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Abstract

We investigate all-polymer nanocomposites, formed byalirdains and single-chain poly-
mer nanoparticles (SCNPs), by means of large-scale siiongatTo distinguish the role of the
soft penetrable character of the SCNPs in the topologiaastcaints from other specific con-
tributions present in experiments, the simulations fofedént compositions of the mixture
are performed at constant density, and with identical segghenobility and monomer ex-
cluded volume for the SCNPs and linear chains. Every cortipndeads to a well-dispersed
nanocomposite with fully-penetrated nanofillers. Henedika in the case of hard nanofillers,
the SCNPs do not exert confinement effects on the linear shaimd only contribute to the
topological constraints. We discuss the intramolecularadyics of the linear chains in terms
of the tube model. We determine the entanglement lengttediribar chains by analysing their
isoconfigurational mean paths (IMP) and the primitive p&3), as a function of the concen-
tration and topology of the SCNPs. In the analysis we usermdifft estimators proposed in the
literature. The IMP and PP analysis in the nanocompositéis sparse SCNPs yields values
of the entanglement length smaller and larger, respeytitiean in the reference pure linear
melt, though small variations are observed. A more condistend is found in the nanocom-
posites with globular SCNPs, where both the IMP and PP aisalymmbiguously reveal that
the linear chains are more entangled than in the pure linetr Buch differences between the
effects of SCNPs with different topologies are presumaélgted to the much higher fraction
of threadable loops in the globular SCNPs, with respect ¢ir tsparse counterparts, which

effectively lead to more topological constraints.



1 Introduction

Dispersion of nanopatrticles (NP) in polymer matrices hasdd out to be a very efficient way
to design novel hybrid polymer-based materiafsExtensive experimenti® and simulatiorf
studies have shown that the level of actual improvement @ftlaterial properties is highly de-
pendent of the polymer/nanofiller interactions. In the calseanocomposites containing long,
mutually entangled polymer chains, these interactionsesgmt an additional factor in a complex
description of the structure-related properties. Theostastic character of pure unfilled polymer
melts is attributed to the topological constraints (calathnglements), which stem from the chain-
chain interactions and their mutual uncrossabilftyA theoretical framework representing these
constraints as an effective tube around each polymer ctasrghined general acceptariée!3
After the isotropic Rouse regime, the chain segments expeei the topological constraints, and
their motion becomes highly anisotropic. The lateral moigstrongly restricted and the chains
perform longitudinal Rouse motion followed by longitudinifusion along the tube (reptation).
At late times the chain fully escapes from the tube and per$oisotropic difussion. The tube
theory has been extended and applied on branched archgedty implementing new relaxation
mechanism&# achieving impressive results even for commercial polymetis random branch-
ing.15’16

Hence, it is no wonder that the tube theory was invoked in ttesmgt to explain polymer
behavior in hybrid nanocomposite systems. In nanocomgmsiith nonattractive interactions two
types of constraints affecting polymer motion have beemp@sed: entanglements, characterized
by the tube diametet, e, and geometrical confinement induced by the impenetralolepeaticles,
with a characteristic length scatgeo Schneideet al.l” have proposed that the combination of
both mechanisms results in the motion of the polymer chairaieffective or ‘apparent’ tube of

diameterd,p, A simple ansatz relating all the former length scales has lseiggested’

Oap( @) = dippe(@) + dgee( @), @)



whereg is the nanopatrticle volume fraction. Thus, depending oratiteal volume fraction of the
nanofillers, topological or geometrical confinement eBatiminate the motion of the chains.

The tube diametetlype in the nanocomposite cannot be directly obtained from empnts.

Its value relies on assuming the validity of Eq. (1) and onraem estimation of the apparent tube
diameterdapp and the geometrical confinement length saie. On the one hand, the value of
dapp can be obtained, e.g., by analysing the dynamic structuterfan terms of the theoretical
expression predicted by the tube theory for pure linearshelf (note however the possible draw-
backs of this analysis in terms of the investigated molecutaght and wavevectot&?9. On the
other hand, the value aleo can be calculated from a void distance distribution functiwhere
the nanoparticles are approximated by perfectly dispensed sphered® However, it is usually
very difficult to fulfill experimentally the assumption of fiect nanoparticle dispersion. The case
of silica nanopatrticles is a well-know example of this peshl In order to achieve a homogeneous
dispersion, favourable enthalpic interactions betweemtmoparticles are necessary. Still, if the
nanoparticle/polymer attraction is too strong, dynamigkrogeneities in the adsorbed polymer
layer come into play. At high nanoparticle loadings thislketo a network-like structure, where the
confined adsorbed chains form bridges between the nandpaf?? One way to create a ‘soft’
interphase and to tune the interaction with the polymer imé&rby modifying the nanoparticle
surface with grafted chaing®23-24A few experimental studies have reported tube parameters fo
this type of nanocomposites, obtained either by applyibg theory to fit neutron spin-echo data

or by estimating characteristic times from linear rheolepgctra?

In a long-lasting effort to get a good compatibility betwebe nanoparticles and the poly-
mer matrix, all-polymer nanocomposites have gained irstngaattention over past years. In
all-polymer nanocomposites the nanoparticles have nal’*ltamponents, but are fully polymer-
based objects. Rapidly advancing techniques for polynhggis have opened the door to a huge
variety of polymer nano-objects with complex architecimanging from single-chain nanopar-
ticles?®2?to soft dendritic (hyperbranched) structuf@s! Single-chain nanoparticles (SCNPs)

are prepared from linear precursors with functionalizedugs through purely intramolecular



crosslinking, and are attracting increasing interest séaechers due to their potential applications
in nanomedicine, biosensing or catalysis among otfefhe shape of the SCNPs is strongly de-
pendent of the synthesis protocBlin general, synthesis in good solvent conditions lead tesgpa
SCNPs3435This is a direct consequence of the self-avoiding confaionatadopted by the pre-
cursors in good solvent, where long loops, at the origin adféinient folding into globular SCNPs,
are rarely formed®3®Instead, bonding is mostly promoted over short contoundiss, resulting

in sparse SCNP conformations resembling those of intrétigidisordered proteing3’ Several
sophisticated routes, based on the solvent qu¥lity on the use of long cross-linkef@ have been
recently introduced to synthesize globular SCNPs througmpting bonding over long contour
distances (see Supporting Information).

When used as nanofillers, fully polymeric nanoparticlesrsaeaffect the linear polymer ma-
trix in a peculiar way. In 2003 Mackast al.*° sparked interest in all-polymer nanocomposites, by
highlighting an exceptional reduction of viscosity of lopgly(styrene) (PS) chains after addition
of compact spherical PS nanofillers of half the size of thedirchains. This reduction was asso-

ciated with confinement of the chain, determined by comgitie average interparticle distance
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to the dimensions of the matrix chaifisin Eq. (2) D represents the nanoparticle diameter and
@n = 2/ mthe maximum volume fraction for random packing. For demdpoly(ethylene) nanopar-
ticles embedded in a PS matrix, a non-monotonic dependdribe wiscosity on the nanopatrticle
concentration was fount® In contrast with results in Ref? a viscosity drop was produced at low
nanoparticle loadings, i.e. below the theoretical confieenthreshold. Factors as an alteration of
the free volume or a reduction in the entanglement densitg weded out, indicating as a possible
origin of the viscosity drop the acceleration of the polyrsegmental relaxation close to the soft
surface of the dendrimeric nanoparticles. This accelanatf the segmental relaxation was pre-
viously proposed in a simulation study of all-PS nanocoritpe$® Recently, the tube model was

applied to analyze neutron spin-echo data of all-polymeonamposites formed by poly(methyl

5



methacrylate) (PMMA)-based SCNPs and poly(ethylene xBEO)-linear chain* A direct
comparison was made with a blend of linear PMMA- and PEOf®hawith the same composi-
tion and molecular weights as in the nanocomposite. At lomgg after the Rouse regime the
PEO-chains exhibited faster dynamics in the nanocompthgtein the blend, and an exceptional
broadening of the apparent tube with respect to the melt i PEO. Two possible mechanisms
at the origin of this observation were proposed: confinemaéiatts and a high amount of SCNP
surface in contact with the polymer matrfi.Similarly, it has been shown that the presence of
fuzzy nanoparticles increase the diffusion rate of thedirehains?® while the actual value of the
increase depends on the softness and the internal strudtoamoparticles.

In general, experiments suggest that the polymer/nanoleaaffinity as well as the soft char-
acter of the corresponding interface are at the origin ofutmésual observed dynamic behavior.
However, there may be undesired contributions that arecdiffto be removed experimentally,
and that may hinder the microscopic interpretation of theeexnental results in the all-polymers
nanocomposites, as e.g., impurities, polydispersity fberdinces in density and segmental mobil-
ity with respect to the pure linear melt.

These undesired contributions can be removed in simulgtiwhich therefore provide a valu-
able tool for getting insight into the fundamental mecharsidehind chain motion in all-polymer
nanocomposites. With these ideas in mind, in this articlepvesent extensive simulations of a
simple bead-spring model of all-polymer nanocompositesisting of globular SCNPs and linear
chains and compare them with results of the pure melt of tiokains. The beads of the SCNPs
and the linear chains are identical and the simulationserfemed at fixed density. The chains are
undistorted and their segmental dynamics are unaffectddrespect to the linear melt. Therefore,
the differences in the dynamics of the linear chains in thi amal in the nanocomposite originate
exclusively from the soft, penetrable character of the SENWe investigate several compositions
of the nanocomposite. Moreover, we address the role of thepkar nanoparticle shape in the
topological constraints, by comparing the former resulith \&n analogous nanocomposite with

sparse SCNPs.



Following an approach similar to the one used in previouspmgational investigations in
nanocomposites with impenetrable spheres representimgraamoparticles®*%-*°we have de-
termined the entanglement length in our all-polymer nangmusites by analysing the primitive
path (PP) of the polymer chains. The PP is identified as thetettopath between the end
monomers of the chain that is compatible with the topoldgicastraints?®~>3 As discussed in
several workg!®47 it is not clear whether, in the case of nanocomposites witheimetrable hard
nanoparticles, these should be removed from the systemedigfe computation of the PP ("phan-
tom particle” approack¥®4 or should be kept in the system, thus acting as additionstiactes
("frozen particle" approact§=>4. As will be shown, this distinction is not necessary in ourky
since SCNPs do not induce confinement: they are fully peteetiay the linear chains and con-
tribute to the topological constraints. Moreover, we hagdgrmed an alternative analysis based
on the isoconfigurational mean path (IMP) appro&thhich obtains the tube path by averaging
out fast fluctuations while keeping the uncrossability @ thains.

The analysis of both the IMP and PP unambiguously revealstiigapresence of globular
nanoparticles leads to a smaller entanglement length wgpect to the pure linear melt, acting
thus as additional topological constraints in the systetiil, Bie variations are moderate, with a
maximum reduction of 30 % in the entanglement length at tigldst investigated nanopatrticle
concentration of 60 %. In the case of the nanocompositesitong sparse nanofillers, the original
entanglement length is essentially unaffected (IMP amgly® increased (PP analysis), though
small variations are found with respect to the pure linealt.m8uch differences between the
effects of SCNPs with different topologies are presumaelgted to the much higher fraction of
threadable loops in the globular SCNPs, with respect to #pairse counterparts, which effectively
lead to more topological constraints.

In general, the results reported in this article suggedtttietopology and the soft and pene-
trable character of fully polymeric nanoparticles play ad@@te role in the dynamical properties
of all-polymer nanocomposites. Additional effects (pommanoparticle interactions, changes in

density or segmental relaxation, etc) may have a similatronger contribution to the measured



properties.

The article is organized as follows. In Section 2 we give nhatiel simulation details. Static
and dynamic properties are presented and discussed in&e8tand 4, respectively. In Section 5
we present a detailed analysis of the IMP and PP in the imadstil all-polymer nanocomposites.
In Section 6 we discuss the consequences of the appliedsamédy the interpretation of dynamic

results in terms of the tube model. Conclusions are giveretién 7.

2 Model and Simulation Details

We investigated six all-polymer nanocomposites contgiglobular SCNPs. In what follows these
systems will be denoted as gNC1-6 according to the volunatidma of the SCNPs (see Table 1).
We also investigated one nanocomposite with sparse SCNB®Ifs SNC). All the systems were
simulated by using the Kremer-Grest bead-spring mégiethere the monomeric units in both
the SCNPs and the linear chains were represented by beadgswétdra, and the elastic bonds

between them were modelled by the finite-extension nonliekeatic (FENE) potential:

Ur = —%KFREIn [1— (#)2] . 3)

A spring constankg = 30¢ /02 and maximum bond lengfR= = 1.50 were used in order to assure
small fluctuations around the average bond lenlgth-(0.970) and guarantee the non-crossability
of the chain segments. In what follows quantities will be regged in simulation units: length
unit g, time unitty = (mMpa?/¢)Y/2 and temperature unit/kg, with my the bead mass arig the
Boltzmann constant. The non-bonded interaction betwegrvem beads at a mutual distance

was represented by a Lennard-Jones (LJ) potential:

4 9)2_(9)° Ushirt  f Cs
ULs(r) = |7 ()] + o fore < (4)

0 forr > re.



In all the investigated systems a purely repulsive LJ padaewias applied for the self-interactions,
i.e., for polymer/polymer and NP/NP interactions, wéth- kg T, a cutoff distance. = 21/60 and

a shifting factolJgpiit = kg T. We used the same parameters for the cross-interactiop@NRier)

in the system with sparse nanoparticles, which showed gefé/polymer mixing. However, in
the systems with globular nanoparticles, using identicalattractive self- and cross-interactions
led to phase separation of the linear chains and the nandpariTherefore, in the systems gNC1-
6 we kept the former repulsive LJ potential for the self+iatgions, and used a slightly attractive
LJ potential for the NP/polymer interaction, with parametg = 2.50, € = 0.5kg T andUgpz = 0.
This was sulfficient to achieve perfect mixing of the lineaaiols and the globular nanopatrticles
without altering the average conformations of the lineai, which were essentially undistorted
with respect to the pure linear melt (see below).

In addition to the above mentioned potentials, an intracwé bending potential,

Upend 8) = C26% +C46%, (5)

was applied to the linear chains in all the investigatedesyst with6 the angle between consec-
utive bond vectors. We used the parame@rs= 0.92504230 and; = —0.054183683, which

in practice resulted in a potential undistinguishable fritwa cosine potential used in Ref.(dif-
ferences between both potentials only arise at very largéearthat are never accessed due to
excluded volume repulsion). Therefore the properties efalre linear melt are identical to those
already reported for the system of Réf.which was investigated at the same density and with the
same LJ and FENE interactions as those used here. Thus,ridmgeotential with the former
parameter€,,C, provides a moderate semiflexible character to the chairth, avcharacteristic
ratio®’ C. ~ 3.4. The corresponding entanglement length for this modikis 25 according to
the PP analysis of R&P Thus, the semiflexible character produces a decrease ohthage-
ment length with respect to the fully-flexible cad® & 65 or~ 85 according to the different PP

constructions of Ref8? and®® | respectively). This allows to simulate more strongly egtad



systems than by using fully-flexible counterparts of the samolecular weight.

As aforementioned, we investigate the role of the nanagardirchitecture (sparse or globular)
in the topological constraints experienced by the lineairth To enhance differences between
both types of nanopatrticles, we also applied the bendingntiad of Eq. (5) to the sparse nanopar-
ticles, in order to achieve more open NP conformations amttease the number of NP/polymer
contacts. On the contrary, no bending was applied to theutgobanoparticles, in order to achieve
NP conformations as compact as possible.

The globular and sparse nanoparticles were generated byefieods reported in RefS.
and®® | respectively (see also Supporting Information). The sanmposite was obtained as fol-
lows. First, the nanoparticles were randomly placed in timeigtion box at a dilute concentration,
preventing intermolecular concatenations. Then the tickains were grown in the simulation
box, rejecting insertions resulting in overlaps< 0.850) with previously inserted beads. Once
the full system was constructed, it was slowly compressedegnilibrated in sucessive steps up to
the target melt density. The melt of pure linear chains was génerated as the reference system.

In all systems the investigated density was fixegte 0.850 2, which corresponds to melt
conditions®® and the length of the linear chains was fixed\te= 200 beads. In the pure lin-
ear system this correspondsze= N/Ne ~ 8 entanglements per chati The compositions of the
different investigated nanocomposites ranged from 10 % % &n the weight fraction of nanopar-
ticle beads. Since all the beads in the system have the samarsil mass, the volume fractign
is identical to the weight fraction. Further details on tleenpositions of the investigated systems
are given in Table 1. The simulations were performed withGRROMACS packag® at constant
volumeV, and temperaturél') = £ /kg. The Langevin thermostat was applied, with a friction con-
stantl = 0.5my/10. A time stepdt = 0.0031p was used for both the equilibration and production

runs. The duration of the runs was of the order of 4@ps.
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Table 1: Characteristics of the simulated systeigs:and N, stand for the number of nanopar-
ticles and linear chains in the system, respectivéfly, and M. denote the number of beads per
nanoparticle and per linear chain, respectively. Voluraetfons refer to the NPs.

system| volume fractiongp | Np | Mp | Nc | Mc
gNC1 0.1 14 | 520 316 | 200
gNC2 0.2 27 | 520| 282 | 200
gNC3 0.3 41 | 520 | 245 | 200
gNC4 0.4 54 | 520| 212 200
gNC5 0.5 68 | 520| 175 200
gNC6 0.6 81 | 520| 141 200
sNC 0.25 88 | 200 | 352 | 200
linear — 352 200

3 Static properties

Figure 1 displays the average radius of gyrati(cRg,) 1/2 of the linear chains and the nanoparticles
in all the investigated systems (data are represented gs/olime fraction of the nanoparticles).
There is some stretching of the linear chains by increasiagbncentration of the nanopatrticles.
This is not surprising due to the concomitant increase ofg&tee favorable contacts. Still, stretch-
ing is rather weak (less than 6 %) and just reflects a slighease of the effective local stiffness.
The conformations of the chains indeed remain Gaussiars. i lsiemonstrated by comparing the
results for(R%)Y/2 and (R3/6)%/2 (with Re the end-to-end radius), which are identical for ideal
Gaussian chain&?%9 No differences are found within error bars. The inverseatffe observed
for the globular nanopatrticles. By increasing their coriion they are exposed to more nonat-
tractive self-interactions, and shrink up to 20 %. In all fystems the average radius of gyration
of the linear chains is of the order of twice the nanopartiatius.

The nanoparticles are cross-linked objects with permamamds, and therefore contain perma-
nent loops in their internal structure. Figure 2 shows, fiffecent investigated nanocomposites,
the average size of the loop as a function of the number ofdieatthe loop. The observed trend
is analogous to that of Figure 1, and, in average, the loopskshy increasing the concentration
of the nanoparticles. As can be seen in Figure 2, the glolautdntecture contains loops of the

same size as the NP radius of gyration. Instead, in the spesBitecture the largest loop is clearly
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Figure 1: Average radius of gyratiotR3)*/2, for the linear chains (squares) and the nanoparticles
(triangles) in all the investigated systems. Data are sgred vs. the volume fractigmof NPs

(@ = 0 for the pure linear melt). We include data (circles)ieg/6) 12 for the linear chains, witRe

the end-to-end radius. Within error bars these are iddribdiae corresponding data fQR5>1/2,
demonstrating the Gaussianity of the linear chains in alsystems. Empty and filled symbols for
¢ > 0 correspond to systems with globular and sparse NPs, taégggcError bars for the NPs are
smaller than the symbol size.

smaller than the NP size. This is a consequence of the differaployed synthesis routes, where

the formation of long loops is promoted (globular N&¥)r disfavored (sparse NP3).

gNC4
gNC6
sNC

0 50 100 150 200 250 300 350 400
number of beads in the loop

0O 0O X

Figure 2: Radius of gyration of the permament loops in thégjlar nanoparticles (systems gNC2,
gNC4 and gNC6) and in the sparse nanoparticles (system dDHIg are represented vs. the
number of beads in the corresponding loops. For comparigmegiude (dashed lines) the mean
radius of gyration of the whole nanoparticle in the formesteyns.

Figure 3 shows the form factov(q) for the linear chains and the globular and sparse nanopar-

ticles in three representative systems. In the fractaimegl/Ry < q < 1/lp the data can be
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Figure 3: Form factow(q) normalized by the corresponding number of monon&i@®1, or M)

of three selected components of the simulated systemsulglobanoparticles in gNC1 (red sym-
bols), linear chains in gNC6 (green symbols) and sparsepaaticles in SNC (blue symbols). The
dashed lines describe scaling behawigg) ~ q~/V, with the exponent expected for Gaussian
chains ¢ = 0.5), crumpled globules\ = 0.36), and for Porod scattering from compact spheres
(v =0.25). The latter are compared with the data for the linearnshaparse NPs and globular
NPs, respectively.

described by the power I&f w(q) ~ g~%/V. The obtained scaling exponents for each type of
macromolecule are consistent with those expected for akeasrhetype conformations: i) Gaus-
sian chainsy = 0.5) in the case of the linear chains; ii) compact spheres igdlse of the globular
NPs, with the exponent = 1/4 expected for Porod scatterifi§jii) crumpled globulesy ~ 0.36)

for the sparse nanoparticles, as anticipated in Réf& and resembling observations for ring poly-
mers®! Analogous results are obtained for the three types of madierules in all the investigated
systems.

As mentioned in the Introduction, the separation betwepoltmical entanglements and geo-
metrical confinement, usually invoked in nanocompositél Wward NPs, may lose its meaning in
all-polymer nanocomposites with soft deformable NPs. Tdea is supported by Figure 4, which
shows two typical snapshots for globular and sparse natidearfully penetrated by surrounding
linear chains. To confirm this point, we quantify in our systthe degree of penetration of the
nanoparticles by the linear chains. We consider that a ratiole is fully penetrated by a linear
chain if some of the monomers of the chain is in the close iticiof the center-of-mass of the

nanoparticle. Figure 5 shows, for all the investigatedesyst, the partial radial distribution func-
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Figure 4: Top: Typical snapshot of a globular nanopartigéi¢w) in the gNC2 system, penetrated
by two linear chains (blue and red). Bottom: Same as in th@é&mel, for a sparse nanoparticle in
the sNC system.

tion g(r) between the NP centers-of-mass and the monomers of the thams. The resulting
g(r)’s are almost structureless, with just a weak correlatide.h®hus,g(r = 0) > 0.7 for all the
systems, and eveg(r = 0) < 1 for the largest concentrations of globular NPs. This destrates
that the nanopatrticles are fully penetrated by the lineams) hence contributing to the topolog-
ical constraints but not inducing confinement effects. Alfar test is given by calculating the
number of ‘contact monomers’. A monomer in a nanoparticldeiined as a contact monomer if

it is at a distance < ry, from at least one monomer of a polymer chain, whgye= 1.50 is the
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2r/RgNP

Figure 5: Radial distribution function of the monomers o finear chains with respect to the
centers-of-mass of the nanoparticles, for all the investig nanoparticles. Distances are normal-
ized by the respective radii of gyration of the NPs.

distance at the minimum of the all-monomer radial distidufunction (not shown). We find that
97 % of the NP monomers are contact monomers in the spars@ardictes, and essentially 100
% in the globular nanoparticles at all the investigated eotrations.

In summary, the results presented in this section confirtn thiae linear chains are essentially
undistorted with respect to the pure linear melt; ii) the types of employed nanoparticles, syn-
thesized at high dilution, retain their sparse/globularebter in the nanocomposites, and therefore
provide,a priori, diferent topological constraints to their surroundingiais; iii) the nanoparticles

are fully penetrated by the linear chains and do not induocenggric confinement on them.

4 Dynamic properties

Figure 6 shows the mean squared displacement (M8F(t))) for the linear chains and the
nanoparticles in some of the investigated nanocompositeshe case of the linear chains the
MSD is only computed for the middle monomers. Namely we thke26 monomers in the center
of the chain contour, i.e., the innermost entanglement sagymn this way the contributions of
the faster outermost segments are eliminated, and the M&bdgss a better representation of the

dynamics of the linear chains inside the tube.
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Figure 6: MSD for all monomers of the NPs (symbols), and ferrtiiddle monomers of the linear
chains (solid lines). Data sets for the same system areteéepiath identical colors (see legend).
Dashed lines representing power law-behawiar?(t)) ~ tX, are included for comparison. The
exponents are, from short to long tima&ss 0.6,0.3 and 0.5.

First, it is worth noting that the simulated model leads hivitstatistics, to the same segmental
relaxation of the linear chains in the different systemsgstigated, as revealed by the overlap of the
corresponding data sets at short times. This is confirmed{igeire 7) by computing the correlator,
(Xp(t) - Xp(0)), of the shortest Rouse modep = Mglz'}";lrj(t) cogjprt/Mc] with p=M;—1,
which probes the segmental relaxatitff° All the correlators overlap within statistics. Therefore,
dynamic differences in the simulated systems at later tianes® only as a consequence of the
different topological constraints induced by the respectioncentrations and architectures of the
nanoparticles.

In analogy with general observations in pure linear melfigrdhe short-time microscopic
regime different sublinear regime@r?(t)) ~ t*, are observed for the MSD of the linear chains,
with exponents close to the ideal predictions from the thieety. Thus, a first regime resembling
Rouse-like dynamicsx(= 1/2)1%8%s found. The effective exponents slightly change, from
0.6 to x = 0.5, by increasing the concentration of globular nanopagiclThe exponent = 0.6
observed at lowp is also found in the pure linear méit.This deviation from ideal Rouse behavior
may originate from non-Gaussian static correlations (noluded in the Rouse model) at local

scales, which are related to the semiflexible characteodoted by the used bending potential.
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Figure 7: Time-dependence of the correlator of the shoResse modef{ = M. — 1) of the linear
chains in the investigated systems.

The decrease to apparent ideal Rouse behawiof).5, at highg likely arises from a compensation
effect. The linear chains penetrate the globular nanapestiwhich are objects relaxing in a much
slower fashion than the linear chains (see Figure 6). Treaks one of the basic assumptions of
the Rouse model (fastly relaxing environmeft)apparently decreasing the effective exponent in
the MSD and compensating the increase associated to tHestdfreess.

In all the systems, at the time scale 6f 20001 that can be identified as the entanglement time
Te, the monomers in the linear chains feel the uncrossabiifgtraints and there is a deceleration
in the MSD, leading to a second sublinear regime with an g¥feexponenk ~ 0.3. This is also
the value found in the pure linear m&ltand is slightly higher than the theoretical vakue 1/4 for
the longitudinal Rouse dynamics inside the td8&° According to the tube theory, this ‘Rouse-in-
tube’ regime ends at the Rouse titf50 1 ~ 122, with Z the number of entanglements per chain.
For the pure linear melt of this woPk Z ~ 8 andrr ~ 10°To. In our nanocomposites, this time scale
is of the same order of magnitude, though it seems to depetiteaoncentration and architecture
of the NPs (see Figure 6). After the Rouse time, pure lineaimshperform longitudinal diffusion
along the tube (reptation), with a theoretical exponenatl/2, until the final transition to isotropic
diffusion (x = 1) at the disengagement tiffef® 14 ~ 3Z 1R ~ 2 x 10°1;. Results in Figure 6 for the
linear chains in the nanocomposites are apparently censisith this expectation, yet an accurate

estimation of the exponent is not possible due to the ratishort time window frontg to 4.
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In summary, though they exhibit quantitative differencepehding on the concentration and the
architecture of the nanoparticles, the results in Figunee@&pparently consistent with a tube-based
picture for the dynamics of the linear chains in the investgg all-polymer nanocomposites.
Though the characterization of the dynamics of the nanmbestis beyond the scope of this
work, we comment some general features. First, as can bersEgure 6, the globular nanoparti-
cles are much slower than the linear chains. At the time sa@idlthe Rouse-in-tube regime for the
linear chains, 200§ t /1o < 10°, the MSD of the globular nanoparticles is severely slowedrdo
and saturates to a plateau. This is a consequence of thepambrand highly connected local
structure, which impedes the broad fluctuations observeéldarinear counterparts. At the onset
of the reptation regimet (> 10°) for the linear chains, all the macromolecules start to rallju
disentangle, and the MSD of the globular nanoparticles gngwvagain. The sparse nanoparticles,
which are still slower than the linear chains, are much faktn their globular counterparts. Their
sparse, less tightly linked, conformations allow for muchduler fluctuations, and they do not

show the intermediate plateau in the MSD.
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Figure 8: Mean squared displacement of the middle mononighedinear chains in the simula-
tions with fixed chain ends, for all the investigated systeimset: zoom of the plateaux that arise
att ~ 10°.

To get a first characterization of the topological constea@xperienced by the linear chains in
the all-polymer nanocomposites, we have performed additisimulations with fixed chain ends,

and analyzed the corresponding MSD. By fixing their end magrspthe longitudinal diffusion
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of the linear chains is suppressed. To minimize the effett@fixed chain ends on the monomer
fluctuations, we compute again the MSD of the 26 middle momem&he obtained results are
shown in Figure 8. Due to the suppression of the longitudiifaision, the MSD reaches, at-

Tr ~ 10°, an ultimate plateau that characterizes the fluctuatiotismthe tube. A clear decrease of
the plateau is observed by increasing the concentratidreajlbbular nanoparticles. This suggests
a stronger effect of the topological constraints inducedheyglobular nanoparticles on the linear
chains. We quantify this effect in Section 5 by charactagzhe tube path through two different

approaches.

5 Isoconfigurational mean path and primitive path analysis

In this section we work with two approaches that use diffepgacedures to characterize the tube
from simulations: the isoconfigurational mean path (IMPprapch and the primitive path (PP)
construction. The concept of IMP was introduced in Reéfand is based on the idea that the
tube path associated to a given configuration of the macrecntd can be approximated by the
coordinates of the monomers averaged over their isocoafigmal ensemble (IE). The latter is
given by all the configurations at tinte= Tjso, generated by starting ait= 0 from the same initial
coordinates but with different velocities sampled from khexwell-Boltzmann (MB) distribution.

If Tiso is Of the order of the entanglement time, the uncrossalofitye chains is preserved, fast
fluctuations within the tube are averaged out, and a smodkhipgenerated.

We ran simulations to generate the IE for a time stalerso = 3000rp ~ 1.57¢. For the same
initial configuration of the simulation box, we generatedt&(ectories by starting with different
MB realizations of the velocities, and the 50 configuratiobsined at = 1i5, were used to get
the averaged coordinates of the IMP of each chain. Fin&léy/static properties of each IMP (see
below) were analyzed and averaged over all the chains. Tooweystatistics, the procedure was
repeated for 10 different initial configurations of the beguispaced by about 0D steps.

The PP approach constructs the tube paths by reducing alh#iie countours between their re-
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spective chain ends (which are kept fixed in space), withaneition of preserving the topological
constraints (i.e., keeping the uncrossability of the chaiWVe followed the method proposed by
Everaerset al.*%51 Thus, we performed a simulation (‘contraction run’) where énd monomers
of all the linear chains were fixed, at extremely low tempaat = 0.001, and where the bending
potential and thentramolecularLJ interactions were switched off for all the macromolesyl@th
NPs and chains). All the intermolecular LJ interactionsenazpt, in order to allow for reduction
of the chain/loop contour without violating the uncros$bcondition. It must be noted that this
procedure does nothinimizethe chain contour but the intramolecular energy. Strictimization
of the chain contour is achieved by geometric chain-shnigknethods2°3 through the use of
geometric operations and supression of all the excludashvelwithout violating uncrossability.
However, the implementation of geometric methods is exaétgnmvolved for the highly complex
loopy architectures of the single-chain nanopatrticles.

Following Ref.?! for the system of pure linear chains we used a time step 0.006rg for
the whole contraction run, with an initial value of the thestat constant = 20t,*, which was
changed td” = 0.5T0_1 after a few steps. In the nanocomposite systems we deteobed dy
fluctuations of the bond lengths. Therefore we used a sniatierstepdt = 0.0011g, and moreover
we decreased smoothly the valuelofluring the first 2< 10° steps, from the initial = 20T61 to
the final valuel = 0.51,*. Still, there were contraction runs where the length of sdioeds
exceeded the value of o3t some time (this was monitored on the fly). We excluded thase
from the further analysis, hence we discarded the PPs whpossible artificial bond crossing
might have occurred during their generatithiTo improve statistics, for each nanocomposite we
used PP configurations obtained from typically 5-10 cotivacuns. These runs were of the order
of 10° steps. This time scale was much longer than the time needéusfeontour length to decay
to the ultimate plateau in its time dependence, correspgnidi the equilibrium PP length. The
CPU time for a single configuration in the IMP and PP runs wamitib and 7 days, respectively,
in a single AMD Opteron 6300.

Typical snapshots (system gNC3) of the IMP and PP of a glomalaoparticle and a penetrat-
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ing linear chain are shown in Figure 9. At this point we woule Ito highlight some important
facts. First of all, to the best of our knowledge, none of hmibcedures (IMP and PP) have been
used before in nanocomposites with soft nanoparticles.imp&mentation of the IMP approach
in these systems is straightforward and not fundamentéfigrent from similar investigations in
pure linear melts (just requiring simple averaging). Hogrewn the case of the PP construction
the handling of the nanoparticles may be tricky. Since theparticles contain permanent loops,
to generate their PPs we treated them in a similar way to palymngs®3 Thus, we did not fix in
space any of the nanoparticle monomers and allowed themeabo freely during the contraction
run. It has been shown that, as a consequence of this pre&;aduhreaded polymer rings neces-
sarily collapse into single poinfs Unthreaded loops (i.e., loops not penetrated by lineamshai
in our nanoparticles shrink under PP contraction but, inegainthey do not collapse into single
points. The reason is that, due to the cross-linked topotdglye nanoparticles, threaded and un-
threaded loops in the same nanoparticle form a mutually ected network, so that unthreaded
loops cannot shrink independently of the threaded ones.

Recently, a dynamical analysis of the contacts between #anrpaths has been reported for
linear melts® A similar analysis is however not suitable in our nanoconitpessince they are
systems fundamentally different from the case of the puesli chains. In particular, the polymer
chains in our nanocomposites have a tendency to align phataleach other when they thread a
group of close loops of the same nanopatrticle. Under theséitons, the notion of the contact
point between two mean paths is ill-defined, because thdidaia whole sequence of beads
within the critical distance used to define the mutual cantélcerefore, since we cannot track the
individual contacts, we will use alternative ways of anaysased on the static properties of the
tube path, represented by the IMP and the PP obtained frosirthéations.

Starting with the assumption that both the IMP and PP arefkeqitile objects, one can find a

formula>2-51:%%for the normalized mean squared internal distar{é®$s)) /s:

(R(s)) 2 1+ (cosf) 2(cosh) (1—(cosh)®)

s 1— (cosB) S(1— (cosh))? ©)
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Figure 9: Typical snapshot (system gNC3) of the IMP and PP gibhular nanoparticle and a
penetrating linear chain. The coordinates of the red (NB)dime (chain) beads are obtained after
applying the IMP procedure (top panel), and the PP constru¢bottom panel). The coordinates
of the real configurations used for such constructions aagvmiras yellow (NP) and cyan dots
(chain). For the sake of clarity, only 25 of the 50 configuras used for the IMP construction are
displayed, and dots and beads in both panels are depictdlgisthan the real monomer size.

wherely is the bond lengthf is the angle between consecutive bonds, and|i — j| is the
chemical distance between two monomesad j (monomers are labelldd=1,2, ..., M. from one

to the other chain end). Eq. (6) has been derived for theyfre¢ting chain (FRC) moder?-51.65

In this modell, and 8 have constant values and no excluded volume is taken intmuatcStill,
Eg. (6) has been shown to provide a good description of stiulalata for real semiflexible
chains®® as well as for primitive path& The quantity(R?(s)) /s can be calculated directly from
the coordinates of the tube path (IMP or PP), whelgaand (cosf) can be also calculated as
mean values from the IMP/PP data, or can be obtained as fingéess. The average value of the

cosine is related to the decay of the bond-bond correlatiantfon of the tube path, assuming an
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exponential deca$®

bj - +s
<‘|7’> — (cosB(9)) = (cosB)® = exp(—Ip/Ip). (7)

oN C_Tl

In Eq. (7)5,- is the bond vector connecting the positions of the monomersd j + 1 in the tube
path, and is the persistence lengflR.Since the tube path is a smooth object, the bond angles are
small, and the FRC reduces to the worm-like chain (WLC) moltethe WLCI, = Iy /2, wherel,

is the Kuhn lengtif9 By definition, Ne is the number of monomers per Kuhn segment of the tube

path 0 therefore:

Ne =l /lp. (8)

Finally, by combining Egs. (7) and (8), we get the first expi@s for determining the entanglement

length:
2

Y= in((cost))

(9)

Instead of analyzing the internal structure of the tube jpatle can assume that at large scales
the tube path has the form of a Gaussian coil. We will work with Ne-estimators based on the
relations (resulting from Gaussianity) between the endrd distancé. and the contour length
L of the tube path. The first one is the so-called ‘classicabiBestimator’, which definedl. as

follows:;>0

i)
Ne = Np <L>2 ) (10)

whereN, stands for the number of bonds. The second one is the ‘mo@fiedl| estimator’®®

w N\
Ne = Np <@ — 1) , 11

which operates with the second moment of the contour Ierzigﬁ),, and in general overestimates
the value of\, for weakly entangled systems. It has been shttwfthat both S-coil estimators

provide values of the entanglement length whichMgedependent, i.e., the obtained valueNgf
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varies with the chain length. Nevertheless, the asymptateal infinite-chain limit is already
reached for chains less entangled than those used in ourl fic8¢Z ~ 8). Hence, a reliable
estimation of the ided\ls is expected from our analysis.

In what follows we explore the three mentioned ways for daliog Ne (Egs. (9) to (11)),
paying particular attention to the correct estimation & tiecessary parameters provided by the
simulation datalg, (cos8), (R2), (L) and(L?)). Starting with Eq. (6), we looked closer at the bond
lengthl, between the monomers, by firstly checking its dependendeegpdsition along the tube
path. It turns out that, whereas in the inner part of the tudié I is essentially independent of
the position, as we approach the path ends the valljpobianges. As a consequence of the higher
mobility of the free chain ends, averaging in the IMP conginn leads to a looser structure at
the ends of the path than in the middle. On the contrary, figimgn ends in the PP construction
leads to a tauter structure at the path ends. Hence, thesvalijgin the IMP and PP are smaller
and larger, respectively, than the values at the middleeptth (see Figure 10). These finite-size
artifacts, originating from the distorsions at the pathsradfect the rest of the quantities involved
in Egs. (6) to (11) (e.g., the contour length through thetiate. = Nylp). Therefore, to remove the
end effects in our analysis, we used the former equationsbiting the 50 outermost monomers

at each end of the tube path. Consequently, we NMged N — 100 in Eqgs. (10) and (11).
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Figure 10: Bond length in the tube path vs. the positiah the monomer. Symbols and lines
correspond to results for the IMP and PP, respectively.

Once the average value bf was determined from the tube path coordinates, we computed
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(R(s)) /s, insertedy, in Eq. (6), and obtaine¢tosp) as a fit parameter qfR?(s)) /sto the right-
hand-side of Eq. (6). Another option to estima@b®s0) might be by fitting simulation data to
Eq. (7). However, this is a less reliable procedure. Indé#se pond-bond correlation functions
of the tube paths have a complex shape and it is difficult teestiie purely exponential decay
in particular ranges of (see Ref®). The data for<R2(s)>/s together with the corresponding
fits to Eq. (6) are presented in Figure 11. Eq. (6) provides@gtescription of the PPs. The
agreement is worse for the IMPs, especially at moderatertists. Finally, the values ofcoso)
collected from the former fits were inserted in Eq. (9), pdowy the first estimation of the entan-
glement length. The calculation Bif based on the S-coil and modified S-coil (mS-coil) estimators
(Egs. (10) and (11)) was straightforward: we measuwreohdRs by removing again the 50 out-
ermost monomers at each end and inserted the measured vakigs. (10) and (11) to get the
values ofNe.

In all cases the average values\afwere obtained by using, for the simulation inputs in Egs. (6)
to (11), the corresponding values averaged over the getetabe paths (IMP or PP). On passing
we mention that the values df) and(L2)Y/2 were 9- 17% larger in the PP than in the IMP. For the
calculation of the error bars df; we differentiated Egs. (6) to (11), and inserted the cowadmg
averages and standard deviations of the simulation inftis results for the entanglement length
evaluated by the three employed methods (cosine, S-coitre8wdoil) are shown in Table 2, and
displayed in Figure 12 as a function of the NP concentratiRegarding the reference pure linear
melt, our model is very close to the model investigated in.Refs mentioned in Section 2. A
cosine-based analysis of the PP has been performed by Evetas. for the latter modeP?-52
yielding a value consistent with the one obtained in our wblgke 23.

We can make several conclusions from the information in &@&band Figure 12. First, the
numerical values of the entanglement lengihdepend on both the representation of the tube
path (IMP or PP) and the used estimator (cosine-based,| ®coiS-coil). The dependence on
the estimator is consistent with observations in ®Réér nanocomposites with hard NPs. The

dependence on the tube representation was brought up idyaafta simple grid mode$/ and we
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Figure 11: Normalized mean-squared internal distarR&s) /s, for the IMPs (top) and PPs (bot-
tom), represented vs. the contour distagc®r some selected systems. The simulation data are
represented by symbols. The solid lines are fits to Eq. (&) wiosO) as the only fit parameter
(see text).

will address this issue later on in the discussion. Havingpind these shortcomings, it is worthy
of remark that the normalized entanglement lerdtty) /Ne(0), whereNg(0) is the entanglement
length for the pure linear melt, is almost independent ottgtenator. As can be seen in Figure 12,
for the same representation of the tube path (IMP or PP), dltee skts ofNe(@)/Ne(0) obtained
by the different estimators show a very good agreementcesjyein the case of the cosine-based
and S-coll estimators.

The dependence of the results on the tube representatioaingymeflected in the sytem with
sparse nanofillers. For the investigated concentrati@etitanglement length obtained from the
IMP analysis is slightly smaller than in the pure linear mdalhe PP analysis yields a largsg

in the nanocomposite, though differences with the purealimeelt are smaller than 8 %. A more
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Table 2: Results foNg in each of the investigated systems, obtained from the aisaby the IMP
and PP. The results are given for the three used estimatm®mécbased, S-coil and mS-cail).

isoconfigurational mean path primitive path
system| Ne(S-coil) | Ne(mS-coil) | Ne(cos8) || Ne(S-coil) | Ne(mS-coil) | Ne(cosO)
gNC1 | 24.8£0.9 | 32.1+0.3 | 28.3+0.6 || 18.4t0.8 | 22.1+0.2 | 20.8+0.5
gNC2 | 24.6+0.7 | 31.A40.7 | 27.8:0.9 || 17.9+0.5 | 21.4+0.4 | 20.0+0.7
gNC3 | 23.2:0.4 | 29.5+0.1 | 26.1+0.8 | 17.0+0.4 | 20.2+0.1 | 19.1+0.6
gNC4 | 23.7+1.4 | 30.3t1.4 | 26.8:0.9| 17.9-0.8 | 21.3t0.5 | 20.0+1.0
gNC5 | 22.2+1.3 | 28.0+1.6 | 24.2+1.4| 18.2£1.1 | 21.86+1.2 | 19.4+1.1
gNC6 | 20.9+0.8 | 25.9+1.0 | 23.5+0.5 || 17.4t0.7 | 20.7A40.5 | 19.8+0.8
sNC | 26.6t0.9 | 35.2+1.0 | 30.6+0.7 || 22.0+0.8 | 27.5+0.6 | 25.0+0.9
linear | 27.2+1.0 | 36.4£1.0 | 31.0+0.8 || 20.6+-0.6 | 25.6+0.4 | 23.2+0.5
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Figure 12: Results foNe obtained from the analysis of the IMP and PP (top and bottonelsa
respectively). The data are represented vs. the volumednap of NPs (@ = O for the pure linear
melt), and are normalized by the respective values for the jiear meltNe(0). Empty and filled
symbols correspond to systems with globular and sparsepaaticles, respectively. Different
colors correspond to the three estimators used to detemqi(see legend).
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consistent picture is found in the case of the nanocomposited with globular NPs. For both
representations of the tube the valueblgére smaller than in the linear melt for all the investigated
concentrations of NPs. An inconspicuous evidence of nontaric behavior in the concentration
dependence dfle can be detected, with an apparent minimunpat 0.3 in both representations.
The normalized entanglement lengths obtained from botlesgmtations of the tube show similar
values up tap ~ 0.4. However, at higher concentrations the IMP analysis gitd/er values than
the PP analysis, resulting in a general decreasing trerteadnitanglement length, down to about
25-30 % for the highest investigatexd Instead, the PP analysis yields no systematic conceorirati

dependence dfl; for ¢ > 0.1.

6 Discussion

The key feature of our single-chain nanofillers is their stflly polymeric character. This fea-
ture gives rise to distinct structure-related propertiesup all-polymer nanocomposites than those
observed in systems with hard (e.g., silica-based) naaxdill First of all, the linear chains can
fully penetrate the SCNPs. In the case of globular SCNPsntleians that the linear chains pass
through a compact cross-linked loop-like structure. Sudeep insight into the internal arrange-
ment of the nanocomposite is essential for the further exgtian of the dynamical properties of
the material, and in general it can not be obtained directynfexperiments. Some all-polymer
nanocomposites investigated in the literature share stnetsral similarities with our systems,
as e.g. the presence of lodpsind cross-link&-41in the architecture of the NPs. However, the
lack of accurate information about the NP/polymer integgh@gion impedes us to make a critical
comparison with our simulations.

Unlike it is usually found in experiments (e.g., due to diffiet segmental mobilities of the NPs
and the linear matri¥**4, the monomeric friction of the linear chains remains ueetiéd by the
addition of the NPs. This feature facilitates the analy$ithe translational motion of the linear

chains in our nanocomposites. Negligible effects are fannde nanocomposite with sparse NPs.
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However, the presence of globular NPs results in an evidecgldration of the linear chains at
intermediate and long time scales. The deceleration is mam@ounced in the system with high
volume fraction of NPs. The quantification of this effectuggs the application of a theoretical
model, in this case the tube model. Having in mind the polyhkernature of our nanofillers,
the environment of the linear chains is closer to the medd-fidbe idea of polymer melts with
complex architectures rather than to the geometricallyiced situation in hybrid solid/polymer
nanocomposites. An usual strategy in simulation studi¢e erive tube parameters from the
analysis of the sublinear regimes in the MSD. This procetoveever is affected by some implicit
assumptions on the static properties of the tube, and hasriant shortcomings even in the sim-
plest case of pure linear chains (see the recent discussiReff’). Similar drawbacks are present
in the estimation of the tube parameters from scatteringtfons2° and in particular if the chains
are far from the limit of high molecular weighZ (~ 100).1%67 The analysis of dynamic observ-
ables as the MSD or the scattering function becomes even probdematic in our all-polymer
nanocomposites, since they combine structural featurémgs, chain ends, and cross-links act-
ing as branch points. Indeed, these structures show dya#ynilifferent responses to topological
constraints, and are treated in very different ways by threesponding implementations of the
tube modef:t.14.68

Having in mind the limitations of the dynamics-based analyse have used an alternative
procedure based on the characterization of the tube paibhwhs been represented by the IMP
and the PP. The first encouraging step is that the analysiedtatic properties of the tube path,
both for the IMP and PP, provides the same qualitative trasdbe model-independent results of
the MSD. Still, the analysis yields quantitative resul@tttbepend on the used representation (IMP
or PP) of the tube path, even by using the same estimabdy. dthese differences may be attributed
to the different local structure of both semiflexible obgedh particular, the semiflexible character
of the mean path is determined by the way the short time fltionsare averaged 0d®;%*making
the isoconfigurational average approach the most compuotdly demanding, but also the one that

fully preserves the topology of the systé&fhOn the other hand, while considering the primitive
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path analysis of the nanocomposites, the collapse of tHeeaded nanoparticle loops affects the
local arrangement of the system by creating ‘free volumé’'we considered an extreme case
where the whole nanoparticle fully collapsed into a singlanp this situation would be similar to
the ‘phantom’ approach in nanocomposites with hard NPs i@tlee NPs are removed from the
simulation box before PP contraction). It has been shownttiganalysis of the PP under the
phantom approach yields larger valuedNgfi.e., a weaker degree of entanglement) than under the
‘frozen’ approach (PP contraction under full NP excludefinme) 6 A quantitative determination
of the degree of threading/unthreading of the NP loops ig eborated (see e.g., R&for the
case of ring polymers) and is beyond the scope of this work, \B& speculate that the collapse of
a significant fraction of unthreaded loops during the PPreatibn may smoothen the dependence
of Ne on the volume fraction, with respect to the much more proredrirend revealed by the IMP
analysis (Figure 12).

We also speculate that the different effect of the NP topp(sparse or globular) on the entan-
glement length of the linear chains is connected with thieigiht degree of threading of the NP
loops. Figure 13 shows the normalized distributions of leizes for the sparse and the globular
NPs, where the loop size is defined as the number of beads ioapeAs a direct consequence of
the different protocols used for their synthe$is8long loops are much more frequent in the glob-
ular NPs. Moreover, the sparse NPs contain a high fractiemafl unthreadable loops. Namely,
the loops withn < 6 beads represent a fraction of 60 % in the sparse NPs whéeé=cttion is
only 8 % in the globular ones. Such a large fraction of unttiaéée loops is ineffective for con-
straining the linear chains, and moreover adds some eféestiffness to the NP contour, which
tends to decrease the number of intermolecular contactssegoiently, the entanglement length

of the pure linear melt is essentially unaffected or incedasnder the presence of sparse NPs.
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nanoparticles, where the loop size is defined as the numlteyaafs in the loop.

7 Conclusions

We have performed large-scale simulations of all-polynsratomposites, consisting of SCNPs
and linear chains. The SCNPs have sparse or globular shagppba# the size of the linear chains.
To distinguish the role of the SCNPs in the topological caists from other specific contributions
present in experiments, the simulations for different cosmpons of the mixture have been per-
formed at constant density, and with identical segmentddilitypand monomer excluded volume
for the SCNPs and linear chains. Every composition leadswelladispersed nanocomposite with
fully-penetrated nanofillers. We have investigated theatidf the soft, deformable and penetrable
character of the SCNPs on the dynamical properties of teatimatrix. We have found that the in-
troduction of sparse SNCPs, at a 25% in volume fraction, doealter significantly the dynamics
of the linear matrix with respect to the pure linear melt. @& d¢ontrary, the globular nanoparticles
have a relevant effect already at the volume fraction of 1@%ding to slower dynamics of the
linear chains in the nanocomposite than in the pure linedt: me

We have discussed the former observations within the frasrieof the tube theory. Unlike in
systems with hard nanofillers, the SCNPs do not exert gearaktionfinement, due to their full
penetration by the linear chains. Hence, the SCNPs onlyibaoie to the topological constraints

experienced by the linear chains. In order to quantify thengfth of the topological constraints,
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we have determined the entanglement leridglof the linear chains, by analysing their isocon-
figurational mean paths (IMP) and primitive paths (PP), asnatfon of the concentration of the
SCNPs. In the analysis we have used different estimatoygopeal in the literature. A clear trend
is found for the concentration dependence of the entangielmegth in the nanocomposites with
globular SCNPs. The analysis of both the IMPs and PPs unamobgly reveals that, within the
framework of the tube theory, the linear chains appear totwemntangled in the nanocomposites
than in the pure linear melt, with a reduction of up to 30 %Neft nanoparticle volume fractions
of 60 %.

In the case of the nanocomposites with sparse SCNPs, the o8ld is essentially unaffected
or larger than in the pure linear melt, depending on the uslee tepresentation. Still, the original
value for the pure linear chains is just slightly modified bg presence of the sparse SCNPs. This
finding is rather different from the neutron spin-echo ekpental results on the nanocomposite
of Ref#* (linear PEO and PMMA-SCNPs), that revealed a noticeable dilation with respect to
the pure linear PEO. The reasons for such a discrepancy bewdiong a number of differences
between simulated and real systems. For instance, thevialjpingredients are absent in the
simulations (which address the specific role of the SCNP lemyd but could make significant
contributions to the behavior of the real sample: (i) largaaimic asymmetry characterizing the
PEO and PMMA-SCNPs, (ii) relatively high polydispersity)(ipossible changes in the density,
that are very difficult to monitor experimentally. Futurepeximents are planned to determine the

actual role of these factors in the dynamics of the nanoceitgm
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