Plastic marine pollution as a physical support to spread Ostreopsis blooms

Sarah-Jeanne Royer, Magda Vila and Elisa Berdalet

MAPMAS workshop
Friday October 6th, 2017
Plastic waste inputs from land into the ocean

Fig. 1. Global map with each country shaded according to the estimated mass of mismanaged plastic waste [millions of metric tons (MT)] generated in 2010 by populations living within 50 km of the coast. We considered 192 countries. Countries not included in the study are shaded white.

Jambeck et al., 2015, Science.
Plastic waste inputs from land into the ocean

Jenna R. Jambeck,1,† Roland Geyer,2 Chris Wilcox,3 Theodore R. Siegler,4
Miriam Perryman,1 Anthony Andrady,5 Ramani Narayan,6 Kara Lavender Law7

Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010 with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.

Fig. 1. Global map with each country shaded according to the estimated mass of mismanaged plastic waste [millions of metric tons (MT)] generated in 2010 by populations living within 50 km of the coast. We considered 192 countries. Countries not included in the study are shaded white.

Jambeck et al., 2015, Science.
Plastic waste inputs from land into the ocean

Fig. 2. Estimated mass of mismanaged plastic waste (millions of metric tons) input to the ocean by populations living within 50 km of a coast in 192 countries, plotted as a cumulative sum from 2010 to 2025. Estimates reflect assumed conversion rates of mismanaged plastic waste to marine debris (high, 40%; mid, 25%; low, 15%). Error bars were generated using mean and standard error from the predictive models for mismanaged waste fraction and percent plastic in the waste stream (12).
Plastic production

Production, use, and fate of all plastics ever made

Roland Geyer,¹* Jenna R. Jambeck,² Kara Lavender Law³

Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.
Plastics have one of the most robust global indicators of resource depletion, and we present the first comprehensive analysis of all waste generated in history. However, dismissing disposable plastic products as disposable is a misconception. The cumulative production of plastic waste is projected to reach 8300 million metric tons by 2050, with landfills accounting for only 12,000 Mt of the total.
Plastic pollution – local based

Asia
Plastic pollution – marine based

Hawai’i
Plastic pollution – marine based

Hawai’i
Plastic pollution – marine based
Hawai‘i
Plastic types

- The most used/produced plastic polymers
- Density is lower than sea water (buoyancy)
- It is expected to increase in the next decades - global demand for polyethylene resins will rise 4.0 percent per year to 99.6 million metric tons in 2018, valued at $164 billion (World Polyethylene, 2014)

Some Common Addition Polymers

<table>
<thead>
<tr>
<th>Name(s)</th>
<th>Formula</th>
<th>Monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene</td>
<td>-(CH₂⁻CH₂)ₙ⁻</td>
<td>ethylene CH₂=CH₂</td>
</tr>
<tr>
<td>low density (LDPE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td>-(CH₂⁻CH₂)ₙ⁻</td>
<td>ethylene CH₂=CH₂</td>
</tr>
<tr>
<td>high density (HDPE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP) different grades</td>
<td>-(CH₂⁻CH(CH₃))ₙ⁻</td>
<td>propylene CH₂=CHCH₃</td>
</tr>
<tr>
<td>Poly(vinyl chloride) (PVC)</td>
<td>-(CH₂⁻CHCl)ₙ⁻</td>
<td>vinyl chloride CH₂=CHCl</td>
</tr>
<tr>
<td>Poly(vinylidene chloride) (Saran A)</td>
<td>-(CH₂⁻CCl₂)ₙ⁻</td>
<td>vinylidene chloride CH₂=CCl₂</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>-(CH₂⁻CH(C₆H₅))ₙ⁻</td>
<td>styrene CH₂=CHC₆H₅</td>
</tr>
<tr>
<td>Polycrylonitrile (PAN, Orcon, Acrlan)</td>
<td>-(CH₂⁻CHCN)ₙ⁻</td>
<td>acrylonitrile CH₂=CHCN</td>
</tr>
<tr>
<td>Poly(tetrafluoroethylene) (PTFE, Teflon)</td>
<td>-(CF₂⁻CF₂)ₙ⁻</td>
<td>tetrafluoroethylene CF₂=CF₂</td>
</tr>
<tr>
<td>Poly(methyl methacrylate) (PMMA, Lucite, Plexiglas)</td>
<td>-(CH₂⁻C(CH₃)CO₂CH₃)ₙ⁻</td>
<td>methyl methacrylate CH₂=C(CH₃)CO₂CH₃</td>
</tr>
<tr>
<td>Poly(vinyl acetate) (PVAc)</td>
<td>-(CH₂⁻CHOOCOCH₃)ₙ⁻</td>
<td>vinyl acetate CH₂=CHOOCOCH₃</td>
</tr>
<tr>
<td>cis-Polyisoprene natural rubber</td>
<td>-(CH₂⁻CH=C(CH₃)-CH₂)ₙ⁻</td>
<td>isoprene CH₂=CH-C(CH₃)=CH₂</td>
</tr>
<tr>
<td>Polychloroprene (cis + trans) (Neoprene)</td>
<td>-(CH₂⁻CH=CCl-CH₂)ₙ⁻</td>
<td>chloroprene CH₂=CH-CCl=CH₂</td>
</tr>
</tbody>
</table>
Plastic pollution

Deleterious effects on the marine environment:
Plastic pollution

Deleterious effects on the marine environment:
- Pollution
- Entanglement and ingestion by wildlife, the modification of habitats
- Transport of alien species, ultimately toxic and harmful ones. *Ostreopsis sp.*
Plastic pollution

Deleterious effects on the marine environment:

- Pollution
- Entanglement and ingestion by wildlife
- Modification of habitats
- Transport of alien species, ultimately toxic and harmful

Ostreopsis sp.
Plastic pollution

Deleterious effects on the marine environment:
- Pollution
- Entanglement and ingestion by wildlife, the modification of habitats
- Transport of alien species, ultimately toxic and harmful ones. Ostreopsis sp.
Plastic pollution has deleterious effects on the marine environment:

- Pollution
- Entanglement and ingestion by wildlife, the modification of habitats
- Transport of alien species, ultimately toxic and harmful ones. *Ostreopsis sp.*
Plastic pollution

Deleterious effects on the marine environment:
- Pollution
- Entanglement and ingestion by wildlife, the modification of habitats
- Transport of alien species, ultimately toxic and harmful ones. Ostreopsis sp.
Plastic pollution on the marine environment:
- Pollution
- Entanglement and ingestion by wildlife
- Modification of habitats
- Transport of alien species, ultimately toxic and harmful ones. *Ostreopsis sp.*
Drifting plastic debris are potential vectors for microalgal dispersal.
Dinoflagellates occurred in more than 50% of the pelagic marine plastic debris (MPD) sampled, but rarely (13%) on benthic MPDs.

Diatoms appeared in almost 100% of both benthic and pelagic MPDs.

Coccolithophores are found on both benthic and pelagic MPDs.

Table 1. – Frequency of occurrence (%) of the most abundant taxonomic group on pelagic and benthic marine plastic debris (MPD).

<table>
<thead>
<tr>
<th>Group</th>
<th>Pelagic MPD n= 26</th>
<th>Benthic MPD n=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatoms</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>Fungi</td>
<td>85</td>
<td>13</td>
</tr>
<tr>
<td>Dinoflagellates</td>
<td>58</td>
<td>13</td>
</tr>
<tr>
<td>Coccolithophores</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Protozoa</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>Faecal pellet</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>4</td>
<td>44</td>
</tr>
</tbody>
</table>

Masó et al., 2016
Toxic (palytoxin analogues):
- Mass mortalities of benthic fauna (sea urchins, crabs,...)
- Respiratory irritation in humans (Mediterranean beaches) by means of aerosols
- Palytoxicosis (by ingestion of contaminated fishes in tropical areas) (??)
Respiratory syndromes

No human illness

Empty triangles indicate sites where blooms occurred but no human illness was recorded. Filled dots indicate sites where a respiratory syndrome was recorded in humans concomitant with blooms.

Ciminiello et al. 2014
Ostreopsis bloom in the water column

Macroalgae covered by the mucilage embedded Ostreopsis bloom

Llavaneres (catalan coast)

10^4-10^5 (10^6) cells L^-1
10^6 cells g^-1 FW

Water Temperature (°C)

Ostreopsis concentration

Microscopy images of Ostreopsis cf. ovata
Cells and a complex network of tiny filaments
Honsell et al. 2013

Experiment ongoing:
- Drinking water bottle
- Zip bags
- Cleaning towels

Plastic recovered with Ostreopsis
Photo: E. Flo

Plastic recovered with Ostreopsis
Photo: M. Vila
Hypothesis: Plastics can contribute to the invasion of *Ostreopsis* in the Mediterranean Sea and other marine areas.

Open questions:

• How plastic chemical composition affects *Ostreopsis* colonization?

• How the distribution of *Ostreopsis* attached to plastic is affected by water circulation in coastal areas? Is it dependent on the chemical characteristics of the plastics?

Important challenge:
Characterize water circulation in coastal and shallow waters using low spatio/temporal scales (ca. hours, meters).
Mahalo for your attention!
A case study: Llavaneres beach – joint epidemiology and ecology
Long-term experiment:

Surface to volume-ratio (DI)

Surface area

The Biological Electron Microscope Facility (BEMF), UH Manoa, administered by the PBRC, Tina Carvalho.
Long-term experiment:

Surface to volume-ratio (DI)

Surface area

The Biological Electron Microscope Facility (BEMF), UH Manoa, administered by the PBRC, Tina Carvalho.
Life Magazine 1955

Celebrated Throwaway Living
Plastic waste across the oceans

Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea

Marcus Eriksen1*, Laurent C. M. Lebreton2, Henry S. Carson3,4, Martin Thiel5,6,7, Charles J. Moore8, Jose C. Borrello9, Francois Galgani10, Peter G. Ryan11, Julia Reisser12

Figure 3. Model results for global weight density in four size classes. Model prediction of global weight density (g km-2; see colorbar) for each of four size classes (0.33–1.00 mm, 1.01–4.75 mm, 4.76–200 mm, and >200 mm). The majority of global weight is from the largest size class.
The Global Methane Budget & plastic waste

Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces

Weighing at Sea

70% = LDPE

Figure 3. Model results for global weight density in four size classes. Model prediction of global weight density (g km$^{-2}$; see colorbar) for each of four size classes (0.33–1.00 mm, 1.01–4.75 mm, 4.76–200 mm, and >200 mm). The majority of global weight is from the largest size class.

Erikson et al., 2014: Plastic Pollution in the World's Oceans