DEVICE FOR AUTOMATICALLY MEASURING THE AMOUNT OF FLOWING LIQUID AND THE METHOD FOR MEASURING THE LATTER

Device for measuring the amount of flowing liquid, which device is composed of a liquid recipient (2) divided into two chambers (4, 5), an external valve (6), a flexible tube (7) and a calculation unit (10) and is characterized in that the liquid recipient (2) has two capacitive sensors (11, 12) installed in the external wall thereof, which sensors measure the liquid level in each chamber. The measurement method is characterized in that the volume of liquid V contained in the first chamber (4) of volume R₁ is measured with an interval T₁ using the first capacitive sensor (11), and, when V ≥ R₁ - c, it is determined whether the liquid is allowed to pass to the second chamber (5), where the volume is measured using the second capacitive sensor (12), or the external valve (6) is opened and the measurement process is restarted.

Figure 1
OBJECT OF THE INVENTION

[0001] The invention belongs to the field of medicine and can be used particularly for automation of liquid measurements which are introduced into or coming out from a patient.

BACKGROUND OF THE INVENTION

[0002] Some known technical solutions (patent EP-0 008 450, patent EP-0 471 413) envisage a collecting transparent recipient for urine having a scale by means of which it is possible to check the total volume collected. In these solutions, the verification and registration of the increase of urine volume should be performed by the nursing staff periodically.

[0003] In patent DE-32 40 191 ultrasonic sensors are used to register the level reached by the fluid in the urine collecting device. This technique is expensive and unreliable, as it should be ensured that the apparatus does not swing, which is a requirement difficult to achieve in intensive care units.

[0004] Patent DE-40 23 336 envisages an apparatus for urine control in which, according to the capacity, the filling volume of urine accumulated in a measuring chamber is measured, wherein the level of urine affects the ability of a measuring capacitor. In this technique, the assembly is suitable only for a single-use part, which is rather costly. Furthermore, to achieve long-term use of the system, it is necessary to regularly clean the chamber and the measuring capacitor, as otherwise the formation of sediments can lead to false results.

[0005] U.S. Patent 4,745,929 envisages an apparatus in which the level of fluid reached in a column of urine is recorded through a series of optical barriers that overlap in a staggered manner. This device requires a system of valves actuated by means of electromagnets, which involves high energy consumption.

[0006] Patent DE- 35 44 031 describes a device intended for measuring the weight of liquid (urine), whereas patent DE- 43 38 687, envisages an urinometer provided with two angle sensors that are used to compensate for the inclination of its housing, thereby correcting the error of the force measurement due to the weight. These technical solutions have the disadvantage of having a rather complex embodiment, which increases the construction costs, hampering the manufacture of these measuring devices for their daily operation in an intensive care unit.

DESCRIPTION OF THE INVENTION

1. Brief description of the invention.

[0007] Device for automatically measuring the amount of flowing liquid, which device is composed by a support (1) in which it is installed a liquid recipient (2) the interior of which is divided into two chambers that are communicated via at least one opening (3) located on the top, a first chamber (4) of small size suitable for measurements in which a high resolution is desired and a second larger chamber (5) for measurements that do not require high resolution, an external valve (6) at the bottom of the liquid recipient (2) which allows simultaneously evacuating the first chamber (4) and the second chamber (5) of the liquid recipient (2), a flexible tube (7) that allows the entry of liquid by the top of the first chamber (4) of the liquid recipient (2), a drainage pipe (8) connected to the external valve (6), an electronic unit (9) and linked to it, a calculation unit (10), and which is characterized in that the liquid recipient (2) has two capacitive sensors (11, 12) installed on the outer wall thereof so that the longitudinal area of the first capacitive sensor (11) spans the full height of the first chamber (4) and the longitudinal area of the second capacitive sensor (12) spans the full height of the second chamber (5) and both the first capacitive sensor (11) and the second capacitive sensor (12) are connected to the electronic unit (9), to which they continuously send the electric signal generated indicative of the level of liquid contained in each of the chambers of the liquid recipient (2).

2. Detailed Description of the Invention

[0008] The present invention is related to a device for measuring the amount of liquid that flows, for example, the amount of urine excreted by a patient. Its simple design greatly reduces the number of parts required for its manufacture, and significantly reduces the costs of those single-use parts that must be replaced for each new patient. Furthermore, its simplicity facilitates both its use and its preparation in hospitals from widely available industrial elements. Although the device described here has been designed primarily for automatic monitoring of the flow of urine of a patient having a catheter, its application to other liquids, such as blood, is not ruled out.

[0009] The device is composed of a wood, plastic or metal support (1) in which a plastic liquid recipient (2) is installed parallel to the ground, the interior of which is divided into two chambers that communicate through the top, a first chamber (4) of small size suitable for the measurements in which a high resolution is desired, and a second larger chamber (5)
for measurements that do not require high resolution, an external valve (6) at the bottom of the liquid recipient (2) which allows simultaneously evacuating the first chamber (4) and the second chamber (5) of the liquid recipient (2), a flexible tube (7) (made of, for example, plastic polymer) that allows the entry of liquid from the source (for example, a patient having a catheter) by the top of the first chamber (4) of the liquid recipient (2), a drainage pipe (8) (made of, for example, plastic polymer) connected to the external valve (6), an electronic unit (9) and, linked to it, a calculation unit (10). The liquid recipient (2) may have, for example, plastic tabs, by way of flanges, for attachment to the support (1). The liquid recipient (2) may be constructed such that the first chamber (4) and the second chamber (5) are adjacent and communicate through at least one opening (3) located at the top of said chambers. The liquid recipient (2) may also be constructed so that the first chamber (4) is contained within the second chamber (5) and they communicate via at least one opening (3) located at the top of the first chamber (4). Moreover, the device for automatically measuring the amount of flowing liquid has two noninvasive capacitive sensors (11, 12) installed (for example, adhered) on the outer wall of the liquid recipient (2), such that the longitudinal area of the first capacitive sensor (11) spans the full height of the first chamber (4) and the longitudinal area of the second capacitive sensor (12) spans the full height of the second chamber (5) and both the first capacitive sensor (11) and the second capacitive sensor (12) are connected to the electronic unit (9), to which they continuously send the electric signal generated indicative of the level of liquid contained in each of the chambers of the liquid recipient (2). The noninvasive feature of the capacitive sensors (11, 12) allows carrying out the measurements of the liquid level in each of the chambers without contact between the sensor and the fluid, and this eliminates the problems of sterilization. The electronic unit (9) consists of the circuitry necessary to convert the physical quantity measured in a digitized value. For the calculation unit (10), for example, a personal computer or a microcontroller can be used. The technical solution described has a simple design that significantly reduces the number of single-use parts that have to be replaced with each new patient, reducing costs and facilitating its use.

[0010] The liquid recipient (2) may have, on its external wall, two holders (13) made by way of sleeves which allow installing both the first capacitive sensor (11) and the second capacitive sensor (12) by simply inserting the same inside the holders (13). This embodiment facilitates the installation process of the capacitive sensors (11, 12), and enables the reuse of the same when it is necessary to replace the liquid recipient (2). The holders (13) can be manufactured, for example, with the same material used for manufacturing the liquid recipient (2).

[0011] The device for automatically measuring the amount of flowing liquid may contain a base (14) made of wood, plastic or metal attached to the support (1), for example, by means of screws, in which the capacitive sensors (11, 12) are fixed. This embodiment allows easily assembling and disassembling the liquid recipient (2) on the support (1) and reusing the capacitive sensors (11, 12) since said capacitive sensors (11, 12) would be attached to the base (14) when the liquid recipient (2) is disassembled.

[0012] The device for automatically measuring the amount of flowing liquid may contain an adjustable and removable frame (15) made of metal or plastic, which allows the configuration of the assembly of the capacitive sensors (11, 12) on the outer wall of the liquid recipient (2). This adjustable and removable frame (15) can be made from at least four rigid elements the length of which can be varied (16), for example toothed telescopic guides the ends of which are joined by brackets (17), and in such a way that the capacitive sensors (11, 12) are installed, by attachment elements (18) (for example, screws or pins), on at least one of these rigid elements the length of which can be varied (16). This embodiment allows both the first capacitive sensor (11) and the second capacitive sensor (12) to be reused even with different models of liquid recipient (2).

[0013] The external valve (6) can be provided with an actuator, for example an electric motor or an electromagnet, electrically connected to the electronic unit (9), which automatically controls its opening and closing.

[0014] The device for automatically measuring the amount of flowing liquid can have a liquid collection bag (19) made of a thermoplastic polymer, such as polyvinyl chloride. This liquid collection bag (19) is connected to the drainage pipe (8) and is situated at a level lower than the liquid recipient (2), and its volume is n times higher than the volume of the liquid recipient (2), where n is an integer greater than one. Due to its low manufacturing cost, the liquid collection bag (19) need not be reused, so it can be discarded after each use.

[0015] The connection between the electronic unit (9) and the calculation unit (10) can be done wirelessly, for example via Bluetooth or Wi-Fi. This embodiment, by eliminating the cables, gives autonomy to the device, and allows it to be easily transported together with the patient.

Functional description of the device

[0016] Initially, the connection of the flexible tube (7) with the source of liquid is carried out, for example, a patient having a catheter in the intensive care unit and whose volume of urine excreted on a determined time interval we want to monitor. Next, the characteristics of the liquid recipient (2) to be used, for example, the dimensions of the first chamber (4) and the second chamber (5) are selected in the calculation unit (10). With this information, the calculation unit (10) can adjust the measurement field of the first capacitive sensor (11) and of the second capacitive sensor (12) and determine the values R₁ and R₂ corresponding to the maximum volumes of liquid that the first chamber (4) and the
second chamber (5) may contain, respectively. Consecutively, a first cycle begins in which the measurement i of the volume of liquid \(V_i \) contained in the first chamber (4) of the liquid recipient (2) with a predetermined time interval \(T \) is carried out, using for this the first capacitive sensor (11) and the electronic unit (9). The value \(V_i \) is transmitted from the electronic unit (9) to the calculation unit (10), where it is stored. This transmission can be performed serially RS-232C or wirelessly (Bluetooth or Wi-Fi). In the calculation unit (10) the relative flow of the liquid that has flowed is calculated in accordance with the following formula:

\[
Q_i = \frac{V_i - V_{i-1}}{T} \quad \text{for} \; i = 1, 2, 3, \ldots
\]

[0017] Simultaneously, the calculation unit (10) is responsible for verifying that the calculated value \(Q_i(t) \), is lower than the upper limit value \(Q_u \) and higher than the lower limit value \(Q_l \). Limit values \(Q_u \) and \(Q_l \) are defined in advance, before starting the process. If at any time the calculation unit (10) verifies that the condition \(Q_u < Q_i(t) < Q_l \) is not being met, a warning signal is generated for the operator, for example, a visual and audible warning. If at the time when \(V_i \geq R_1 \), where \(\varepsilon \) is a predetermined small value, the total time required to have reached said volume of liquid in the first chamber (4) exceeds a predetermined value \(L_t \), it is proceeded to opening the external valve (6). This opening can be done manually, generating for this an audible warning to alert a human operator, or automatically using an actuator, for example, an electromagnet or an electric motor. The external valve (6) will remain open for a predetermined time \(T_{v1} \), which will allow emptying the liquid recipient (2). After \(T_{v1} \) has passed, the external valve (6) is closed (manually or automatically) and the measurement cycle begins again.

[0018] If at the time when \(V_i \geq R_1 \), the total time required to have reached said volume of liquid in the first chamber (4) is equal to or less than a predetermined value \(L_t \), it means that liquid production is high, therefore, high resolution in measuring the amount of flowing liquid is not required. Therefore, and in order to avoid frequent openings of the external valve (6), which could cause considerable stress to said valve if the fluid production rate is very high, in addition to being a very heavy task in the case of being performed by a human operator, the liquid will be allowed to fill the first chamber (4) of the liquid recipient (2), whereby the liquid will begin to move from the first chamber (4) to the second chamber (5) by means of the opening (3) communicating said chambers and a second cycle will begin in which the measurement \(i \) of the volume of liquid \(W_i \) contained in the second chamber (5) of the liquid recipient (2) will be carried out with a predetermined time interval \(T_2 \) using for this the second capacitive sensor (12) and the electronic unit (9). The value \(W_i \) is transmitted from the electronic unit (9) to the calculation unit (10), where it is stored. Then, in the calculation unit (10) the relative flow of the liquid that has flowed is calculated in the calculation unit (10) in accordance with the following formula:

\[
S_i = \frac{W_i - W_{i-1}}{T_2} \quad \text{for} \; i = 1, 2, 3, \ldots
\]

[0019] Simultaneously, the calculation unit (10) is responsible for verifying that the calculated value \(S_i(t) \), is lower than the upper limit value \(S_u \) and higher than the lower limit value \(S_l \). Limit values \(S_u \) and \(S_l \) are defined in advance, before starting the process. If at any time the calculation unit (10) verifies that the condition \(S_u < S_i(t) < S_l \) is not being met, a warning signal is generated for the operator, for example, a visual and audible warning. The process stops at the point at which \(W_i > R_2 - E \), where \(E \) is a predetermined small value, or when the critical condition \(S_i(t) < S_u \) occurs. Next the external valve (6) is opened. This opening can be done manually or automatically by means of an actuator, for example, an electromagnet or an electric motor. The external valve (6) will remain open for a predetermined time \(T_{v2} \), which will allow emptying the liquid recipient (2). After \(T_{v2} \) has passed, the external valve (6) is closed (manually or automatically) and the first cycle begins again.

DESCRIPTION OF THE DRAWINGS

[0020] For a better understanding of what is written in this specification, some drawings are accompanied in which, only by way of example, practical cases of embodiments of the device are represented.
Figure 1 shows the configuration of the device for automatically measuring the amount of flowing liquid. The device is composed by a support (1) from which a liquid recipient (2) hangs, the interior of which is divided into two chambers, a first chamber (4) of small size suitable for the measurements where a high resolution is desired and a second larger chamber (5) for measurements that do not require high resolution, an external valve (6) at the bottom of the liquid recipient (2) which allows simultaneously evacuating the first chamber (4) and the second chamber (5) of the liquid recipient (2), a flexible tube (7) that allows the entry of liquid by the top of the first chamber (4) of the liquid recipient (2), a drainage pipe (8) connected to the external valve (6), an electronic unit (9) and, linked to it, a calculation unit (10). The liquid recipient (2) is constructed in such a way that the first chamber (4) and the second chamber (5) are adjacent and communicate through an opening (3) located at the top of the wall they share. Moreover, the device for automatically measuring the amount of flowing liquid has two capacitive sensors (11, 12) installed on the outer wall of the liquid recipient (2), such that the longitudinal area of the first capacitive sensor (11) spans the full height of the first chamber (4) and the longitudinal area of the second capacitive sensor (12) spans the full height of the second chamber (5) and both the first capacitive sensor (11) and the second capacitive sensor (12) are connected to the electronic unit (9).

Figure 2 shows an embodiment of the liquid recipient (2), wherein it has on its outer wall, two holders (13) made by way of sleeves which allow installing both the first capacitive sensor (11) and the second capacitive sensor (12) by simply inserting the same inside the holders (13).

Figure 3 shows another embodiment of the device for automatically measuring the amount of flowing liquid containing a base (14) connected to the support (1), to which the capacitive sensors (11, 12) are attached and which allows to install the liquid recipient (2) in the support (1).

Figure 4 shows an embodiment of the device for automatically measuring the amount of flowing liquid containing an adjustable and removable frame (15) for configuring the attachment of capacitive sensors (11, 12) on the outer wall of the liquid recipient (2). This adjustable and removable frame (15) is made from four rigid elements the length of which can be varied (16), the ends of which are joined by brackets (17), and in such a way that the capacitive sensors (11, 12) are installed on one of these rigid elements the length of which can be varied (16), by means of attachment elements (18).

Figure 5 refers to an embodiment of the device for automatically measuring the amount of flowing liquid wherein the liquid recipient (2) is constructed in such a way that the first chamber (4) is contained within the second chamber (5) and communication between the two chambers is carried out by means of two openings (3) located on the top part of the first chamber (4).

Figure 6 refers to an embodiment of the device wherein there is a liquid collection bag (19) connected to the drainage pipe (8) and located at a level lower than the liquid recipient (2) and the volume of which is n times higher than the volume of the liquid recipient (2), n being an integer greater than one.

List of designations

[0021]

1. Support
2. Liquid recipient
3. Opening
4. First chamber
5. Second Chamber
6. External valve
7. Flexible tube
8. Drainage pipe
9. Electronic unit
10. Calculation unit
11. First capacitive sensor
12. Second capacitive sensor
13. Holders
14. Base
15. Adjustable and removable frame
16. Rigid elements the length of which can be varied
17. Brackets
18. Attachment elements
19. Collection bag
PREFERRED EMBODIMENT OF THE INVENTION

[0022] The present invention is further illustrated by the following example, which does not intend to limit its scope.

Example 1

[0023] The device for automatically measuring the amount of urine excreted is composed by a plastic liquid recipient (2) hanging from the patient’s bed (which acts as a support (1)) and the interior of which is divided into two chambers; a first chamber (4) of small size suitable for the measurements where a high resolution is desired and a second larger chamber (5) for measurements that do not require high resolution, an external valve (6) at the bottom of the liquid recipient (2) which allows simultaneously evacuating the first chamber (4) and the second chamber (5) of the liquid recipient (2), an elbow free flexible tube (7) made of transparent, plastic polymer and with a length of 110 cm connecting the patient having a catheter to the top of the first chamber (4) of the liquid recipient (2), a drainage pipe (8) made of stiff plastic polymer connected to the external valve (6), two commercial capacitive sensors (11, 12) for continuous measurement of liquid level without contact with the fluid, an electronic unit (9) and, linked to it, a calculation unit (10). The liquid recipient (2) is a sterile commercial urinometer, model Unometer 500 manufactured in styrene acrylonitrile such that the first chamber (4) of 40 cm³ is contained within the second chamber (5), which has a capacity of 500 cm³, and these chambers communicate via two openings (3) located at the top of the first chamber (4). The urinometer also has an upper opening with a filter for equalizing the internal pressure with the external pressure with no risk of bacterial contamination, tabs for attaching it to the support (1) and a 2-liter urine collection bag (19) made of flexible plastic polymer connected to the drainage pipe (8). The capacitive sensors (11, 12) used are of the CLC Series from SensorTechnics, featuring a resolution of 6 bits and an average response time of 50 ms, and are attached to the external front wall of the liquid recipient (2), so that the longitudinal area of the first capacitive sensor (11) spans the full height of the first chamber (4) and the longitudinal area of the second capacitive sensor (12) spans the full height of the second chamber (5) and both the first capacitive sensor (11) and the second capacitive sensor (12) are connected to the electronic unit (9), to which they continuously send the generated voltage signal indicative of the level of liquid contained in each of the chambers of the liquid recipient (2). The electronic unit (9) has an interface for converting the TTL levels from the first CLC capacitive sensor (11) from SensorTechnics and from the second capacitive sensor (12) into TIA/EIA-232-F levels, thereby allowing serial transmission of measurements to the calculation unit (10). A personal computer is used as calculation unit (10), which allows storing the urine flow values measured in their respective time intervals.

[0024] The method for automatically measuring the amount of urine excreted by the patient is characterized in that, initially, the connection of the flexible tube (7) to the patient that has a catheter and who is in the intensive care unit is carried out. Next, the Unometer 500 is selected in the calculation unit (10) as the liquid recipient (2) to be used. With this information the calculation unit (10) adjusts the measurement range of the first capacitive sensor (11) from 0 cm³ to 40 cm³, the measurement range of the second capacitive sensor (12) from 40 cm³ to 500 cm³, \(R_1 = 40 \text{ cm}^3 \) and \(R_2 = 500 \text{ cm}^3 \). Consequently, a cycle begins in which the measurement \(i \) of the volume of liquid \(V_i \) contained in the first chamber (4) of the liquid recipient (2) is performed with a time interval of 2 minutes, by using the first capacitive sensor (11) and the electronic unit (9). The value \(V_i \) is then transmitted from the electronic unit (9) to the calculation unit (10), where it is stored. This transmission is performed serially RS-232C. In the calculation unit (10) the relative flow of urine that has flowed is calculated in accordance with the following formula:

\[
Q_i = \frac{V_i - V_{i-1}}{T_1} \quad \text{for } i = 1, 2, 3, \ldots
\]

[0025] Simultaneously, the calculation unit (10) is responsible for verifying that \(Q_0 < Q_i \), \(i < Q_u \). If at any time the calculation unit (10) verifies that this condition is not being met, a visual and audible warning signal is generated for the operator. These limit values are very important, since the lower limit \(Q_0 \) indicates that the patient is in anuria (they do not produce any urine) or in oliguria (they produce an excessively low amount of urine), and the upper limit \(Q_u \) indicates that the patient is in polyuria (they produce an excessively high amount of urine), possibly triggered by excessive salt or glucose in the blood, or by a drug to which the patient is more sensitive than expected. Anuria, oliguria and polyuria all carry a potential life-threatening risk and these are situations that must be analyzed in more detail within the individual context of each patient. Hence the interest in having a device capable of monitoring their occurrence and of immediately notifying the nursing staff.

[0026] If at the time when \(V_i \geq R_1 - \varepsilon \), where \(\varepsilon \) is 2 cm³, the total time required to have reached said volume of liquid
in the first chamber (4) exceeds a predetermined value L_f, the external valve (6) is opened in order to empty the first chamber (4). L_f is given by:

$$L_f = \frac{0.5 \cdot P}{R_i - \varepsilon}$$

where the constant $0.5 \text{ cm}^3/(\text{kg h})$ is the minimum production of urine per kilo of patient body weight and per hour to be within normality and P is the patient’s body mass. The opening of the external valve (6) is performed manually by nursing staff of the intensive care unit. The calculation unit (10) generates an audible warning to alert the nursing staff that said opening should be carried out. After the time needed for emptying the first chamber (4) has passed, the nursing staff shuts the external valve (6) and it is proceeded to a new measurement cycle.

[0027] If at the time when $V_i \geq R_1 \cdot c$, the total time required to have reached said volume of liquid in the first chamber (4) is equal to or less than a predetermined value L_f, the level of urine production is within the therapeutic objectives and the accurate monitoring of the urine production of the patient is not necessary. Therefore, and in order to avoid the need for continuous interventions of the nursing staff to open the external valve (6), the liquid will be allowed to fill the first chamber (4) and start to seep into the second chamber (5). A second cycle then begins in which the measurement i of the volume of liquid W_i contained in the second chamber (5) of the liquid recipient (2) is carried out with a time interval of 5 minutes, using for this the second capacitive sensor (12) and the electronic unit (9). The value W_i is transmitted from the electronic unit (9) to the calculation unit (10), where it is stored. This transmission is performed serially RS-232C. Then, the relative flow of urine that has flowed is calculated in the calculation unit (10) in accordance with the following formula:

$$S_i = \frac{W_i - W_{i-1}}{T_2}$$

for $i = 1, 2, 3, ...$

[0028] Simultaneously, the calculation unit (10) is responsible for verifying that the calculated value $S_i(t)$ is lower than the upper limit value S_u which indicates that the patient would be in polyuria, and higher than the lower limit value S_D, which indicates that the patient would be in anuria or oliguria, being $S_u = Q_u$ and $S_D = Q_D$. If at any time the calculation unit (10) verifies that this condition is not being met, a visual and audible warning signal is generated for the operator. The process stops at the point at which $W_i > R_2 \cdot E$, where E is equal to 25 cm3. That is, the process stops when the liquid that has flowed is sufficient to fill 95% of the capacity of the second chamber (5) of the liquid recipient (2). The process can also stop if the critical condition $S_i(t) < S_P$ occurs. Next the external valve (6) is opened manually, allowing completely emptying the liquid recipient (2) into the urine collection bag (19). After the time required for emptying the liquid recipient (2), the external valve (6) is closed manually and the first cycle begins again.

Claims

1. Device for automatically measuring the amount of flowing liquid, which device is composed by a support (1) in which it is installed a liquid recipient (2) the interior of which is divided into two chambers that are communicated via at least one opening (3) located on the top, a first chamber (4) of small size suitable for measurements in which a high resolution is desired and a second larger chamber (5) for measurements that do not require high resolution, an external valve (6) at the bottom of the liquid recipient (2) which allows simultaneously evacuating the first chamber (4) and the second chamber (5) of the liquid recipient (2), a flexible tube (7) that allows the entry of liquid by the top of the first chamber (4) of the liquid recipient (2), a drainage pipe (8) connected to the external valve (6), an electronic unit (9) and linked to it, a calculation unit (10), and which is characterized in that the liquid recipient (2) has two capacitive sensors (11, 12) installed on the outer wall thereof so that the longitudinal area of the first capacitive sensor (11) spans the full height of the first chamber (4) and the longitudinal area of the second capacitive sensor (12) spans the full height of the second chamber (5) and both the first capacitive sensor (11) and the second capacitive sensor (12) are connected to the electronic unit (9), to which they continuously send the electric signal generated indicative of the level of liquid contained in each of the chambers of the liquid recipient (2).

2. Device for automatically measuring the amount of flowing liquid according to claim 1, which is characterized in
that the liquid recipient (2) has on its external wall, two holders (13) made by way of sleeves, which allow installing both the first capacitive sensor (11) and the second capacitive sensor (12) by simply inserting the same inside the holders (13).

3. Device for automatically measuring the amount of flowing liquid according to claim 1, which is characterized by containing a base (14) connected to the support (1), to which the capacitive sensors (11, 12) are attached and which allows to install and remove the liquid recipient (2).

4. Device for automatically measuring the amount of flowing liquid according to claim 1, which is characterized by containing an adjustable and removable frame (15), which allows configuring the assembly of the capacitive sensors (11, 12) on the outer wall of the liquid recipient (2) and which is made from at least four rigid elements, the length of which can be varied (16) and the ends of which are joined by brackets (17), and the capacitive sensors (11, 12) are installed, by means of attachment elements (18), on at least one of these rigid elements, the length of which can be varied (16).

5. Device for automatically measuring the amount of liquid flowing according to claims 1-4, which is characterized in that the external valve (6) is equipped with an actuator that is electrically connected to the electronic unit (9).

6. Device for automatically measuring the amount of liquid flowing according to claims 1-5, which is characterized by having a liquid collection bag (19) connected to the drainage pipe (8) and located at a level lower than the liquid recipient (2) and the volume of which is n times higher than the volume of the liquid recipient (2), n being an integer greater than one.

7. Device for automatically measuring the amount of liquid flowing according to claims 1-6, which is characterized in that the connection between the electronic unit (9) and the calculation unit (10) is performed wirelessly.

8. Method for automatically measuring the amount of flowing liquid using a device according to claims 1-7, which is characterized in that

a) the connection of the flexible tube (7) to the liquid source is carried out.

b) the characteristics of the liquid recipient (2) to be used are selected in the calculation unit (10), so that the calculation unit (10) can not only adjust the measurement field of the first capacitive sensor (11) and of the second capacitive sensor (12) depending on the dimensions of the first chamber (4) and the second chamber (5), respectively, but it can also determine the values R_1 and R_2 corresponding to the maximum volumes of liquid that the first chamber (4) and the second chamber (5), respectively, may contain.

c) a cycle is started in which the measurement i of the liquid volume V_i contained in the first chamber (4) of the liquid recipient (2) with a predetermined time interval T_i is carried out, using for this the first capacitive sensor (11).

d) the relative flow of the liquid that has flowed is calculated in the calculation unit (10) in accordance with the following formula:

$$Q_i = \frac{V_i - V_{i-1}}{T_i}$$

for $i = 1, 2, 3, ...$

e) a warning signal is generated for the operator in the case that the condition $Q_D < Q_i$ (i) $< Q_p$ is not met, where Q_D and Q_p are predetermined limit values.

f) if at the time when $V_i \geq R_2 - \varepsilon$, where ε is a predetermined small value, the total time required to have reached said volume of liquid in the first chamber (4) exceeds a predetermined value L_1, it is proceeded to opening the external valve (6) for a time T_{exp}, during which complete emptying of the first chamber (4) occurs and, after this time, the external valve (6) is closed and return to step (c).

g) if at the time when $V_i \geq R_2 - \varepsilon$, where ε is a predetermined small value, the total time required to have reached said volume of liquid in the first chamber (4) is equal to or less than a predetermined value L_1, the liquid is allowed to overflow from the first chamber (4) into the second chamber (5) and a second cycle starts in which the measurement i of the volume of liquid V_i contained in the second chamber (5) of the liquid recipient (2) with a predetermined time interval T_2 using the second capacitive sensor (12) for this.

h) the calculation unit (10) calculates the relative flow of liquid that has flowed in accordance with the following
formula:

\[S_i = \frac{W_i - W_{i-1}}{T_2} \quad \text{for } i = 1, 2, 3, ... \]

i) a warning signal is generated for the operator if the condition \(S_D < S_i(t) < S_U \) is not being met, where \(S_D \) and \(S_U \) are predetermined limit values.

j) the process is stopped when \(W_i > R_2 - E \), where \(E \) is a predetermined small value, or when the condition \(S_i(t) < S_D \) occurs.

k) the external valve (6) is opened for a predetermined time \(T_{v2} \) during which complete emptying of the liquid recipient (2) occurs, and after this time, the external valve (6) is closed and return to step (c).
Figure 3
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>(OTERO et al.) “An add-on solution to take measures automatically from critical care patient’s urine output”, Sensors, Vol. 10 , No. 1, Pages: 934-951, 26/01/2010. ISSN 1424-8220</td>
<td>1,5,6,7</td>
</tr>
<tr>
<td>Y</td>
<td>(OTERO et al.) “A device for automatically measuring and supervising the critical care patient’s urine output”, Sensors, Vol. 10 , No. 1, Pages: 934-951, 26/01/2010. ISSN 1424-8220</td>
<td>1,3,5,7</td>
</tr>
<tr>
<td>Y</td>
<td>US 6125696 A (HANNAH ET AL.) 03/10/2000, column 13, line 22 - column 14, line 37; figures 5,6</td>
<td>1,2,5,7</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2010149706 A1 (OBSERVE MEDICAL ET AL.) 29/12/2010, page 15, line 18 - page 16, line 18; figures 3a, 3b</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>US 6337959 B1 (KWA ET AL.) 08/01/2002, figures 1,5; abstract</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

<table>
<thead>
<tr>
<th>*</th>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>document defining the general state of the art which is not considered to be of particular relevance.</td>
</tr>
<tr>
<td>"E"</td>
<td>earlier document but published on or after the international filing date</td>
</tr>
<tr>
<td>"L"</td>
<td>document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>"O"</td>
<td>document referring to an oral disclosure use, exhibition, or other means.</td>
</tr>
<tr>
<td>"P"</td>
<td>document published prior to the international filing date but later than the priority date claimed</td>
</tr>
<tr>
<td>"T"</td>
<td>later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td>"X"</td>
<td>document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>"Y"</td>
<td>document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 26/08/2012

Date of mailing of the international search report 03/09/2012

Name and mailing address of the ISA

OFFICINA ESPAÑOLA DE PATENTES Y MARCAS de la Castellana, 75 - 28071 Madrid (España)

Paseo 91 349 53 04

Authorized officer

F. Olalde Sáez

Telephone No. 91 3498469

Form PCT/ISA/210 (second sheet) (July 2003)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ES 2354794 A1 (CSIC) 18/03/2011, page 2, line 63 - page 4, line 12; page 4, lines 25 - 33; page 5, lines 32 - 37; figure 1</td>
<td>1, 5-7</td>
</tr>
<tr>
<td>A</td>
<td>WO 9608219 A1 (PHARMA ET AL) 21/03/1996, Page 5, lines 12 - 27; figure 1</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>DE 3920279 A1 (FRESENIUS AG) 24/01/1991, figures 1-2; abstract</td>
<td>1, 5-7</td>
</tr>
<tr>
<td>A</td>
<td>(OTERO et al.): "A low cost device for monitoring the urine output of critical care patients". SENSORS vol. 10, Nº 12, pages 10714 - 10722, 02/12/2010, ISBN: 1434-8220</td>
<td>1, 5-8</td>
</tr>
<tr>
<td>A</td>
<td>US 4305405 A (MEISCH) 15/12/1981, figure 1; abstract</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR 2295165 A1 (ASTRA) 28/05/1976, figure 4; abstract</td>
<td>1, 6</td>
</tr>
<tr>
<td>A</td>
<td>US 5119675 A (MOHIDDIN) 09/05/1992, Column 3, line 4 - column 5, line 19; figures 1, 2, 6</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 5400014 A (NAPOLI ET AL) 25/04/1995, figures; abstract</td>
<td>1, 6</td>
</tr>
<tr>
<td>A</td>
<td>WO 87012025 A1 (BIO FLOW INC) 26/02/1987, page 8, line 17 - page 9, line 17; figures 1, 13</td>
<td>1, 6, 8</td>
</tr>
<tr>
<td>Patent document cited in the search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US5409014 A</td>
<td>25.04.1995</td>
<td>NONE</td>
</tr>
<tr>
<td>ES2354794 AB</td>
<td>18.03.2011</td>
<td>WO2010119164 A</td>
</tr>
<tr>
<td>WO9608219 A</td>
<td>21.03.1996</td>
<td>DK107394 A AU2734495 A</td>
</tr>
<tr>
<td>FR289165 AB</td>
<td>28.05.1976</td>
<td>NONE</td>
</tr>
<tr>
<td>DE3923079 AC</td>
<td>24.01.1991</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 3240191 [0003]
- DE 4023336 [0004]
- US 4745929 A [0005]
- DE 3544031 [0006]
- DE 4338687 [0006]