
Interleaving hierarchical task planning and motion constraint testing
for dual-arm manipulation*

Alejandro Suárez-Hernández, Guillem Alenyà and Carme Torras

Abstract— In recent years the topic of combining motion
and symbolic planning to perform complex tasks in the field
of robotics has received a lot of attention. The underlying
idea is to have access at once to the reasoning capabilities of
a task planner and to the ability of the motion planner to
verify that the plan is feasible from a physical and geometrical
point of view. The present work describes a framework to
perform manipulation tasks that require the use of two robotic
manipulators. To do so we employ a Hierarchical Task Network
(HTN) planner interleaved with geometric constraint verifica-
tion. In this framework we also consider observation actions
and handle noisy perceptions from a probabilistic perspective.
These ideas are put into practice by means of an experimental
set-up in which two Barrett WAM robots have to cooperatively
solve a geometric puzzle. Our findings provide further evidence
that considering explicitly physical constraints during task
planning, rather than deferring their validation to the moment
of execution, is advantageous in terms of execution time and
breadth of situations that can be handled.

I. INTRODUCTION

Motion planners can solve effectively the problem of
navigating the world attending to physical limitations. How-
ever, if the reasoning that the robotic agent is capable of
conducting is purely geometrical, it will be closer to an
automaton than to an intelligent entity. This could be enough
or even desirable in restricted environments like assembly
lines in industry. In other environments, one could come up
with a very intricate algorithm that results in a seemingly
intelligent behaviour. However, such a solution scales badly
and lacks adaptability.

On the other hand, the deduction capabilities provided by
symbolic planners introduce the ability to reason about the
objects that conform the world. General-purpose symbolic
planners operate with a description of the problem which
consists of the set of actions and the state fluents. Since the
nature of these descriptions is declarative, symbolic planners
are quite flexible and adaptable to different problems. This
also opens some interesting possibilities like automatic do-
main learning [1].

Our framework combines a symbolic Hierarchical Task
Network (HTN) planner, motion planning and geometrical
constraint handling to increase the effectiveness of raw
symbolic and motion planners for bi-manual tasks, common

*This work is partially funded by the European project IMAGINE
(Robots Understanding their Actions by Imagining their Effects), H2020-
ICT-2016-1-731761, by the Spanish Ministry of Science and Innovation Hu-
MoUR TIN2017-90086-R and the Spanish State Research Agency through
the Maria de Maeztu Seal of Excellence to IRI (MDM-2016-0656).

*Authors are with Institut de Robòtica i Informàtica Industrial
(CSIC-UPC). Llorens i Artigas 4-6, 08028 Barcelona, Spain. E-mails:
{asuarez,galenya,torras}@iri.upc.edu

in humanoid robotics. This work describes a simple but
effective idea: decompose the task into sub-goals, and test
the geometric constrains and dual arm collisions only at the
sub-goal level. Our main contributions are:

• We propose to codify different dual arm alternative
ways of implementing an action as distinct symbolic
methods in the HTN. This allows our framework to
choose preferentially to move both arms simultaneously,
and only when it is not possible, rely on actions moving
only one arm at a time. This leads to more efficient plans
in terms of time, that can be easily extended to safety
or other criteria.

• We propose to explicitly encode into the state the
uncertainty inherent in humanoid robot tasks, and also
to provide the robot with three classes of actions:
actions to solve the task, actions to reduce uncertainty
in perceptions, and actions to reshape the environment
to reduce the uncertainty in the manipulation.

In this paper we will present our ideas by means of a
particular application to provide better intuition about the
suggested methods. Imagine we have two robots that we
identify by their roles: the picker and the catcher. Their
objective is to solve a geometric matching puzzle in which
they have to insert several pieces with different shapes in
a sphere with cavities. The pieces are initially distributed
over a table in front of the robots. The picker’s purpose is
to grasp the pieces from the table and insert them into the
sphere, while the catcher has to facilitate the task showing
the relevant cavity without hindering the picker’s movements.
Percepts from the world come from a Kinect camera located
at the ceiling. A piece cannot be grasped if it is too close
to another one to avoid collisions of the gripper. Fig. 1
illustrates this set-up.

In Section II we review some related works and their
influence on our own efforts. Section III is a brief reminder
of the HTN theory for the unfamiliar reader. Section IV
describes how we handle the uncertainty about the percepts.
Section V deals with the domain representation. Section VI
shows our experimental results. Finally, Section VII wraps
up with some conclusions and ideas for future work.

II. RELATED WORK

The Hierarchical Planning in the Now (HPN) framework
proposed by Kaelbling and Lozano-Pérez [2] is very relevant
in the context of this paper. It consists in decomposing
highly abstract goals into increasingly specific tasks via
nested planning procedures until arriving to the primitive
operators. The hierarchy is expanded at runtime to avoid

(a) (b) (c)

Fig. 1. Depiction of the different elements in our proposed task, both in real life and in simulation. (a) Detail of the toy sphere and the pieces. Notice
that there is just one occurrence per shape and that the pieces have different colours. These facts are exploited by the perception routines. (b) Real WAM
robots in their roles of picker and catcher, together with other elements of the experiment. Notice the Kinect camera at the ceiling. (c) Recreation of the
proposed scenario in a simulation environment. We have employed the Gazebo robot simulator to extract some quantitative performance measures.

wasting computational resources if unexpected events arise,
rendering the plan invalid (i.e. the system plans with short
horizons). We believe that this is reminiscent of the HTN
paradigm we have adopted. The same authors have extended
HPN to operate in belief space and handle domains with
uncertainty [3]. This work emphasizes the importance of
planning observation actions to reduce the uncertainty of the
current beliefs which is also within our scope. They focus
on navigation and detection in pick-and-place domains, while
we focus on identification and assembly-like applications.

Highly related to our own work we find Ferrer-Mestres
et al. [4]’s approach to combine classical planning with
motion planning. The authors propose a strategy to deal
with symbolic/geometric domains with a functional variant
of the STRIPS language and putting great emphasis on
the preprocessing stage. In this preprocessing stage, they
compute several motion plans that can be reused in different
problems of the same domains. They focus on pick-and-place
problems consisting of objects distributed over one or more
tables. These objects have to be rearranged in a particular
way by a PR2 robot using one arm. However, we put more
emphasis on the interaction between two robotic arms, and
we prefer to avoid precomputing an exhaustive library of
motion plans.

It would seem that many authors adhere to the idea of
task decomposition for planning in robotics, like Nau et
al. [5], [6] and Marthi et al. [7], who introduced the so-
called High-Level Actions (HLA) and Hierarchical Angelic
Planning (HAP). In our case, we assume the whole procedure
of handling a piece is itself a whole task, which we refine
progressively into more concrete goals (picking the piece,
verifying its shape and inserting them).

The contribution of Fraser et al. [8] revolves around
compactly encoding large sets of execution paths with a
tree structure in which nodes represent behaviours. The latter
may represent atomic actions or an aggregation (AND, OR,
THEN) of other behaviours. This structure generalizes HTN
in the sense that plans can be modified online thanks to an
activation spreading mechanism. While we have opted for
HTN, we believe this framework to be compatible with ours

and may constitute an idea for future improvement.

III. HTN FORMALISM

For the sake of clarity in future sections, we summarize
here the fundamentals of HTNs. HTNs are a family of
planners that, like classical planners such as Fast Forward [9]
or LAMA [10], accept a declarative description of the domain
in the form of predicates that describe the planning state, and
operators that can be applied to modify the state. However,
HTNs are task driven (as opposed to action driven, like other
planners). This means that HTNs aim at achieving one or
more tasks, instead of reaching a goal state.

In order to fully specify the domain for a HTN planner,
one has to include the description of the tasks and methods
as well. Of course, these must be tailored to each particular
problem. In this sense, HTN planners sacrifice part of the
generality and ready-to-go capabilities of conventional plan-
ners that only need a very basic description of the domain
mechanics. In turn, the inclusion of the tasks and methods
can lead to a highly efficient planning procedure, since the
task hierarchy encodes exclusively the paths that are relevant
for solving a problem. This is the reason why we have
chosen the HTN paradigm: it can encode quite complex
control structures that may involve one or two robotic arms,
conditioned by different geometrical constraints.

Tasks may be primitive or compound. When we use the
term task we are referring to a task that belongs to either
of these types. A primitive task is essentially a wrapper
around an operator, and can be accomplished immediately
provided that the preconditions of the operator are satisfied.
On the other hand, compound tasks have to be decomposed
into increasingly simple sub-tasks, using one of the possibly
many methods that allow this decomposition. We will use the
term sub-task for tasks that come from the decomposition of
a task that precedes it in the task hierarchy.

Methods are the mechanism that allow a compound task
to be decomposed into one or more sub-tasks, which are
added to the planning stack (we stick to the case in which the
tasks are achieved in-order). One can define several methods
for the same task. In this case, the planner would try them

(a) (b) (c)

Fig. 2. (a) Green pieces as seen in the simulator. Pieces 1, 2 and 3 have a
hexagonal, octagram-like and triangular base, respectively. (b) Segmentation
of the pieces while they are resting on the table. (c) Segmentation of the
octagram while being held by the robot arm near to the camera.

one by one until finding a valid plan, or until there are
no possibilities left. Methods have a set of preconditions
that dictates under which circumstances they can be used
to perform the decomposition.

An HTN planner is ready to operate when provided with
a domain description and a set of tasks to be achieved. For
the sake of brevity, we will identify this set as a goal (not
to be confused with the specification of the goal state for a
conventional planner). Sometimes, we will talk about a sub-
goal when referring to one of the tasks in this set (e.g. the
insertion of an individual piece). For a more comprehensive
understanding of HTNs, we recommend reading Nau et al.’s
work about SHOP2 [11].

IV. HANDLING NOISY PERCEPTS

The detection and identification of the pieces consists of
colour segmentation and XOR-based shape comparison. It is
not our intention to cover here the details of the perception
pipeline since they are not relevant from a planning per-
spective. Instead, we would rather discuss their implications
in the development of the proposed framework. One of our
fundamental premises is that perception is noisy and the
system may have to consider additional observation actions
to obtain a better state estimation.

First of all let us identify the source of the uncertainty and
an adequate solution using our example. Fig. 2 illustrates the
main perception issue tackled, as described in this section.
The distance and perspective (Fig. 2a) makes it difficult
to identify the correct shape of the segmented blobs (see
Fig. 2b). The solution we propose to this issue is to add an
uncertainty reduction action to the repertoire of the robot for
bringing the piece closer to the camera and then perform a
careful examination. We show in Fig. 2c that this leads to a
much clearer contour and, therefore, a more accurate guess.

Carefully observing all the pieces has associated a sig-
nificant overhead. Therefore it is important to quantify the
uncertainty so we can actually plan when an observation
action is necessary. See for instance that in Fig. 2b the
triangle can be easily identified without close examination.
The same happens when there is a single piece of a certain
colour in the scene. Next, we outline our strategy for dealing
with this, which is generally applicable to reduce uncertainty
when discriminating objects within a given set.

Let us notice that there is just one piece per shape and
that the sets of shapes per colour are disjoint (e.g. a triangle
shall always be green, and green pieces consist exclusively
of the triangle, the octagram and the hexagon). We define
a matrix S = (sij), where the element sij is a number
between 0 and 1 (calculated by the perception algorithm) that
represents the similarity between the ith detected blob and
the jth shape. Now, we are interested in obtaining from S a
matrix of probabilities P = (pij). The pij element represents
the probability of the i→ j blob/shape assignment.

There are many ways of deriving such a matrix P from
the similarity matrix. We have chosen to use matrix scaling
to generate a doubly stochastic matrix [12] that meets our
requirements. However, there are other possibilities like
using undirected probabilistic graphical models (e.g. pairwise
Markov networks).

V. DOMAIN SPECIFICATION

Next we describe the information contained in the plan-
ning state, the available operators and the HTN methods.

A. State specification

The state is represented as a Python object. The problem
information is encoded with built-in types (e.g. list, dictionar-
ies, strings) as attributes. More specifically the state gathers
the following attributes:

• joints: virtual representation of the robot state, es-
sential for feeding the inverse kinematics solver.

• tool status: a boolean fluent indicating whether the
gripper is open or closed.

• holding: id (numeric index) of the currently held
object, or None if the gripper is empty.

• objects: a vector of piece locations.
• at: a dictionary from robot names (picker and catcher)

to potentially parameterized pose identifiers (e.g. (show-
cavity, hexagon)).

• P: the matrix of assignment probabilities.
• available shapes: the remaining shapes’ names

(those that have not been inserted yet according to
the robot’s information) as a vector. Moreover, The
similarity and probability matrices’ column ordering is
the same as in this list.

• cost: metric that we seek to minimize. In our case we
are measuring the execution time, although it is possible
to focus on any other measure like safety.

In the following we use the square brackets ([·]) notation
to denote the access-by-key operation (both for arrays and
dictionaries). Although matrices and lists are indexed by non-
negative integers (0-based indexing) we abuse notation and
employ the shape names to index the S and P columns for
simplicity. We will use colons inside the brackets to denote
the slice operation.

B. Operators

Now let us explain the different actions that we have
considered in this domain. These actions are typically known
as primitive tasks or operators in the HTN paradigm. For

each operator we provide a natural language description
along the pre-conditions and post-conditions:

move j one(robot, pose-id)

Description: Move one of the arms in joint space avoiding
obstacles and self-collisions.
Pre: at[robot] 6= pose-id ∧ ∃ motion plan
Post: at[robot] ← pose-id

move j both(pose-id1, pose-id2)

Description: Moves both arms simultaneously.
Pre: at[picker] 6= pose-id1 ∧
at[catcher] 6= pose-id2 ∧ ∃ motion plan
Post: at[picker] ← pose-id1 ∧
at[catcher] ← pose-id2

push(blob)

Description: picker action for pushing a piece. Used
for isolating pieces. The movement is organized in 4
waypoints (transitions in Cartesian space).
Pre: at[picker]← (push-stage, blob, 0) ∧∃ motion plan
Post: objects[blob] modified according to push di-
rection ∧ at[picker] ← (push-stage, blob, 3)

pick(blob)

Description: picker action for grasping a piece that is
resting on the table. The movement is organized in 3
waypoints, and the transitions are done in Cartesian space.
Pre: holding = ∅ ∧
at[picker] = (pre-grasp, blob) ∧∃ motion plan
Post: holding ← blob ∧
at[picker] ← (post-grasp, blob)

insert(blob, cavity)

Description: picker action for inserting the piece into a
particular cavity of the sphere. It removes the piece from
the problem along with the cavity’s shape. It modifies the
objects and available shapes arrays, and the S
and P matrices.
Pre: holding = object-id ∧
at[catcher] = (show-cavity, cavity) ∧
at[picker] = (pre-ungrasp, insert-pose) ∧∃ motion plan
Post: delete(objects, blob) ∧
delete(available shapes, cavity) ∧
delete row(S, blob) ∧ delete column(S, cavity) ∧
P ← scale matrix(S)

examine(blob, shape, min sim, max ent)

Description: close examination of a piece. The action will
fail if the label of the grasped piece cannot be identified
with enough certainty.
Pre: at[picker] = (close-look) ∧
holding = blob

Post: S[blob, shape] > min sim ∧
normalized entropy(P[blob,:]) < max ent ∧
argmaxs(P[blob,:]) = shape

The examine and push are, respectively, an uncertainty
reduction operator and a reshaping operator, according to the
action classes presented in Section I.

C. Compound tasks and methods

Fig. 3 shows the hierarchy of tasks and method for
handling a single piece, to be completed in-order. That is,
methods are tried from left to right and tasks are completed
from left to right as well. In order to account for the
possibility of a task being already done, we include methods
that succeed trivially with an empty task decomposition
should the task be already completed. For instance this is
the case of grasped and robot-at. In general we have
grouped the cheapest methods (the ones that require less
execution time) at the left hand side of the tree so these
are tried first.

VI. EXPERIMENTAL EVALUATION

Our framework has been implemented in a ROS Kinetic
environment and tested both in simulation and in the real
world. The interested reader can find demonstration videos
in the following web page: http://www.iri.upc.
edu/groups/perception/dual_arm_planning/.
The employed motion planning library is MoveIt! [13]. We
have used TRAC-IK [14] as the IK solver as in our case
provides better results than the KDL plugin.

We have simulated the set-up via Gazebo. We have evalu-
ated six different algorithms in three scenarios that are meant
to pose increasing levels of difficulty (see Fig. 4).

The first three algorithms (named A, B and C) evaluate
strategies about the perception noise and do not consider bi-
manual planning, while the three next algorithms (named D,
E and F) are variations of the framework presented in this
paper:

• A: always believe perception. Automaton with no sym-
bolic planning whatsoever. Only one arm moves at
a given moment. The arms adopt a resting (home)
position frequently to avoid collisions between them.
No close examinations are performed. The next piece to
insert is selected randomly. This is the simplest strategy
that solves the proposed problem. We expect it to fail
occasionally due to the non-ideal perception.

• B: never believe perception. Similar to A, but always
performing careful examinations. We include this al-
gorithm to assess the effectiveness of the careful ex-
amination actions. We foresee that this algorithm will

http://www.iri.upc.edu/groups/perception/dual_arm_planning/
http://www.iri.upc.edu/groups/perception/dual_arm_planning/

piece_handled(blob)

m1

grasped(blob) inserted(blob, shape=
argmaxs(ℙ(Shape(blob)=s)))

m2 m3

∅ isolated(blob) tool_ready() robot_at(pose-id=
 (picker, pre-ungrasp, blob))

pick(blob)

m12

ready_to_insert(blob, shape) insert(blob, shape)

m13

verified(blob, shape,
 min_sim, max_ent)

robots_at(
 pose-id1=(picker, pre-ungrasp, insert-pose),

 pose-id2=(catcher, show-cavity, shape))

m14 m15

∅ robot_at(
 (picker, close-look))

examine(blob, shape,
 min_sim, max_ent)

m4 m5

∅ robot_at(pose-id=
 (picker, push-stage, 0)) push(blob)

m9 m10 m11

∅ close_tool() find_location()

robot_at(
 found_location())

release(blob)

m16 m17 m18

∅ move_j_both(
 pose-id1, pose-id2)

move_j_both(
 home-id1, home-id2)

move_j_both(
 pose-id1, pose-id2)

m6 m7 m8

∅ move_j_one(pose-id) move_j_one(home-id)

move_j_one(pose-id)

Fig. 3. Hierarchy of tasks and methods. Tasks are represented with boxes. Primitive tasks are shaded and are explained in more detail in Section V-B.
Methods are represented with ellipses.

not make any mistake. However, we believe that the
execution of unnecessary actions will lead to a high
execution time.

• C: examine when necessary. Symbolic planning without
collision checking nor any other geometric considera-
tion. The home position is adopted frequently to avoid
collisions. Observations are planned according to the
strategy described in section Section IV. The piece
selected at each step is the one with least entropy. We
expect it to be closer to A in terms of execution time,
but without errors.

• D: lowest cost plan. This algorithm conforms to the
framework presented in this paper. The strategy for
choosing the next piece is to select the task with least
cost, i.e., the plan for each piece is computed and then
the one with the minimum execution time is selected.
We believe this will achieve a very low execution time.

• E: lowest cost plan with a longer horizon. Similar to D
but planning ahead with a horizon of 2, i.e., deciding at
each step the combination of two pieces (considering
exhaustively all the pairs) with least cost. It is our
intuition that this will result in lower execution time,
but at the cost of increasing greatly the complexity of
planning.

• F: simple position-based heuristic. Another variation of
our framework. In this case the pieces with the lowest
Y coordinate (nearest to the catcher) are handled first.
The rationale of this heuristic is that these are the pieces
that are most likely to make the catcher and the picker
interfere with each other. We expect the heuristic to be
beneficial specially at the beginning. Moreover it does
not rely on the planning cost to select the next piece, so
we believe that the time spent planning will be notably
lower.

The comparison is done in relation to the following
measures:

(a) (b) (c)

Fig. 4. Considered scenarios in the experimental evaluation. (a) Simplified
scenario with 5 pieces out of 10. (b) More complex scenario with the 10
pieces. (c) Scenario in which the push action is required to grasp some
pieces.

TABLE I
COMPARISON OF THE DIFFERENT ALGORITHMS IN THE PROPOSED

SCENARIOS. RESULTS FOR FIRST (FIG. 4A), SECOND (FIG. 4B) AND

THIRD (FIG. 4C) SCENARIOS SHOWN IN (A), (B) AND (C),
RESPECTIVELY.

Alg. Plan. (s) Exe. (s) Time (s) #Re-plan #Mist.

A - 140.3 ± 7.6 140.3 ± 7.6 - 2
B - 165.6 ± 8.0 165.6 ± 8.0 - 0
C 0.3 ± 0.1 140.4 ± 8.3 140.7 ± 8.4 2 0
D 74.8 ± 11.6 93.4 ± 9.7 168.2 ± 11.5 [2, 4] 0
E 264.4 ± 47.1 94.7 ± 6.6 359.1 ± 48.5 [2, 4] 0
F 24.7 ± 3.4 91.6 ± 6.3 116.3 ± 7.2 2 0

(a)

Alg. Plan. (s) Exe. (s) Time (s) #Re-plan #Mist.

A - 280.8 ± 9.3 280.8 ± 9.3 - 2
B - 325.7 ± 9.0 325.7 ± 9.0 - 0
C 0.7 ± 0.2 278.9 ± 9.7 279.6 ± 9.5 2 0
D 247.0 ± 8.9 178.0 ± 12.4 425.0 ± 18.5 [4, 6] 0
F 41.9 ± 1.9 176.2 ± 6.9 218.1 ± 6.7 4 0

(b)

Alg. Plan. (s) Exe. (s) Time (s) #Re-plan #Mist.

D 80.0 ± 8.8 103.7 ± 6.0 183.7 ± 10.2 2 0
F 26.0 ± 3.0 106.4 ± 9.6 132.3 ± 8.7 2 0

(c)

• Time: Time until the completion of the experiment. This
time is broken down into plan time and execution time.

• #Re-plan: number of times that the planner throws
away a plan and recomputes a new one (typically
because the grasped piece is not the expected one after
close examination). Each re-plan adds an average of
4.98s to the total time for algorithms D, E and F.
The contribution to the total time in the case of C is
considered negligible.

• #Mistakes: number of times that the robots try to insert
a piece in the wrong cavity. This is a non-recoverable
and severe failure. Re-planning is preferred.

The results are shown in Table I. Experiments were
executed five times to obtain the average and the standard
deviation of the time measures. For the #Re-plan and #Mis-
takes columns, the minimum and the maximum are reported
whenever they vary among the experiments.

The results show that examinations do contribute to avoid
mistakes. In all the experiments A consistently made two
mistakes, while in the other algorithms these mistakes are
replaced either by a significant increment in the execution
time (B) or by re-planning (C, D, E, F). The speed-up of
C with respect to B (while maintaining at 0 the number
of mistakes) evidences the effectiveness of the strategy
proposed in Section IV to handle uncertainty.

Much as we expected, the execution time when consid-
ering simultaneous movements of both arms is lower. This
can be already appreciated in D. However, D has associated
a very high planning time, so it falls behind both B and C
in terms of overall time.

On the other hand, considering a horizon of 2 as in
E scales badly, yielding impractical high planning times.
Contrarily to our expectations, the execution time seems to
be unaffected. For this reason, we stopped considering E in
scenarios 2 and 3.

In fact, in our experiments the usage of a simple heuristic
(as that of F) for deciding the next task results in much less
planning time with no noticeable impact on the execution.
This suggests that the greatest speed-up comes from the
management of the two arms rather than from finding the best
ordering of the pieces. To confirm this, we have computed the
execution time associated to all the permutations of pieces in
the first scenario. The lowest execution time is around 84.9s
which is not much better than the lowest execution time of
Table I (91.6s). However, the ordering of the sub-goals may
be much more relevant in other applications.

As shown at the beginning of the section, we also per-
formed a qualitative assessment of our implementation with
real WAM arms. The grasping and insertion tasks require
high precision, that could be achieved up to certain extent.

VII. CONCLUSIONS AND FUTURE WORK

This paper outlines a strategy to combine symbolic and
motion planning to perform manipulation tasks with dual
manipulators. We use HTNs to encode different sequences
of movements for both arms and to handle possible inter-
ferences between them. We tackle situations in which the

sub-goals can be easily identified and it is possible to plan
individually for each of them. At the same time we deal
with uncertainty about the current state and consider two
types of actions to reduce it, namely observation actions
and environment reshaping actions. We have successfully
tested our strategy on a puzzle-like problem with WAM arms.
The experiments conducted in simulation suggest that our
framework can deal naturally with problems that require bi-
manual capabilities, reducing the execution time with respect
to more conservative algorithms. The proposed framework
has been tested with real-world robots, as well.

In future work we would like to put emphasis in dealing
with dynamic, factoring in exogenous effects [15]. Moreover,
we believe that more sophisticated decomposition strategies
(like the one proposed by Fraser et al. [8]) could be in-
corporated to our framework to solve tasks in more complex
scenarios. Another line of work that we would like to explore
is the optimization of other metrics instead of (or in addition
to) execution time.

REFERENCES

[1] D. Martı́nez, G. Alenya, and C. Torras, “Relational reinforcement
learning with guided demonstrations,” Artificial Intelligence, vol. 247,
pp. 295–312, 2017.

[2] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE International Conference on Robotics
and Automation, 2011, pp. 1470–1477.

[3] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[4] J. Ferrer-Mestres, G. Francès, and H. Geffner, “Combined task
and motion planning as classical ai planning,” arXiv preprint
arXiv:1706.06927, 2017.

[5] M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated
planning and acting: A position paper,” Artificial Intelligence, vol. 208,
pp. 1–17, 2014.

[6] D. S. Nau, M. Ghallab, and P. Traverso, “Blended Planning and
Acting: Preliminary Approach, Research Challenges.” in AAAI, 2015,
pp. 4047–4051.

[7] B. Marthi, S. J. Russell, and J. A. Wolfe, “Angelic hierarchical
planning: Optimal and online algorithms.” in ICAPS, 2008, pp. 222–
231.

[8] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, D. Feil-Seifer,
and G. Bebis, “A compact task representation for hierarchical robot
control,” in IEEE International Conference on Humanoid Robots,
2016, pp. 697–704.

[9] J. Hoffman and B. Nebel, “The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search,” Journal of Artificial Intelligence
Research, vol. 14, no. 27, pp. 253–302, 2001.

[10] S. Richter and M. Westphal, “The LAMA Planner: Guiding Cost-
Based Anytime Planning with Landmarks,” Journal of Artificial Intel-
ligence Research, vol. 39, pp. 127–177, 2010.

[11] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN planning system,” Journal of Artificial
Intelligence Research (JAIR), vol. 20, pp. 379–404, 2003.

[12] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and
doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21,
no. 2, pp. 343–348, 1967.

[13] I. A. Sucan and S. Chitta. ”MoveIt!”. [Online]. Available:
http://moveit.ros.org

[14] P. Beeson and B. Ames, “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics,” in IEEE International
Conference on Humanoid Robots, 2015, pp. 928–935.

[15] D. Martı́nez, G. Alenya, T. Ribeiro, K. Inoue, and C. Torras, “Re-
lational reinforcement learning for planning with exogenous effects,”
Journal of Machine Learning Research, vol. 18, no. 1, pp. 2689–2732,
2017.

http://moveit.ros.org

	Introduction
	Related work
	HTN formalism
	Handling noisy percepts
	Domain specification
	State specification
	Operators
	Compound tasks and methods

	Experimental evaluation
	Conclusions and future work
	References

