

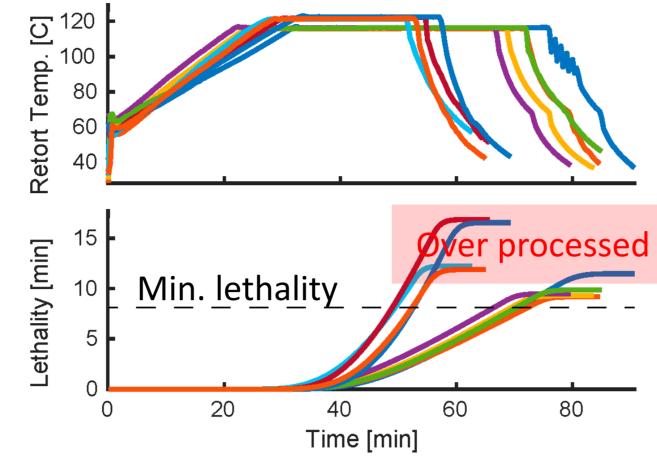
Real Time Optimization of the Sterilization Process in a Canning Industry

3adaj9z 2018

Jornadas de Automática

5-7 septiembre 2018

C. Vilas*, A.A. Alonso

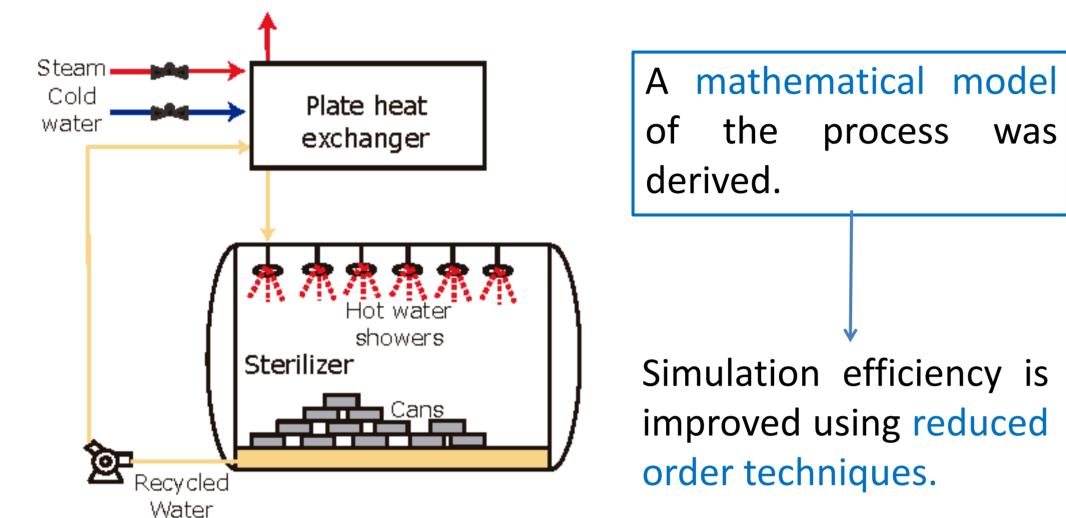

COORDINATED PRODUCTION FOR BETTER RESOURCE EFFICIENCY https://www.spire2030.eu/copro

(Bio)Process Engineering Group, Marine Research Institute, IIM-CSIC, Vigo (Spain) E-mail: carlosvf@iim.csic.es

MOTIVATION AND OBJECTIVE

Sterilization process is aimed to inactivate harmful microorganisms present in food. Drawbacks:

- It is a demanding operation in terms of energy and time consumption.
- It adversely affects food quality [1].
- Plant perturbations may lead to food safety/quality problems [2].



was

Objective: To design a model-based RTO strategy able to correct the influence of unexpected perturbations.

- Food safety/quality, process time and energy consumption are taken into account.
- Food quality refers to surface color.
- Food safety refers to microbial lethality (F0).

PROCESS AND RTO SCHEME

The RTO Scheme

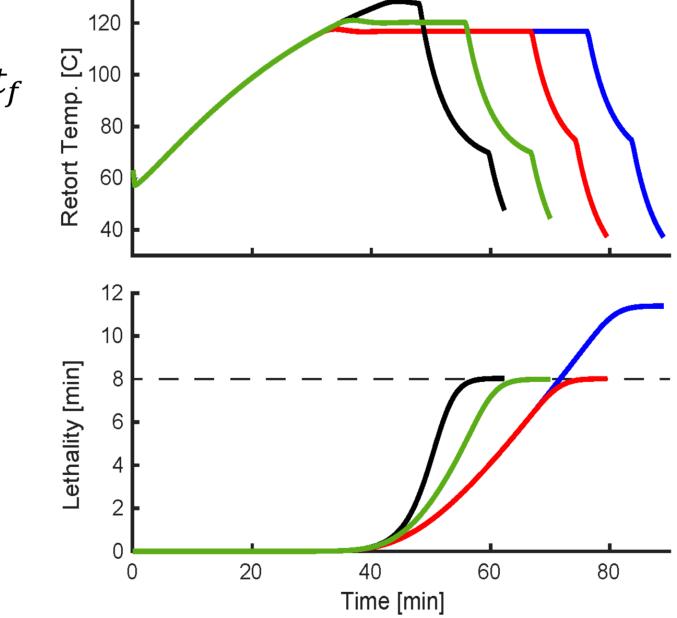
- Temp. set point and process time are fixed at the beginning.
- The mathematical model combined with on-line plant measurements is used to assess final product safety.
- If the model predicts safety problems a new Temperature set point is computed through optimization.

Simulation efficiency is improved using reduced

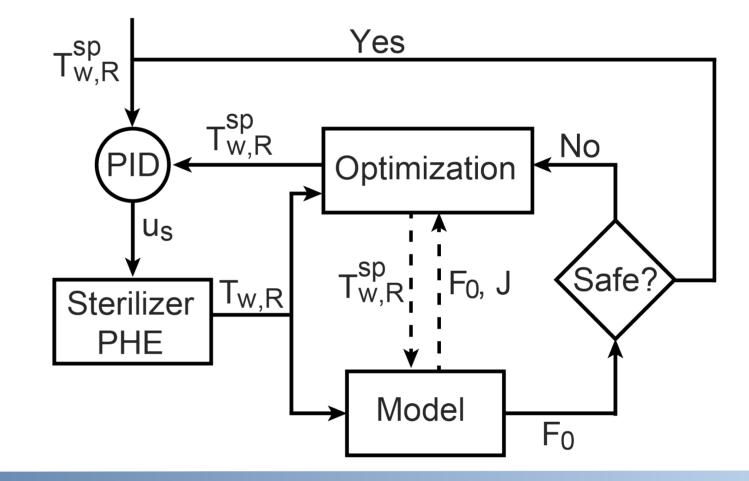
The sterilization process

- Cold water is heated with steam using a plate heat exchanger (PHE). •
- Hot water from PHE is introduced in the sterilizer. \bullet
- Food cans are heated at a given T during an amount of time. ullet
- Cold water is introduced at the end to cool down the food cans.

RESULTS AND DISCUSSION


Optimization problem:

$$\min(J) = w_1 E + w_2 \left(100 - C(t_f) \right) + w_3 t_f$$


Subject to:

- Model equations
- 110 °C $\leq T_{w,R} \geq 130$ °C
- $F_0(t_f) \ge 8 \min$

Improvement (in %) of the RTO profiles with respect a real implemented profile (blue line)

- The optimal profile is implemented in the plant.
- Constant profiles were considered (legislation issues).

Three profiles were obtained:

- In RTO1 (red line), only process time was ● allowed to change. It improves the original profile in all senses (time, energy and color).
- In RTO2 (black line) temperature was also allowed to change. It is the most aggressive and the shortest one. It provides the best color and the largest energy consumption.

	Energy	Color	Time
RTO1	2,7	2,8	10,7
RTO2	-5,7	8,0	30,0
RTO3	1,3	5,7	21,1

Blue line: Batch implemented in a real canning plant (over processed)

In RTO3 profile (green line) weights in J ulletchanged. It improves the process in all senses allowing to reduce cycle time.

CONCLUSIONS

- Typical sterilization cycles in the canning industry are conservative and lead to food overprocessing (particularly in the event of unknown perturbations).
- The RTO approach allows: \bullet
 - o designing cycles that ensure food safety while optimizing food quality and process costs.
 - taking into account unexpected process disturbances to minimize their effects.
- Larger improvements are expected using variable retort temperature (VRT) profiles instead of constant ones.

REFERENCES

[1] A. A. Teixeira, G. S. Tucker (1997). On-line retort control in thermal sterilization of canned foods. Food Control, 8:13-20.

[2] A. A. Alonso, et al (2013). Real time optimization for quality control of batch thermal sterilization of prepackaged foods. Food Control, 32(2):392–403, 2013.

ACKNOWLEDGEMENTS

These results are part of the CoPro project which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723575.