-RPA

The optical absorption spectra are obtained via linear response (LR) time-dependent density functional theory
(TDDFT) within the random phase approximation (RPA)119–121,207,232, from the imaginary part of the macroscopic
dielectric function, Im[ε(q, ω)], as ‖q‖ → 0+.

In Figure B.1 we compare the TDDFT-RPA spectra obtained within the locally centered atomic orbital (LCAO)
basis (violet), and after projecting onto a real space grid (blue). The latter was calculated using the TDDFT-RPA
implementation within the gpaw code125,126,196 described in refs 119, 120 and 232 including 79 G vectors.
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Figure B.1: TDDFT-RPA absorbance Im[ε] of a (6,5) SWNT in the ground state versus energy in eV obtained
from our LCAO implementation (violet) and a real space projection of the wavefunctions (blue) including (dashed)
and neglecting (solid) LFEs. Total absorbance (thick lines) and absorbance for light polarized perpendicular to the
SWNT axis (thin lines) are shown.
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When LFEs are neglected, both codes agree up to a constant of proportionality. We attribute this difference
to the projection of the LCAO basis functions onto the real space grid. When including LFEs, the absorbance
perpendicular to the SWNT axis is greatly suppressed, while that along the axis is unchanged. However, this
suppression of the perpendicular absorbance may be due to modelling debundled SWNTs238. In any case, we find
the neglect of LFEs is justified for these systems, especially because our primary interest is the first excited state in
SWNTs (E11) transition along the SWNT axis.
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