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Here we study how interface and edge perturbations as well as a size effect can be used to manipulate
the transport properties in semiconductor heterostructures where a thin film of three-dimensional topological
insulator (TI) is sandwiched by normal insulator (NI) slabs. Within the framework of the NI/TI/NI trilayer model
based on a continual scheme, we argue that characteristics of electron states in the TI film (energy spectrum,
envelope function profile, the Berry curvature, etc.) are controlled by the film thickness and TI/NI interface
potential whose variation can lead to the modification of topological properties of the system. Calculating a spin
Hall response for the NI/TI/NI trilayer infinite in the interface plane, we find that a series of quantum transitions
between topological insulating phase and trivial band insulator phase can be induced by tuning both the film
thickness and the interface potential. We draw in detail the corresponding phase diagram of the NI/TI/NI trilayer,
which is controlled by change of the sign of either the hybridization gap or the dispersion parameter. To quantify
the edge effect, we formulate a model of the half-infinite in the interface plane NI/TI/NI trilayer, which describes
evanescent edge states and provides the necessary conditions under which they exist. It is found that the presence
of the in-gap edge states is ambiguously determined by the phase of the TI film. Our findings provide a useful
guide in choosing the relevant material parameters to facilitate the observation of quantum spin Hall effect in the
TI/NI heterostructures.
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I. INTRODUCTION

From the viewpoint of the application perspective of
solid-state materials with unusual electron properties for
spintronic devices, design and fabrication of semiconductor
heterostructures comprising three-dimensional (3D) topolog-
ical insulator (TI) thin films interfaced with normal insulator
(NI) films is undoubtedly a promising way [1–8]. The specific
character of the bulk electron structure of 3D TI gives rise
to electron states appearing at the TI/NI interfaces, where the
topological invariant changes. These states are often said to be
“topologically protected.” They are notable for their massless
Dirac-like spectrum and spin-momentum locking [9–11] and
therefore deemed to play an important role in physics of the
TI/NI heterostructures. In contrast to a free TI surface exposed
to air, the interfacial states buried inside the heterostructure are
protected from surrounding environment. Albeit, the choice
of an appropriate NI material, which does not destroy the
specifics of topological states, is critical. Indeed, the contact
between TI and NI can produce intermixing of wave-functions
of these materials at the interface, charge transfer and crystal
lattice distortion or may induce various proximity effects.
These factors, which depend on the combination of the TI
and NI materials and heterostructure engineering, influence the
characteristics of the electron states at the interface. Moreover,
when the 3D TI film is sufficiently thin, an electron state
with a gapped energy spectrum occurs due to the hybridiza-
tion between the interface states originated from opposite
boundaries of the TI film. The characteristics of such a state
depend strongly on both the finite-size film and the interface
potential. Thus, the heterostructure design may be used as an

efficient tool to manipulate the electron properties of the TI
film, in particular, topology and dimensionality. This creates
opportunities to drive electron transport phenomena such as
quantum spin Hall effect (QSHE) in the TI/NI heterostructures
devices [10,12–14]. Note that electron transport in the QSHE
regime with insulating bulk indeed manifests itself due to
conducting helical edge states which propagate along one-
dimensional (1D) channels occurring at edges of the TI thin
film [9,10,15]. These gapless (metallic) edge states that lie
inside the hybridization gap provide a quantized conductance
in the ballistic limit. However, engineering of the spintronic
devices based on the TI/NI heterostructures faces a challenge
to achieve their desirable functionality. One of the major
obstacles to use the TI/NI heterostructures is a lack of clear
understanding of the role of the interfacial and edge boundaries
in transport phenomena.

A large number of spectroscopy, transport and magneto-
transport studies on the 3D TI thin films grown by molecular
beam epitaxy on the NI substrates have reported on a variety
of properties depending on the type of the substrate used
and the film thickness [16–23]. In particular, these studies
provide evidence for evolution of the electron states under
the topological phase transitions emerging in the TI films.
Similar observations have been made for the superlattices
consisting of alternating layers of the 3D TI material, such as
Bi2Se3 or Sb2Te3, and the NI material, such as PbSe or GeTe
[3,4,24]. Just recently, Belopolski et al. [25] have synthesized
a multilayer heterostructure stacking together thin layers of
the TI Bi2Se3 and the NI InxBi2−xSe3 and demonstrated that
the heterostructure can be driven through a topological phase
transition by changing its composition.
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There exist several theoretical research on the finite-size
effect in the thin TI films [14,26–34]. The transitions between
the QSHE insulator and trivial band insulator phases have been
explored as being driven by alternation of the hybridization gap
caused by the 3D TI film thickness [14,30–34]. At the same
time, a proper description of the boundary effects in the TI/NI
heterostructures is almost absent, with few exceptions [35–40].
The development of the quantum transport theory in these
systems requires to answer some principal questions. What
is the combined effect of the TI/NI interfaces and the finite
thickness of the TI film on electron properties of the system?
Can an emergent QSHE regime be specifically induced by
the TI/NI interfaces? To what extent can the heterostructure
edges control the existence and characteristics of the electron
edge states? One needs thorough understanding and proper
description of finite-size and boundary effects to predict the
quantum conductivity behavior in the TI/NI heterostructures.

In the present work, to consider the principal aspects of the
problem, we propose the model of the NI/TI/NI trilayer that
can be reckoned as a fundamental building block of the TI/NI
heterostructure. Within the framework of continual approach,
the influence of the NI slabs on electron states in the sand-
wiched 3D TI spacer film is taken into consideration through
the boundary conditions specified by the effective interface
potential (IP), which respects time-reversal symmetry. Such
analytic scheme has been developed and successfully used in
the previous investigations [37–40] to show how the changes
in the IP could modify the in-gap bound states at the TI/NI
interface. In the present theoretical work, we unveil that there
are two distinct microscopic mechanisms to drive the transition
between the trivial insulator phase and the Hall insulator
phase in the NI/TI/NI trilayer. One mechanism emphasizes,
following Refs. [14,30–32], finite thickness of the TI film.
While another mechanism stresses that just IP can induce such
topological transition in the trilayer. Here we reconcile both
mechanisms by constructing, for the first time, a topological
phase diagram of the system. To verify whether the NI/TI/NI
trilayer exhibits the quantized spin Hall conductance we spe-
cially focus on an analysis of the Dirac-like states localized at
the edges of the sample bounded in the interface plane. We re-
veal that the quantized bulk response and the edge states, which
exemplify spin Hall conductivity in the TI/NI heterostructures,
are quite sensitive to the confinement factors such as the film
thickness and the conditions at its boundaries. These facts
clearly indicate the limits of the feasibility of the QSHE regime
in real samples. At the same time, our results outline pathways
of designing the heterostructures with given spin-transport
properties by using available TI and NI materials.

The rest of the paper is organized as follows. In Sec. II,
to study the NI/TI heterostructures, we formulate an
approach based on the formalism of effective interface and
edge potentials within the continuum scheme. In Sec. III,
introducing a proper boundary problem at the interfaces, we
explore the model of the NI/TI/NI trilayer which is infinite
along the interface plane. We analyze electron energy levels
and envelope function profiles in dependence on the TI film
thickness and the IP strength. In Sec. IV we derive the effective
2D Hamiltonian for the NI/TI/NI trilayer and thoroughly
describe, both analytically and numerically, the dependence
of the Hamiltonian parameters as well as the energy spectrum

on the IP strength, the film thickness and the TI material char-
acteristics. In Sec. V, we demonstrate that a series of quantum
phase transitions between the trivial band insulator and the
spin Hall insulator can be driven by tuning either the thickness
or the IP strength. At this point, we draw the corresponding
phase diagram of the NI/TI/NI trilayer in detail. In Sec. VI,
we systematically explore the edge states for the NI/TI/NI
trilayer bounded in the interface plane to check their existence
in topologically distinct phases under given value of an
effective edge potential at the edge. In Sec. VII we discuss our
theoretical findings and comment on a possibility to observe
QSHE. In Sec. VIII, we summarize the main results of the
work.

II. MODEL OF HETEROSTRUCTURE COMPOSED
OF TOPOLOGICAL AND NORMAL INSULATORS

We consider the layered heterostructure in which a thin
film of 3D TI is in contact with NI. The typical example
of such heterostructure is an NI/TI/NI trilayer consisting of
a 3D TI film (for instance, Bi2Se3 single crystal film of a
few quintuple-layer thickness) lying on an NI substrate and
covered with an NI overlayer. Such trilayer can be regarded as
a building block of the TI/NI heterostructure.

The TI and NI films are separated one from the other by
interior boundaries (TI/NI interfaces) and also have external
boundaries with surrounding media (edges of NI and TI
films). In principle, electron structure of such a system is very
complex and contains both itinerant and localized electron
states of different types. Strictly speaking, to fully capture this
electron structure it is necessary to use numerical methods.
However, in certain situations it is possible to reduce the
problem to a qualitative analysis of electron structure of
some set of electron states presenting a particular interest in
the framework of the model Hamiltonian. For example, if there
exists a set of electron states inside the TI spacer, which are
well separated in energy from the states inside the NI slabs,
one can imitate the effect of TI/NI interfaces on the electron
states inside TI introducing an external static IP.

The energy of the relevant electron states in the 3D TI
film, which is confined along all three directions, generally
reads

� =
∫

dr�†(r)[H(−i∇) + W(r)]�(r), (1)

where H(−i∇) is the Hamiltonian of the 3D TI bulk materials,
and �(r) is an envelope function (EF). The influence of the
surrounding media through the TI/NI interfaces and edges is
treated by means of the confining potential W(r).

The paradigmatic scheme proposed to describe the long
wavelength bulk states of the narrow-gap semiconductor
materials of Bi2Se3-type is based on the band basis, u� =
{|+ ↑〉,|− ↑〉,|+ ↓〉,|− ↓〉}, formed by four hybridized states
of the Se and Bi pz-orbitals [41,42]. Within the kp scheme,
the model Hamiltonian of 3D TI is a power expansion with
respect to the wave vector k around the � point (k = 0),
whose coefficients are constrained by parity and time-reversal
symmetries. In what follows, for the sake of calculating
simplicity, but without a loss of generality, we use the
particle-hole symmetric and isotropic 4 × 4 Hamiltonian in
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the form

H(k) = �(k)τz ⊗ σ0 + Aτx ⊗ (σ · k), (2)

where �(k) = �0 − Bk2, 2�0 is a band gap, B describes a
band curvature, and σα and τα (α = 0,x,y,z) denote the Pauli
matrices in the spin and orbital space, respectively. The Hamil-
tonian Eq. (2) captures the remarkable feature of the band
structure: the inverted order in energy of the basis states near
k = 0 due to strong spin-orbit coupling, which arises under
the condition �0B > 0, correctly characterizes the topological
nature of the system. The operator H(k → −i∇), determined
in Eq. (2) acts in the space of EFs of Bloch waves that are
represented by spinors �(r) = (θ1(r),θ2(r),θ3(r),θ4(r))tr in the
basis u� , the superscript tr denotes the transpose operation. The
EF components θj (r) are presumed to be smooth functions
inside the TI film.

In this approach, we do not consider the behavior of
the electron wave function out of the TI film. However, in
practice, there are some requirements for the NI constituent
of the heterostructure, which must be fulfilled to preserve the
topologically relevant states in the TI film. So, the NI materials
(for instance, substrates and overlayers in the trilayer) should
have a large bulk band gap as compared with that of 3D TI
material, 2�0. Furthermore, the topologically relevant electron
states featured by Eq. (2) should be well separated in energy
from the bulk states of NI as well as from trivial localized
states (for example, the Schokley-type states) often appearing
at semiconductor interfaces. Also, the chemical potential μ

of the system is assumed to be inside the TI bulk band gap,
|μ| < �0.

On the one hand, the bottom and top surfaces of the TI film
in the NI/TI/NI trilayer are interfaced with the NI material.
We suppose that the TI film occupies the space |z| < l along
the heterostructure growth direction z and the interfaces are
perfectly flat. On the other hand, the TI film is bounded in the
interface plane (x,y) by the edges (for example, in the case of
a sample designed in a Hall bar geometry) meeting vacuum
or some topologically trivial medium at a circumference
ϒ(x,y) = 0. Then the confining potential in Eq. (1), which
experienced by electron inside the TI film, can be represented
as W(r) ≈ dUδ(z + l) + dUδ(z − l) + tVδ[ϒ(x,y)], where
δ(z) is the δ function. Here we adopt the local approximation,
as long as EF �(r) is slowly varying over the scale ∼d,t near
the boundaries where potential W(r) is localized (d and t are
of the order of a few lattice spacings). Following the concept
of Refs. [37–39], we have introduced IP Uδ(z ± l), which
reflects such effects as, for instance, charge density transfer
and/or intermixing of atomic orbitals at the TI/NI interface.
The edges of the TI film can be terminated with dangling
bonds which may be oxidized during the fabrication of the
heterostructure. In the present continual approach, we simulate
the influence of the edges on electron states in the TI film by
means of the term Vδ[ϒ(x,y)], which is hereinafter referred
to as an edge potential (EP). In the basis u� , IP and EP are the
4 × 4 matrices. Authors of Ref. [43] using universal physical
requirements derived such matrix in the most general form.
As microscopic details of a real interface are unknown, in
following calculations we approximate IP and EP by diagonal
matrices.

III. MODEL OF THE UNBOUNDED NI/TI/NI TRILAYER

At the beginning we neglect the edge effects and consider
the trilayer being infinite in the interface plane (x,y). For
simplicity, the TI film is assumed to be bordered both above
(z = l) and below (z = −l) by the same NI material; i.e.,
the NI/TI/NI trilayer is symmetric. IP is regarded as being
spin-independent so it can be parameterized only by two
real constants U1 and U2 through the diagonal matrix U =
diag{U1,U2,U1,U2}.

We make use of a variational procedure for the relevant
energy functional:

F{�†,�} =
∫ l

−l

dz�†(κ,z)[H(κ,−i∂z)

+ dU(κ)δ(|z| − l) − IE]�(κ,z), (3)

where the energy E plays a role of the Lagrange multiplier, I
is an unit 4 × 4 matrix, and ∂z = ∂/∂z. The functional Eq. (3)
is determined in the class of the smooth and continuous EFs
inside the 3D TI film and includes the effective IP. Since the
system remains translational symmetry in the (x,y) plane, the
in-plane wave-vector κ = (kx,ky) is a good quantum number.
Therefore, we can determine the functional for each EF κ-
mode, �(κ,z). Varying F{�†,�} with respect to the function
�† yields the Euler equations inside the film, |z| < l, and
the boundary conditions imposed on EF at the interface at
|z| = ±l. The corresponding equations in the compact form
are

[H(κ,−i∂z) − IE]�(κ,z) = 0, (4)

i
δH(κ,−i∂z)

δ(−i∂z)
�(κ,z)

∣∣∣∣
|z|=±l

= ∓2dU(κ)�(κ, ± l). (5)

In our approach, the boundary conditions Eq. (5) involve
relations between the EFs of Bloch waves on both sides of the
TI/NI interface via the effective IP [37]. The solution of the
boundary problem of Eqs. (4) and (5) answers the important
question on how the IP located just at the boundaries affects the
electron states inside the 3D TI film. Here we go beyond the
open boundary condition, where the state has zero amplitude
at the interfaces, �(±l) = 0. So this condition, on the one
hand, does not look like a physically natural one and, on the
other hand, reduces significantly the capability of a model
approach.

For the TI thin film confined in z direction, the electron
motion along this direction is quantized to discrete levels
related to quantum well-like 2D subbands in the spectrum,
E(κ). In the case of the Hamiltonian Eq. (2), a search for the
exact eigen functions �(κ,z) and energies E(κ) is a formidable
problem. The task Eqs. (4) and (5) can be solved analytically at
κ = 0 when the Hamiltonian acquires a block-diagonal form:
H(0,−i∂z) = diag{H+(−i∂z),H−(−i∂z)} with

Hσ (−i∂z) = τz

(
B∂2

z + �0
) + iτxσA∂z, (6)

where the superscript σ = +/− means an up/down projection
of electron spin onto the quantization axis. The lower block
H− is the time reversal of the upper block H+. The bispinor-
functions ϕσ (z) and χσ (z), presenting the components of EF
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�(κ = 0,z), obey the boundary problem:

Hσ (−i∂z)ϕ
σ (z) = EϕIϕσ (z),

(7)
Hσ (−i∂z)χ

σ (z) = EχIχσ (z),

Gσ (−i∂z,z)ϕσ (z)|z=±l = 0,
(8)

Gσ (−i∂z,z)χσ (z)|z=±l = 0,

where the operator Gσ is given by

Gσ (−i∂z,z) = {−τ0sgn(z)d(U1 + U2) + τz[2B∂z

− sgn(z)d(U1 − U2)] + iτxσA}. (9)

Here I is an unit 2 × 2 matrix.
Due to the space symmetry of the system along the z axis,

the trial solutions of the task Eqs. (7) and (8) can be repre-
sented as superpositions of (the even functions) cosh (qϕ1,2z)
and cosh (qχ1,2z) for bound states or (the odd functions)
sinh (qϕ1,2z) and sinh (qχ1,2z) for antibound states, where the
corresponding superposition coefficients are functions of l and
U1,2. The momenta qϕ1,2 = q1,2(Eϕ) and qχ1,2 = q1,2(Eχ ),
specifying a scale of the EF space variation, are connected
with the energy via the relation

[q1,2(E)]2 = −k2
m ±

√
E2 − E2

m

B
. (10)

Here the following notations are used: k2
m = (1 − 2λ)�0/B

and E2
m = 4λ(1 − λ)�2

0, as well as λ = A2/4B�0 for the
parameter featuring the bulk band structure of 3D TI. In
the case of λ < 1, the bulk spectrum of the Hamiltonian
Eq. (2) takes a “camelback” shape with minimal gap of 2Em

at nontrivial momentum km. As for the momenta q1,2(E), the
situation is tricky at λ < 1. When E2 > �2

0, one has q1 = Re
and q2 = Im. When �2

0 > E2 > E2
m and 1 > λ > 1/2, both

the momenta, q1 and q2, are real. Under condition that
�2

0 > E2 > E2
m and λ < 1/2, both the momenta, q1 and q2, are

imaginary. If E2 < E2
m, then both the momenta are complex

and q1(E) = q∗
2 (E).

The ϕ-state with the energy Eϕn and the EF ϕσ
n (z) and the

χ -state with the energy Eχn and the EF χσ
n (z) have opposite

space parities, the index n (n = 0, ± 1, ± 2,...) enumerates
the discrete levels of the electron motion along z axis in the
film geometry (the well-known quantum size effect). Each of
these levels is twofold degenerate in spin due to time-reversal
symmetry. Clearly, the components of the ϕ and χ states can
be treated as the bonding and antibonding couplings of the
states ascribed to top and bottom boundaries of the thick
film. Inserting the trial solutions into Eqs. (7) and (8), it is
straightforward to determine the superposition coefficients as
well as the energies Eϕn and Eχn. All these values directly
depend on the IP matrix elements and the film thickness.

One can in principle obtain a complete set of the eigen
discrete values for Eqs. (7) and (8). Figure 1 summarizes the
behavior of the energy levels Eϕn and Eχn with increasing the
TI film thickness at the different (fixed) IP strengths for two
distinct cases U1 = U2 [Fig. 1(a)] and U1 = −U2 [Fig. 1(b)]
at the relatively small λ. We use the dimensionless parameters

l̃ = l

√
�0
B

, Ũ = dU√
B�0

. It is easy to separate the states into two
groups; for the sake of convenience let us call them low-energy

states and high-energy ones. The low-energy states, indexed by
n = 0, arise due to a nontrivial wave function topology of the
bulk material. They are caused by an overlap of the Dirac-like
states stemmed from the opposite interfaces of the TI film.
Note that, depending on the film thickness and the IP strength,
the energies Eϕ0 and Eχ0 may either remain inside the
projected bulk band gap of 3D TI, E2

ϕ,χ0 < E2
m, or merge

in the projected bulk bands, E2
ϕ,χ0 > E2

m. In any case, at fixed
thickness, one has |Eϕ,χ0| < |Eϕ,χn|, where the index |n| � 1
relates to the high-energy states, which exist only either above
the bottom of the projected bulk conduction band (n � 1) or
below the top of the projected bulk valence band (n � −1),
i.e., at E2

ϕ,χn > E2
m. The high-energy states are similar to the

quantum well states of a trivial semiconductor film. The energy
values |Eϕ,χn(l)| increase with decreasing l as a result of the
quantum well effect and can exceed �0 at Re(q1,2)l < 1. We
note also that the energy levels Eϕ0 and Eχ0 can merge into
projected bulk bands, E2

ϕ,χ0 > E2
m, i.e., the in-gap states are

absent, under the condition Re(q1,2)l � 1 in certain parameter
region (U1,U2), for example, such situation has place at U1 =
U2 = U when Ũ ≈ 1. The specific feature of the Hamiltonian
Eq. (2) at 0 < λ < 1 is the oscillating behavior of the eigenval-
ues of the ϕ and χ low-energy states with the varying thickness,
which results in the corresponding closing and reopening of
the hybridization gap 2�0(l) = Eϕ0(l) − Eχ0(l). Furthermore,
as seen in Fig. 1, the energy levels of the high-energy states
depend nonmonotonously on the thickness as well, which leads
to that the states with opposite parity cross each other out of
the projected bulk gap. These features in the spectrum of the
NI/TI/NI trilayer (at 0 < λ < 1), connected with a nontrivial
topology of the Hamiltonian Eq. (2) and manifested in the
complicated dependence of the levels Eϕn and Eχn on both
the thickness and the IP strength, differ principally from those
of the quantum well based on a trivial semiconductor. When
the thickness of the NI material film exceeds greatly a lattice
constant, nearly complete convergence of all quantum well
subbands to bulk band continuum is achieved. In the case of
the TI film, energy divergence between the quantum well-like
states and the in-gap topological state increases with the
thickness.

We are interested in study of the space profile of the
low-energy states lying inside the projected bulk energy gap,
which are of primary importance. Figure 2 displays a set of
the EF module profiles of the ϕ and χ states in the direction
perpendicular to the boundaries for IP with U1 = −U2 = U

ranging from 0 to ∞ (the “hard-wall” boundary condition)
at the fixed film thickness. The space distributions of even
components and odd components of the bispinors ϕσ

0 (z) and
χσ

0 (z) coincide in pairs because such IP (with U1 = −U2)
does not break particle-hole symmetry of the Hamiltonian
Eq. (2). In turn, at U1 = −U2, each of the four components
describing the low-energy state is specific in the profile. For
example, Fig. 3 demonstrates an evolution of the profiles with
the film thickness at fixed value of the IP matrix elements
as U1 = U2 = U . When the thickness is large enough, the
low-energy states are mostly peaked close to the interfaces
and show an exponential decay over the scale ∼[Re(q1,2)]−1

away from the interfaces accompanied by an oscillation with
the period ∼[Im(q1,2)]−1. Note that if IP is either strong,
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FIG. 1. Eigenvalues Eϕn (blue lines) and Eχn (red lines) of the ϕ- and χ -states calculated for a TI film as a function of the thickness l̃

with the fixed TI strength Ũ . The definitions of relevant energies discussed in the text are indicated by the indices n = 0, ± 1, ± 2,.... Top
panels show the result for the case U1 = U2 = U ; whereas bottom panels show the result for U1 = −U2 = U ; λ = 0.1. The gray color indicate

regions where the Dirac points of the low-energy states leave the bulk gap merging into the projected bulk bands. Here l̃ = l

√
�0
B

, Ũ = dU√
B�0

,

and λ = A2

4B�0
.

|U1 + U2| � �0, or weak, |U1 + U2| � �0, the energies
are very small, |Eϕ0|,|Eχ0| � �0; therefore, one can obtain
simple estimation of the characteristic momenta: Re(q1,2) =
q0 = A/2B and Im(q1,2) = w0 = q0

√
λ−1 − 1. So, under in-

creasing |A| (or decreasing B) the low-energy states become
stronger confined to the TI/NI interfaces. The decrease of λ

leads to more frequent oscillations of the EFs over the decay
distance.

z~

U=0~ U=3~

z~

U=20~

z~

U=-3~

z~

U=-20~

z~

|φ
|,|
χ|

~
~

,
,

FIG. 2. Modules of space profiles for components of the bispinors ϕ
(σ )
0 and χ

(σ )
0 in the TI film of thickness 2l̃ = 10 for several values for

IP with U1 = −U2 = U at λ = 0.25. Here l̃ = l

√
�0
B

, Ũ = dU√
B�0

, and λ = A2

4B�0
.
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~l=3

z~

|φ
|,|
χ|

~
~

~l=4

z~

~l=5

z~

FIG. 3. Space dependence of envelope functions for Ũ = 5 and several values of thickness l̃ at λ = 0.25 and U = U1 = U2. Here l̃ = l

√
�0
B

,

Ũ = dU√
B�0

, and λ = A2

4B�0
.

Remarkably, as seen in Figs. 2 and 3, the EF behavior
near the TI/NI interfaces and, in particular, the boundary
amplitudes ϕσ

0 (±l) and χσ
0 (±l) are directly determined by

the IP strength and sign. As it is represented in Fig. 1, one
can manipulate the positions of the energy levels Eϕ0 and Eχ0

through the IP matrix elements. This means that the in-gap
states in the NI/TI/NI trilayer are essentially interface-specific
states.

IV. EFFECTIVE 2D HAMILTONIAN OF THE 3D
TI FILM

We focus on the long-wavelength states with small-
momentum κ and low-energy Eϕ,χ . As seen in Fig. 1, there
is a wide range of values of the model parameters, at which
the low-energy states (n = 0) are clearly separated in energy
from high-energy states (|n| � 1); i.e., |Eϕ,χ0 − Eϕ,χn| �
2�0

√
λ(1 − λ). This allows us (see also Refs. [14,40]) to

project the complete set of the eigenstates of the problem
Eqs. (7)–(9) onto a subspace spanned by a minimal orthogonal
basis set composed of the four low-lying states at κ =
0, ϕσ

0 (z), and χσ
0 (z), and then construct the perturbation

theory on this truncated basis in terms of a small value of
H(κ,−i∂z) − H(0,−i∂z) proportional to κ . By applying the
scheme [14,40] to the NI/TI/NI trilayer, we derive the effective
2D Hamiltonian specific for a TI spacer, which can be written
in the block-diagonal form:

Heff(κ) = ε0(κ)I + diag{F⇑(κ),F⇓(κ)}, (11)

F⇑(κ) =
(

�(κ) Ak−
A∗k+ −�(κ)

)
,

F⇓(κ) =
(−�(κ) −A∗k−

−Ak+ �(κ)

)
. (12)

The Hamiltonian Eqs. (11) and (12) is split into two
parts defined by F⇑ and F⇓ with opposite projections
of the pseudospin degree of freedom (symbolized with ⇑
/ ⇓), which here is a good quantum number [14]. We use
the following notations: ε0(κ) = E0 − Dκ2, 2E0 = Eϕ0 +
Eχ0, 2D = Bϕ + Bχ , �(κ) = �0 − bκ2, 2�0 = Eϕ0 − Eχ0,
2b = Bϕ − Bχ , and k± = kx±iky . These parameters are de-

termined by the matrix elements: Bϕ = B
∫ l

−l
dz(ϕσ

0 )†σzϕ
σ
0

and Bχ = B
∫ l

−l
dz(χσ

0 )†σzχ
σ
0 under the normalization re-

quirement
∫ l

−l
dz(ϕσ

0 )†σ0ϕ
σ
0 = ∫ l

−l
dz(χσ

0 )†σ0χ
σ
0 = 1. In turn,

Aσ,−σ
ϕχ = A

∫ l

−l
dz(ϕσ

0 )†σxχ
−σ
0 = A, Aσ,−σ

χϕ = [A−σ,σ
ϕχ ]∗, and

Aσ,−σ
χϕ = −A−σ,σ

χϕ . For the sake of clarity, below we restrict
the variation of Eϕ0 and Eχ0 to the projected bulk bang gap,
where the characteristic momenta of Eq. (10) are complex,
q1,2(E) = q(E) ± iw(E); q and w are real. Yet, note that |D|
must be smaller than |b|, otherwise the gap disappears and
further discussion is not relevant.

Importantly, in our approach the parameters
E0,D,�0, b, andA specifying the Hamiltonian Heff

depend not only on the characteristics of the 3D TI bulk
spectrum, �0,B,A, but also on the film thickness, 2l, and
the IP components, U1,2. The corresponding analytical
expressions can be obtained in terms of elementary functions,
but they are highly cumbersome.

First, it is instructive to study how the electron structure of
the film depends on l and U1,2 in some limiting cases. Let us
consider the film with thickness that exceeds the EF variation
scale, ∼ exp(−2ql) � 1. When |Eϕ,χ0| � �0

√
λ(1 − λ), the

basis bispinors acquire the following form (|z| < l):

ϕσ
0 = aσ

ϕ

(
i
∑

n=±1 ψ(l + nz)

σ sgn(A)
∑

n=±1 nψ(l + nz)

)
,

χσ
0 = aσ

χ

(
i
∑

n=±1 nψ(l + nz)

σ sgn(A)
∑

n=±1 ψ(l + nz)

)
, (13)

where

ψ(ζ ) = sin (w0ζ + γ ) exp(−q0ζ ) (14)

is a scale function of the in-gap bound states inherent to
an semi-infinite 3D TI slab, which have been thoroughly
described in Ref. [38]. In other words, EFs ϕσ

0 and χσ
0 in

Eq. (12) are approximated by the symmetric and antisymmetric
combinations of the bound states coming from the opposite
interfaces at z = ±l. The characteristic momenta q0 = q(E =
0) = |A|/2B and w0 = w(E = 0) = q0

√
λ−1 − 1 are deter-

mined by the bulk spectrum parameters, while the phase shift
γ is dominated by the IP, aσ

ϕ,χ is a normalization constant,
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and k2
m = w2

0 − q2
0 . In the specific case of the “staggered”

composition of the matrix elements, U1 = −U2 = U , when
the IP does not break the particle-hole symmetry, the relation
between γ and U may be represented explicitly for arbitrary
strength of the IP: sin γ =

√
1−λ√

1−λ+Ũ 2
and cos γ = −Ũ√

1−λ+Ũ 2
.

The EF magnitude at the interface is directly determined by the
IP strength, |ϕσ

0 (±l)|2 ≈ |χσ
0 (±l)|2 ≈ q0

1+(
√

λ−Ũ )2 . The param-
eters of the effective Hamiltonian in the leading asymptotic
term in the overlap ∼ exp(−2q0l) � 1 are given by

�0 = 8|a|2Bw0 sin(2w0l + 2γ ) exp(−2q0l), (15)

b = −4|a|2Bl cos(2w0l + 2γ ) exp(−2q0l), (16)

where |a|2 ≡ |aσ
ϕ |2 = |aσ

χ |2 = q0(1−λ+Ũ 2)
(1−λ)[1+(

√
λ−Ũ )2]

, ε0(κ) = 0, and

Aσ,−σ
ϕχ = iσ |A|(aσ

ϕ )∗a−σ
χ /|a|2.

If U1 = −U2, the analytical estimations can be obtained to
the leading order in |U1,2|�−1

0 or |U−1
1,2 |�0. So, in the case of

the strong IP, |U−1
1 + U−1

2 | � �−1
0 , the EF Eq. (13) vanishes

at the interface as ϕσ
0 (±l) ∼ χσ

0 (±l) ∼ γ ∼ (U−1
1 + U−1

2 )�0.
Then one arrives at

E0 = −|A|B(
q2

0 + w2
0

)
d−1

(
U−1

1 + U−1
2

)
, (17)

D = −BE0/�0, (18)

�0 = −2|A|q
2
0 + w2

0

w0
sin(2w0l) exp(−2q0l), (19)

b = 2|A|q
2
0 + w2

0

w2
0

l cos(2w0l) exp(−2q0l). (20)

In turn, in the case of the weak IP, |U1 + U2| � �0, the
EF Eq. (13) reaches a maximal value at the interface since
2γ ± π ∼ (U1 + U2)�−1

0 . Then one obtains

E0 = 2q0
q2

0 + w2
0

2q2
0 + w2

0

d(U1 + U2), (21)

D = 0, (22)

�0 = 2|A|w0
(
q2

0 + w2
0

)
2q2

0 + w2
0

sin(2w0l) exp(−2q0l), (23)

b = −2|A| q2
0 + w2

0

2q2
0 + w2

0

l cos(2w0l) exp(−2q0l). (24)

Thus, we have derived the explicit thickness and IP
dependencies of the parameters of the Hamiltonian Heff. One
can observe that the IP affects significantly the low-energy
states of the 3D TI film. The composition of the TI matrix
elements and the IP strength regulate essentially the space
behavior of the film states near the interfaces for the relatively
thick film. This fact is clearly illustrated by the expression
Eqs. (13) and (14) for the EF. The diagonal term �(κ) in
effective Hamiltonian Eqs. (11) and (12) is determined by the
hybridization gap in the 2D Brillouin zone center, �0, and
the dispersion parameter, b, both of which are caused by the
overlap of the states [see Eq. (13)] coming from the opposite
interfaces. The diagonal term, �(κ), specifies the topological
properties of the NI/TI/NI trilayer (as we will show in the next

subsection). We find the important fact that the confinement
characteristics l and U1,2 exert direct influence on the band
structure parameters �0 and b. As seen in Eqs. (15) and (16),
(19) and (20), (23) and (24), by varying the film thickness
and/or the IP strength, one can repeatedly invert both the
hybridization gap 2�0 and the dispersion parameter b, and
thus cause the topological phase transition. The variation of
both �0 and b with the thickness is dominated by the bulk
spectrum parameters via q0 and w0. Importantly, with the
increasing film thickness the decay length of the diagonal
term, �(κ), is longer than its oscillation period, e.g., w0 = 3q0

at λ = 0.1. The oscillating functions �0(l) and b(l) are shifted
from each other by the quarter period. It should be noted that
the parameters �0 and b change sign when IP switches from
the weak limit to the strong one. The term E0(κ) accounts
for the particle-hole asymmetry generated by the IP with the
composition U1 = U2 in accordance with Eqs. (17) and (21).

As for the off-diagonal terms in Eq. (12), in the case
U1 = −U2, the magnitude |A| does not depend on l and U and
takes the value of 2

√
λ. In the case U1 = U2, the parameter

|A| equals also to 2
√

λ when the IP is either weak or strong.
However, under the moderate values of the IP, the behavior
of the off-diagonal terms becomes more complicated: the
parameter |A| is smaller than 2

√
λ and oscillates as a function

of l around some value. These details of the off-diagonal terms
depending on the film thickness and IP are taken into account
in our calculations.

Having analytically established the fact that the IP can affect
the electron properties of the TI film in the NI/TI/NI trilayer, we
further verify this result by numerical calculations for a wide
region of l and U1,2. In Fig. 4, under moderate strength of the
IP, the hybridization energy gap and the dispersion parameter
are plotted versus the film thickness in the semilogarithmic
scale that displays the damped oscillation pattern. This pattern
shifts with the IP strength U along the horizontal axis l.

The spectrum of the Hamiltonian Eqs. (11) and (12) consists
of two branches expressed as

E±(κ) = ε0(κ) ±
√

�2(κ) + |A|2κ2. (25)

The energy E0 shifts the bands E±(κ) with respect to the
position of the Fermi level. When D2 < b2, the energy gap
between the electronlike band E+(κ) and the holelike band
E−(κ) appears. The difference E+ − E− at κ = 0 is equal
to 2|�0|. If the product b�0 is positive and as large as
2b�0 > |A|2, the spectrum Eq. (25) acquires the “camelback”
shape so the true band gap (i.e., the minimum energy separation
between the band branches) is not located in a center of
the 2D Brillouin zone but on a circle of the radius κm. For

example, at ω0(κ) = 0, one has κm =
√

�0
b

√
1 − 2�, and the

true gap is E+(κm) − E−(κm) = 4|�0|
√

�(1 − �) < 2|�0|;
here the parameter � = |A|2

4b�0
is used. However, in the case

when |U±1
1 + U±1

2 | < �∓1
0 and exp(−2q0l), the value b�0 can

be as small as b�0 < |A|2, then the true gap opens at κ = 0
and coincides with the value E+(0) − E−(0) = 2|�0|. If the
product b�0 is negative, the minimum excitation energy occurs
always at κ = 0 being equal to the hybridization gap 2|�0|.
As the parameters �0 and b are the functions of l and U1,2, the
spectrum peculiarities of the NI/TI/NI trilayer are governed
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~

U=-3~

~

U=0~

~

U=3~

FIG. 4. Hybridization energy gap 2�0 (black lines) and dispersion parameter b (red lines) in effective 2D model for the 3D TI film plotted
as a function of the film thickness 2l in the case of U1 = −U2 = U (upper row) and U1 = U2 = U (lower row) at Ũ = 0, ± 3 and λ = 0.25.
The signs of these parameters are indicated in the figure. The logarithms of the energy gap 2�0 and dispersion parameter b are plotted vs. 2l

to demonstrate that they decay exponentially and oscillate with phase shift. The gray color indicate regions where the low-energy states leave
the bulk gap merging into the projected bulk states. Here �̃0 = �0

�0
and b̃ = b

B
.

by both the TI film thickness and IP. As an example, in Fig. 5
we provide a series of the energy dispersions calculated for
different film thicknesses at the fixed IP strength.

Note that in the limiting case q0l → ∞, when the overlap
of EFs localized at/near the opposite interfaces of the film
is negligible, the dispersion relation Eq. (25) acquires the
gapless Dirac conelike form, E±(κ) = ε0(κ) ± |A|κ , where
the crossing point is shifted in the energy to the E0 level and
the cone surface is slightly curved due to the term −Dκ2.

V. PECULIARITIES OF THE INTRINSIC SPIN HALL
RESPONSE AND TOPOLOGICAL PHASE DIAGRAM OF

THE UNBOUNDED NI/TI/NI TRILAYER

From the low-energy states of the TI film sandwiched by
the NI slabs, we have derived the effective 2D Hamiltonian
having a physically transparent and compact form to describe
how the electron transport properties of the NI/TI/NI layer are
determined by the interfacial and finite-size effects. According
to the Chern insulator concept [44], the spin Hall response
(topological or trivial) is controlled by the diagonal term �(κ).
In the present approach, both components of �(κ) = �0 −
bκ2, being interrelated, b

�0
∼ l cot(2w0l), depend essentially

on the thin thickness and IP: �0(l,U1,2) and b(l,U1,2) exhibit an
oscillatory behavior as functions of l, while the value and sign

of U1,2 determine the phase of these oscillations [see Eqs. (15)
and (16), (19) and (20), (23) and (24), and Fig. 4]. Moreover,
in certain region of the trilayer characteristics (l,U1,2), the
low-energy states are pushed into the projected bulk bands.
These theoretical observations suggest a possibility to control
the conductivity of the NI/TI/NI trilayer via variation of the TI
spacer thickness and interface potential.

Proceeding to the transport properties analysis, one needs
to point at some methodical aspects. As noted in Ref. [40], the
dimensional reduction procedure from the 3D model Eqs. (1)
and (2) to the effective 2D model Eqs. (11) and (12) is valid
under the stipulation |A|2 � b�0 (or |�| � 1). Furthermore,
the 2D Hamiltonian Eqs. (11) and (12), derived from the
perturbation theory to low orders in κ , is correct only in a small
vicinity of the 2D Brillouin zone origin, (|A|κ,|b|κ2) � |�0|.
Therefore, one should keep in mind that the description of
the spin Hall response of the NI/TI/NI trilayer in terms of the
Chern insulator [44] is restricted. The topological character of
such 2D system is mathematically featured by the intrinsic spin
Hall response, σS = σ

⇑
xy − σ

⇓
xy , where σ�

xy is associated with
the corresponding block F�(κ) in Eq. (12) and � =⇑ , ⇓. It
is convenient to represent the response in integer multiples of
e2

h
via the Chern number C� , i.e., σ�

xy = e2

h
C� (h is the Planck

constant, e is the electron charge). Within the framework of
the Chern insulator model [44], when the chemical potential
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FIG. 5. Band spectra E±(κ) (depicted by red lines) of the Hamiltonian Eqs. (11) and (12) and the corresponding Berry curvature distributions
in momentum space �⇑(κ) (black lines) for different film thicknesses at the fixed IP strength Ũ = −1. White background of the plot marks
the trivial phase with CS = 0. Green color marks the QSHE phase with CS = 1, where �0 > 0 and b > 0, while yellow marks the QSHE
phase with CS = −1, where �0 < 0 and b < 0. The strip-shaded pattern indicates regions where 2b�0 > |A|2 and the spectrum E±(κ) has a

“camelback” shape. Here Ẽ = E

�0
, �̃ = �⇑ �0

B
, and k̃ = kx,y

√
B

�0
.

μ lies inside the energy gap, the factor C� is given by
C� = 1

2π

∫
dκ��(κ), where ��(κ) is the Berry curvature,

and the integral is performed over the first Brillouin zone.
When the Hamiltonian is in the form of Eqs. (11) and (12), the
Berry curvature is obtained as [14]

�⇑(κ) = |A|2(�0 + bκ2)

2[�2(κ) + |A|2κ2]
3
2

, (26)

and �⇑ = −�⇓. However, within our approach, the depen-
dence ��(κ) becomes ill-defined for momenta larger than

κc ≈
√

|�0
b

|. For example, in case of a strong/weak IP, using

Eqs. (19), (20) and (23), (24), one can take the estimation lκ2
c ≈√

�0
B

. Nevertheless, if the electron states with momenta distant
away from the center of the Brillouin zone are considered a
priori as inert in topological sense, the dependence Eq. (26)
can be extended beyond κc to capture principal features of the
low energy transport.

The details of the Berry curvature distribution Eq. (26)
vary remarkably depending on whether the parameters �0

and b have the same or different signs. Let us assume
provisionally that �0 > 0. If � > 2

3 the function �⇑ is
positive and monotonic with the maximum at the origin
(κ = 0). If 0 < � < 2

3 the function �⇑(κ) is positive with the
minimum at κ = 0 and the maximum at κ = κ0, where κ2

0 =
�0
2b

[
√

(� − 1)(� − 9) − 1 − �]. And if � < 1 the function
�⇑(κ) is sign-changing with the maximum at κ = 0 and the
minimum at κ = κ0.

As the function �⇑(κ) decays quickly enough with increas-
ing κ , the integral over the two-dimensional Brillouin zone
can be replaced by the integral over the infinite 2D momentum
space. This leads to the integer-valued factor C⇑ = −C⇓ =
1
2 [sgn(b) + sgn(�0)], provided that the chemical potential μ

lies within the gap, so |μ| < 2|�0|
√

�(1 − �) at 0 < � < 1
2

and otherwise |μ| < |�0|. Thus, the spin Chern number [45]
CS = 1

2 (C⇑ − C⇓) equals 1 or −1 when b�0 > 0 and vanishes
when b�0 < 0. Correspondingly, in a topological phase,
b�0 > 0, the system is characterized by quantized plateaus in
the spin transverse response as a function of μ with |σS | = e2

h
;

while a trivial phase, b�0 < 0, is characterized by the zero
spin response, σS = 0.

In previous section we established that, by changing the IP
and/or the TI film thickness, it is possible to change not only
the value but also the sign of �0 and b. Having obtained the
analytical expressions for �0(l,U1,2) and b(l,U1,2) of Eqs. (15)
and (16), (19) and (20), (23) and (24) one can derive a simple
formula for the spin Chern number in the trilayer:

CS = 1
2 {sgn[sin(2w0l + 2γ )] − sgn[cos(2w0l + 2γ )]}.

(27)

Although this formula is strictly valid in the corresponding
limiting situations, it reflects clearly the fact that both the
interface conditions and the TI film thickness can drive the
system through a quantum transition between the topological
phase with |CS | = 1 and the trivial phase with CS = 0 and
also explains how this transition occurs. In the trilayer with the
relatively thick TI film, the parameters �0(l,U1,2) and b(l,U1,2)
are the oscillating functions of l with the period l0 = π

w0
shifted

from each other by the quarter period. Every sign alternation
of either �0(l,U1,2) or b(l,U1,2) entails a stepped change in the
spin Chern number. Hence, with varying thickness, the factor
CS is described by the sequence ...,0,−1,0,1,0,−1,0,1,...

with the period l0, so the topological phases with opposite
sign of the spin Hall response, σS = e2

h
and σS = − e2

h
, are

separated from each other by the trivial phase with the zero
response, σS = 0. In other words, the variation of the TI film
thickness by the quarter period, l0

4 , has to lead to a transition
either from the topological phase to the trivial one or vice
versa. On the other hand, the IP appears in Eq. (27) through
the phase shift, 2γ . This means that the IP has a profound effect
on the electron properties of the NI/TI/NI trilayer resulting in
an alternation of the spin Chern number. So, the response σS

can switch between the quantized values ± e2

h
and 0 as the IP

changes from the weak to strong limit.
To gain insight into the problem, we construct the topo-

logical phase diagram of the NI/TI/NI trilayer parameterized
by l and U1,2 for the chemical potential positioned inside the
gap. Phase transitions in our model can occur in two different
ways: either by closing and reopening the hybridization gap
�0 or by changing the sign of the term dispersion b. Respec-
tively, the quantum phase transition between the nontrivial
insulator, b�0 > 0, and the trivial band insulator, b�0 < 0,
happens when the condition �0(l,U1,2) = 0 or b(l,U1,2) = 0
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is satisfied. Figure 6 displays the phase diagram in terms of
coordinates of the thickness and the IP strength for situations
when U1 = U2 = U (in this case the picture is symmetric
with respect to the abscissa U = 0) and U1 = −U2 = U ,
where l and U range from small to moderate values. One
can readily see a stepwise behavior of the factor CS that
changes discretely at the very phase boundaries determined
by the equations �0(l,U1,2) = 0 and b(l,U1,2) = 0. Note that
the quantum transition may be governed by both the TI film
thickness and IP. Thus, looking at Fig. 6 one can propose two
important for practical purposes routes to convert the trivial
band insulator phase to the topological one and vice versa in
the NI/TI/NI trilayers: either the variation of U1,2, for example,
by tuning the NI plates, at given l or the variation of l at given
U1,2. As seen in the phase diagram, both in the former case
and in the latter case, the system can experience the quantum
phase transition several times with increasing l and |U |.

The expansion coefficients of the kp model for centrosym-
metric TIs can be directly derived from ab initio eigenfunctions
of the bulk crystals at the � point [46]. Here, taking into
account the numerical results of Ref. [46], in the simplified
Hamiltonian of Eq. (2) we adopt the following qualitative
approximation for the band structure parameters: |A| = 0.2 eV
nm, B = 0.5 eV nm2, and �0 = 0.2 eV. Then one can obtain
rough estimates: λ = 0.1, q0 = 0.2 nm−1, w0 = 0.6 nm−1,
and l0 = 5.2 nm. At the fixed IP value and the enough thick
TI film, the distance between neighboring phase boundaries
in the diagrams in Fig. 6 is about l0

4 = 1.3 nm. This means
that a change of the TI film thickness in a few nanometers can
trigger the topological phase transition.

The IP matrix elements can be intuitively associated
with the relative energy offsets between the relevant band
edges of TI and NI. From this viewpoint, the comparison
between the analytic results and the data of the electron band
structure calculations carried out within the density functional
theory for some concrete interfaces provides the estimation
of the IP components [38]: U1 � 0.2 eV and U2 � 0 eV for
GeBi2Te4/Bi2Te2S; U1 � −0.2 eV and U2 � −0.4 eV for
Sb2Te2S/Sb2Te2Se; U1 � −0.4 eV and U2 � −0.6 eV for
Bi2Te2S/GeBi2Te4. If one uses the band structure parameters
B = 0.5 eV nm2 and �0 = 0.2 eV and the length d � 1 nm,
the dimensionless strength can range from 0 to moderate values
of the order of |Ũ | � 2. According to the diagrams in Fig. 6,
such values of the IP strength are sufficient to drive the TI/NI
trilayer through the topological transition.

By varying the TI film thickness in the trilayer, we illustrate
in Fig. 5 how the distribution of the Berry curvature in
momentum space (together with the corresponding energy
spectrum) changes under transition between topologically
different phases. The red crosses in Fig. 6 indicate the points
in the phase plane (l,U ), at which the dependencies E±(κ)
and �⇑(κ) are depicted in Fig. 5. While the band dispersions
of the normal and inverted types are rather similar, the Berry
curvature distributions in the topologically different phases are
distinctly different.

We must also say that our approach does not reproduce the
phase diagram correctly enough in close vicinity of the phase
boundaries �0(l,U1,2) = 0 and b(l,U1,2) = 0. This is because
the perturbative procedure to derive the 2D Hamiltonian
Eqs. (11) and (12) fails when |A|2 � |b�0|.

VI. EDGE ELECTRON STATES AND QSHE IN
THE BOUNDED NI/TI/NI TRILAYER

In the previous section we have analyzed evolution of
the topological insulating phase in the NI/TI/NI trilayer
unbounded in the interface plane depending on the IP strength
and the TI film thickness. The integer-quantized spin Hall
response of this system proportional to σS has been attributed
to the spin Chern number CS . The number CS is rather
a mathematical feature inherent to the model Hamiltonian
Eqs. (11) and (12) that is defined on the infinite plane. In
realistic situations, the TI film is surrounded by other trivial
media (material or vacuum), and therefore it is relevant to
address the problem of what is a manifestation of the spin Hall
response of the NI/TI/NI trilayer bounded in the interface plane
(x,y). When the TI film interior is insulating, the electronic
transport at low temperature is dominated by the electron
states at the film edges at ϒ(x,y) = 0. It is usually believed
[9,10] that a nontrivial bulk topological invariant entails the
existence of the Dirac-like helical state at the boundary with a
trivial material. Within the kp scheme, one usually imposes the
open boundary conditions on the TI wave function [14,30–32],
which provides the guides to the assertion that the topological
and nontopological phases are distinguished from each other
by the presence and absence of the the Dirac-like states,
respectively. This picture allows one to associate the spin Hall
response, σS , with the spin transverse conductivity due to the
edge bound states. In particular, the boundaries of the 2D
TI are thought to host the 1D edge metallic channels which
contribute to QSHE [9,10]. However, such simple boundary
condition is highly rough treatment of complex physical
phenomena at the edges in the TI/NI heterostructures. In this
section, incorporating the phenomenological edge potential,
EP, tVδ[ϒ(x,y)], we explore how the helical edge states in
the TI film are affected by the edges. Using the generalized
boundary conditions of the natural type, we study the role of
EP in the model Eqs. (11) and (12) in a restricted geometry.
Clarifying the existence condition of the edge states depending
on the EP strength allows us to shed new light on the QSHE
in the NI/TI/NI trilayer.

Here, we consider the film occupying the half-plane x >

0 and bounded by the edge meeting a topologically trivial
medium along the line x = 0, i.e., ϒ(x,y) = x. Carrying out
analytic calculations, the 2D Hamiltonian Eqs. (11) and (12)
with additional modification at the edge will be used. The
equations for the EF spinor, η� = (η�

1 ,η�
2 )tr, in the (x,y) plane

read

F�(−i∂x,ky)η�(x) = Iε�(ky)η�(x), (28)

where ky remains as a good quantum number, � = ⇑/⇓.
For simplicity, the topologically unessential term ∼ε0(κ)
in Eq. (11) is omitted. We imply that the EF decays far
from the edge, η�(x → ∞,ky) → 0 and the natural boundary
conditions are imposed on the EF at the edge,

i
∂F�(−i∂x,ky)

∂(−i∂x)
η�(x)

∣∣∣∣
x=0

= 2tUη�(x = 0), (29)

where U = diag{u,u} is the EP matrix. EP acts on electrons
near the TI film edge in a very narrow region, ∼t , of the order
of an unit cell. We adopt a local approximation for EP,U(x) →
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FIG. 6. Topological phase diagrams of the NI/TI/NI trilayer in the coordinates the IP strength vs. the film thickness when the chemical
potential is inside the gap. Upper/lower row of the plots correspond to the situation when IP is arranged so U1 = −U2 = U/U1 = U2 = U .
One can observe topologically distinct insulating phases characterized by the integer spin Chern numbers and residing in the corresponding
domains. White domains mark the trivial phase with CS = 0. Green domains mark the QSHE phase with CS = 1, where �0 > 0 and b > 0,
while yellow domains mark the QSHE phase with CS = −1, where �0 < 0 and b < 0. Thick black curved lines distinguishing different phase
domains are given by the equations �0(l,U1,2) = 0 and b(l,U1,2) = 0. The gray color indicates regions where the low-energy states leave the
bulk gap merging into the projected bulk states. In the upper row, the strip-shaded areas show the (U,l) regions where the spectrum E±(κ) has

a “camelback” shape. Here l̃ = l

√
�0
B

, Ũ = dU√
B�0

, and λ = A2

4B�0
.

Uδ(x), because the scale ∼t is significantly smaller than the
EF spatial variation in the (x,y) plane. This simplification is
involved to study the 1D edge states by analogy with the case of
IP, which has been used to describe the 2D bound states near the
3D TI surface [38]. For the NI/TI/NI trilayer, one can construct
EPs differing in type and strength, for instance, by cutting the
TI film crystal lattice along different crystal directions in the
interface plane. Of course, either the existence or absence of
the edge states in the NI/TI/NI trilayer at the given TI film
thickness and IP is connected with the spin Chern number CS ,
but questions on how this connection is realized and how the
characteristics of these states are related with the boundary
conditions containing EP have not been elucidated yet in the
literature.

One can expect that the topological insulating phase with
|CS | = 1, which covers the whole interior of the thin TI film,
manifests itself through 1D conducting channels associated
with the in-gap edge states at the side boundary, i.e., at x = 0
in the y direction. Given b�0 > 0, in the case of both the strong

EP, |̃u| � 1, and the weak EP, |̃u| � 1, the energy levels of
these states are pushed to the middle of the hybridization gap,
| ε�

�0
| � 1 (ε� → 0), where ũ = tu√|b�0| is the dimensionless EP

strength. Using this fact, after some calculations, one can find
the analytic solution of Eqs. (28) and (29) in mathematically
limiting situations. To be specific, let us assume that 0 < � <

1. To the first order in ky , the edge-state energy spectrum is
presented by the Dirac dispersion relation slightly shifted with
respect to the middle of the gap:

ε�(ky) = ε0 + sgn(b�)|A|ky, (30)

where the Dirac point energy is ε0 = − 4|�0|
√

�

ũ
at |̃u| � 1

and ε0 = 4|�0|
√

�ũ

1+�
at |̃u| � 1. Here and further the sign

sgn(�) relates to the pseudospin index as sgn(� = ⇑) = +1
and sgn(� = ⇓) = −1. Quasiparticles in the edge states
with opposite pseudospin projections, ⇑ and ⇓, propagate
in opposite directions. The corresponding EFs satisfying the
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FIG. 7. Dispersion of the edge states depending on the EP strength in the QSHE regime. Blue/brown lines indicate the pseudospin
polarization ⇑ / ⇓, � = 0.25. Last panel: The dependence of the Dirac point energy on the EP strength for several values of �, the dashed
lines mark the energy gap for � = 0.25 and � = 0.75.

boundary condition Eq. (29) are given by

η�
1 (x) = η0 exp(−p0x)

[(
1 − sgn(b�)

√
�

ũ

)
sin(s0l)

− sgn(b�)

√
1 − �

ũ
cos(s0l)

]
, (31)

η�
2 (x) = ieiφsgn(b�)η0 exp(−p0x)

×
[(

1 + sgn(b�)

√
�

ũ

)
sin(s0l)

+ sgn(b�)

√
1 − �

ũ
cos(s0l)

]
, (32)

for the strong EP;

η�
1 (x) = η0 exp(−p0x)

[(
1 + sgn(b�)

ũ

1 + �

)
cos(s0l)

− sgn(b�)
ũ
√

1 − �

1 + �
sin(s0l)

]
, (33)

η�
2 (x) = ieiφsgn(b�)η0 exp(−p0x)

×
[(

1 − sgn(b�)
ũ

1 + �

)
cos(s0l)

+ sgn(b�)
ũ
√

1 − �

1 + �
sin(s0l)

]
, (34)

for the weak EP. Here η0 is the normalization constant. The
edge states propagate along the y direction as plane waves,

decaying away from the edge into the TI film interior region.
The characteristic decay and oscillation lengths, which are
inversely proportional to the momenta p0 = |A|

2|b| and s0 =
p0

√
�−1 − 1, respectively, are determined by the parameters

of the plane Hamiltonian Eqs. (11) and (12). The oscillation
phase is subjected to the boundary condition of Eq. (29), so
the EF profile is very small at the edge (x = 0) when |̃u| � 1,
Eqs. (31) and (32), and peaked closely to the edge when |̃u| �
1, Eqs. (33) and (34). Curiously enough, the profile of the
⇑-polarized channel does not coincide with that ⇓-polarized
channel, |η⇑

1,2(x)| = |η⇓
1,2(x)|, owing to the finite value of

EP. Note also that the pseudospin-polarized channel flips its
propagation direction as the parameter �0 (or b) changes sign.

Figure 7 demonstrates the modification of the band structure
of the edge states with the varying EP. One can see in plots
corresponding to ũ = 0 and |̃u| � 1 that the nontrivial edge
states connecting the 2D “valence” and “conduction” bands
E±(κ), Eq. (25), cross the hybridization gap. The appearance
of such states with almost linear energy-momentum relation
and the Dirac point placed within the hybridization gap,
|ε0| < 2|�0|

√
�(1 − �), is consistent with the calculated

Chern number |CS | = 1, confirming the nontrivial topological
nature of the system. However, when the EP strength has
moderate value, |̃u| ≈ 1, the Dirac-like dispersion is distorted.
It is noteworthy that there is certain interval of the EP strength,
ũ+(�) > |̃u| > ũ−(�), where the Dirac point merges into the
2D band continuum of Eq. (25), i.e., |ε0| > 2|�0|

√
�(1 − �);

see the last panel in Fig. 7.
Let us analyze the trivial phase situation when b�0 < 0;

i.e., � < 0. First of all, note that in the cases of |̃u| � 1
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FIG. 8. Dispersion of the edge state depending on the EP strength in the trivial insulator regime. Blue/brown lines indicate the pseudospin
polarization ⇑ / ⇓, |�| = 0.25. Last panel: The dependence of the Dirac point energy on the EP strength for several values of �.

and |̃u| � 1, Eqs. (28) and (29) have only a trivial solution,
η�(x) = 0. In other words, at CS = 0 bound in-gap states
are absent. Let us examine what happens in the case of EP
of the moderate strength, |̃u| ≈ 1. It turns out that, for the
small energy ε�(ky) (|ε�(ky)| � |�0|) and momentum ky ,
one can capture nontrivial solution of Eqs. (28) and (29)
for the EP strength close to |̃u| = √

1 + |�|. This solution
is characterized by the Dirac-like dispersion:

ε�(ky) = ε0 − sgn(�)sgn(b)

√|�|√
1 + |�| |A|ky, (35)

where the Dirac point energy is ε0 = −sgn(u)|�0|(1 − ũ2

1+|�| ),
and the Dirac velocity is renormalized with respect to
the effective in-plane velocity. When b�0 < 0 and ũ =
sgn(b)

√
1 + |�|, we derive the simple expression for the

corresponding EFs profiles:

η�
1 (x) = η0[exp(−p1x) + sgn(b�) exp(−p2x)], (36)

η�
2 (x) = η0ie

iφ[exp(−p1x) − sgn(b�) exp(−p2x)]. (37)

A similar expression can be obtained when ũ =
−sgn(b)

√
1 + |�|. The penetration depths are determined by

the smaller momentum of p1,2 =
√

|�0|
|b| [

√
1 + |�| ± √|�|].

It is clearly seen that these EFs are mainly localized at the film
edge.

Further, to acquire more quantitative knowledge of the
existence of the in-gap edge states in the trivial insulating
phase, we perform the numerical calculations. Figure 8 shows
the evolution of the band structure of the edge states under the
varying EP. As seen in the last panel in Fig. 8, the Dirac point
of the edge state stays inside the hybridization gap when EP
strength is within a certain narrow interval around the value of
|̃u| = √

1 + |�|. Beyond this interval, the Dirac point merges
into the 2D band continuum.

It is important to understand how the edge states described
above contribute to QSHE in the NI/TI/NI trilayer. In the band
structure theory of solids, the Chern number C� is formally
introduced as an integral of the Berry phase curvature. This
topological parameter is proportional to the static current-
current correlator of fermion on the infinite plane, which is
calculated usually by means of the Kubo formula. In practice,
the current-current correlator as a transverse response of the
system to external electric field could be a measurable quantity
in transport experiments on finite-size samples. For instance,
the NI/TI/NI trilayer cut out in a shape of a ribbon of finite
width in the x direction (the Hall bar geometry) can be utilized
as a concrete experimental sample. In such a heterostructure
sample, a quantization of spin transport is realized due to the
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1D helical edge states, which occur at side boundaries of the
ribbon-shaped TI thin film and reside inside the hybridization
gap [9,10].

A pair of the counterpropagating edge states with opposite
pseudospin polarization occurring at each edge of the ribbon
contributes to QSHE under the stipulation that the chemical
potential μ (fixed inside the hybridization gap) intersects the
spectrum branches of the edge states on a linear segment
near the Dirac point. In the NI/TI/NI trilayer, the gate voltage
applied to the NI plates can provide a change in the chemical
potential position inside the hybridization gap. The electric
current, Iy , flowing in the y direction along the sample, due
to the spin-momentum locking inherent to the edge states,
induces a nonequilibrium spin accumulation at the opposite
edges. The current flowing along the ribbon edges is the
sum over all occupied states: I�

y = e
∫ dky

2π
v�(ky)n[ε�(ky)],

where v�(ky) = 1
h̄

∂ε� (ky )
∂ky

is the group velocity, n[ε�(ky)] is
the occupation probability (the Fermi distribution function)
of the ky th mode with the pseudospin polarization � = ⇑,⇓,
the full current is given by Iy = I

⇑
y + I

⇓
y . The cancellation

of the group velocity and density of states, ∼ ∂ky

∂ε� , which
usually takes place in a 1D system, leads to the relation
I�
y = e

h
(μ�

R − μ�
L )sgn(�), where μ�

R/L is the spin-dependent
electrochemical potential at the right/left edge of the ribbon.
In the ballistic regime, measuring a voltage between the edges
as the imbalance between chemical potentials of fermions
with distinct chiralities, eV s

x = μ
⇑
R − μ

⇑
L − (μ⇓

R − μ
⇓
L), we

obtain in the linear response limit Iy = e2

h
V s

x and, as a
consequence, |σS

xy | = e2

h
. Note that a charge voltage between

the edges vanishes, eV c
x = μ

⇑
R − μ

⇑
L + (μ⇓

R − μ
⇓
L) = 0. The

perfect quantization of the spin Hall conductivity holds as
long as the Dirac-like edge states remain inside the energy
gap. Let us assume for simplicity that the ribbon is wide
enough [� (p0,1,2)−1] to make negligibly small the interaction
between opposite edges. As has been clearly shown just above,
the edge state properties are essentially influenced by EP,
which is present at the side boundaries of the ribbon-shaped
sample. In particular, one can see in Fig. 7, that when the TI film
is in the topological phase, b�0 > 0, and fermions propagating
along the edges are subjected to the action of strong or weak EP,
the edge state spectrum of Eq. (30) crosses the hybridization
gap. In this case, the sample is expected to exhibit a pronounced
conductance plateau of |σS

xy | = e2

h
over a large range of the

gate voltage [namely at |μ � 2|�0|
√

�(1 − �)]. At the same
time, when EP has a moderate strength, the energy region,
in which the edge state exists inside the gap, narrows and
shifts to the 2D band continuum and can actually merge into
the continuum at ũ ≈ 1. Therefore, the quantized conductance
plateau becomes less pronounced. In turn, as seen in Fig. 8,
when the TI film is in the normal phase, b�0 < 0, an EP of
the moderate strength, ũ ≈ 1, provides the appearance of the
Dirac-like edge states inside the gap. And these states could
manifest themselves in the conductivity plateau, although this
plateau is narrow. These features reflect a specific behavior of
QSHE in the samples designed in the Hall bar geometry when
EP at the edges is taken into account, as compared with the
behavior considered solely in the terms of the Chern number.
A possibility to observe the conductance plateau as a QSHE

hallmark depends essentially on the conditions at the edges of
the NI/TI/NI trilayer sample. Note that a regime with nonzero
but nonquantized spin Hall conductivity could exist under less
rigid restrictions. In particular, when the chemical potential
lies beyond the hybridization gap, the spin Hall conductance
is dominated by electron states of the 2D continuum E±(κ) of
Eq. (25), which leads to perfect quantization break.

Our model of NI/TI/NI trilayer predicts evidence for the
fact that the QSHE regime is highly sensitive to the conditions
at both the interfacial and lateral borders of the TI film.
We establish that in this system the QSHE realization is
not connected unambiguously with the topological index of
the TI film but depends on EP at the edges. The edge state
properties (e.g., the spectrum and the space profile) can be
substantially modified by EP, this leads to the appearance and
disappearance of the spin-filtered current channels along the
edges. One can choose the EP parameters in such a way that
the edges do not host the helical channels with the Dirac-like
spectrum inside the hybridization gap even in the topological
insulating phase with |CS | = 1. On the other hand, in the trivial
insulating phase with CS = 0, under EP of certain strength,
there exist metallic edge states with the Dirac node inside the
gap. Thus, in the present model of the NI/TI/NI trilayer, the
QSHE manifestation is determined in a quite specific way by
the geometry and physics of the boundaries of the TI film.

VII. DISCUSSION

In the previous sections we argued that both the interfaces
and the edges play an important role in spin transport properties
of the NI/TI/NI trilayer. In accordance with the phase diagram
in Fig. 6, the microscopic characteristics of the trilayer, l and
U , can vary significantly, while the topological index CS does
not change as long as the product b(l,U )�0(l,U ) keeps the
sign. However, this circumstance does not imply undoubtedly
the existence of the conducting edge channels in the trilayer
sample installed in a Hall bar geometry. Generally speaking, to
understand deeper the relation of QSHE to boundary effects in
realistic TI/NI heterostructures it is required to directly exam-
ine the sample by bulk-sensitive and scanning probe techniques
and spin Hall response measurement simultaneously.

Our treatment of the QSHE problem is distinct from
most of the ones discussed previously [14,26–28,30–32]
since we incorporate the effect of the TI/NI interfaces and
the edges of the TI film through the corresponding natural
boundary conditions featured by the IP or EP [see Eqs. (5)
and (29)], respectively. We demonstrate, by the example of
the NI/TI/NI trilayer, that the interface and edge states and,
as a consequence, the QSHE regime can be manipulated
by changing the conditions at the TI film boundaries. This
theoretical finding significantly enlarges possibilities to predict
and analyze the manifestation of spin Hall effect for a
broad class of heterostructures including semiconductors with
strong spin orbit coupling [47–49]. Our results provide a rich
playground to study boundary-originated changes in peculiar
electron properties of various TI/NI heterostructures. So, under
corresponding generalization, our approach can be applied to
describe quantum anomalous Hall effect (QAHE) in the TI/NI
heterostructure containing magnetically ordered constituents.
One can explore a model of a NI/FMTI/NI trilayer with a
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ferromagnetic (FM) TI film adding an exchange term to the
initial bulk Hamiltonian Eq. (2), as it had been done, for
instance, in Refs. [50,51]. It is also possible to consider a
model of a FMNI/TI/FMNI trilayer, in which the TI film is
sandwiched with FM dielectrics.

Our study also concerns other aspect of the finite-size
phenomena in semiconductor heterostructures. It was lately
proposed that robust helical surface states can emerge in topo-
logically trivial crystal systems at specific surfaces and under
a proper combination of anisotropy and thickness [52–54].
Recently, Zhu et al. reported on the signature of such surface
states in epitaxial Bi(111) thin films [55]. In the present study
we mostly focus on a role of the effective boundary potentials
in the helical states formation. Xu et al. have reported on the
observation of quasi 2D states at the surface of BiTl(S1−δSeδ)2

alloy, which resemble the helical states on the 3D TI surface,
on the trivial side (with noninverted bulk spectrum) of the
topological phase transition in the composition δ near the
critical point δ ≈ 0.4–0.5 [56]. In Sec. VI we have found
that the certain EP can induce the edge state in the bounded
trilayer when the TI film is in the topologically trivial phase.
Heretofore, it was analytically shown in Ref. [38] that, under
certain boundary conditions, the Dirac-like surface states can
appear in a truncated 3D insulator, which has non-inverted
spectrum. These results provide further physical insight into
the properties of time-reversal invariant insulators. Obviously,
the analytic results are needed to be supported by numerical
modeling (ab initio and/or tight-binding calculations) and
transport measurements.

As follows from the above analysis, on the one hand,
the closing and reopening of the hybridization gap �0 is
accompanied by the band inversion of the ϕ- and χ -states
(Fig. 1) and causes a jump of the spin Chern number CS

(Fig. 6). On the other hand, the alternation of the sign of
the dispersion parameter b, also leads to a change of CS

(Fig. 6). It means that in our model the topological quantum
phase transitions in the NI/TI/NI trilayer can befall both
with and without closing and reopening of the gap. This
fact has a formal foundation. According to Refs. [57,58], the
Hamiltonian of the type F�(κ), Eq. (12), belongs to a class
of two-band continuous Hamiltonians possessing a quantum
duality property. This means that the Hamiltonians F�(κ) and
F̂�(κ) are dual each other provided that �0

b
is replaced by b

�0
.

In conformity with the duality property, F�(κ) and F̂�(κ)
describe the same phase; whether this phase is topological or
trivial it is determined by the sign of b�0.

Above in Sec. V we have estimated the distance between
neighboring phase boundaries in the diagrams in Figs. 6 as
l0
4 � 1.3 nm. This characteristic scale is not much larger than
the one quintuple layer (QL) thickness (≈ 0.9 nm) in the
classic tetradymite TIs, which indicates that the QSHE regime
is highly sensitive to variation of the TI film thickness. In
practice, the fabricated TI/NI interfaces are not perfectly flat
due to an unavoidable roughness. So, in the case of tetradymite
semiconductors, the interface landscape is represented by
terraces separated by steps running along different hexagonal
axes. The step height is normally equal to one QL, the value
of the root-mean-square roughness can attain 2 nm [59]. The
interface roughness directly corresponds to fluctuations of the

TI film thickness. Therefore, one can suggest that the TI film
interior breaks down into distinct phases, with different CS

equal to 0 or ±1, separated from each other by the steps which
can host 1D conducting channels. In terms of electrophysics
the TI/NI interface can be viewed as a random network of the
1D channels possessing the conductance of ± e2

h
. If the network

forms a global conducting cluster, a percolation contribution
to a total conductivity of a sample appears. Hereby, the
presence of the interface roughness is an important point in
the experimental search for high-performance spin transport
materials and devices based on the TI/NI heterostructures.

In the present work, we have explored only the ideal
model of the symmetric NI/TI/NI trilayer, which is rather
appropriate to describe “an elementary cell” of superlattice
heterostructures. In the case of real trilayers (or bilayers), the
bottom surface of the TI film is usually attached to an NI
substrate, while the top surface is either covered by an NI
protective overlayer or exposed to a vacuum, which breaks
the inversion symmetry along the growth direction, leading to
the Rashba-like energy splitting for the gapped spectrum in
the TI film. Furthermore, in the presence of the structural
inversion asymmetry the Chern number loses its meaning
since the 2D effective Hamiltonian Eq. (11) cannot be divided
into two blocks. Nevertheless, the authors of Refs. [14,32,60]
have proved that one can use the Z2 topological classification
to distinguish the topological phase from the trivial phase.
Their calculations [14,32,60] demonstrated that the system
undergoes a topological phase transition to a normal insulator
when the inversion asymmetry is large enough and/or the film
is thin enough. In our approach, the broken structural inversion
symmetry in the trilayer can be taken into account by setting
different IPs at the opposite interfaces of the TI film.

VIII. CONCLUSION

In this paper, we have systematically investigated the effects
of the interface and edge potentials as well as the TI film
thickness on the electron properties of the NI/TI/NI trilayer.
The energy spectrum and space distribution of the in-gap
electron states are found to be very sensitive to these key
attributes of the system. We have depicted the phase diagram
for the NI/TI/NI trilayer unbound in the interface plane,
which demonstrates the interface-driven transitions between
topologically distinct phases. The EP effect on the behavior
of the in-gap edge states at the edges of the trilayer finite
in the interface plane is also highlighted. We have provided
a physical explanation on how the spin Hall conductivity
can be controlled in the TI/NI heterostructures. We have
established that the realization of QSHE regime in the trilayer
sample is intimately connected with interplay between the 2D
interface-induced states and the 1D Dirac-like edge states. For
the QSHE regime to take place it is essential that the Dirac
point of the 1D edge states lies inside the hybridization gap
of the 2D interface-induced states. Under relevant position
of the chemical potential, carriers in the states propagating
along the edges of the TI film provide spin conductivity
in transport measurements. We have shown that the IP, in
addition to the TI film thickness, drives the interface states in
the film and, consequently, the condition for quantum phase
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transitions associated with the alternating-sign product b�0.
In turn, the EP at the edges regulates the conducting edge
states so they can occur inside the gap at both b�0 > 0 and
b�0 < 0 depending on the EP strength. Therefore, the intrinsic
spin conductivity in the Hall-bar sample is no longer related
directly to the spin Chern number, which merely distinguishes
the topological insulating phase (b�0 > 0 and |CS | = 1) from
the trivial insulating (b�0 < 0 and CS = 0) phase in the
ideal trilayer that is infinite in the interface plane. That is
to say, in the NI/TI/NI trilayer, one can choose such EP
(which does not break the time-reversal symmetry) that the
nontrivial spin Chern number, |CS | = 1, does not manifest
itself in QSHE owing to the absence of the in-gap conducting
channels at edges of the TI film. On the contrary, under the
trivial insulating regime, CS = 0, the EP of certain moderate
strength can induce metallic helical channels that contribute
to the QSHE transport. Nevertheless, it should be noted that,
in the case of EP with the large or small strength, the edge
states are guaranteed to reside in the hybridization gap under
the stipulation b�0 > 0, and they are absent under b�0 < 0.
Thus, we have reveal a essential role of boundary factors in
the TI/NI heterostructures.

The realization of QSHE and its characteristics are tunable
by changing the strength of both the interface potential and

the edge potential, which makes the heterostructure design
a versatile and powerful tool for spintronic applications of
TIs. Our conclusions are relevant for a broad range of the
heterostructures, including the NI/TI/NI trilayers and the
[TI/NI] superlattices. Although we have limited ourselves
to the study of QSHE, our approach can be generalized
to describe quantum anomalous Hall effect in the TI/NI
heterostructures, where TI or/and NI possesses magnetic
ordering.
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