




OPEN ACCESS DOCUMENT


Assessment of tissue-specific multifactor effects in environmental -omics studies of heterogeneous biological samples: combining hyperspectral image information and chemometrics

Information of the Journal in which the present paper is published:



· Talanta, 2019, 194,390-398
· DOI: 10.1016/j.talanta.2018.10.029
[bookmark: _GoBack]

ASSESSMENT OF TISSUE-SPECIFIC MULTIFACTOR EFFECTS IN ENVIRONMENTAL –OMIC STUDIES OF HETEROGENOUS BIOLOGICAL SAMPLES: COMBINING HYPERSPECTRAL IMAGE INFORMATION AND CHEMOMETRICS 
Víctor Olmos1, Mónica Marro2, Pablo Loza-Alvarez2, Demetrio Raldúa3, Eva Prats4, Benjamí Piña3, Romà Tauler3, Anna de Juan1.
1. Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona. Diagonal 645, 08028 Barcelona, Spain
2. ICFO-Institut de Ciencies Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
3. Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
4. Research and Development Centre (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
Corresponding author: Víctor Olmos; victor_olmos@ub.edu

Abstract
The use of hyperspectral imaging techniques in biological studies has increased in the recent years. Hyperspectral images (HIS) provide chemical information and preserve the morphology and original structure of heterogeneous biological samples, which can be potentially useful in environmental –omics studies when effects due to several factors, e.g., contaminant exposure, phenotype,…, at a specific tissue level need to be investigated. Yet, no available strategies exist to exploit adequately this kind of information.   
This work offers a novel chemometric strategy to pass from the raw image information to useful knowledge in terms of statistical assessment of the multifactor effects of interest in –omic studies. To do so, unmixing of the hyperspectral image measurement is carried out to provide tissue-specific information. Afterwards, several specific ANOVA-Simultaneous Component Analysis (ASCA) models are generated to properly assess and interpret the diverse effect of the factors of interest on the spectral fingerprints of the different tissues characterized.
The unmixing step is performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) on multisets of biological images related to each studied condition and provides reliable HSI spectral signatures and related image maps for each specific tissue in the regions imaged. The variability associated with these signatures within a population is obtained through an MCR-based resampling step on representative pixel subsets of the images analyzed. All spectral fingerprints obtained for a particular tissue in the different conditions studied are used to obtain the related ASCA model that will help to assess the significance of the factors studied on the tissue and, if relevant, to describe the associated fingerprint modifications. 
The potential of the approach is assessed in a real case of study linked to the investigation of the effect of exposure time to chlorpyrifos‑oxon (CPO) on ocular tissues of different phenotypes of zebrafish larvae from Raman HSI of eye cryosections. The study allowed the characterization of melanin, crystalline and internal eye tissue and the phenotype, exposure time and the interaction of the two factors were found to be significant in the changes found in all kind of tissues. Factor-related changes in the spectral fingerprint were described and interpreted per each kind of tissue characterized. 
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1. Introduction
Assessment of the impacts and risks associated with chemical pollution requires a global comprehension of the effects of environmental stressors in living organisms [1]. Environmental –omics is devoted to characterize the effect of this environmental impact in the genome, transcriptome, proteome and metabolome of organisms. For this reason, many different analytical techniques appropriate to the target area studied (genomics, transcriptomics, proteomics, metabolomics…) must be used [2–6].
Metabolomic studies often work with complex samples formed by a mixture of a large number of components. For this reason, the most used analytical techniques in metabolomics are separation techniques in combination with mass spectrometry detection (GC-MS, LC-MS, CE-MS) [6–9]. Furthermore, nuclear magnetic resonance (NMR) is also commonly used in many works without the use of a separation technique due to its high capability to characterize and create profiles of single compounds or mixtures. It can also be used for compounds that are difficult to ionize by MS [5,10,11]. All these techniques show a high potential to identify and quantify complex mixtures of a large number of metabolites. However, they work with sample extracts, often coming from pooled samples, and the information on the original biological structures in the organisms is lost.
The application of hyperspectral imaging techniques (HSI) in –omics and other biological fields lies in their capability to provide spatial and chemical information of the samples. Spatial information is relevant when the goal is the study of a part of an organism and it allows correlating chemical information from HSI to the morphology of the organism provided by classical histology. Thus, the use of HSI in biology and biomedical studies is increasing in recent years [12–18]. All HSI techniques provide spatial information and the use of different spectroscopic platforms, such as Raman, IR or MS provide different chemical information on the samples studied [19,20]. Raman is a vibrational spectroscopy that can provide very useful sample information at a molecular level. In the case of omics (or biological) samples, spectra usually contain contributions of various different molecules that form a higher-level structure, e.g. tissues or cell compartments. Thus, Raman HSI provide information about families of metabolites and macromolecules of biological relevance, such as proteins, lipids, glucids…, that are present in the sample surface [21–24]. 
HSI of biological samples are complex and show spectral variations linked to the different tissues and biological structures present. Besides, they provide large data sets with thousands of spectra that need to be adequately handled with powerful data analysis tools. Understanding the complexity of the image of a biological sample calls first for the use of unmixing methods that can help to characterize the specific spectral properties and spatial distribution of each of their biological elements. Once this tissue-specific information is obtained, it can be used for further data analysis tasks. 
When environmental –omics is based on spectroscopic information, the main goal is trying to assess and interpret the changes induced in organisms by an environmental stressor through the observation of the modification of their spectral fingerprints. Hence, the strategy proposed in this work uses unmixing of HSI as a previous step to obtain reliable spectral fingerprints of the tissues composing the heterogeneous biological samples analyzed. Afterwards, the fingerprints obtained for every tissue in the different environmental conditions are submitted to a tissue-specific multivariate ANOVA-based analysis that will assess the significance of the effect of the environmental stressors in the tissue and, if relevant, will help to describe the nature of the spectral fingerprint modifications. 
This approach has several advantages over classical spectroscopic approaches based on punctual spectroscopic measurements, namely: a) the use of hyperspectral images provides much richer spectral information than measurements on a single point of a sample and allows multitissue scanning in a single measurement, b) the unmixing step provides representative, reliable and high signal-to-noise quality fingerprints for each tissue in the sample, since they are derived from the analysis of many pixel spectra and c) the ANOVA-based approach can be applied on a tissue-specific basis providing a much more detailed level on the description of the environmental stressor effects on an organism.
The unmixing method used in this work is the algorithm Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) [13,25–30]. The choice of the algorithm was due to the flexibility in the application of constraints devoted to obtain reliable fingerprints and maps for the different tissues and to the possibility to work with multisets formed by several images obtained in the same environmental conditions for a better definition of the spectral fingerprints. The multivariate ANOVA-based approach is provided by the ANOVA-Simultaneous Component Analysis (ASCA) algorithm and allows a good statistical assessment of multifactor and interaction effects and a good qualitative interpretation of the spectroscopic features responsible for the effects assessed. More detail on the application fo these algorithms is found in the data treatment section.
To show the power of the presented approach, a real case of study devoted to study the retinotoxic effect of exposure to the pesticide chlorpyrifos-oxon (CPO) on two different zebra fish phenotypes will be presented. The measurements collected consist of Raman hyperspectral images of eye cryosections of zebrafish larvae exposed to 6 and 24 h to CPO and showing two different phenotypes of acute organophosphorus poisoning (OPP). The effect of CPO exposure time, phenotype and the potential interaction of these two factors on zebra fish eyes will be statistically assessed and spectroscopically described at a tissue specific level. 

2. Biological system studied and experimental design
Zebrafish is an organism increasingly used as a vertebrate model in environmental toxicology. Omic technologies are extremely useful for deciphering the mechanism of toxicity resulting in the development of complex phenotypes in this model species. Thus, recently, three models of acute organophosphorus poisoning (OPP), with different grade of severity, were developed in 7 days post-fertilization (dpf) zebrafish larvae by 24 h exposure to CPO, and the RNAseq and metabolomic analysis performed on these animal model has provided essential information for determining the toxic mode of action of this organophosphorus compound [35]. Interestingly, the zebrafish phenotypes related to moderate (P2) and severe (P3) acute OPP showed a clear retinotoxicity, that was confirmed in a previous study about the ocular tissues of the zebrafish model comparing P3 phenotype and control larvae samples by combining Raman HSI and Partial Least Squares-Discriminant Analysis [36,37].
In the present work, the effect of the exposure time (factor ET) to CPO on the progression of the changes in the metabolome of the ocular tissue in the zebrafish models of phenotypes P2 and P3 (factor P) wants to be studied. To do so, both phenotypes have been studied after 6 h and 24 h of exposure to CPO. This has given rise to four sample populations that combine both the exposure time to CPO and the phenotype factors, designed from now as P2-6h, P2-24h, P3-6h and P3-24h. Several Raman HSI of eye cryosections have been obtained for each population to allow a reliable characterization of the related spectral fingerprints. 

3. Experimental
3.1 Fish breeding and larvae production 
Adult wild-type zebrafish were maintained in fish water [reverse-osmosis purified water containing 90 µg/ml of Instant Ocean (Aquarium Systems, Sarrebourg, France) and 0.58 mM CaSO4·2H2O] at 28 ± 1°C in the Research and Development Centre of the Spanish Research Council (CID-CSIC) facilities under standard conditions. Embryos were obtained by natural mating and maintained in fish water at 28.5°C. Larvae were not fed during the experimental period. All procedures were conducted in accordance with the institutional guidelines under a license from the local government (DAMM 9027) and were approved by the Institutional Animal Care and Use Committees of CID-CSIC.
2.2 Stressor exposure and sample collection 
Chlorpyrifos-oxon (CPO) (CAS#5598-15-2, 98.1% purity) was purchased from ChemService (West Chester, USA, PA). Zebrafish larvae were transferred to 48-well microplates (1 larva per well) at 7 dpf and exposed to 3 µM CPO at 28.5°C. Phenotype of the larvae was analyzed after 6 and 24 hours of CPO exposure and larvae exhibiting P2 and P3 phenotypes were sampled at each selected time. In brief, the main criteria for selecting P2 phenotype was a significant decrease in the trunk length and severe ataxia, whereas the criteria for selecting P3 phenotype was the complete paralysis of the axial muscle and altered morphology of the head [31] (see Figure 1a). Thus, the four sample populations formed are P2-6h, P2-24h, P3-6h and P3-24h. Immediately after sampling, larvae were mounted with TissueTek (O.C.T), plunge frozen in liquid nitrogen and eye tissue was cryosectioned at 10 µm thickness in a Leica CM30505 cryostat microtome (Leica Biosystems, Nussloch, Germany). CaF2 optical windows were used as a support for the cryosections. A diagram of sample preparation is shown in Figure 1b.
[image: ]Figure 1: a) Zebrafish larvae of the phenotypes related to moderate (P2) and severe (P3) acute OPP. b) Diagram of the experimental procedure from the zebrafish breeding until the acquisition of the Raman images. CPO exposure started at 7 dpf and the two selected phenotypes (P2 and P3) were collected 6 h and 24 h after exposure. Finally, the eyes of the four sample populations (P2-6h, P2-24h, P3-6h and P3-24h) were cryosectioned and Raman HSI were acquired. 
2.3. Image acquisition
Raman HSI were acquired at the Institute of Photonic Sciences (ICFO) with an inVia Raman Microscope spectrometer (Renishaw, Gloucestershire, UK). A 532 nm laser beam focused through a 20x objective (NA=0.4) was used as the excitation light source. A continuous point mapping (StreamLineHRTM) for imaging has been performed that allows acquisition times of 1.5 s per pixel position. The studied spectral range goes from 590 cm-1 to 1790 cm-1, with a spectral resolution of 2 cm-1 and pixel size of 5×5 µm2. 
In order to have a representative number of images to carry out the –omic study,  a minimum of six eye cryosections were analyzed per each sample population (P2-6h, P2-24h, P3-6h and P3-24h). All images are registered on a rectangular area located on the central part of the eye that covers from the retina to the crystalline lens (imaged area shown in Figure 1).

3. Data Treatment
In this section, the methodology applied to interpret image information is described. It covers image preprocessing, analysis using MCR-ALS for characterization of the different sample populations and assessment of the effect of CPO exposure time on zebrafish larvae from different phenotypes related to the OPP severity with ASCA. Data treatment has been performed using in-house routines under Matlab platform (MathWorks Inc., Natick, MA, USA). MCR-ALS graphical interface [26] has been used and it can be downloaded from the MCR webpage [40]. The ASCA method has been applied as implemented in the PLS toolbox software package (Eigenvector Research Inc., Manson, WA, USA). 
3.1. Image preprocessing
The preprocessing of Raman spectra of the images covers the following steps (see Figure A1 in the supplementary material): 
a) Elimination of pixels with saturated signal. Saturated pixels can be recognized because the Raman intensity of the spectrum reaches a constant maximum and abruptly drops to zero. A small threshold value is set by visual inspection and pixels with Raman intensity values lower than this threshold are considered as saturated and removed. All valid pixels have Raman intensities clearly above the null signal in all the spectral range, even if they have small values at some Raman shifts. 
b) Spectra smoothing using a Savitzky-Golay filter with a 2nd order polynomial and a window width of 9 point spectral channels was applied [41].
c) Due to the presence of two different fluorescence patterns in the  baseline shape K-means clustering [42,43] algorithm was performed to separate spectra in two groups accordingly. Different parameters were applied for baseline correction (step 4) of spectra according to the two fluorescence patterns detected.
d) Baseline correction has been performed using Asymmetric Least Squares (AsLS) [44] separately onto each of the two groups of spectra obtained from step 3. This method consists of a recursive fitting of the whole spectrum using a baseline, which is afterwards subtracted. Two parameters are used to control the baseline fitting, one associated with the smoothness of the fit (λ) and the other with the penalty imposed to the spectral readings related to channels providing positive residuals (p). Signal below the fitted baseline is subtracted. The AsLS parameters are optimized using the median spectrum of the dataset to be baseline corrected as a reference spectrum. The parameters are adjusted until the baseline generated fits the median spectrum (checked by visual inspection). Finally, the correction is applied to all spectra of the dataset. Parameters λ and p were modulated differently for the two fluorescence patterns detected.
3.2. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). 
Characterization of populations of biological samples.
Raman hyperspectral images can be visualized as data cubes, where two of the directions are the x and y pixel coordinates of the image and the third direction designs the Raman spectral channels. Every pixel is defined by the Raman spectrum of a specific point of the sample surface scanned. In order to analyze hyperspectral images, the data cube of each image is unfolded into a data matrix D, where the pixel spectra are placed one under the other. Spectra of every pixel can be described by the concentration-weighted sum of the spectra of the pure constituents of the image. This Beer-Lambert like relationship can be explained mathematically by the bilinear model in equation 1). 
					(1)
where D is the data matrix of pixel spectra, sized (nr. of pixels × nr. spectral channels) C, sized (nr. Pixels × nr. image constituents), contains the concentration profiles of the image constituents, ST , sized (nr. of image constituents × nr. spectral channels) contains the related pure spectra and E is the experimental error that cannot be explained by the bilinear model. The distribution map of each image constituent is obtained by refolding the related concentration profile into the original 2D image structure. 
Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is the unmixing/resolution method [25–30] chosen to decompose the Raman images in this study into the pure spectral signatures (ST) and distribution maps (C) of the sample components. In a biological framework, these components would rarely be a single chemical compound. Instead, they are associated with a combination of molecules that define, by themselves or in combination with others, a biological structure, e.g., a tissue.
MCR-ALS works optimizing C and ST matrices by using an iterative alternating least-squares algorithm under constraints. To do so, a first estimate of the number of components of the D matrix has been performed by singular value decomposition (SVD) [46]. Afterwards, initial estimates have been obtained using a method based on purest variable selection to select the most different pixel spectra to build an initial ST matrix and start the least-squares optimization. In this work, the constraints applied to optimize the shape of the resolved Raman spectra and distribution maps within an image have been non-negativity on C and ST profiles. 
The convergence criterion is achieved when the bilinear model reproduces satisfactorily the image data in D and the variation between the fit of two consecutive iterative cycles is below 0.1%. The percentage of lack of fit (lof) (see equation 2) and the variance explained (R2) (see equation 3) are the parameters used to assess the fit quality of the bilinear model. 
	Eq. 2
	Eq. 3
where dij is the ijth element of the original data set and eij the residual associated with the reproduction of this value by the MCR model.
Omics studies require the comparison of different sample populations subject to different stress factors and/or factor levels. This means that several individuals must be analyzed in order to span the natural variability within the population. In the context of this work, all images of individuals belonging to a particular population are grouped together in a multiset structure, formed by appending the blocks of pixel spectra of every image one under another. The analysis of a multiset of Raman images using MCR-ALS will result in a single matrix of pure spectral signatures (ST), characteristic of the population, and the distribution maps (C) of these components on each one of the images of the multiset [13,31] (see figure 2). Due to the variability of the biological samples and eye cryosections obtained, it may occur that certain tissue components from a sample population are not present in all the images recorded. To take into account this fact, the correspondence among species constraint permits to incorporate the information of presence/absence of components in each image of a multiset [27]. 

[image: ]
Figure 2. Example of the MCR-ALS analysis of the images in a sample population using a multiset structure. As a result, the distribution maps (C) of the components for all images and a common set of spectral signatures (ST) are obtained. 
The changes in resolved MCR-ALS profiles among the different sample populations provide qualitative information on the effect of the factors of interest in –omic studies. It may happen that some resolved components are linked only to some specific populations. Most often though,, the comparison of spectral fingerprints of analogous biological components resolved in all populations is the key to obtain information on the changes in composition of the biological components detected. 
In order to obtain a more statistically significant assessment of the factor effects studied, the resolved spectral profiles (ST) of analogous biological components in all populations can be used to build component-specific ASCA models.

3.3. ANOVA-Simultaneous Component Analysis (ASCA) analysis. Assessment of effect of factors on populations of biological samples using HSI information.
ANOVA-Simultaneous Component Analysis (ASCA) [32,33] is an adaptation of analysis of variance (ANOVA) applied to multivariate data. As well as ANOVA, ASCA needs a specific experimental design to define the factors and levels to be studied and it allows assessing and interpreting the variation induced by them.
As in classical ANOVA, ASCA requires replicate measurements of each combination of factors and levels. In the context of our work, this would mean having a sufficient number of spectral fingerprints per each tissue and population analyzed. However, the multiset analysis described in the previous section only provides a single spectral fingerprint per tissue and population. In order to obtain a sufficient number of resolved spectral signatures per each sample population, necessary to  span the natural biological variability of each resolved component, a resampling strategy will be carried out as is described in a previous work [34]. 
To do so, every image within a sample population is divided in 2×2 pixel blocks covering the full image surface and one pixel spectrum is selected randomly within these blocks. The representative pixel subsets collected from all images of the same population are put together to form a multiset submitted to MCR-ALS analysis (see Fugre 3). This resampling procedure is repeated many times and the obtained multisets are analyzed by MCR-ALS. In this way, many sets of pure resolved spectra (ST) from the different resampled multisets are obtained. 
[image: ]This resampling strategy shows some interesting advantages: a) the local random resampling within every image ensures that representative information of all sample surface, i.e., of all biological components, is preserved, as opposed to what could happen if random pixel selection on the global image was carried out; b) the different pixel subsets span the variability of all images of the population and, yet, explore different sample positions (compositions
Figure 3: Diagram of the steps to obtain initial information submitted to ASCA models. A resampling strategy during the MCR-ALS multiset analysis is used to obtain a sufficient number of spectra to build component-specific ASCA models

Once the resampling procedure is finished, all resolved spectra of a common biological component in all populations are grouped together and submitted to the suitable component-specific ASCA model (see Figure 3). Since the spectral fingerprints are obtained by resampling, a balanced data set, i.e., with the same number of spectral fingerprints per population, is ensured. This modus operandi allows having as many ASCA models as analogous biological components resolved. 
Starting from this initial information enclosed in a data matrix of fingerprints, labelled X, the total variance of the data is separated into the variance related to each of the two factors studied and to the interaction between them. In equation 4, the structure of the ASCA model for a study with two factors, in our work exposure time and phenotype (ET and P, respectively), is shown.
	Eq. 4

where X is the total variance of the data, µ the mean of X, XET and XP the variances associated to the main factors, XET­P the variance related to the interaction between factors and E is the residual variance not associated with any effect. These contributions can be used in classical ANOVA to assess the factor effects and significance. However, in ASCA, an SCA [38,39] is also implemented. SCA consists of applying a principal component analysis (PCA) to each of the terms in equation 4. This leads to the decomposition in equation 5: ,. 
	Eq. 5

where Ti are the scores and Pi are the loadings of each one of the contributions described in equation 4. Thus, TETPTET describes the overall effect of exposure time factor, TPPTP describes the effect of phenotype factor and TET-PPTET-P describes the effect of the interaction among exposure time and phenotype factors. In mean-centered data, the μ term disappears and the relative variance associated with each factor or interaction can be straightforwardly calculated from each of the TiPTi terms.
For every PCA decomposition, the scores (Ti) provide information of the distribution of the samples and explain the variation due to the factor or interaction of interest. Loadings (Pi) show the relevance of the spectral variables to describe the effects linked to the factor studied. Spectral interpretation of the loadings provides biological information related to the changes caused by  each factor studied. 
In order to examine the significance of the effects of factors in ASCA, a permutation test is used [47]. To perform the permutation test, many randomized sets are obtained by randomly permuting the assignment of samples to each sample population and calculating the variance associated. These randomized sets help to define the population associated with no effect of a particular factor. If the variance due to a particular factor in the original data set (with the samples correctly assigned per each population) is bigger than that of the randomized population set (at a certain preset significance level), the effect of the factor is deemed significant. 

4. Results and Discussion
4.1 Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS) multiset analysis. Characterization of sample populations.
MCR-ALS has been previously used to characterize biological and biomedical images and sample populations [13,18,48]. In this work, sample populations are formed by images acquired according to the combination of two exposure times to CPO (6 and 24 h.) and two phenotypes (P2 and P3) originated by the CPO exposure [35]. MCR-ALS analysis has been performed separately on the multisets formed by combining all images recorded in each sample population (P2-6h, P2-24h, P3-6h, P3-24h). The resolution of a multiset of images provides the pure spectra (ST) of the components present in the multiset and its distribution maps (C) over each one of the surfaces of the images. 
As an example, Figure 4 shows the distribution maps and pure spectra of the components found in the multiset related to the images of the P2-6h sample population.  Components 1, 2 and 3 are biological components that appear in the multiset analyses of all sample populations. Component 1 presents two broad bands from 1200 to 1700 cm-1 and it has been identified as a kind of melanin [49,50]. This component is located in the retinal pigmented epithelium (RPE), the most external part of the retina. Component 2 is located in the crystalline lens area and the intense band near 1000 cm-1 indicates a high presence of proteins in this component. Location of component 3 corresponds to most of the retinal layers, from ganglion cell layer to the RPE. Components 4 and 5 have been added to the resolution to model the residual instrumental background that could not be removed during baseline correction. The need of background components can be explained by the complexity in the fluorescence patterns found in these images. Components related to the background were needed in multiset analyses of all sample populations. Component 6 is a minor contribution that is present in few images and in a very few pixels of these images. The intense band shown from 600 to 700 cm-1 is a very uncommon band that may be related to the P=S bond of organophosphorus pesticides [51–53]. Thus, we suggest that it may be related to a residue or a derivative compound from CPO pesticide. Since components resolved in the rest of sample populations are analogous to those of the P2-6h population and the main focus of this work is the comparison of pure spectral signatures, distribution maps and pure spectra of the other sample populations are shown in Figures A2-A4 of the supplementary material.
[image: ]
Figure 4: Distribution maps (C) and pure spectral signatures (ST) from P2-6h population multiset resolution. Distribution maps completely green are related to absent components, set by using the correspondence among species constraint. Pixels in gray were saturated and are not included in the analysis. Raman image area (in dashed red at the bottom) covers from eye crystalline lens to retinal pigmented epithelium (RPE).A visual comparison of the spectral signatures resolved for each one of the biological components common in the four sample populations has been performed (see Figure 5). In the case of P2-24h population, two contributions related to the melanin were resolved; hence, the comparison has been performed using the spectral signature more similar to the other populations. In the case of the melanin contribution from P2-24h population, the spectral signature presents broad differences with the other populations around 1400 cm-1 and 1600 cm-1. Melanin contribution is the more intense in raw data and for this reason resolved spectra show higher  signal-to-noise ratio. Crystalline lens component band near 1000 cm-1 is very similar in position and intensity in all sample populations but some changes can be seen from 1200 to 1500 cm-1. The retinal tissue is the one that shows more variation among sample populations. This component seems to be less well defined than melanin and lens component, but it is easy to see differences in the intense band around 1500 cm-1 among populations. P3-24h population spectrum also presents big changes between 1000 and 1300 cm-1 and a low band in 1600 cm-1 when compared with the rest of sample populations. The comparison of the four signatures by visual inspection shows qualitative information of changes among populations. The subsequent analysis with ASCA method allows a statistical assessment of the factors that define the different biological populations and permits elaborating better conclusions associated with the changes seen in spectral signatures. 

[image: ]Figure 5: MCR resolved signatures from the three biological components of population multisets P2-6h, P3-6h, P2-24h, P3-24h. More relevant changes are marked by dotted circles.
4.2 Assessment of effects of phenotype and exposure time to CPO using ASCA.
As mentioned above, the initial information for each ASCA model is formed by the data matrix containing all the spectral fingerprints of a particular tissue obtained by MCR on the resampled data. Thus, three component-specific ASCA models have been built, related to each biological component resolved by MCR-ALS (melanin, crystalline lens and retinal tissue). Resampling and subsequent MCR analysis has been performed to obtain 100 resampled sets of resolved spectral signatures for each sample population (P2-6h, P3-6h, P2-24h, P3-24h) [34]. Initial information for an ASCA model is obtained by grouping together all resolved spectral signatures of the four populations corresponding to a specific MCR component (400 observations per model, i.e., 100 resolved spectral signatures for a single component per each of the four populations) (see Figure 6). Initial spectra for ASCA models have been mean-centered before its submission to the algorithm in order to eliminate the contribution related to the mean spectrum (see equation 4). 
[image: ]
Figure 6: Spectral signatures of melanin, crystalline lens and retinal tissue obtained from MCR-ALS analysis of resampled multisets of P2-6h, P3-6h, P2-24h and P3-24h populations.
[image: ]As explained in section 3.3, results provided by ASCA models are scores (Ti) and loadings (Pi) for each factor, exposure time and phenotype, and their interaction (see Figure 7) and statistical parameters to study the significance of each assessed factor or interaction (see table 1) [32,33]. A qualitative study of scores and loadings has also been performed to describe the changes on zebrafish sample populations due to each one of the effects.
Figure 7: Scores (a) and Loadings (b) from ASCA models of melanin, lens and retinal tissue related to the exposure time and phenotype factors and their interaction. The most relevant spectral bands in loadings are marked. 

Scores shown in Figure 7a display the distribution of the observations (resampled spectral signatures of one model, 400 in total) for each factor and the differences between levels. Differences of observations among levels also show the relevance of each factor in the model. In the case of melanin, the phenotype (P) effect is more relevant than ET and interaction ET-P effects, which can be seen by a bigger gap between observations at low and high level. Likewise, interaction ET-P is the most relevant in lens model and ET in the retinal tissue model. This agrees with table 1 and the percentage of variance related to each factor, where the highest variance factor in one model results in the largest difference among scores in the related plot in Figure 7a. Scores plots also show that the scatter of inner tissue observations within a population is higher than in other models, which can be seen already in Figure 6, where the overlaid spectral signatures show a higher variability. Complementing the visual information of scores in Figure 7a, table 1 presents the p-value associated with the statistical assessment of the significance of each factor in each biological component model, obtained from the permutation test. For all ASCA models related to the different biological components, the effect of P, ET and the ET-P interaction are significant at a 0.1% significance level. The interaction between factors in this experiment indicates that the effect of exposure time to CPO is different depending on the phenotype studied. 
Table 1: Percentage of variance explained associated with ET, P, ET-P terms and E in ASCA models built for melanin, crystalline lens and retinal tissue. P-values to assess the significance of each factor are provided (in parentheses).
	
	
	Factor variance explained % (p-value)

	
	 
	Exposure Time (ET)
	Phenotype (P)
	Interaction (ET-P)
	Residuals (E)

	ASCA Model
	Melanin
	12,76 (0,001)
	52,50(0,001)
	29,89(0,001)
	4,84

	
	Crystalline Lens
	15,30 (0,001)
	14,29(0,001)
	52,12 (0,001)
	18,28

	
	Retinal Tissue
	42,41 (0,001)
	15,34 (0,001)
	15,24 (0,001)
	27,01




Loadings of the models (see Figure 7b) can be used to relate changes in certain spectral regions to factor effects. Variables with high absolute loading values are related to the most sensitive spectral regions to the effect of a particular factor. Table 2 displays the Raman shifts of the most relevant loadings for each biological component and factor in the computed ASCA models. From a general point of view, we can say that the spectral region showing most changes for the melanin model is common to all factors studied and is from 1500 to 1600 cm-1, whereas ASCA models for crystalline lens or retinal tissue show variability among the relevant spectral ranges associated with the effect of the different factors analyzed. 
Table 2: Most relevant loadings Raman shifts for each ASCA model and factor.
	
	
	Most relevant loadings Raman shifts (cm-1)

	 
	 
	Exposure Time (ET)
	Phenotype (P)

	ASCA Model
	Melanin
	1500-1600; 1600
	1500-1600; 1600

	
	Crystalline Lens
	1222; 1440
	1004; 1610-1631

	
	Retinal Tissue
	1480; 1580; 1660
	1253-1334; 1424



In the case of melanin, the relevant Raman shifts correspond to the biggest Raman band in melanin spectrum (around 1600 cm-1) and the valley between the two main bands of melanin spectrum. These changes can be observed by visual inspection of melanin spectra in Figure 6. An additional brief biological interpretation of the changes related to some of the bands found for the other biological components has been performed following the biological Raman band review from Talari et al. [22]. In the case of crystalline lens, a band at 1222 cm-1, related to proteins, increases with exposure time to CPO and the band at 1440 cm-1, usually related to lipids, decreases. The intense band at 1004 cm-1, related to phenylalanine (and protein content in general) from lens spectra decreases in P3 phenotype. For retinal tissue, the 1480 cm-1 band, probably related to amide II from amino acid residues, and the 1580 cm-1 band, suggest the decrease of protein content in this tissue with exposure time to CPO. On the other hand, bands from 1253 to 1334 cm-1 are probably related to the lipidic content of the tissue, which apparently were increased in phenotype P3 relative to P2. Although we have no direct evidence for it, these changes may well reflect membrane alterations in the affected retinas.

5. Conclusions
The novel methodology proposed in this work, combining hyperspectral imaging and unmixing/ASCA is of general applicability for any ‑omic or biological study involving the statistical assessment and interpretation of changes among biological sample populations caused by more than one factor and studied on heterogeneous tissue samples. 
	From an analytical point of view, hyperspectral images can provide molecular information at a structural level (macromolecules or lipids in the context of relatively large biological structures, such as tissues) that is poorly covered by other analytical methods, like MS or NMR, that generally work on sample extracts. In this respect, the use of the Raman images can be presented a non-targeted technique that covers the full fingerprint of the biological molecules and, hence, has a great value for –omic studies.	The combination of unmixing/ASCA treatment allows a highly detailed per tissue statistical assessment and interpretation of the effects of stressing factors in living organisms. On the one hand, the unmixing step characterizes accurately the different tissues present in the raw images acquired. The use of MCR-ALS allows, in this respect, working in multiset mode and takes into account images of different individuals to properly span the natural biological variability of a population for a representative characterization of the tissues. The unmixing step is crucial to circumvent potential erroneous effect assessment that could come from disregarding the intrinsic complexity of heterogeneous biological samples. On the other hand, the tissue-specific ASCA models performed on the spectral fingerprints obtained from MCR resampling on all biological populations analyzed provides a clear statistical assessment of each of the factor effects studied and the related spectral information on the most relevant changes in fingerprints for biological interpretation. 
In the case of study presented, the assessment of the changes produced by different time exposure to CPO on the macromolecular composition of the ocular tissue in two zebrafish models of acute organophosphorus poisoning (P2 and P3) could be properly described. The use of Raman images allowed mapping major biological components of the ocular tissues that were identified after MCR-ALS analysis as melanin, lens and retinal tissue. The use of the resampled fingerprints of these three tissues was used to develop the suitable tissue-specific ASCA models. In all tissues studied, significant effects from both phenotype and exposure time factors studied were observed. Besides, the significant interaction between the factors studied warned about the fact that exposure time to CPO affects differently each of the phenotypes studied. The tissue-specific ASCA models developed allowed describing different fingerprint variations according to the different tissues studied (melanin, lens and retinal tissue). Besides, it could be seen that the fingerprint variations within the same tissue were sometimes diverse depending on the factor and tissue analyzed.
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Fish breeding and larvae production 
Adult wild-type zebrafish were maintained in fish water [reverse-osmosis purified water containing 90 µg/ml of Instant Ocean (Aquarium Systems, Sarrebourg, France) and 0.58 mM CaSO4·2H2O] at 28 ± 1°C in the Research and Development Centre of the Spanish Research Council (CID-CSIC) facilities under standard conditions. Embryos were obtained by natural mating and maintained in fish water at 28.5°C. Larvae were not fed during the experimental period. All procedures were conducted in accordance with the institutional guidelines under a license from the local government (DAMM 9027) and were approved by the Institutional Animal Care and Use Committees of CID-CSIC.

Data preprocessing
It includes the following steps:
e) Elimination of pixels with saturated signal. Saturated pixels can be recognized because the Raman intensity of the spectrum reaches a constant maximum and abruptly drops to zero. A small threshold value is set by visual inspection and pixels with Raman intensity values lower than this threshold are considered as saturated and removed. All valid pixels have Raman intensities clearly above the null signal in all the spectral range, even if they have small values at some Raman shifts. 
f) Spectra smoothing using a Savitzky-Golay filter with a 2nd order polynomial and a window width of 9 point spectral channels was applied [1].
g) Due to the presence of two different fluorescence patterns in the  baseline shape K-means clustering [2,3] algorithm was performed to separate spectra in two groups accordingly. Different parameters were applied for baseline correction (step 4) of spectra according to the two fluorescence patterns detected.
h) Baseline correction has been performed using Asymmetric Least Squares (AsLS) [4] separately onto each of the two groups of spectra obtained from step 3. This method consists of a recursive fitting of the whole spectrum using a baseline, which is afterwards subtracted. Two parameters are used to control the baseline fitting, one associated with the smoothness of the fit (λ) and the other with the penalty imposed to the spectral readings related to channels providing positive residuals (p). Signal below the fitted baseline is subtracted. The AsLS parameters are optimized using the median spectrum of the dataset to be baseline corrected as a reference spectrum. The parameters are adjusted until the baseline generated fits the median spectrum (checked by visual inspection). Finally, the correction is applied to all spectra of the dataset. Parameters λ and p were modulated differently for the two fluorescence patterns detected. 
· Figure A1: Data preprocessing example (Image 1 from P2-6h population).
· [image: ]Figures A2-A4: Resolved distribution maps and pure spectra from multiset populations (P3-6h, P2‑24h, P3-24h).
Figure A1: Data preprocessing steps applied to image 1 from P2-6h population. A) Elimination of pixels with saturated signal; B) Savitzky-Golay smoothing; C) Spectra separation by k-means clustering; D) Baseline correction by AsLS. After that, corrected data have been grouped together again. 
[image: ]
Figure A2: Distribution maps (C) and pure spectral signatures (ST) from P3-6h population multiset resolution.
[image: ]
Figure A3: Distribution maps (C) and pure spectral signatures (ST) from P2-24h population multiset resolution.
[image: ]
Figure A4: Distribution maps (C) and pure spectral signatures (ST) from P3-24h population multiset resolution.
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