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Abstract

We investigate all-polymer nanocomposites, formed by linear chains and single-chain poly-

mer nanoparticles (SCNPs), by means of large-scale simulations. To distinguish the role of the

soft penetrable character of the SCNPs in the topological constraints from other specific con-

tributions present in experiments, the simulations for different compositions of the mixture

are performed at constant density, and with identical segmental mobility and monomer ex-

cluded volume for the SCNPs and linear chains. Every composition leads to a well-dispersed

nanocomposite with fully-penetrated nanofillers. Hence, unlike in the case of hard nanofillers,

the SCNPs do not exert confinement effects on the linear chains, and only contribute to the

topological constraints. We discuss the intramolecular dynamics of the linear chains in terms

of the tube model. We determine the entanglement length of the linear chains by analysing their

isoconfigurational mean paths (IMP) and the primitive paths(PP), as a function of the concen-

tration and topology of the SCNPs. In the analysis we use different estimators proposed in the

literature. The IMP and PP analysis in the nanocomposites with sparse SCNPs yields values

of the entanglement length smaller and larger, respectively, than in the reference pure linear

melt, though small variations are observed. A more consistent trend is found in the nanocom-

posites with globular SCNPs, where both the IMP and PP analysis unambiguously reveal that

the linear chains are more entangled than in the pure linear melt. Such differences between the

effects of SCNPs with different topologies are presumably related to the much higher fraction

of threadable loops in the globular SCNPs, with respect to their sparse counterparts, which

effectively lead to more topological constraints.
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1 Introduction

Dispersion of nanoparticles (NP) in polymer matrices has turned out to be a very efficient way

to design novel hybrid polymer-based materials.1,2 Extensive experimental3–6 and simulation7–9

studies have shown that the level of actual improvement of the material properties is highly de-

pendent of the polymer/nanofiller interactions. In the caseof nanocomposites containing long,

mutually entangled polymer chains, these interactions represent an additional factor in a complex

description of the structure-related properties. The viscoelastic character of pure unfilled polymer

melts is attributed to the topological constraints (calledentanglements), which stem from the chain-

chain interactions and their mutual uncrossability.10 A theoretical framework representing these

constraints as an effective tube around each polymer chain has gained general acceptance.11–13

After the isotropic Rouse regime, the chain segments experience the topological constraints, and

their motion becomes highly anisotropic. The lateral motion is strongly restricted and the chains

perform longitudinal Rouse motion followed by longitudinal diffusion along the tube (reptation).

At late times the chain fully escapes from the tube and performs isotropic difussion. The tube

theory has been extended and applied on branched architectures by implementing new relaxation

mechanisms,14 achieving impressive results even for commercial polymerswith random branch-

ing.15,16

Hence, it is no wonder that the tube theory was invoked in the attempt to explain polymer

behavior in hybrid nanocomposite systems. In nanocomposites with nonattractive interactions two

types of constraints affecting polymer motion have been proposed: entanglements, characterized

by the tube diameterdtube, and geometrical confinement induced by the impenetrable nanoparticles,

with a characteristic length scaledgeo. Schneideret al.17 have proposed that the combination of

both mechanisms results in the motion of the polymer chains in an effective or ‘apparent’ tube of

diameterdapp. A simple ansatz relating all the former length scales has been suggested:17

d−2
app(φ) = d−2

tube(φ)+d−2
geo(φ), (1)
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whereφ is the nanoparticle volume fraction. Thus, depending on theactual volume fraction of the

nanofillers, topological or geometrical confinement effects dominate the motion of the chains.

The tube diameterdtube in the nanocomposite cannot be directly obtained from experiments.

Its value relies on assuming the validity of Eq. (1) and on a correct estimation of the apparent tube

diameterdapp and the geometrical confinement length scaledgeo. On the one hand, the value of

dapp can be obtained, e.g., by analysing the dynamic structure factor in terms of the theoretical

expression predicted by the tube theory for pure linear melts17,18(note however the possible draw-

backs of this analysis in terms of the investigated molecular weight and wavevectors19,20). On the

other hand, the value ofdgeo can be calculated from a void distance distribution function, where

the nanoparticles are approximated by perfectly dispersedhard spheres.21 However, it is usually

very difficult to fulfill experimentally the assumption of perfect nanoparticle dispersion. The case

of silica nanoparticles is a well-know example of this problem. In order to achieve a homogeneous

dispersion, favourable enthalpic interactions between the nanoparticles are necessary. Still, if the

nanoparticle/polymer attraction is too strong, dynamicalheterogeneities in the adsorbed polymer

layer come into play. At high nanoparticle loadings this leads to a network-like structure, where the

confined adsorbed chains form bridges between the nanoparticles.3,22 One way to create a ‘soft’

interphase and to tune the interaction with the polymer matrix is by modifying the nanoparticle

surface with grafted chains.5,6,23,24A few experimental studies have reported tube parameters for

this type of nanocomposites, obtained either by applying tube theory to fit neutron spin-echo data23

or by estimating characteristic times from linear rheologyspectra.24

In a long-lasting effort to get a good compatibility betweenthe nanoparticles and the poly-

mer matrix, all-polymer nanocomposites have gained increasing attention over past years. In

all-polymer nanocomposites the nanoparticles have no ‘hard’ components, but are fully polymer-

based objects. Rapidly advancing techniques for polymer synthesis have opened the door to a huge

variety of polymer nano-objects with complex architectures, ranging from single-chain nanopar-

ticles25–29 to soft dendritic (hyperbranched) structures.30,31 Single-chain nanoparticles (SCNPs)

are prepared from linear precursors with functionalized groups through purely intramolecular
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crosslinking, and are attracting increasing interest of researchers due to their potential applications

in nanomedicine, biosensing or catalysis among others.32 The shape of the SCNPs is strongly de-

pendent of the synthesis protocol.33 In general, synthesis in good solvent conditions lead to sparse

SCNPs.34,35 This is a direct consequence of the self-avoiding conformations adopted by the pre-

cursors in good solvent, where long loops, at the origin of anefficient folding into globular SCNPs,

are rarely formed.35,36Instead, bonding is mostly promoted over short contour distances, resulting

in sparse SCNP conformations resembling those of intrinsically disordered proteins.33,37 Several

sophisticated routes, based on the solvent quality38 or on the use of long cross-linkers,39 have been

recently introduced to synthesize globular SCNPs through promoting bonding over long contour

distances (see Supporting Information).

When used as nanofillers, fully polymeric nanoparticles seem to affect the linear polymer ma-

trix in a peculiar way. In 2003 Mackayet al.40 sparked interest in all-polymer nanocomposites, by

highlighting an exceptional reduction of viscosity of longpoly(styrene) (PS) chains after addition

of compact spherical PS nanofillers of half the size of the linear chains. This reduction was asso-

ciated with confinement of the chain, determined by comparing the average interparticle distance

dav:

dav= D

(

[

φm

φ

]1/3

−1

)

(2)

to the dimensions of the matrix chains.41 In Eq. (2)D represents the nanoparticle diameter and

φm=2/π the maximum volume fraction for random packing. For dendritic poly(ethylene) nanopar-

ticles embedded in a PS matrix, a non-monotonic dependence of the viscosity on the nanoparticle

concentration was found.42 In contrast with results in Ref.,40 a viscosity drop was produced at low

nanoparticle loadings, i.e. below the theoretical confinement threshold. Factors as an alteration of

the free volume or a reduction in the entanglement density were ruled out, indicating as a possible

origin of the viscosity drop the acceleration of the polymersegmental relaxation close to the soft

surface of the dendrimeric nanoparticles. This acceleration of the segmental relaxation was pre-

viously proposed in a simulation study of all-PS nanocomposites.43 Recently, the tube model was

applied to analyze neutron spin-echo data of all-polymer nanocomposites formed by poly(methyl
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methacrylate) (PMMA)-based SCNPs and poly(ethylene oxide) (PEO)-linear chains.44 A direct

comparison was made with a blend of linear PMMA- and PEO-chains, with the same composi-

tion and molecular weights as in the nanocomposite. At long times after the Rouse regime the

PEO-chains exhibited faster dynamics in the nanocompositethan in the blend, and an exceptional

broadening of the apparent tube with respect to the melt of pure PEO. Two possible mechanisms

at the origin of this observation were proposed: confinementeffects and a high amount of SCNP

surface in contact with the polymer matrix.44 Similarly, it has been shown that the presence of

fuzzy nanoparticles increase the diffusion rate of the linear chains,45 while the actual value of the

increase depends on the softness and the internal structureof nanoparticles.

In general, experiments suggest that the polymer/nanoparticle affinity as well as the soft char-

acter of the corresponding interface are at the origin of theunusual observed dynamic behavior.

However, there may be undesired contributions that are difficult to be removed experimentally,

and that may hinder the microscopic interpretation of the experimental results in the all-polymers

nanocomposites, as e.g., impurities, polydispersity or differences in density and segmental mobil-

ity with respect to the pure linear melt.

These undesired contributions can be removed in simulations, which therefore provide a valu-

able tool for getting insight into the fundamental mechanisms behind chain motion in all-polymer

nanocomposites. With these ideas in mind, in this article wepresent extensive simulations of a

simple bead-spring model of all-polymer nanocomposites consisting of globular SCNPs and linear

chains and compare them with results of the pure melt of linear chains. The beads of the SCNPs

and the linear chains are identical and the simulations are performed at fixed density. The chains are

undistorted and their segmental dynamics are unaffected with respect to the linear melt. Therefore,

the differences in the dynamics of the linear chains in the melt and in the nanocomposite originate

exclusively from the soft, penetrable character of the SCNPs. We investigate several compositions

of the nanocomposite. Moreover, we address the role of the particular nanoparticle shape in the

topological constraints, by comparing the former results with an analogous nanocomposite with

sparse SCNPs.
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Following an approach similar to the one used in previous computational investigations in

nanocomposites with impenetrable spheres representing hard nanoparticles,18,46–49we have de-

termined the entanglement length in our all-polymer nanocomposites by analysing the primitive

path (PP) of the polymer chains. The PP is identified as the shortest path between the end

monomers of the chain that is compatible with the topological constraints.50–53 As discussed in

several works,46,47 it is not clear whether, in the case of nanocomposites with impenetrable hard

nanoparticles, these should be removed from the system before the computation of the PP ("phan-

tom particle" approach18,54) or should be kept in the system, thus acting as additional obstacles

("frozen particle" approach18,54). As will be shown, this distinction is not necessary in our work,

since SCNPs do not induce confinement: they are fully penetrated by the linear chains and con-

tribute to the topological constraints. Moreover, we have performed an alternative analysis based

on the isoconfigurational mean path (IMP) approach,55 which obtains the tube path by averaging

out fast fluctuations while keeping the uncrossability of the chains.

The analysis of both the IMP and PP unambiguously reveals that the presence of globular

nanoparticles leads to a smaller entanglement length with respect to the pure linear melt, acting

thus as additional topological constraints in the system. Still, the variations are moderate, with a

maximum reduction of 30 % in the entanglement length at the highest investigated nanoparticle

concentration of 60 %. In the case of the nanocomposites containing sparse nanofillers, the original

entanglement length is essentially unaffected (IMP analysis) or increased (PP analysis), though

small variations are found with respect to the pure linear melt. Such differences between the

effects of SCNPs with different topologies are presumably related to the much higher fraction of

threadable loops in the globular SCNPs, with respect to their sparse counterparts, which effectively

lead to more topological constraints.

In general, the results reported in this article suggest that the topology and the soft and pene-

trable character of fully polymeric nanoparticles play a moderate role in the dynamical properties

of all-polymer nanocomposites. Additional effects (polymer/nanoparticle interactions, changes in

density or segmental relaxation, etc) may have a similar or stronger contribution to the measured

7



properties.

The article is organized as follows. In Section 2 we give model and simulation details. Static

and dynamic properties are presented and discussed in Sections 3 and 4, respectively. In Section 5

we present a detailed analysis of the IMP and PP in the investigated all-polymer nanocomposites.

In Section 6 we discuss the consequences of the applied analysis for the interpretation of dynamic

results in terms of the tube model. Conclusions are given in Section 7.

2 Model and Simulation Details

We investigated six all-polymer nanocomposites containing globular SCNPs. In what follows these

systems will be denoted as gNC1-6 according to the volume fraction of the SCNPs (see Table 1).

We also investigated one nanocomposite with sparse SCNPs (system sNC). All the systems were

simulated by using the Kremer-Grest bead-spring model,56 where the monomeric units in both

the SCNPs and the linear chains were represented by beads of diameterσ , and the elastic bonds

between them were modelled by the finite-extension nonlinear elastic (FENE) potential:

UF =−
1
2

KFR2
F ln

[

1−

(

r
RF

)2
]

. (3)

A spring constantKF = 30ε/σ2 and maximum bond lengthRF = 1.5σ were used in order to assure

small fluctuations around the average bond length (l0 = 0.97σ ) and guarantee the non-crossability

of the chain segments. In what follows quantities will be expressed in simulation units: length

unit σ , time unitτ0 = (m0σ2/ε)1/2 and temperature unitε/kB, with m0 the bead mass andkB the

Boltzmann constant. The non-bonded interaction between any two beads at a mutual distancer

was represented by a Lennard-Jones (LJ) potential:

ULJ(r) =















4ε
[

(σ
r

)12
−
(σ

r

)6
]

+Ushift for r ≤ rc,

0 for r > rc.

(4)
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In all the investigated systems a purely repulsive LJ potential was applied for the self-interactions,

i.e., for polymer/polymer and NP/NP interactions, withε = kBT, a cutoff distancerc = 21/6σ and

a shifting factorUshift = kBT. We used the same parameters for the cross-interaction (NP/polymer)

in the system with sparse nanoparticles, which showed perfect NP/polymer mixing. However, in

the systems with globular nanoparticles, using identical nonattractive self- and cross-interactions

led to phase separation of the linear chains and the nanoparticles. Therefore, in the systems gNC1-

6 we kept the former repulsive LJ potential for the self-interactions, and used a slightly attractive

LJ potential for the NP/polymer interaction, with parameters rc = 2.5σ , ε = 0.5kBT andUshift = 0.

This was sufficient to achieve perfect mixing of the linear chains and the globular nanoparticles

without altering the average conformations of the linear chains, which were essentially undistorted

with respect to the pure linear melt (see below).

In addition to the above mentioned potentials, an intramolecular bending potential,

Ubend(θ) =C2θ2+C4θ4, (5)

was applied to the linear chains in all the investigated systems, withθ the angle between consec-

utive bond vectors. We used the parametersC2 = 0.92504230 andC4 = −0.054183683, which

in practice resulted in a potential undistinguishable fromthe cosine potential used in Ref.57 (dif-

ferences between both potentials only arise at very large angles that are never accessed due to

excluded volume repulsion). Therefore the properties of the pure linear melt are identical to those

already reported for the system of Ref.,57 which was investigated at the same density and with the

same LJ and FENE interactions as those used here. Thus, the bending potential with the former

parametersC2,C4 provides a moderate semiflexible character to the chains, with a characteristic

ratio57 C∞ ≈ 3.4. The corresponding entanglement length for this model isNe ≈ 25 according to

the PP analysis of Ref.50 Thus, the semiflexible character produces a decrease of the entangle-

ment length with respect to the fully-flexible case (Ne ≈ 65 or≈ 85 according to the different PP

constructions of Refs.50 and58 , respectively). This allows to simulate more strongly entangled
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systems than by using fully-flexible counterparts of the same molecular weight.

As aforementioned, we investigate the role of the nanoparticle architecture (sparse or globular)

in the topological constraints experienced by the linear chains. To enhance differences between

both types of nanoparticles, we also applied the bending potential of Eq. (5) to the sparse nanopar-

ticles, in order to achieve more open NP conformations and toincrease the number of NP/polymer

contacts. On the contrary, no bending was applied to the globular nanoparticles, in order to achieve

NP conformations as compact as possible.

The globular and sparse nanoparticles were generated by themethods reported in Refs.38

and35 , respectively (see also Supporting Information). The nanocomposite was obtained as fol-

lows. First, the nanoparticles were randomly placed in the simulation box at a dilute concentration,

preventing intermolecular concatenations. Then the linear chains were grown in the simulation

box, rejecting insertions resulting in overlaps (r < 0.85σ ) with previously inserted beads. Once

the full system was constructed, it was slowly compressed and equilibrated in sucessive steps up to

the target melt density. The melt of pure linear chains was also generated as the reference system.

In all systems the investigated density was fixed toρ = 0.85σ−3, which corresponds to melt

conditions,56 and the length of the linear chains was fixed toN = 200 beads. In the pure lin-

ear system this corresponds toZ = N/Ne ≈ 8 entanglements per chain.57 The compositions of the

different investigated nanocomposites ranged from 10 % to 60 % in the weight fraction of nanopar-

ticle beads. Since all the beads in the system have the same size and mass, the volume fractionφ

is identical to the weight fraction. Further details on the compositions of the investigated systems

are given in Table 1. The simulations were performed with theGROMACS package59 at constant

volumeV, and temperature〈T〉= ε/kB. The Langevin thermostat was applied, with a friction con-

stantΓ = 0.5m0/τ0. A time stepδ t = 0.003τ0 was used for both the equilibration and production

runs. The duration of the runs was of the order of 109 steps.
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Table 1: Characteristics of the simulated systems:Np andNc stand for the number of nanopar-
ticles and linear chains in the system, respectively.Mp andMc denote the number of beads per
nanoparticle and per linear chain, respectively. Volume fractions refer to the NPs.

system volume fractionφ Np Mp Nc Mc

gNC1 0.1 14 520 316 200
gNC2 0.2 27 520 282 200
gNC3 0.3 41 520 245 200
gNC4 0.4 54 520 212 200
gNC5 0.5 68 520 175 200
gNC6 0.6 81 520 141 200
sNC 0.25 88 200 352 200
linear — 352 200

3 Static properties

Figure 1 displays the average radius of gyration,〈R2
g〉

1/2, of the linear chains and the nanoparticles

in all the investigated systems (data are represented vs. the volume fraction of the nanoparticles).

There is some stretching of the linear chains by increasing the concentration of the nanoparticles.

This is not surprising due to the concomitant increase of energetic favorable contacts. Still, stretch-

ing is rather weak (less than 6 %) and just reflects a slight increase of the effective local stiffness.

The conformations of the chains indeed remain Gaussian. This is demonstrated by comparing the

results for〈R2
g〉

1/2 and 〈R2
e/6〉1/2 (with Re the end-to-end radius), which are identical for ideal

Gaussian chains.10,60 No differences are found within error bars. The inverse effect is observed

for the globular nanoparticles. By increasing their concentration they are exposed to more nonat-

tractive self-interactions, and shrink up to 20 %. In all thesystems the average radius of gyration

of the linear chains is of the order of twice the nanoparticleradius.

The nanoparticles are cross-linked objects with permanentbonds, and therefore contain perma-

nent loops in their internal structure. Figure 2 shows, for different investigated nanocomposites,

the average size of the loop as a function of the number of beads in the loop. The observed trend

is analogous to that of Figure 1, and, in average, the loops shrink by increasing the concentration

of the nanoparticles. As can be seen in Figure 2, the globulararchitecture contains loops of the

same size as the NP radius of gyration. Instead, in the sparsearchitecture the largest loop is clearly
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Figure 1: Average radius of gyration,〈R2
g〉

1/2, for the linear chains (squares) and the nanoparticles
(triangles) in all the investigated systems. Data are represented vs. the volume fractionφ of NPs
(φ = 0 for the pure linear melt). We include data (circles) of〈R2

e/6〉1/2 for the linear chains, withRe

the end-to-end radius. Within error bars these are identical to the corresponding data for〈R2
g〉

1/2,
demonstrating the Gaussianity of the linear chains in all the systems. Empty and filled symbols for
φ > 0 correspond to systems with globular and sparse NPs, respectively. Error bars for the NPs are
smaller than the symbol size.

smaller than the NP size. This is a consequence of the different employed synthesis routes, where

the formation of long loops is promoted (globular NPs)38 or disfavored (sparse NPs).35

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  50  100  150  200  250  300  350  400

<
R

g2 >
1/

2  o
f t

he
 lo

op

number of beads in the loop

gNC2
gNC4
gNC6

sNC

Figure 2: Radius of gyration of the permament loops in the globular nanoparticles (systems gNC2,
gNC4 and gNC6) and in the sparse nanoparticles (system sNC).Data are represented vs. the
number of beads in the corresponding loops. For comparison we include (dashed lines) the mean
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Figure 3 shows the form factorw(q) for the linear chains and the globular and sparse nanopar-

ticles in three representative systems. In the fractal regime 1/Rg ≪ q ≪ 1/l0 the data can be
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dashed lines describe scaling behaviorw(q) ∼ q−1/ν , with the exponentν expected for Gaussian
chains (ν = 0.5), crumpled globules (ν = 0.36), and for Porod scattering from compact spheres
(ν = 0.25). The latter are compared with the data for the linear chains, sparse NPs and globular
NPs, respectively.

described by the power law60 w(q) ∼ q−1/ν . The obtained scaling exponents for each type of

macromolecule are consistent with those expected for several archetype conformations: i) Gaus-

sian chains (ν = 0.5) in the case of the linear chains; ii) compact spheres in thecase of the globular

NPs, with the exponentν = 1/4 expected for Porod scattering;60 iii) crumpled globules (ν ≈ 0.36)

for the sparse nanoparticles, as anticipated in Refs.,37,44and resembling observations for ring poly-

mers.61 Analogous results are obtained for the three types of macromolecules in all the investigated

systems.

As mentioned in the Introduction, the separation between topological entanglements and geo-

metrical confinement, usually invoked in nanocomposites with hard NPs, may lose its meaning in

all-polymer nanocomposites with soft deformable NPs. Thisidea is supported by Figure 4, which

shows two typical snapshots for globular and sparse nanoparticles fully penetrated by surrounding

linear chains. To confirm this point, we quantify in our system the degree of penetration of the

nanoparticles by the linear chains. We consider that a nanoparticle is fully penetrated by a linear

chain if some of the monomers of the chain is in the close vicinity of the center-of-mass of the

nanoparticle. Figure 5 shows, for all the investigated systems, the partial radial distribution func-
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Figure 4: Top: Typical snapshot of a globular nanoparticle (yellow) in the gNC2 system, penetrated
by two linear chains (blue and red). Bottom: Same as in the toppanel, for a sparse nanoparticle in
the sNC system.

tion g(r) between the NP centers-of-mass and the monomers of the linear chains. The resulting

g(r)’s are almost structureless, with just a weak correlation hole. Thus,g(r = 0) > 0.7 for all the

systems, and eveng(r = 0) . 1 for the largest concentrations of globular NPs. This demonstrates

that the nanoparticles are fully penetrated by the linear chains, hence contributing to the topolog-

ical constraints but not inducing confinement effects. A further test is given by calculating the

number of ‘contact monomers’. A monomer in a nanoparticle isdefined as a contact monomer if

it is at a distancer < rm from at least one monomer of a polymer chain, whererm = 1.5σ is the
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Figure 5: Radial distribution function of the monomers of the linear chains with respect to the
centers-of-mass of the nanoparticles, for all the investigated nanoparticles. Distances are normal-
ized by the respective radii of gyration of the NPs.

distance at the minimum of the all-monomer radial distribution function (not shown). We find that

97 % of the NP monomers are contact monomers in the sparse nanoparticles, and essentially 100

% in the globular nanoparticles at all the investigated concentrations.

In summary, the results presented in this section confirm that: i) the linear chains are essentially

undistorted with respect to the pure linear melt; ii) the twotypes of employed nanoparticles, syn-

thesized at high dilution, retain their sparse/globular character in the nanocomposites, and therefore

provide,a priori, diferent topological constraints to their surrounding chains; iii) the nanoparticles

are fully penetrated by the linear chains and do not induce geometric confinement on them.

4 Dynamic properties

Figure 6 shows the mean squared displacement (MSD,〈∆r2(t)〉) for the linear chains and the

nanoparticles in some of the investigated nanocomposites.In the case of the linear chains the

MSD is only computed for the middle monomers. Namely we take the 26 monomers in the center

of the chain contour, i.e., the innermost entanglement segment. In this way the contributions of

the faster outermost segments are eliminated, and the MSD provides a better representation of the

dynamics of the linear chains inside the tube.

15



100

101

102

101 102 103 104 105 106

M
S

D

time

gNC2
gNC6

sNC

Figure 6: MSD for all monomers of the NPs (symbols), and for the middle monomers of the linear
chains (solid lines). Data sets for the same system are depicted with identical colors (see legend).
Dashed lines representing power law-behavior,〈∆r2(t)〉 ∼ tx, are included for comparison. The
exponents are, from short to long times,x= 0.6,0.3 and 0.5.

First, it is worth noting that the simulated model leads, within statistics, to the same segmental

relaxation of the linear chains in the different systems investigated, as revealed by the overlap of the

corresponding data sets at short times. This is confirmed (see Figure 7) by computing the correlator,

〈Xp(t) ·Xp(0)〉, of the shortest Rouse mode,Xp = M−1
c ∑Mc

j=1 r j(t)cos[ jpπ/Mc] with p= Mc−1,

which probes the segmental relaxation.10,60All the correlators overlap within statistics. Therefore,

dynamic differences in the simulated systems at later timesarise only as a consequence of the

different topological constraints induced by the respective concentrations and architectures of the

nanoparticles.

In analogy with general observations in pure linear melts, after the short-time microscopic

regime different sublinear regimes,〈∆r2(t)〉 ∼ tx, are observed for the MSD of the linear chains,

with exponents close to the ideal predictions from the tube theory. Thus, a first regime resembling

Rouse-like dynamics (x = 1/2)10,60 is found. The effective exponents slightly change, fromx =

0.6 to x = 0.5, by increasing the concentration of globular nanoparticles. The exponentx = 0.6

observed at lowφ is also found in the pure linear melt.57 This deviation from ideal Rouse behavior

may originate from non-Gaussian static correlations (not included in the Rouse model) at local

scales, which are related to the semiflexible character introduced by the used bending potential.
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Figure 7: Time-dependence of the correlator of the shortestRouse mode (p= Mc−1) of the linear
chains in the investigated systems.

The decrease to apparent ideal Rouse behavior,x= 0.5, at highφ likely arises from a compensation

effect. The linear chains penetrate the globular nanoparticles, which are objects relaxing in a much

slower fashion than the linear chains (see Figure 6). This breaks one of the basic assumptions of

the Rouse model (fastly relaxing environment),62 apparently decreasing the effective exponent in

the MSD and compensating the increase associated to the local stiffness.

In all the systems, at the time scale oft ∼ 2000τ0 that can be identified as the entanglement time

τe, the monomers in the linear chains feel the uncrossability constraints and there is a deceleration

in the MSD, leading to a second sublinear regime with an effective exponentx≈ 0.3. This is also

the value found in the pure linear melt57 and is slightly higher than the theoretical valuex= 1/4 for

the longitudinal Rouse dynamics inside the tube.10,60According to the tube theory, this ‘Rouse-in-

tube’ regime ends at the Rouse time,10,60τR ≈ τeZ2, with Z the number of entanglements per chain.

For the pure linear melt of this work57 Z≈8 andτR∼105τ0. In our nanocomposites, this time scale

is of the same order of magnitude, though it seems to depend onthe concentration and architecture

of the NPs (see Figure 6). After the Rouse time, pure linear chains perform longitudinal diffusion

along the tube (reptation), with a theoretical exponentx= 1/2, until the final transition to isotropic

diffusion (x= 1) at the disengagement time10,60τd ≈ 3ZτR ∼ 2×106τ0. Results in Figure 6 for the

linear chains in the nanocomposites are apparently consistent with this expectation, yet an accurate

estimation of the exponent is not possible due to the relatively short time window fromτR to τd.
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In summary, though they exhibit quantitative differences depending on the concentration and the

architecture of the nanoparticles, the results in Figure 6 are apparently consistent with a tube-based

picture for the dynamics of the linear chains in the investigated all-polymer nanocomposites.

Though the characterization of the dynamics of the nanoparticles is beyond the scope of this

work, we comment some general features. First, as can be seenin Figure 6, the globular nanoparti-

cles are much slower than the linear chains. At the time scales of the Rouse-in-tube regime for the

linear chains, 2000. t/τ0 . 105, the MSD of the globular nanoparticles is severely slowed down

and saturates to a plateau. This is a consequence of their compact and highly connected local

structure, which impedes the broad fluctuations observed inthe linear counterparts. At the onset

of the reptation regime (t & 105) for the linear chains, all the macromolecules start to mutually

disentangle, and the MSD of the globular nanoparticles grows up again. The sparse nanoparticles,

which are still slower than the linear chains, are much faster than their globular counterparts. Their

sparse, less tightly linked, conformations allow for much broader fluctuations, and they do not

show the intermediate plateau in the MSD.
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Figure 8: Mean squared displacement of the middle monomers of the linear chains in the simula-
tions with fixed chain ends, for all the investigated systems. Inset: zoom of the plateaux that arise
at t ∼ 105.

To get a first characterization of the topological constraints experienced by the linear chains in

the all-polymer nanocomposites, we have performed additional simulations with fixed chain ends,

and analyzed the corresponding MSD. By fixing their end monomers, the longitudinal diffusion
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of the linear chains is suppressed. To minimize the effect ofthe fixed chain ends on the monomer

fluctuations, we compute again the MSD of the 26 middle monomers. The obtained results are

shown in Figure 8. Due to the suppression of the longitudinaldiffusion, the MSD reaches, att ∼

τR ∼ 105, an ultimate plateau that characterizes the fluctuations within the tube. A clear decrease of

the plateau is observed by increasing the concentration of the globular nanoparticles. This suggests

a stronger effect of the topological constraints induced bythe globular nanoparticles on the linear

chains. We quantify this effect in Section 5 by characterizing the tube path through two different

approaches.

5 Isoconfigurational mean path and primitive path analysis

In this section we work with two approaches that use different procedures to characterize the tube

from simulations: the isoconfigurational mean path (IMP) approach and the primitive path (PP)

construction. The concept of IMP was introduced in Ref.,55 and is based on the idea that the

tube path associated to a given configuration of the macromolecule can be approximated by the

coordinates of the monomers averaged over their isoconfigurational ensemble (IE). The latter is

given by all the configurations at timet = τiso, generated by starting att = 0 from the same initial

coordinates but with different velocities sampled from theMaxwell-Boltzmann (MB) distribution.

If τiso is of the order of the entanglement time, the uncrossabilityof the chains is preserved, fast

fluctuations within the tube are averaged out, and a smooth path is generated.

We ran simulations to generate the IE for a time scalet = τiso = 3000τ0 ≈ 1.5τe. For the same

initial configuration of the simulation box, we generated 50trajectories by starting with different

MB realizations of the velocities, and the 50 configurationsobtained att = τiso were used to get

the averaged coordinates of the IMP of each chain. Finally, the static properties of each IMP (see

below) were analyzed and averaged over all the chains. To improve statistics, the procedure was

repeated for 10 different initial configurations of the box,equispaced by about 108 MD steps.

The PP approach constructs the tube paths by reducing all thechain countours between their re-
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spective chain ends (which are kept fixed in space), with the condition of preserving the topological

constraints (i.e., keeping the uncrossability of the chains). We followed the method proposed by

Everaerset al.50,51Thus, we performed a simulation (‘contraction run’) where the end monomers

of all the linear chains were fixed, at extremely low temperatureT = 0.001, and where the bending

potential and theintramolecularLJ interactions were switched off for all the macromolecules (both

NPs and chains). All the intermolecular LJ interactions were kept, in order to allow for reduction

of the chain/loop contour without violating the uncrossability condition. It must be noted that this

procedure does notminimizethe chain contour but the intramolecular energy. Strict minimization

of the chain contour is achieved by geometric chain-shrinking methods,52,53 through the use of

geometric operations and supression of all the excluded volume without violating uncrossability.

However, the implementation of geometric methods is extremely involved for the highly complex

loopy architectures of the single-chain nanoparticles.

Following Ref.,51 for the system of pure linear chains we used a time stepδ t = 0.006τ0 for

the whole contraction run, with an initial value of the thermostat constantΓ = 20τ−1
0 , which was

changed toΓ = 0.5τ−1
0 after a few steps. In the nanocomposite systems we detected broader

fluctuations of the bond lengths. Therefore we used a smallertime stepδ t = 0.001τ0, and moreover

we decreased smoothly the value ofΓ during the first 2×105 steps, from the initialΓ = 20τ−1
0 to

the final valueΓ = 0.5τ−1
0 . Still, there were contraction runs where the length of somebonds

exceeded the value of 1.3σ at some time (this was monitored on the fly). We excluded theseruns

from the further analysis, hence we discarded the PPs where apossible artificial bond crossing

might have occurred during their generation.51 To improve statistics, for each nanocomposite we

used PP configurations obtained from typically 5-10 contraction runs. These runs were of the order

of 106 steps. This time scale was much longer than the time needed for the contour length to decay

to the ultimate plateau in its time dependence, corresponding to the equilibrium PP length. The

CPU time for a single configuration in the IMP and PP runs was about 1 and 7 days, respectively,

in a single AMD Opteron 6300.

Typical snapshots (system gNC3) of the IMP and PP of a globular nanoparticle and a penetrat-
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ing linear chain are shown in Figure 9. At this point we would like to highlight some important

facts. First of all, to the best of our knowledge, none of bothprocedures (IMP and PP) have been

used before in nanocomposites with soft nanoparticles. Theimplementation of the IMP approach

in these systems is straightforward and not fundamentally different from similar investigations in

pure linear melts (just requiring simple averaging). However, in the case of the PP construction

the handling of the nanoparticles may be tricky. Since the nanoparticles contain permanent loops,

to generate their PPs we treated them in a similar way to polymer rings.63 Thus, we did not fix in

space any of the nanoparticle monomers and allowed them to relax freely during the contraction

run. It has been shown that, as a consequence of this procedure, unthreaded polymer rings neces-

sarily collapse into single points.63 Unthreaded loops (i.e., loops not penetrated by linear chains)

in our nanoparticles shrink under PP contraction but, in general, they do not collapse into single

points. The reason is that, due to the cross-linked topologyof the nanoparticles, threaded and un-

threaded loops in the same nanoparticle form a mutually connected network, so that unthreaded

loops cannot shrink independently of the threaded ones.

Recently, a dynamical analysis of the contacts between the mean paths has been reported for

linear melts.64 A similar analysis is however not suitable in our nanocomposites since they are

systems fundamentally different from the case of the pure linear chains. In particular, the polymer

chains in our nanocomposites have a tendency to align parallel to each other when they thread a

group of close loops of the same nanoparticle. Under these conditions, the notion of the contact

point between two mean paths is ill-defined, because there will be a whole sequence of beads

within the critical distance used to define the mutual contact. Therefore, since we cannot track the

individual contacts, we will use alternative ways of analysis based on the static properties of the

tube path, represented by the IMP and the PP obtained from thesimulations.

Starting with the assumption that both the IMP and PP are semiflexible objects, one can find a

formula50,51,65for the normalized mean squared internal distances
〈

R2(s)
〉

/s:

〈

R2(s)
〉

s
= l2

b

[

1+ 〈cosθ〉
1−〈cosθ〉

−
2〈cosθ〉(1−〈cosθ〉s)

s(1−〈cosθ〉)2

]

(6)
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Figure 9: Typical snapshot (system gNC3) of the IMP and PP of aglobular nanoparticle and a
penetrating linear chain. The coordinates of the red (NP) and blue (chain) beads are obtained after
applying the IMP procedure (top panel), and the PP construction (bottom panel). The coordinates
of the real configurations used for such constructions are drawn as yellow (NP) and cyan dots
(chain). For the sake of clarity, only 25 of the 50 configurations used for the IMP construction are
displayed, and dots and beads in both panels are depicted smaller than the real monomer size.

where lb is the bond length,θ is the angle between consecutive bonds, ands= |i − j| is the

chemical distance between two monomersi and j (monomers are labelledi = 1,2, ...,Mc from one

to the other chain end). Eq. (6) has been derived for the freely rotating chain (FRC) model.50,51,65

In this modellb andθ have constant values and no excluded volume is taken into account. Still,

Eq. (6) has been shown to provide a good description of simulation data for real semiflexible

chains,65 as well as for primitive paths.66 The quantity
〈

R2(s)
〉

/s can be calculated directly from

the coordinates of the tube path (IMP or PP), whereaslb and 〈cosθ〉 can be also calculated as

mean values from the IMP/PP data, or can be obtained as fit parameters. The average value of the

cosine is related to the decay of the bond-bond correlation function of the tube path, assuming an
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exponential decay:60

〈

~b j ·~b j+s

〉

l2
b

= 〈cosθ(s)〉= 〈cosθ〉s = exp(−lb/lp). (7)

In Eq. (7)~b j is the bond vector connecting the positions of the monomersj and j +1 in the tube

path, andlp is the persistence length.60 Since the tube path is a smooth object, the bond angles are

small, and the FRC reduces to the worm-like chain (WLC) model. In the WLClp = lk/2, wherelk

is the Kuhn length.60 By definition,Ne is the number of monomers per Kuhn segment of the tube

path,60 therefore:

Ne= lk/lb. (8)

Finally, by combining Eqs. (7) and (8), we get the first expression for determining the entanglement

length:

Ne =−
2

ln(〈cosθ〉)
. (9)

Instead of analyzing the internal structure of the tube path, one can assume that at large scales

the tube path has the form of a Gaussian coil. We will work withtwo Ne-estimators based on the

relations (resulting from Gaussianity) between the end-to-end distanceRe and the contour length

L of the tube path. The first one is the so-called ‘classical S-coil estimator’, which definesNe as

follows:50

Ne= Nb

〈

R2
e

〉

〈L〉2 , (10)

whereNb stands for the number of bonds. The second one is the ‘modifiedS-coil estimator’:58

Ne = Nb

(

〈

L2
〉

〈R2
e〉

−1

)−1

, (11)

which operates with the second moment of the contour length,
〈

L2
〉

, and in general overestimates

the value ofNe for weakly entangled systems. It has been shown46,58 that both S-coil estimators

provide values of the entanglement length which areNb-dependent, i.e., the obtained value ofNe
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varies with the chain length. Nevertheless, the asymptotic, ideal infinite-chain limit is already

reached for chains less entangled than those used in our model 46,58 (Z ∼ 8). Hence, a reliable

estimation of the idealNe is expected from our analysis.

In what follows we explore the three mentioned ways for calculating Ne (Eqs. (9) to (11)),

paying particular attention to the correct estimation of the necessary parameters provided by the

simulation data (lb, 〈cosθ〉, 〈R2
e〉, 〈L〉 and〈L2〉). Starting with Eq. (6), we looked closer at the bond

lengthlb between the monomers, by firstly checking its dependence on the positioni along the tube

path. It turns out that, whereas in the inner part of the tube path lb is essentially independent of

the position, as we approach the path ends the value oflb changes. As a consequence of the higher

mobility of the free chain ends, averaging in the IMP construction leads to a looser structure at

the ends of the path than in the middle. On the contrary, fixingchain ends in the PP construction

leads to a tauter structure at the path ends. Hence, the values of lb in the IMP and PP are smaller

and larger, respectively, than the values at the middle of the path (see Figure 10). These finite-size

artifacts, originating from the distorsions at the path ends, affect the rest of the quantities involved

in Eqs. (6) to (11) (e.g., the contour length through the relation L = Nblb). Therefore, to remove the

end effects in our analysis, we used the former equations by omitting the 50 outermost monomers

at each end of the tube path. Consequently, we usedNb = N−100 in Eqs. (10) and (11).
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Figure 10: Bond length in the tube path vs. the positioni of the monomer. Symbols and lines
correspond to results for the IMP and PP, respectively.

Once the average value oflb was determined from the tube path coordinates, we computed
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〈

R2(s)
〉

/s, insertedlb in Eq. (6), and obtained〈cosθ〉 as a fit parameter of
〈

R2(s)
〉

/s to the right-

hand-side of Eq. (6). Another option to estimate〈cosθ〉 might be by fitting simulation data to

Eq. (7). However, this is a less reliable procedure. Indeed,the bond-bond correlation functions

of the tube paths have a complex shape and it is difficult to solve the purely exponential decay

in particular ranges ofs (see Ref.66). The data for
〈

R2(s)
〉

/s together with the corresponding

fits to Eq. (6) are presented in Figure 11. Eq. (6) provides a good description of the PPs. The

agreement is worse for the IMPs, especially at moderate distancess. Finally, the values of〈cosθ〉

collected from the former fits were inserted in Eq. (9), providing the first estimation of the entan-

glement length. The calculation ofNe based on the S-coil and modified S-coil (mS-coil) estimators

(Eqs. (10) and (11)) was straightforward: we measuredL andRe by removing again the 50 out-

ermost monomers at each end and inserted the measured valuesin Eqs. (10) and (11) to get the

values ofNe.

In all cases the average values ofNe were obtained by using, for the simulation inputs in Eqs. (6)

to (11), the corresponding values averaged over the generated tube paths (IMP or PP). On passing

we mention that the values of〈L〉 and〈L2〉1/2 were 9−17% larger in the PP than in the IMP. For the

calculation of the error bars ofNe we differentiated Eqs. (6) to (11), and inserted the corresponding

averages and standard deviations of the simulation inputs.The results for the entanglement length

evaluated by the three employed methods (cosine, S-coil andmS-coil) are shown in Table 2, and

displayed in Figure 12 as a function of the NP concentration.Regarding the reference pure linear

melt, our model is very close to the model investigated in Ref.,57 as mentioned in Section 2. A

cosine-based analysis of the PP has been performed by Everaers et al. for the latter model,50,51

yielding a value consistent with the one obtained in our work, Ne ≈ 23.

We can make several conclusions from the information in Table 2 and Figure 12. First, the

numerical values of the entanglement lengthNe depend on both the representation of the tube

path (IMP or PP) and the used estimator (cosine-based, S-coil or mS-coil). The dependence on

the estimator is consistent with observations in Ref46 for nanocomposites with hard NPs. The

dependence on the tube representation was brought up in a study of a simple grid model,67 and we
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will address this issue later on in the discussion. Having inmind these shortcomings, it is worthy

of remark that the normalized entanglement lengthNe(φ)/Ne(0), whereNe(0) is the entanglement

length for the pure linear melt, is almost independent of theestimator. As can be seen in Figure 12,

for the same representation of the tube path (IMP or PP), the data sets ofNe(φ)/Ne(0) obtained

by the different estimators show a very good agreement, especially in the case of the cosine-based

and S-coil estimators.

The dependence of the results on the tube representation is mainly reflected in the sytem with

sparse nanofillers. For the investigated concentration, the entanglement length obtained from the

IMP analysis is slightly smaller than in the pure linear melt. The PP analysis yields a largerNe

in the nanocomposite, though differences with the pure linear melt are smaller than 8 %. A more
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Table 2: Results forNe in each of the investigated systems, obtained from the analysis of the IMP
and PP. The results are given for the three used estimators (cosine-based, S-coil and mS-coil).

isoconfigurational mean path primitive path
system Ne(S-coil) Ne(mS-coil) Ne(cosθ) Ne(S-coil) Ne(mS-coil) Ne(cosθ)
gNC1 24.8±0.9 32.1±0.3 28.3±0.6 18.4±0.8 22.1±0.2 20.8±0.5
gNC2 24.6±0.7 31.7±0.7 27.8±0.9 17.9±0.5 21.4±0.4 20.0±0.7
gNC3 23.2±0.4 29.5±0.1 26.1±0.8 17.0±0.4 20.2±0.1 19.1±0.6
gNC4 23.7±1.4 30.3±1.4 26.8±0.9 17.9±0.8 21.3±0.5 20.0±1.0
gNC5 22.2±1.3 28.0±1.6 24.2±1.4 18.2±1.1 21.8±1.2 19.7±1.1
gNC6 20.9±0.8 25.9±1.0 23.5±0.5 17.4±0.7 20.7±0.5 19.8±0.8
sNC 26.6±0.9 35.2±1.0 30.6±0.7 22.0±0.8 27.5±0.6 25.0±0.9
linear 27.2±1.0 36.4±1.0 31.0±0.8 20.6±0.6 25.6±0.4 23.2±0.5
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Figure 12: Results forNe obtained from the analysis of the IMP and PP (top and bottom panels,
respectively). The data are represented vs. the volume fraction φ of NPs (φ = 0 for the pure linear
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consistent picture is found in the case of the nanocomposites filled with globular NPs. For both

representations of the tube the values ofNe are smaller than in the linear melt for all the investigated

concentrations of NPs. An inconspicuous evidence of non-montonic behavior in the concentration

dependence ofNe can be detected, with an apparent minimum atφ ∼ 0.3 in both representations.

The normalized entanglement lengths obtained from both representations of the tube show similar

values up toφ ∼ 0.4. However, at higher concentrations the IMP analysis yields lower values than

the PP analysis, resulting in a general decreasing trend of the entanglement length, down to about

25-30 % for the highest investigatedφ . Instead, the PP analysis yields no systematic concentration

dependence ofNe for φ > 0.1.

6 Discussion

The key feature of our single-chain nanofillers is their soft, fully polymeric character. This fea-

ture gives rise to distinct structure-related properties of our all-polymer nanocomposites than those

observed in systems with hard (e.g., silica-based) nanofillers. First of all, the linear chains can

fully penetrate the SCNPs. In the case of globular SCNPs thismeans that the linear chains pass

through a compact cross-linked loop-like structure. Such adeep insight into the internal arrange-

ment of the nanocomposite is essential for the further explanation of the dynamical properties of

the material, and in general it can not be obtained directly from experiments. Some all-polymer

nanocomposites investigated in the literature share some structural similarities with our systems,

as e.g. the presence of loops45 and cross-links40,41 in the architecture of the NPs. However, the

lack of accurate information about the NP/polymer interphase region impedes us to make a critical

comparison with our simulations.

Unlike it is usually found in experiments (e.g., due to different segmental mobilities of the NPs

and the linear matrix24,44), the monomeric friction of the linear chains remains unaffected by the

addition of the NPs. This feature facilitates the analysis of the translational motion of the linear

chains in our nanocomposites. Negligible effects are foundin the nanocomposite with sparse NPs.
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However, the presence of globular NPs results in an evident deceleration of the linear chains at

intermediate and long time scales. The deceleration is morepronounced in the system with high

volume fraction of NPs. The quantification of this effect requires the application of a theoretical

model, in this case the tube model. Having in mind the polymer-like nature of our nanofillers,

the environment of the linear chains is closer to the mean-field tube idea of polymer melts with

complex architectures rather than to the geometrically confined situation in hybrid solid/polymer

nanocomposites. An usual strategy in simulation studies isto derive tube parameters from the

analysis of the sublinear regimes in the MSD. This procedurehowever is affected by some implicit

assumptions on the static properties of the tube, and has important shortcomings even in the sim-

plest case of pure linear chains (see the recent discussion in Ref.67). Similar drawbacks are present

in the estimation of the tube parameters from scattering functions,20 and in particular if the chains

are far from the limit of high molecular weight (Z ∼ 100).19,67 The analysis of dynamic observ-

ables as the MSD or the scattering function becomes even moreproblematic in our all-polymer

nanocomposites, since they combine structural features asloops, chain ends, and cross-links act-

ing as branch points. Indeed, these structures show dynamically different responses to topological

constraints, and are treated in very different ways by the corresponding implementations of the

tube model.11,14,68

Having in mind the limitations of the dynamics-based analysis, we have used an alternative

procedure based on the characterization of the tube path, which has been represented by the IMP

and the PP. The first encouraging step is that the analysis of the static properties of the tube path,

both for the IMP and PP, provides the same qualitative trendsas the model-independent results of

the MSD. Still, the analysis yields quantitative results that depend on the used representation (IMP

or PP) of the tube path, even by using the same estimator ofNe. These differences may be attributed

to the different local structure of both semiflexible objects. In particular, the semiflexible character

of the mean path is determined by the way the short time fluctuations are averaged out,55,64making

the isoconfigurational average approach the most computationally demanding, but also the one that

fully preserves the topology of the system.64 On the other hand, while considering the primitive
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path analysis of the nanocomposites, the collapse of the unthreaded nanoparticle loops affects the

local arrangement of the system by creating ‘free volume’. If we considered an extreme case

where the whole nanoparticle fully collapsed into a single point, this situation would be similar to

the ‘phantom’ approach in nanocomposites with hard NPs (where the NPs are removed from the

simulation box before PP contraction). It has been shown that the analysis of the PP under the

phantom approach yields larger values ofNe (i.e., a weaker degree of entanglement) than under the

‘frozen’ approach (PP contraction under full NP excluded volume).46 A quantitative determination

of the degree of threading/unthreading of the NP loops is very elaborated (see e.g., Ref.69 for the

case of ring polymers) and is beyond the scope of this work. Still, we speculate that the collapse of

a significant fraction of unthreaded loops during the PP contraction may smoothen the dependence

of Ne on the volume fraction, with respect to the much more pronounced trend revealed by the IMP

analysis (Figure 12).

We also speculate that the different effect of the NP topology (sparse or globular) on the entan-

glement length of the linear chains is connected with the different degree of threading of the NP

loops. Figure 13 shows the normalized distributions of loopsizes for the sparse and the globular

NPs, where the loop size is defined as the number of beads in theloop. As a direct consequence of

the different protocols used for their synthesis,35,38 long loops are much more frequent in the glob-

ular NPs. Moreover, the sparse NPs contain a high fraction ofsmall unthreadable loops. Namely,

the loops withn≤ 6 beads represent a fraction of 60 % in the sparse NPs whereas the fraction is

only 8 % in the globular ones. Such a large fraction of unthreadable loops is ineffective for con-

straining the linear chains, and moreover adds some effective stiffness to the NP contour, which

tends to decrease the number of intermolecular contacts. Consequently, the entanglement length

of the pure linear melt is essentially unaffected or increased under the presence of sparse NPs.
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7 Conclusions

We have performed large-scale simulations of all-polymer nanocomposites, consisting of SCNPs

and linear chains. The SCNPs have sparse or globular shape, and half the size of the linear chains.

To distinguish the role of the SCNPs in the topological constraints from other specific contributions

present in experiments, the simulations for different compositions of the mixture have been per-

formed at constant density, and with identical segmental mobility and monomer excluded volume

for the SCNPs and linear chains. Every composition leads to awell-dispersed nanocomposite with

fully-penetrated nanofillers. We have investigated the effect of the soft, deformable and penetrable

character of the SCNPs on the dynamical properties of the linear matrix. We have found that the in-

troduction of sparse SNCPs, at a 25% in volume fraction, doesnot alter significantly the dynamics

of the linear matrix with respect to the pure linear melt. On the contrary, the globular nanoparticles

have a relevant effect already at the volume fraction of 10%,leading to slower dynamics of the

linear chains in the nanocomposite than in the pure linear melt.

We have discussed the former observations within the framework of the tube theory. Unlike in

systems with hard nanofillers, the SCNPs do not exert geometrical confinement, due to their full

penetration by the linear chains. Hence, the SCNPs only contribute to the topological constraints

experienced by the linear chains. In order to quantify the strength of the topological constraints,
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we have determined the entanglement lengthNe of the linear chains, by analysing their isocon-

figurational mean paths (IMP) and primitive paths (PP), as a function of the concentration of the

SCNPs. In the analysis we have used different estimators proposed in the literature. A clear trend

is found for the concentration dependence of the entanglement length in the nanocomposites with

globular SCNPs. The analysis of both the IMPs and PPs unambiguously reveals that, within the

framework of the tube theory, the linear chains appear to be more entangled in the nanocomposites

than in the pure linear melt, with a reduction of up to 30 % ofNe at nanoparticle volume fractions

of 60 %.

In the case of the nanocomposites with sparse SCNPs, the value ofNe is essentially unaffected

or larger than in the pure linear melt, depending on the used tube representation. Still, the original

value for the pure linear chains is just slightly modified by the presence of the sparse SCNPs. This

finding is rather different from the neutron spin-echo experimental results on the nanocomposite

of Ref.44 (linear PEO and PMMA-SCNPs), that revealed a noticeable tube dilation with respect to

the pure linear PEO. The reasons for such a discrepancy couldbe among a number of differences

between simulated and real systems. For instance, the following ingredients are absent in the

simulations (which address the specific role of the SCNP topology) but could make significant

contributions to the behavior of the real sample: (i) large dynamic asymmetry characterizing the

PEO and PMMA-SCNPs, (ii) relatively high polydispersity (iii), possible changes in the density,

that are very difficult to monitor experimentally. Future experiments are planned to determine the

actual role of these factors in the dynamics of the nanocomposites.
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